8e89963f2f9aa7963a720097659eedd495425da5
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35
36 #include "util/hash_table.h"
37
38 #include <xf86drm.h>
39 #include <i915_drm.h>
40
41 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
42
43 /**
44 * Target sizes of the batch and state buffers. We create the initial
45 * buffers at these sizes, and flush when they're nearly full. If we
46 * underestimate how close we are to the end, and suddenly need more space
47 * in the middle of a draw, we can grow the buffers, and finish the draw.
48 * At that point, we'll be over our target size, so the next operation
49 * should flush. Each time we flush the batch, we recreate both buffers
50 * at the original target size, so it doesn't grow without bound.
51 */
52 #define BATCH_SZ (20 * 1024)
53 #define STATE_SZ (16 * 1024)
54
55 static void
56 intel_batchbuffer_reset(struct brw_context *brw);
57
58 static bool
59 uint_key_compare(const void *a, const void *b)
60 {
61 return a == b;
62 }
63
64 static uint32_t
65 uint_key_hash(const void *key)
66 {
67 return (uintptr_t) key;
68 }
69
70 static void
71 init_reloc_list(struct brw_reloc_list *rlist, int count)
72 {
73 rlist->reloc_count = 0;
74 rlist->reloc_array_size = count;
75 rlist->relocs = malloc(rlist->reloc_array_size *
76 sizeof(struct drm_i915_gem_relocation_entry));
77 }
78
79 void
80 intel_batchbuffer_init(struct brw_context *brw)
81 {
82 struct intel_screen *screen = brw->screen;
83 struct intel_batchbuffer *batch = &brw->batch;
84 const struct gen_device_info *devinfo = &screen->devinfo;
85
86 batch->use_shadow_copy = !devinfo->has_llc;
87
88 if (batch->use_shadow_copy) {
89 batch->batch.map = malloc(BATCH_SZ);
90 batch->map_next = batch->batch.map;
91 batch->state.map = malloc(STATE_SZ);
92 }
93
94 init_reloc_list(&batch->batch_relocs, 250);
95 init_reloc_list(&batch->state_relocs, 250);
96
97 batch->exec_count = 0;
98 batch->exec_array_size = 100;
99 batch->exec_bos =
100 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
101 batch->validation_list =
102 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
103
104 if (INTEL_DEBUG & DEBUG_BATCH) {
105 batch->state_batch_sizes =
106 _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
107 }
108
109 batch->use_batch_first =
110 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
111
112 /* PIPE_CONTROL needs a w/a but only on gen6 */
113 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
114 if (devinfo->gen == 6)
115 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
116
117 intel_batchbuffer_reset(brw);
118 }
119
120 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
121
122 static unsigned
123 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
124 {
125 unsigned index = READ_ONCE(bo->index);
126
127 if (index < batch->exec_count && batch->exec_bos[index] == bo)
128 return index;
129
130 /* May have been shared between multiple active batches */
131 for (index = 0; index < batch->exec_count; index++) {
132 if (batch->exec_bos[index] == bo)
133 return index;
134 }
135
136 brw_bo_reference(bo);
137
138 if (batch->exec_count == batch->exec_array_size) {
139 batch->exec_array_size *= 2;
140 batch->exec_bos =
141 realloc(batch->exec_bos,
142 batch->exec_array_size * sizeof(batch->exec_bos[0]));
143 batch->validation_list =
144 realloc(batch->validation_list,
145 batch->exec_array_size * sizeof(batch->validation_list[0]));
146 }
147
148 batch->validation_list[batch->exec_count] =
149 (struct drm_i915_gem_exec_object2) {
150 .handle = bo->gem_handle,
151 .alignment = bo->align,
152 .offset = bo->gtt_offset,
153 .flags = bo->kflags,
154 };
155
156 bo->index = batch->exec_count;
157 batch->exec_bos[batch->exec_count] = bo;
158 batch->aperture_space += bo->size;
159
160 return batch->exec_count++;
161 }
162
163 static void
164 recreate_growing_buffer(struct brw_context *brw,
165 struct brw_growing_bo *grow,
166 const char *name, unsigned size)
167 {
168 struct intel_screen *screen = brw->screen;
169 struct intel_batchbuffer *batch = &brw->batch;
170 struct brw_bufmgr *bufmgr = screen->bufmgr;
171
172 grow->bo = brw_bo_alloc(bufmgr, name, size, 4096);
173 grow->bo->kflags = can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
174 grow->partial_bo = NULL;
175 grow->partial_bo_map = NULL;
176 grow->partial_bytes = 0;
177
178 if (!batch->use_shadow_copy)
179 grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE);
180 }
181
182 static void
183 intel_batchbuffer_reset(struct brw_context *brw)
184 {
185 struct intel_batchbuffer *batch = &brw->batch;
186
187 if (batch->last_bo != NULL) {
188 brw_bo_unreference(batch->last_bo);
189 batch->last_bo = NULL;
190 }
191 batch->last_bo = batch->batch.bo;
192
193 recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ);
194 batch->map_next = batch->batch.map;
195
196 recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ);
197
198 /* Avoid making 0 a valid state offset - otherwise the decoder will try
199 * and decode data when we use offset 0 as a null pointer.
200 */
201 batch->state_used = 1;
202
203 add_exec_bo(batch, batch->batch.bo);
204 assert(batch->batch.bo->index == 0);
205
206 batch->needs_sol_reset = false;
207 batch->state_base_address_emitted = false;
208
209 /* We don't know what ring the new batch will be sent to until we see the
210 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
211 */
212 batch->ring = UNKNOWN_RING;
213
214 if (batch->state_batch_sizes)
215 _mesa_hash_table_clear(batch->state_batch_sizes, NULL);
216 }
217
218 static void
219 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
220 {
221 intel_batchbuffer_reset(brw);
222 brw_cache_sets_clear(brw);
223 }
224
225 void
226 intel_batchbuffer_save_state(struct brw_context *brw)
227 {
228 brw->batch.saved.map_next = brw->batch.map_next;
229 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
230 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
231 brw->batch.saved.exec_count = brw->batch.exec_count;
232 }
233
234 void
235 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
236 {
237 for (int i = brw->batch.saved.exec_count;
238 i < brw->batch.exec_count; i++) {
239 brw_bo_unreference(brw->batch.exec_bos[i]);
240 }
241 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
242 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
243 brw->batch.exec_count = brw->batch.saved.exec_count;
244
245 brw->batch.map_next = brw->batch.saved.map_next;
246 if (USED_BATCH(brw->batch) == 0)
247 brw->batch.ring = UNKNOWN_RING;
248 }
249
250 void
251 intel_batchbuffer_free(struct intel_batchbuffer *batch)
252 {
253 if (batch->use_shadow_copy) {
254 free(batch->batch.map);
255 free(batch->state.map);
256 }
257
258 for (int i = 0; i < batch->exec_count; i++) {
259 brw_bo_unreference(batch->exec_bos[i]);
260 }
261 free(batch->batch_relocs.relocs);
262 free(batch->state_relocs.relocs);
263 free(batch->exec_bos);
264 free(batch->validation_list);
265
266 brw_bo_unreference(batch->last_bo);
267 brw_bo_unreference(batch->batch.bo);
268 brw_bo_unreference(batch->state.bo);
269 if (batch->state_batch_sizes)
270 _mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
271 }
272
273 /**
274 * Finish copying the old batch/state buffer's contents to the new one
275 * after we tried to "grow" the buffer in an earlier operation.
276 */
277 static void
278 finish_growing_bos(struct brw_growing_bo *grow)
279 {
280 struct brw_bo *old_bo = grow->partial_bo;
281 if (!old_bo)
282 return;
283
284 memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
285
286 grow->partial_bo = NULL;
287 grow->partial_bo_map = NULL;
288 grow->partial_bytes = 0;
289
290 brw_bo_unreference(old_bo);
291 }
292
293 static void
294 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
295 uint32_t old_handle, uint32_t new_handle)
296 {
297 for (int i = 0; i < rlist->reloc_count; i++) {
298 if (rlist->relocs[i].target_handle == old_handle)
299 rlist->relocs[i].target_handle = new_handle;
300 }
301 }
302
303 /**
304 * Grow either the batch or state buffer to a new larger size.
305 *
306 * We can't actually grow buffers, so we allocate a new one, copy over
307 * the existing contents, and update our lists to refer to the new one.
308 *
309 * Note that this is only temporary - each new batch recreates the buffers
310 * at their original target size (BATCH_SZ or STATE_SZ).
311 */
312 static void
313 grow_buffer(struct brw_context *brw,
314 struct brw_growing_bo *grow,
315 unsigned existing_bytes,
316 unsigned new_size)
317 {
318 struct intel_batchbuffer *batch = &brw->batch;
319 struct brw_bufmgr *bufmgr = brw->bufmgr;
320 struct brw_bo *bo = grow->bo;
321
322 perf_debug("Growing %s - ran out of space\n", bo->name);
323
324 if (grow->partial_bo) {
325 /* We've already grown once, and now we need to do it again.
326 * Finish our last grow operation so we can start a new one.
327 * This should basically never happen.
328 */
329 perf_debug("Had to grow multiple times");
330 finish_growing_bos(grow);
331 }
332
333 struct brw_bo *new_bo = brw_bo_alloc(bufmgr, bo->name, new_size, bo->align);
334
335 /* Copy existing data to the new larger buffer */
336 grow->partial_bo_map = grow->map;
337
338 if (batch->use_shadow_copy) {
339 /* We can't safely use realloc, as it may move the existing buffer,
340 * breaking existing pointers the caller may still be using. Just
341 * malloc a new copy and memcpy it like the normal BO path.
342 */
343 grow->map = malloc(new_size);
344 } else {
345 grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
346 }
347
348 /* Try to put the new BO at the same GTT offset as the old BO (which
349 * we're throwing away, so it doesn't need to be there).
350 *
351 * This guarantees that our relocations continue to work: values we've
352 * already written into the buffer, values we're going to write into the
353 * buffer, and the validation/relocation lists all will match.
354 *
355 * Also preserve kflags for EXEC_OBJECT_CAPTURE.
356 */
357 new_bo->gtt_offset = bo->gtt_offset;
358 new_bo->index = bo->index;
359 new_bo->kflags = bo->kflags;
360
361 /* Batch/state buffers are per-context, and if we've run out of space,
362 * we must have actually used them before, so...they will be in the list.
363 */
364 assert(bo->index < batch->exec_count);
365 assert(batch->exec_bos[bo->index] == bo);
366
367 /* Update the validation list to use the new BO. */
368 batch->validation_list[bo->index].handle = new_bo->gem_handle;
369
370 if (!batch->use_batch_first) {
371 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
372 * update the relocation list entries to point at the new BO as well.
373 * (With newer kernels, the "handle" is an offset into the validation
374 * list, which remains unchanged, so we can skip this.)
375 */
376 replace_bo_in_reloc_list(&batch->batch_relocs,
377 bo->gem_handle, new_bo->gem_handle);
378 replace_bo_in_reloc_list(&batch->state_relocs,
379 bo->gem_handle, new_bo->gem_handle);
380 }
381
382 /* Exchange the two BOs...without breaking pointers to the old BO.
383 *
384 * Consider this scenario:
385 *
386 * 1. Somebody calls brw_state_batch() to get a region of memory, and
387 * and then creates a brw_address pointing to brw->batch.state.bo.
388 * 2. They then call brw_state_batch() a second time, which happens to
389 * grow and replace the state buffer. They then try to emit a
390 * relocation to their first section of memory.
391 *
392 * If we replace the brw->batch.state.bo pointer at step 2, we would
393 * break the address created in step 1. They'd have a pointer to the
394 * old destroyed BO. Emitting a relocation would add this dead BO to
395 * the validation list...causing /both/ statebuffers to be in the list,
396 * and all kinds of disasters.
397 *
398 * This is not a contrived case - BLORP vertex data upload hits this.
399 *
400 * There are worse scenarios too. Fences for GL sync objects reference
401 * brw->batch.batch.bo. If we replaced the batch pointer when growing,
402 * we'd need to chase down every fence and update it to point to the
403 * new BO. Otherwise, it would refer to a "batch" that never actually
404 * gets submitted, and would fail to trigger.
405 *
406 * To work around both of these issues, we transmutate the buffers in
407 * place, making the existing struct brw_bo represent the new buffer,
408 * and "new_bo" represent the old BO. This is highly unusual, but it
409 * seems like a necessary evil.
410 *
411 * We also defer the memcpy of the existing batch's contents. Callers
412 * may make multiple brw_state_batch calls, and retain pointers to the
413 * old BO's map. We'll perform the memcpy in finish_growing_bo() when
414 * we finally submit the batch, at which point we've finished uploading
415 * state, and nobody should have any old references anymore.
416 *
417 * To do that, we keep a reference to the old BO in grow->partial_bo,
418 * and store the number of bytes to copy in grow->partial_bytes. We
419 * can monkey with the refcounts directly without atomics because these
420 * are per-context BOs and they can only be touched by this thread.
421 */
422 assert(new_bo->refcount == 1);
423 new_bo->refcount = bo->refcount;
424 bo->refcount = 1;
425
426 struct brw_bo tmp;
427 memcpy(&tmp, bo, sizeof(struct brw_bo));
428 memcpy(bo, new_bo, sizeof(struct brw_bo));
429 memcpy(new_bo, &tmp, sizeof(struct brw_bo));
430
431 grow->partial_bo = new_bo; /* the one reference of the OLD bo */
432 grow->partial_bytes = existing_bytes;
433 }
434
435 void
436 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
437 enum brw_gpu_ring ring)
438 {
439 const struct gen_device_info *devinfo = &brw->screen->devinfo;
440 struct intel_batchbuffer *batch = &brw->batch;
441
442 /* If we're switching rings, implicitly flush the batch. */
443 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
444 devinfo->gen >= 6) {
445 intel_batchbuffer_flush(brw);
446 }
447
448 const unsigned batch_used = USED_BATCH(*batch) * 4;
449 if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
450 intel_batchbuffer_flush(brw);
451 } else if (batch_used + sz >= batch->batch.bo->size) {
452 const unsigned new_size =
453 MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
454 MAX_BATCH_SIZE);
455 grow_buffer(brw, &batch->batch, batch_used, new_size);
456 batch->map_next = (void *) batch->batch.map + batch_used;
457 assert(batch_used + sz < batch->batch.bo->size);
458 }
459
460 /* The intel_batchbuffer_flush() calls above might have changed
461 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
462 */
463 brw->batch.ring = ring;
464 }
465
466 #ifdef DEBUG
467 #define CSI "\e["
468 #define BLUE_HEADER CSI "0;44m"
469 #define NORMAL CSI "0m"
470
471
472 static void
473 decode_struct(struct brw_context *brw, struct gen_spec *spec,
474 const char *struct_name, uint32_t *data,
475 uint32_t gtt_offset, uint32_t offset, bool color)
476 {
477 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
478 if (!group)
479 return;
480
481 fprintf(stderr, "%s\n", struct_name);
482 gen_print_group(stderr, group, gtt_offset + offset,
483 &data[offset / 4], 0, color);
484 }
485
486 static void
487 decode_structs(struct brw_context *brw, struct gen_spec *spec,
488 const char *struct_name,
489 uint32_t *data, uint32_t gtt_offset, uint32_t offset,
490 int struct_size, bool color)
491 {
492 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
493 if (!group)
494 return;
495
496 int entries = brw_state_batch_size(brw, offset) / struct_size;
497 for (int i = 0; i < entries; i++) {
498 fprintf(stderr, "%s %d\n", struct_name, i);
499 gen_print_group(stderr, group, gtt_offset + offset,
500 &data[(offset + i * struct_size) / 4], 0, color);
501 }
502 }
503
504 static void
505 do_batch_dump(struct brw_context *brw)
506 {
507 const struct gen_device_info *devinfo = &brw->screen->devinfo;
508 struct intel_batchbuffer *batch = &brw->batch;
509 struct gen_spec *spec = gen_spec_load(&brw->screen->devinfo);
510
511 if (batch->ring != RENDER_RING)
512 return;
513
514 uint32_t *batch_data = brw_bo_map(brw, batch->batch.bo, MAP_READ);
515 uint32_t *state = brw_bo_map(brw, batch->state.bo, MAP_READ);
516 if (batch_data == NULL || state == NULL) {
517 fprintf(stderr, "WARNING: failed to map batchbuffer/statebuffer\n");
518 return;
519 }
520
521 uint32_t *end = batch_data + USED_BATCH(*batch);
522 uint32_t batch_gtt_offset = batch->batch.bo->gtt_offset;
523 uint32_t state_gtt_offset = batch->state.bo->gtt_offset;
524 int length;
525
526 bool color = INTEL_DEBUG & DEBUG_COLOR;
527 const char *header_color = color ? BLUE_HEADER : "";
528 const char *reset_color = color ? NORMAL : "";
529
530 for (uint32_t *p = batch_data; p < end; p += length) {
531 struct gen_group *inst = gen_spec_find_instruction(spec, p);
532 length = gen_group_get_length(inst, p);
533 assert(inst == NULL || length > 0);
534 length = MAX2(1, length);
535 if (inst == NULL) {
536 fprintf(stderr, "unknown instruction %08x\n", p[0]);
537 continue;
538 }
539
540 uint64_t offset = batch_gtt_offset + 4 * (p - batch_data);
541
542 fprintf(stderr, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", header_color,
543 offset, p[0], gen_group_get_name(inst), reset_color);
544
545 gen_print_group(stderr, inst, offset, p, 0, color);
546
547 switch (gen_group_get_opcode(inst) >> 16) {
548 case _3DSTATE_PIPELINED_POINTERS:
549 /* Note: these Gen4-5 pointers are full relocations rather than
550 * offsets from the start of the statebuffer. So we need to subtract
551 * gtt_offset (the start of the statebuffer) to obtain an offset we
552 * can add to the map and get at the data.
553 */
554 decode_struct(brw, spec, "VS_STATE", state, state_gtt_offset,
555 (p[1] & ~0x1fu) - state_gtt_offset, color);
556 if (p[2] & 1) {
557 decode_struct(brw, spec, "GS_STATE", state, state_gtt_offset,
558 (p[2] & ~0x1fu) - state_gtt_offset, color);
559 }
560 if (p[3] & 1) {
561 decode_struct(brw, spec, "CLIP_STATE", state, state_gtt_offset,
562 (p[3] & ~0x1fu) - state_gtt_offset, color);
563 }
564 decode_struct(brw, spec, "SF_STATE", state, state_gtt_offset,
565 (p[4] & ~0x1fu) - state_gtt_offset, color);
566 decode_struct(brw, spec, "WM_STATE", state, state_gtt_offset,
567 (p[5] & ~0x1fu) - state_gtt_offset, color);
568 decode_struct(brw, spec, "COLOR_CALC_STATE", state, state_gtt_offset,
569 (p[6] & ~0x3fu) - state_gtt_offset, color);
570 break;
571 case _3DSTATE_BINDING_TABLE_POINTERS_VS:
572 case _3DSTATE_BINDING_TABLE_POINTERS_HS:
573 case _3DSTATE_BINDING_TABLE_POINTERS_DS:
574 case _3DSTATE_BINDING_TABLE_POINTERS_GS:
575 case _3DSTATE_BINDING_TABLE_POINTERS_PS: {
576 struct gen_group *group =
577 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
578 if (!group)
579 break;
580
581 uint32_t bt_offset = p[1] & ~0x1fu;
582 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
583 uint32_t *bt_pointers = &state[bt_offset / 4];
584 for (int i = 0; i < bt_entries; i++) {
585 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
586 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
587 &state[bt_pointers[i] / 4], 0, color);
588 }
589 break;
590 }
591 case _3DSTATE_SAMPLER_STATE_POINTERS_VS:
592 case _3DSTATE_SAMPLER_STATE_POINTERS_HS:
593 case _3DSTATE_SAMPLER_STATE_POINTERS_DS:
594 case _3DSTATE_SAMPLER_STATE_POINTERS_GS:
595 case _3DSTATE_SAMPLER_STATE_POINTERS_PS:
596 decode_structs(brw, spec, "SAMPLER_STATE", state,
597 state_gtt_offset, p[1] & ~0x1fu, 4 * 4, color);
598 break;
599 case _3DSTATE_VIEWPORT_STATE_POINTERS:
600 decode_structs(brw, spec, "CLIP_VIEWPORT", state,
601 state_gtt_offset, p[1] & ~0x3fu, 4 * 4, color);
602 decode_structs(brw, spec, "SF_VIEWPORT", state,
603 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
604 decode_structs(brw, spec, "CC_VIEWPORT", state,
605 state_gtt_offset, p[3] & ~0x3fu, 2 * 4, color);
606 break;
607 case _3DSTATE_VIEWPORT_STATE_POINTERS_CC:
608 decode_structs(brw, spec, "CC_VIEWPORT", state,
609 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
610 break;
611 case _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL:
612 decode_structs(brw, spec, "SF_CLIP_VIEWPORT", state,
613 state_gtt_offset, p[1] & ~0x3fu, 16 * 4, color);
614 break;
615 case _3DSTATE_SCISSOR_STATE_POINTERS:
616 decode_structs(brw, spec, "SCISSOR_RECT", state,
617 state_gtt_offset, p[1] & ~0x1fu, 2 * 4, color);
618 break;
619 case _3DSTATE_BLEND_STATE_POINTERS:
620 /* TODO: handle Gen8+ extra dword at the beginning */
621 decode_structs(brw, spec, "BLEND_STATE", state,
622 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
623 break;
624 case _3DSTATE_CC_STATE_POINTERS:
625 if (devinfo->gen >= 7) {
626 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
627 state_gtt_offset, p[1] & ~0x3fu, color);
628 } else if (devinfo->gen == 6) {
629 decode_structs(brw, spec, "BLEND_STATE", state,
630 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
631 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
632 state_gtt_offset, p[2] & ~0x3fu, color);
633 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
634 state_gtt_offset, p[3] & ~0x3fu, color);
635 }
636 break;
637 case _3DSTATE_DEPTH_STENCIL_STATE_POINTERS:
638 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
639 state_gtt_offset, p[1] & ~0x3fu, color);
640 break;
641 case MEDIA_INTERFACE_DESCRIPTOR_LOAD: {
642 struct gen_group *group =
643 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
644 if (!group)
645 break;
646
647 uint32_t idd_offset = p[3] & ~0x1fu;
648 decode_struct(brw, spec, "INTERFACE_DESCRIPTOR_DATA", state,
649 state_gtt_offset, idd_offset, color);
650
651 uint32_t ss_offset = state[idd_offset / 4 + 3] & ~0x1fu;
652 decode_structs(brw, spec, "SAMPLER_STATE", state,
653 state_gtt_offset, ss_offset, 4 * 4, color);
654
655 uint32_t bt_offset = state[idd_offset / 4 + 4] & ~0x1fu;
656 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
657 uint32_t *bt_pointers = &state[bt_offset / 4];
658 for (int i = 0; i < bt_entries; i++) {
659 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
660 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
661 &state[bt_pointers[i] / 4], 0, color);
662 }
663 break;
664 }
665 }
666 }
667
668 brw_bo_unmap(batch->batch.bo);
669 brw_bo_unmap(batch->state.bo);
670 }
671 #else
672 static void do_batch_dump(struct brw_context *brw) { }
673 #endif
674
675 /**
676 * Called when starting a new batch buffer.
677 */
678 static void
679 brw_new_batch(struct brw_context *brw)
680 {
681 /* Unreference any BOs held by the previous batch, and reset counts. */
682 for (int i = 0; i < brw->batch.exec_count; i++) {
683 brw_bo_unreference(brw->batch.exec_bos[i]);
684 brw->batch.exec_bos[i] = NULL;
685 }
686 brw->batch.batch_relocs.reloc_count = 0;
687 brw->batch.state_relocs.reloc_count = 0;
688 brw->batch.exec_count = 0;
689 brw->batch.aperture_space = 0;
690
691 brw_bo_unreference(brw->batch.state.bo);
692
693 /* Create a new batchbuffer and reset the associated state: */
694 intel_batchbuffer_reset_and_clear_render_cache(brw);
695
696 /* If the kernel supports hardware contexts, then most hardware state is
697 * preserved between batches; we only need to re-emit state that is required
698 * to be in every batch. Otherwise we need to re-emit all the state that
699 * would otherwise be stored in the context (which for all intents and
700 * purposes means everything).
701 */
702 if (brw->hw_ctx == 0) {
703 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
704 brw_upload_invariant_state(brw);
705 }
706
707 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
708
709 brw->ib.index_size = -1;
710
711 /* We need to periodically reap the shader time results, because rollover
712 * happens every few seconds. We also want to see results every once in a
713 * while, because many programs won't cleanly destroy our context, so the
714 * end-of-run printout may not happen.
715 */
716 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
717 brw_collect_and_report_shader_time(brw);
718 }
719
720 /**
721 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
722 * sending it off.
723 *
724 * This function can emit state (say, to preserve registers that aren't saved
725 * between batches).
726 */
727 static void
728 brw_finish_batch(struct brw_context *brw)
729 {
730 const struct gen_device_info *devinfo = &brw->screen->devinfo;
731
732 brw->batch.no_wrap = true;
733
734 /* Capture the closing pipeline statistics register values necessary to
735 * support query objects (in the non-hardware context world).
736 */
737 brw_emit_query_end(brw);
738
739 if (brw->batch.ring == RENDER_RING) {
740 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
741 * assume that the L3 cache is configured according to the hardware
742 * defaults.
743 */
744 if (devinfo->gen >= 7)
745 gen7_restore_default_l3_config(brw);
746
747 if (devinfo->is_haswell) {
748 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
749 * 3DSTATE_CC_STATE_POINTERS > "Note":
750 *
751 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
752 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
753 *
754 * From the example in the docs, it seems to expect a regular pipe control
755 * flush here as well. We may have done it already, but meh.
756 *
757 * See also WaAvoidRCZCounterRollover.
758 */
759 brw_emit_mi_flush(brw);
760 BEGIN_BATCH(2);
761 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
762 OUT_BATCH(brw->cc.state_offset | 1);
763 ADVANCE_BATCH();
764 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
765 PIPE_CONTROL_CS_STALL);
766 }
767
768 /* Do not restore push constant packets during context restore. */
769 if (devinfo->gen >= 7)
770 gen10_emit_isp_disable(brw);
771 }
772
773 /* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2
774 * requires our batch size to be QWord aligned, so we pad it out if
775 * necessary by emitting an extra MI_NOOP after the end.
776 */
777 intel_batchbuffer_require_space(brw, 8, brw->batch.ring);
778 *brw->batch.map_next++ = MI_BATCH_BUFFER_END;
779 if (USED_BATCH(brw->batch) & 1) {
780 *brw->batch.map_next++ = MI_NOOP;
781 }
782
783 brw->batch.no_wrap = false;
784 }
785
786 static void
787 throttle(struct brw_context *brw)
788 {
789 /* Wait for the swapbuffers before the one we just emitted, so we
790 * don't get too many swaps outstanding for apps that are GPU-heavy
791 * but not CPU-heavy.
792 *
793 * We're using intelDRI2Flush (called from the loader before
794 * swapbuffer) and glFlush (for front buffer rendering) as the
795 * indicator that a frame is done and then throttle when we get
796 * here as we prepare to render the next frame. At this point for
797 * round trips for swap/copy and getting new buffers are done and
798 * we'll spend less time waiting on the GPU.
799 *
800 * Unfortunately, we don't have a handle to the batch containing
801 * the swap, and getting our hands on that doesn't seem worth it,
802 * so we just use the first batch we emitted after the last swap.
803 */
804 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
805 if (brw->throttle_batch[1]) {
806 if (!brw->disable_throttling) {
807 /* Pass NULL rather than brw so we avoid perf_debug warnings;
808 * stalling is common and expected here...
809 */
810 brw_bo_wait_rendering(brw->throttle_batch[1]);
811 }
812 brw_bo_unreference(brw->throttle_batch[1]);
813 }
814 brw->throttle_batch[1] = brw->throttle_batch[0];
815 brw->throttle_batch[0] = NULL;
816 brw->need_swap_throttle = false;
817 /* Throttling here is more precise than the throttle ioctl, so skip it */
818 brw->need_flush_throttle = false;
819 }
820
821 if (brw->need_flush_throttle) {
822 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
823 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
824 brw->need_flush_throttle = false;
825 }
826 }
827
828 static int
829 execbuffer(int fd,
830 struct intel_batchbuffer *batch,
831 uint32_t ctx_id,
832 int used,
833 int in_fence,
834 int *out_fence,
835 int flags)
836 {
837 struct drm_i915_gem_execbuffer2 execbuf = {
838 .buffers_ptr = (uintptr_t) batch->validation_list,
839 .buffer_count = batch->exec_count,
840 .batch_start_offset = 0,
841 .batch_len = used,
842 .flags = flags,
843 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
844 };
845
846 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
847
848 if (in_fence != -1) {
849 execbuf.rsvd2 = in_fence;
850 execbuf.flags |= I915_EXEC_FENCE_IN;
851 }
852
853 if (out_fence != NULL) {
854 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
855 *out_fence = -1;
856 execbuf.flags |= I915_EXEC_FENCE_OUT;
857 }
858
859 int ret = drmIoctl(fd, cmd, &execbuf);
860 if (ret != 0)
861 ret = -errno;
862
863 for (int i = 0; i < batch->exec_count; i++) {
864 struct brw_bo *bo = batch->exec_bos[i];
865
866 bo->idle = false;
867 bo->index = -1;
868
869 /* Update brw_bo::gtt_offset */
870 if (batch->validation_list[i].offset != bo->gtt_offset) {
871 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
872 bo->gem_handle, bo->gtt_offset,
873 batch->validation_list[i].offset);
874 bo->gtt_offset = batch->validation_list[i].offset;
875 }
876 }
877
878 if (ret == 0 && out_fence != NULL)
879 *out_fence = execbuf.rsvd2 >> 32;
880
881 return ret;
882 }
883
884 static int
885 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
886 {
887 const struct gen_device_info *devinfo = &brw->screen->devinfo;
888 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
889 struct intel_batchbuffer *batch = &brw->batch;
890 int ret = 0;
891
892 if (batch->use_shadow_copy) {
893 void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
894 memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch));
895
896 bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
897 memcpy(bo_map, batch->state.map, batch->state_used);
898 }
899
900 brw_bo_unmap(batch->batch.bo);
901 brw_bo_unmap(batch->state.bo);
902
903 if (!brw->screen->no_hw) {
904 /* The requirement for using I915_EXEC_NO_RELOC are:
905 *
906 * The addresses written in the objects must match the corresponding
907 * reloc.gtt_offset which in turn must match the corresponding
908 * execobject.offset.
909 *
910 * Any render targets written to in the batch must be flagged with
911 * EXEC_OBJECT_WRITE.
912 *
913 * To avoid stalling, execobject.offset should match the current
914 * address of that object within the active context.
915 */
916 int flags = I915_EXEC_NO_RELOC;
917
918 if (devinfo->gen >= 6 && batch->ring == BLT_RING) {
919 flags |= I915_EXEC_BLT;
920 } else {
921 flags |= I915_EXEC_RENDER;
922 }
923 if (batch->needs_sol_reset)
924 flags |= I915_EXEC_GEN7_SOL_RESET;
925
926 uint32_t hw_ctx = batch->ring == RENDER_RING ? brw->hw_ctx : 0;
927
928 /* Set statebuffer relocations */
929 const unsigned state_index = batch->state.bo->index;
930 if (state_index < batch->exec_count &&
931 batch->exec_bos[state_index] == batch->state.bo) {
932 struct drm_i915_gem_exec_object2 *entry =
933 &batch->validation_list[state_index];
934 assert(entry->handle == batch->state.bo->gem_handle);
935 entry->relocation_count = batch->state_relocs.reloc_count;
936 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
937 }
938
939 /* Set batchbuffer relocations */
940 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
941 assert(entry->handle == batch->batch.bo->gem_handle);
942 entry->relocation_count = batch->batch_relocs.reloc_count;
943 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
944
945 if (batch->use_batch_first) {
946 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
947 } else {
948 /* Move the batch to the end of the validation list */
949 struct drm_i915_gem_exec_object2 tmp;
950 const unsigned index = batch->exec_count - 1;
951
952 tmp = *entry;
953 *entry = batch->validation_list[index];
954 batch->validation_list[index] = tmp;
955 }
956
957 ret = execbuffer(dri_screen->fd, batch, hw_ctx,
958 4 * USED_BATCH(*batch),
959 in_fence_fd, out_fence_fd, flags);
960
961 throttle(brw);
962 }
963
964 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
965 do_batch_dump(brw);
966
967 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
968 brw_check_for_reset(brw);
969
970 if (ret != 0) {
971 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
972 strerror(-ret));
973 exit(1);
974 }
975
976 return ret;
977 }
978
979 /**
980 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
981 * of the fd.
982 *
983 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
984 * of the returned fd.
985 */
986 int
987 _intel_batchbuffer_flush_fence(struct brw_context *brw,
988 int in_fence_fd, int *out_fence_fd,
989 const char *file, int line)
990 {
991 int ret;
992
993 if (USED_BATCH(brw->batch) == 0)
994 return 0;
995
996 /* Check that we didn't just wrap our batchbuffer at a bad time. */
997 assert(!brw->batch.no_wrap);
998
999 brw_finish_batch(brw);
1000 intel_upload_finish(brw);
1001
1002 finish_growing_bos(&brw->batch.batch);
1003 finish_growing_bos(&brw->batch.state);
1004
1005 if (brw->throttle_batch[0] == NULL) {
1006 brw->throttle_batch[0] = brw->batch.batch.bo;
1007 brw_bo_reference(brw->throttle_batch[0]);
1008 }
1009
1010 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
1011 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
1012 int bytes_for_state = brw->batch.state_used;
1013 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
1014 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
1015 " %4d batch relocs, %4d state relocs\n", file, line,
1016 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
1017 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
1018 brw->batch.exec_count,
1019 (float) brw->batch.aperture_space / (1024 * 1024),
1020 brw->batch.batch_relocs.reloc_count,
1021 brw->batch.state_relocs.reloc_count);
1022 }
1023
1024 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
1025
1026 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
1027 fprintf(stderr, "waiting for idle\n");
1028 brw_bo_wait_rendering(brw->batch.batch.bo);
1029 }
1030
1031 /* Start a new batch buffer. */
1032 brw_new_batch(brw);
1033
1034 return ret;
1035 }
1036
1037 bool
1038 brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
1039 {
1040 return brw->batch.aperture_space + extra_space <=
1041 brw->screen->aperture_threshold;
1042 }
1043
1044 bool
1045 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
1046 {
1047 unsigned index = READ_ONCE(bo->index);
1048 if (index < batch->exec_count && batch->exec_bos[index] == bo)
1049 return true;
1050
1051 for (int i = 0; i < batch->exec_count; i++) {
1052 if (batch->exec_bos[i] == bo)
1053 return true;
1054 }
1055 return false;
1056 }
1057
1058 /* This is the only way buffers get added to the validate list.
1059 */
1060 static uint64_t
1061 emit_reloc(struct intel_batchbuffer *batch,
1062 struct brw_reloc_list *rlist, uint32_t offset,
1063 struct brw_bo *target, uint32_t target_offset,
1064 unsigned int reloc_flags)
1065 {
1066 assert(target != NULL);
1067
1068 if (rlist->reloc_count == rlist->reloc_array_size) {
1069 rlist->reloc_array_size *= 2;
1070 rlist->relocs = realloc(rlist->relocs,
1071 rlist->reloc_array_size *
1072 sizeof(struct drm_i915_gem_relocation_entry));
1073 }
1074
1075 unsigned int index = add_exec_bo(batch, target);
1076 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
1077
1078 if (reloc_flags)
1079 entry->flags |= reloc_flags & batch->valid_reloc_flags;
1080
1081 rlist->relocs[rlist->reloc_count++] =
1082 (struct drm_i915_gem_relocation_entry) {
1083 .offset = offset,
1084 .delta = target_offset,
1085 .target_handle = batch->use_batch_first ? index : target->gem_handle,
1086 .presumed_offset = entry->offset,
1087 };
1088
1089 /* Using the old buffer offset, write in what the right data would be, in
1090 * case the buffer doesn't move and we can short-circuit the relocation
1091 * processing in the kernel
1092 */
1093 return entry->offset + target_offset;
1094 }
1095
1096 uint64_t
1097 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
1098 struct brw_bo *target, uint32_t target_offset,
1099 unsigned int reloc_flags)
1100 {
1101 assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));
1102
1103 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
1104 target, target_offset, reloc_flags);
1105 }
1106
1107 uint64_t
1108 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1109 struct brw_bo *target, uint32_t target_offset,
1110 unsigned int reloc_flags)
1111 {
1112 assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
1113
1114 return emit_reloc(batch, &batch->state_relocs, state_offset,
1115 target, target_offset, reloc_flags);
1116 }
1117
1118
1119 uint32_t
1120 brw_state_batch_size(struct brw_context *brw, uint32_t offset)
1121 {
1122 struct hash_entry *entry =
1123 _mesa_hash_table_search(brw->batch.state_batch_sizes,
1124 (void *) (uintptr_t) offset);
1125 return entry ? (uintptr_t) entry->data : 0;
1126 }
1127
1128 /**
1129 * Reserve some space in the statebuffer, or flush.
1130 *
1131 * This is used to estimate when we're near the end of the batch,
1132 * so we can flush early.
1133 */
1134 void
1135 brw_require_statebuffer_space(struct brw_context *brw, int size)
1136 {
1137 if (brw->batch.state_used + size >= STATE_SZ)
1138 intel_batchbuffer_flush(brw);
1139 }
1140
1141 /**
1142 * Allocates a block of space in the batchbuffer for indirect state.
1143 */
1144 void *
1145 brw_state_batch(struct brw_context *brw,
1146 int size,
1147 int alignment,
1148 uint32_t *out_offset)
1149 {
1150 struct intel_batchbuffer *batch = &brw->batch;
1151
1152 assert(size < batch->state.bo->size);
1153
1154 uint32_t offset = ALIGN(batch->state_used, alignment);
1155
1156 if (offset + size >= STATE_SZ && !batch->no_wrap) {
1157 intel_batchbuffer_flush(brw);
1158 offset = ALIGN(batch->state_used, alignment);
1159 } else if (offset + size >= batch->state.bo->size) {
1160 const unsigned new_size =
1161 MIN2(batch->state.bo->size + batch->state.bo->size / 2,
1162 MAX_STATE_SIZE);
1163 grow_buffer(brw, &batch->state, batch->state_used, new_size);
1164 assert(offset + size < batch->state.bo->size);
1165 }
1166
1167 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1168 _mesa_hash_table_insert(batch->state_batch_sizes,
1169 (void *) (uintptr_t) offset,
1170 (void *) (uintptr_t) size);
1171 }
1172
1173 batch->state_used = offset + size;
1174
1175 *out_offset = offset;
1176 return batch->state.map + (offset >> 2);
1177 }
1178
1179 void
1180 intel_batchbuffer_data(struct brw_context *brw,
1181 const void *data, GLuint bytes, enum brw_gpu_ring ring)
1182 {
1183 assert((bytes & 3) == 0);
1184 intel_batchbuffer_require_space(brw, bytes, ring);
1185 memcpy(brw->batch.map_next, data, bytes);
1186 brw->batch.map_next += bytes >> 2;
1187 }
1188
1189 static void
1190 load_sized_register_mem(struct brw_context *brw,
1191 uint32_t reg,
1192 struct brw_bo *bo,
1193 uint32_t offset,
1194 int size)
1195 {
1196 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1197 int i;
1198
1199 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1200 assert(devinfo->gen >= 7);
1201
1202 if (devinfo->gen >= 8) {
1203 BEGIN_BATCH(4 * size);
1204 for (i = 0; i < size; i++) {
1205 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1206 OUT_BATCH(reg + i * 4);
1207 OUT_RELOC64(bo, 0, offset + i * 4);
1208 }
1209 ADVANCE_BATCH();
1210 } else {
1211 BEGIN_BATCH(3 * size);
1212 for (i = 0; i < size; i++) {
1213 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1214 OUT_BATCH(reg + i * 4);
1215 OUT_RELOC(bo, 0, offset + i * 4);
1216 }
1217 ADVANCE_BATCH();
1218 }
1219 }
1220
1221 void
1222 brw_load_register_mem(struct brw_context *brw,
1223 uint32_t reg,
1224 struct brw_bo *bo,
1225 uint32_t offset)
1226 {
1227 load_sized_register_mem(brw, reg, bo, offset, 1);
1228 }
1229
1230 void
1231 brw_load_register_mem64(struct brw_context *brw,
1232 uint32_t reg,
1233 struct brw_bo *bo,
1234 uint32_t offset)
1235 {
1236 load_sized_register_mem(brw, reg, bo, offset, 2);
1237 }
1238
1239 /*
1240 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1241 */
1242 void
1243 brw_store_register_mem32(struct brw_context *brw,
1244 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1245 {
1246 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1247
1248 assert(devinfo->gen >= 6);
1249
1250 if (devinfo->gen >= 8) {
1251 BEGIN_BATCH(4);
1252 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1253 OUT_BATCH(reg);
1254 OUT_RELOC64(bo, RELOC_WRITE, offset);
1255 ADVANCE_BATCH();
1256 } else {
1257 BEGIN_BATCH(3);
1258 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1259 OUT_BATCH(reg);
1260 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1261 ADVANCE_BATCH();
1262 }
1263 }
1264
1265 /*
1266 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1267 */
1268 void
1269 brw_store_register_mem64(struct brw_context *brw,
1270 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1271 {
1272 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1273
1274 assert(devinfo->gen >= 6);
1275
1276 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1277 * read a full 64-bit register, we need to do two of them.
1278 */
1279 if (devinfo->gen >= 8) {
1280 BEGIN_BATCH(8);
1281 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1282 OUT_BATCH(reg);
1283 OUT_RELOC64(bo, RELOC_WRITE, offset);
1284 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1285 OUT_BATCH(reg + sizeof(uint32_t));
1286 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1287 ADVANCE_BATCH();
1288 } else {
1289 BEGIN_BATCH(6);
1290 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1291 OUT_BATCH(reg);
1292 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1293 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1294 OUT_BATCH(reg + sizeof(uint32_t));
1295 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1296 ADVANCE_BATCH();
1297 }
1298 }
1299
1300 /*
1301 * Write a 32-bit register using immediate data.
1302 */
1303 void
1304 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1305 {
1306 assert(brw->screen->devinfo.gen >= 6);
1307
1308 BEGIN_BATCH(3);
1309 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1310 OUT_BATCH(reg);
1311 OUT_BATCH(imm);
1312 ADVANCE_BATCH();
1313 }
1314
1315 /*
1316 * Write a 64-bit register using immediate data.
1317 */
1318 void
1319 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1320 {
1321 assert(brw->screen->devinfo.gen >= 6);
1322
1323 BEGIN_BATCH(5);
1324 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1325 OUT_BATCH(reg);
1326 OUT_BATCH(imm & 0xffffffff);
1327 OUT_BATCH(reg + 4);
1328 OUT_BATCH(imm >> 32);
1329 ADVANCE_BATCH();
1330 }
1331
1332 /*
1333 * Copies a 32-bit register.
1334 */
1335 void
1336 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
1337 {
1338 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1339
1340 BEGIN_BATCH(3);
1341 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1342 OUT_BATCH(src);
1343 OUT_BATCH(dest);
1344 ADVANCE_BATCH();
1345 }
1346
1347 /*
1348 * Copies a 64-bit register.
1349 */
1350 void
1351 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
1352 {
1353 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1354
1355 BEGIN_BATCH(6);
1356 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1357 OUT_BATCH(src);
1358 OUT_BATCH(dest);
1359 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1360 OUT_BATCH(src + sizeof(uint32_t));
1361 OUT_BATCH(dest + sizeof(uint32_t));
1362 ADVANCE_BATCH();
1363 }
1364
1365 /*
1366 * Write 32-bits of immediate data to a GPU memory buffer.
1367 */
1368 void
1369 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1370 uint32_t offset, uint32_t imm)
1371 {
1372 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1373
1374 assert(devinfo->gen >= 6);
1375
1376 BEGIN_BATCH(4);
1377 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1378 if (devinfo->gen >= 8)
1379 OUT_RELOC64(bo, RELOC_WRITE, offset);
1380 else {
1381 OUT_BATCH(0); /* MBZ */
1382 OUT_RELOC(bo, RELOC_WRITE, offset);
1383 }
1384 OUT_BATCH(imm);
1385 ADVANCE_BATCH();
1386 }
1387
1388 /*
1389 * Write 64-bits of immediate data to a GPU memory buffer.
1390 */
1391 void
1392 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1393 uint32_t offset, uint64_t imm)
1394 {
1395 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1396
1397 assert(devinfo->gen >= 6);
1398
1399 BEGIN_BATCH(5);
1400 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1401 if (devinfo->gen >= 8)
1402 OUT_RELOC64(bo, 0, offset);
1403 else {
1404 OUT_BATCH(0); /* MBZ */
1405 OUT_RELOC(bo, RELOC_WRITE, offset);
1406 }
1407 OUT_BATCH(imm & 0xffffffffu);
1408 OUT_BATCH(imm >> 32);
1409 ADVANCE_BATCH();
1410 }