i965: store workaround_bo offset
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35 #include "common/gen_gem.h"
36
37 #include "util/hash_table.h"
38
39 #include <xf86drm.h>
40 #include "drm-uapi/i915_drm.h"
41
42 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
43
44 /**
45 * Target sizes of the batch and state buffers. We create the initial
46 * buffers at these sizes, and flush when they're nearly full. If we
47 * underestimate how close we are to the end, and suddenly need more space
48 * in the middle of a draw, we can grow the buffers, and finish the draw.
49 * At that point, we'll be over our target size, so the next operation
50 * should flush. Each time we flush the batch, we recreate both buffers
51 * at the original target size, so it doesn't grow without bound.
52 */
53 #define BATCH_SZ (20 * 1024)
54 #define STATE_SZ (16 * 1024)
55
56 static void
57 intel_batchbuffer_reset(struct brw_context *brw);
58 static void
59 brw_new_batch(struct brw_context *brw);
60
61 static void
62 dump_validation_list(struct intel_batchbuffer *batch)
63 {
64 fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
65
66 for (int i = 0; i < batch->exec_count; i++) {
67 uint64_t flags = batch->validation_list[i].flags;
68 assert(batch->validation_list[i].handle ==
69 batch->exec_bos[i]->gem_handle);
70 fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%016llx%s (%"PRIu64"B)\n",
71 i,
72 batch->validation_list[i].handle,
73 batch->exec_bos[i]->name,
74 batch->exec_bos[i],
75 (flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b",
76 (flags & EXEC_OBJECT_WRITE) ? " write)" : ")",
77 batch->validation_list[i].offset,
78 (flags & EXEC_OBJECT_PINNED) ? " (pinned)" : "",
79 batch->exec_bos[i]->size);
80 }
81 }
82
83 static struct gen_batch_decode_bo
84 decode_get_bo(void *v_brw, bool ppgtt, uint64_t address)
85 {
86 struct brw_context *brw = v_brw;
87 struct intel_batchbuffer *batch = &brw->batch;
88
89 for (int i = 0; i < batch->exec_count; i++) {
90 struct brw_bo *bo = batch->exec_bos[i];
91 /* The decoder zeroes out the top 16 bits, so we need to as well */
92 uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);
93
94 if (address >= bo_address && address < bo_address + bo->size) {
95 return (struct gen_batch_decode_bo) {
96 .addr = address,
97 .size = bo->size,
98 .map = brw_bo_map(brw, bo, MAP_READ) + (address - bo_address),
99 };
100 }
101 }
102
103 return (struct gen_batch_decode_bo) { };
104 }
105
106 static unsigned
107 decode_get_state_size(void *v_brw, uint64_t address, uint64_t base_address)
108 {
109 struct brw_context *brw = v_brw;
110 struct intel_batchbuffer *batch = &brw->batch;
111 unsigned size = (uintptr_t)
112 _mesa_hash_table_u64_search(batch->state_batch_sizes,
113 address - base_address);
114 return size;
115 }
116
117 static void
118 init_reloc_list(struct brw_reloc_list *rlist, int count)
119 {
120 rlist->reloc_count = 0;
121 rlist->reloc_array_size = count;
122 rlist->relocs = malloc(rlist->reloc_array_size *
123 sizeof(struct drm_i915_gem_relocation_entry));
124 }
125
126 void
127 intel_batchbuffer_init(struct brw_context *brw)
128 {
129 struct intel_screen *screen = brw->screen;
130 struct intel_batchbuffer *batch = &brw->batch;
131 const struct gen_device_info *devinfo = &screen->devinfo;
132
133 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
134 /* The shadow doesn't get relocs written so state decode fails. */
135 batch->use_shadow_copy = false;
136 } else
137 batch->use_shadow_copy = !devinfo->has_llc;
138
139 init_reloc_list(&batch->batch_relocs, 250);
140 init_reloc_list(&batch->state_relocs, 250);
141
142 batch->batch.map = NULL;
143 batch->state.map = NULL;
144 batch->exec_count = 0;
145 batch->exec_array_size = 100;
146 batch->exec_bos =
147 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
148 batch->validation_list =
149 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
150
151 if (INTEL_DEBUG & DEBUG_BATCH) {
152 batch->state_batch_sizes =
153 _mesa_hash_table_u64_create(NULL);
154
155 const unsigned decode_flags =
156 GEN_BATCH_DECODE_FULL |
157 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
158 GEN_BATCH_DECODE_OFFSETS |
159 GEN_BATCH_DECODE_FLOATS;
160
161 gen_batch_decode_ctx_init(&batch->decoder, devinfo, stderr,
162 decode_flags, NULL, decode_get_bo,
163 decode_get_state_size, brw);
164 batch->decoder.max_vbo_decoded_lines = 100;
165 }
166
167 batch->use_batch_first =
168 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
169
170 /* PIPE_CONTROL needs a w/a but only on gen6 */
171 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
172 if (devinfo->gen == 6)
173 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
174
175 intel_batchbuffer_reset(brw);
176 }
177
178 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
179
180 static unsigned
181 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
182 {
183 assert(bo->bufmgr == batch->batch.bo->bufmgr);
184
185 unsigned index = READ_ONCE(bo->index);
186
187 if (index < batch->exec_count && batch->exec_bos[index] == bo)
188 return index;
189
190 /* May have been shared between multiple active batches */
191 for (index = 0; index < batch->exec_count; index++) {
192 if (batch->exec_bos[index] == bo)
193 return index;
194 }
195
196 brw_bo_reference(bo);
197
198 if (batch->exec_count == batch->exec_array_size) {
199 batch->exec_array_size *= 2;
200 batch->exec_bos =
201 realloc(batch->exec_bos,
202 batch->exec_array_size * sizeof(batch->exec_bos[0]));
203 batch->validation_list =
204 realloc(batch->validation_list,
205 batch->exec_array_size * sizeof(batch->validation_list[0]));
206 }
207
208 batch->validation_list[batch->exec_count] =
209 (struct drm_i915_gem_exec_object2) {
210 .handle = bo->gem_handle,
211 .offset = bo->gtt_offset,
212 .flags = bo->kflags,
213 };
214
215 bo->index = batch->exec_count;
216 batch->exec_bos[batch->exec_count] = bo;
217 batch->aperture_space += bo->size;
218
219 return batch->exec_count++;
220 }
221
222 static void
223 recreate_growing_buffer(struct brw_context *brw,
224 struct brw_growing_bo *grow,
225 const char *name, unsigned size,
226 enum brw_memory_zone memzone)
227 {
228 struct intel_screen *screen = brw->screen;
229 struct intel_batchbuffer *batch = &brw->batch;
230 struct brw_bufmgr *bufmgr = screen->bufmgr;
231
232 /* We can't grow buffers when using softpin, so just overallocate them. */
233 if (brw_using_softpin(bufmgr))
234 size *= 2;
235
236 grow->bo = brw_bo_alloc(bufmgr, name, size, memzone);
237 grow->bo->kflags |= can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
238 grow->partial_bo = NULL;
239 grow->partial_bo_map = NULL;
240 grow->partial_bytes = 0;
241 grow->memzone = memzone;
242
243 if (batch->use_shadow_copy)
244 grow->map = realloc(grow->map, grow->bo->size);
245 else
246 grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE);
247 }
248
249 static void
250 intel_batchbuffer_reset(struct brw_context *brw)
251 {
252 struct intel_batchbuffer *batch = &brw->batch;
253
254 if (batch->last_bo != NULL) {
255 brw_bo_unreference(batch->last_bo);
256 batch->last_bo = NULL;
257 }
258 batch->last_bo = batch->batch.bo;
259
260 recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ,
261 BRW_MEMZONE_OTHER);
262 batch->map_next = batch->batch.map;
263
264 recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ,
265 BRW_MEMZONE_DYNAMIC);
266
267 /* Avoid making 0 a valid state offset - otherwise the decoder will try
268 * and decode data when we use offset 0 as a null pointer.
269 */
270 batch->state_used = 1;
271
272 add_exec_bo(batch, batch->batch.bo);
273 assert(batch->batch.bo->index == 0);
274
275 batch->needs_sol_reset = false;
276 batch->state_base_address_emitted = false;
277
278 if (batch->state_batch_sizes)
279 _mesa_hash_table_u64_clear(batch->state_batch_sizes, NULL);
280 }
281
282 static void
283 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
284 {
285 intel_batchbuffer_reset(brw);
286 brw_cache_sets_clear(brw);
287 }
288
289 void
290 intel_batchbuffer_save_state(struct brw_context *brw)
291 {
292 brw->batch.saved.map_next = brw->batch.map_next;
293 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
294 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
295 brw->batch.saved.exec_count = brw->batch.exec_count;
296 }
297
298 bool
299 intel_batchbuffer_saved_state_is_empty(struct brw_context *brw)
300 {
301 struct intel_batchbuffer *batch = &brw->batch;
302 return (batch->saved.map_next == batch->batch.map);
303 }
304
305 void
306 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
307 {
308 for (int i = brw->batch.saved.exec_count;
309 i < brw->batch.exec_count; i++) {
310 brw_bo_unreference(brw->batch.exec_bos[i]);
311 }
312 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
313 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
314 brw->batch.exec_count = brw->batch.saved.exec_count;
315
316 brw->batch.map_next = brw->batch.saved.map_next;
317 if (USED_BATCH(brw->batch) == 0)
318 brw_new_batch(brw);
319 }
320
321 void
322 intel_batchbuffer_free(struct intel_batchbuffer *batch)
323 {
324 if (batch->use_shadow_copy) {
325 free(batch->batch.map);
326 free(batch->state.map);
327 }
328
329 for (int i = 0; i < batch->exec_count; i++) {
330 brw_bo_unreference(batch->exec_bos[i]);
331 }
332 free(batch->batch_relocs.relocs);
333 free(batch->state_relocs.relocs);
334 free(batch->exec_bos);
335 free(batch->validation_list);
336
337 brw_bo_unreference(batch->last_bo);
338 brw_bo_unreference(batch->batch.bo);
339 brw_bo_unreference(batch->state.bo);
340 if (batch->state_batch_sizes) {
341 _mesa_hash_table_u64_destroy(batch->state_batch_sizes, NULL);
342 gen_batch_decode_ctx_finish(&batch->decoder);
343 }
344 }
345
346 /**
347 * Finish copying the old batch/state buffer's contents to the new one
348 * after we tried to "grow" the buffer in an earlier operation.
349 */
350 static void
351 finish_growing_bos(struct brw_growing_bo *grow)
352 {
353 struct brw_bo *old_bo = grow->partial_bo;
354 if (!old_bo)
355 return;
356
357 memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
358
359 grow->partial_bo = NULL;
360 grow->partial_bo_map = NULL;
361 grow->partial_bytes = 0;
362
363 brw_bo_unreference(old_bo);
364 }
365
366 static void
367 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
368 uint32_t old_handle, uint32_t new_handle)
369 {
370 for (int i = 0; i < rlist->reloc_count; i++) {
371 if (rlist->relocs[i].target_handle == old_handle)
372 rlist->relocs[i].target_handle = new_handle;
373 }
374 }
375
376 /**
377 * Grow either the batch or state buffer to a new larger size.
378 *
379 * We can't actually grow buffers, so we allocate a new one, copy over
380 * the existing contents, and update our lists to refer to the new one.
381 *
382 * Note that this is only temporary - each new batch recreates the buffers
383 * at their original target size (BATCH_SZ or STATE_SZ).
384 */
385 static void
386 grow_buffer(struct brw_context *brw,
387 struct brw_growing_bo *grow,
388 unsigned existing_bytes,
389 unsigned new_size)
390 {
391 struct intel_batchbuffer *batch = &brw->batch;
392 struct brw_bufmgr *bufmgr = brw->bufmgr;
393 struct brw_bo *bo = grow->bo;
394
395 /* We can't grow buffers that are softpinned, as the growing mechanism
396 * involves putting a larger buffer at the same gtt_offset...and we've
397 * only allocated the smaller amount of VMA. Without relocations, this
398 * simply won't work. This should never happen, however.
399 */
400 assert(!(bo->kflags & EXEC_OBJECT_PINNED));
401
402 perf_debug("Growing %s - ran out of space\n", bo->name);
403
404 if (grow->partial_bo) {
405 /* We've already grown once, and now we need to do it again.
406 * Finish our last grow operation so we can start a new one.
407 * This should basically never happen.
408 */
409 perf_debug("Had to grow multiple times");
410 finish_growing_bos(grow);
411 }
412
413 struct brw_bo *new_bo =
414 brw_bo_alloc(bufmgr, bo->name, new_size, grow->memzone);
415
416 /* Copy existing data to the new larger buffer */
417 grow->partial_bo_map = grow->map;
418
419 if (batch->use_shadow_copy) {
420 /* We can't safely use realloc, as it may move the existing buffer,
421 * breaking existing pointers the caller may still be using. Just
422 * malloc a new copy and memcpy it like the normal BO path.
423 *
424 * Use bo->size rather than new_size because the bufmgr may have
425 * rounded up the size, and we want the shadow size to match.
426 */
427 grow->map = malloc(new_bo->size);
428 } else {
429 grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
430 }
431
432 /* Try to put the new BO at the same GTT offset as the old BO (which
433 * we're throwing away, so it doesn't need to be there).
434 *
435 * This guarantees that our relocations continue to work: values we've
436 * already written into the buffer, values we're going to write into the
437 * buffer, and the validation/relocation lists all will match.
438 *
439 * Also preserve kflags for EXEC_OBJECT_CAPTURE.
440 */
441 new_bo->gtt_offset = bo->gtt_offset;
442 new_bo->index = bo->index;
443 new_bo->kflags = bo->kflags;
444
445 /* Batch/state buffers are per-context, and if we've run out of space,
446 * we must have actually used them before, so...they will be in the list.
447 */
448 assert(bo->index < batch->exec_count);
449 assert(batch->exec_bos[bo->index] == bo);
450
451 /* Update the validation list to use the new BO. */
452 batch->validation_list[bo->index].handle = new_bo->gem_handle;
453
454 if (!batch->use_batch_first) {
455 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
456 * update the relocation list entries to point at the new BO as well.
457 * (With newer kernels, the "handle" is an offset into the validation
458 * list, which remains unchanged, so we can skip this.)
459 */
460 replace_bo_in_reloc_list(&batch->batch_relocs,
461 bo->gem_handle, new_bo->gem_handle);
462 replace_bo_in_reloc_list(&batch->state_relocs,
463 bo->gem_handle, new_bo->gem_handle);
464 }
465
466 /* Exchange the two BOs...without breaking pointers to the old BO.
467 *
468 * Consider this scenario:
469 *
470 * 1. Somebody calls brw_state_batch() to get a region of memory, and
471 * and then creates a brw_address pointing to brw->batch.state.bo.
472 * 2. They then call brw_state_batch() a second time, which happens to
473 * grow and replace the state buffer. They then try to emit a
474 * relocation to their first section of memory.
475 *
476 * If we replace the brw->batch.state.bo pointer at step 2, we would
477 * break the address created in step 1. They'd have a pointer to the
478 * old destroyed BO. Emitting a relocation would add this dead BO to
479 * the validation list...causing /both/ statebuffers to be in the list,
480 * and all kinds of disasters.
481 *
482 * This is not a contrived case - BLORP vertex data upload hits this.
483 *
484 * There are worse scenarios too. Fences for GL sync objects reference
485 * brw->batch.batch.bo. If we replaced the batch pointer when growing,
486 * we'd need to chase down every fence and update it to point to the
487 * new BO. Otherwise, it would refer to a "batch" that never actually
488 * gets submitted, and would fail to trigger.
489 *
490 * To work around both of these issues, we transmutate the buffers in
491 * place, making the existing struct brw_bo represent the new buffer,
492 * and "new_bo" represent the old BO. This is highly unusual, but it
493 * seems like a necessary evil.
494 *
495 * We also defer the memcpy of the existing batch's contents. Callers
496 * may make multiple brw_state_batch calls, and retain pointers to the
497 * old BO's map. We'll perform the memcpy in finish_growing_bo() when
498 * we finally submit the batch, at which point we've finished uploading
499 * state, and nobody should have any old references anymore.
500 *
501 * To do that, we keep a reference to the old BO in grow->partial_bo,
502 * and store the number of bytes to copy in grow->partial_bytes. We
503 * can monkey with the refcounts directly without atomics because these
504 * are per-context BOs and they can only be touched by this thread.
505 */
506 assert(new_bo->refcount == 1);
507 new_bo->refcount = bo->refcount;
508 bo->refcount = 1;
509
510 struct brw_bo tmp;
511 memcpy(&tmp, bo, sizeof(struct brw_bo));
512 memcpy(bo, new_bo, sizeof(struct brw_bo));
513 memcpy(new_bo, &tmp, sizeof(struct brw_bo));
514
515 grow->partial_bo = new_bo; /* the one reference of the OLD bo */
516 grow->partial_bytes = existing_bytes;
517 }
518
519 void
520 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz)
521 {
522 struct intel_batchbuffer *batch = &brw->batch;
523
524 const unsigned batch_used = USED_BATCH(*batch) * 4;
525 if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
526 intel_batchbuffer_flush(brw);
527 } else if (batch_used + sz >= batch->batch.bo->size) {
528 const unsigned new_size =
529 MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
530 MAX_BATCH_SIZE);
531 grow_buffer(brw, &batch->batch, batch_used, new_size);
532 batch->map_next = (void *) batch->batch.map + batch_used;
533 assert(batch_used + sz < batch->batch.bo->size);
534 }
535 }
536
537 /**
538 * Called when starting a new batch buffer.
539 */
540 static void
541 brw_new_batch(struct brw_context *brw)
542 {
543 /* Unreference any BOs held by the previous batch, and reset counts. */
544 for (int i = 0; i < brw->batch.exec_count; i++) {
545 brw_bo_unreference(brw->batch.exec_bos[i]);
546 brw->batch.exec_bos[i] = NULL;
547 }
548 brw->batch.batch_relocs.reloc_count = 0;
549 brw->batch.state_relocs.reloc_count = 0;
550 brw->batch.exec_count = 0;
551 brw->batch.aperture_space = 0;
552
553 brw_bo_unreference(brw->batch.state.bo);
554
555 /* Create a new batchbuffer and reset the associated state: */
556 intel_batchbuffer_reset_and_clear_render_cache(brw);
557
558 /* If the kernel supports hardware contexts, then most hardware state is
559 * preserved between batches; we only need to re-emit state that is required
560 * to be in every batch. Otherwise we need to re-emit all the state that
561 * would otherwise be stored in the context (which for all intents and
562 * purposes means everything).
563 */
564 if (brw->hw_ctx == 0) {
565 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
566 brw_upload_invariant_state(brw);
567 }
568
569 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
570
571 brw->ib.index_size = -1;
572
573 /* We need to periodically reap the shader time results, because rollover
574 * happens every few seconds. We also want to see results every once in a
575 * while, because many programs won't cleanly destroy our context, so the
576 * end-of-run printout may not happen.
577 */
578 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
579 brw_collect_and_report_shader_time(brw);
580
581 intel_batchbuffer_maybe_noop(brw);
582 }
583
584 /**
585 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
586 * sending it off.
587 *
588 * This function can emit state (say, to preserve registers that aren't saved
589 * between batches).
590 */
591 static void
592 brw_finish_batch(struct brw_context *brw)
593 {
594 const struct gen_device_info *devinfo = &brw->screen->devinfo;
595
596 brw->batch.no_wrap = true;
597
598 /* Capture the closing pipeline statistics register values necessary to
599 * support query objects (in the non-hardware context world).
600 */
601 brw_emit_query_end(brw);
602
603 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
604 * assume that the L3 cache is configured according to the hardware
605 * defaults. On Kernel 4.16+, we no longer need to do this.
606 */
607 if (devinfo->gen >= 7 &&
608 !(brw->screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION))
609 gen7_restore_default_l3_config(brw);
610
611 if (devinfo->is_haswell) {
612 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
613 * 3DSTATE_CC_STATE_POINTERS > "Note":
614 *
615 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
616 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
617 *
618 * From the example in the docs, it seems to expect a regular pipe control
619 * flush here as well. We may have done it already, but meh.
620 *
621 * See also WaAvoidRCZCounterRollover.
622 */
623 brw_emit_mi_flush(brw);
624 BEGIN_BATCH(2);
625 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
626 OUT_BATCH(brw->cc.state_offset | 1);
627 ADVANCE_BATCH();
628 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
629 PIPE_CONTROL_CS_STALL);
630 }
631
632 /* Do not restore push constant packets during context restore. */
633 if (devinfo->gen >= 7)
634 gen10_emit_isp_disable(brw);
635
636 /* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2
637 * requires our batch size to be QWord aligned, so we pad it out if
638 * necessary by emitting an extra MI_NOOP after the end.
639 */
640 intel_batchbuffer_require_space(brw, 8);
641 *brw->batch.map_next++ = MI_BATCH_BUFFER_END;
642 if (USED_BATCH(brw->batch) & 1) {
643 *brw->batch.map_next++ = MI_NOOP;
644 }
645
646 brw->batch.no_wrap = false;
647 }
648
649 static void
650 throttle(struct brw_context *brw)
651 {
652 /* Wait for the swapbuffers before the one we just emitted, so we
653 * don't get too many swaps outstanding for apps that are GPU-heavy
654 * but not CPU-heavy.
655 *
656 * We're using intelDRI2Flush (called from the loader before
657 * swapbuffer) and glFlush (for front buffer rendering) as the
658 * indicator that a frame is done and then throttle when we get
659 * here as we prepare to render the next frame. At this point for
660 * round trips for swap/copy and getting new buffers are done and
661 * we'll spend less time waiting on the GPU.
662 *
663 * Unfortunately, we don't have a handle to the batch containing
664 * the swap, and getting our hands on that doesn't seem worth it,
665 * so we just use the first batch we emitted after the last swap.
666 */
667 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
668 if (brw->throttle_batch[1]) {
669 if (!brw->disable_throttling) {
670 brw_bo_wait_rendering(brw->throttle_batch[1]);
671 }
672 brw_bo_unreference(brw->throttle_batch[1]);
673 }
674 brw->throttle_batch[1] = brw->throttle_batch[0];
675 brw->throttle_batch[0] = NULL;
676 brw->need_swap_throttle = false;
677 /* Throttling here is more precise than the throttle ioctl, so skip it */
678 brw->need_flush_throttle = false;
679 }
680
681 if (brw->need_flush_throttle) {
682 drmCommandNone(brw->screen->fd, DRM_I915_GEM_THROTTLE);
683 brw->need_flush_throttle = false;
684 }
685 }
686
687 static int
688 execbuffer(int fd,
689 struct intel_batchbuffer *batch,
690 uint32_t ctx_id,
691 int used,
692 int in_fence,
693 int *out_fence,
694 int flags)
695 {
696 struct drm_i915_gem_execbuffer2 execbuf = {
697 .buffers_ptr = (uintptr_t) batch->validation_list,
698 .buffer_count = batch->exec_count,
699 .batch_start_offset = 0,
700 .batch_len = used,
701 .flags = flags,
702 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
703 };
704
705 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
706
707 if (in_fence != -1) {
708 execbuf.rsvd2 = in_fence;
709 execbuf.flags |= I915_EXEC_FENCE_IN;
710 }
711
712 if (out_fence != NULL) {
713 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
714 *out_fence = -1;
715 execbuf.flags |= I915_EXEC_FENCE_OUT;
716 }
717
718 int ret = drmIoctl(fd, cmd, &execbuf);
719 if (ret != 0)
720 ret = -errno;
721
722 for (int i = 0; i < batch->exec_count; i++) {
723 struct brw_bo *bo = batch->exec_bos[i];
724
725 bo->idle = false;
726 bo->index = -1;
727
728 /* Update brw_bo::gtt_offset */
729 if (batch->validation_list[i].offset != bo->gtt_offset) {
730 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
731 bo->gem_handle, bo->gtt_offset,
732 batch->validation_list[i].offset);
733 assert(!(bo->kflags & EXEC_OBJECT_PINNED));
734 bo->gtt_offset = batch->validation_list[i].offset;
735 }
736 }
737
738 if (ret == 0 && out_fence != NULL)
739 *out_fence = execbuf.rsvd2 >> 32;
740
741 return ret;
742 }
743
744 static int
745 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
746 {
747 struct intel_batchbuffer *batch = &brw->batch;
748 int ret = 0;
749
750 if (batch->use_shadow_copy) {
751 void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
752 memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch));
753
754 bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
755 memcpy(bo_map, batch->state.map, batch->state_used);
756 }
757
758 brw_bo_unmap(batch->batch.bo);
759 brw_bo_unmap(batch->state.bo);
760
761 if (!brw->screen->no_hw) {
762 /* The requirement for using I915_EXEC_NO_RELOC are:
763 *
764 * The addresses written in the objects must match the corresponding
765 * reloc.gtt_offset which in turn must match the corresponding
766 * execobject.offset.
767 *
768 * Any render targets written to in the batch must be flagged with
769 * EXEC_OBJECT_WRITE.
770 *
771 * To avoid stalling, execobject.offset should match the current
772 * address of that object within the active context.
773 */
774 int flags = I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
775
776 if (batch->needs_sol_reset)
777 flags |= I915_EXEC_GEN7_SOL_RESET;
778
779 /* Set statebuffer relocations */
780 const unsigned state_index = batch->state.bo->index;
781 if (state_index < batch->exec_count &&
782 batch->exec_bos[state_index] == batch->state.bo) {
783 struct drm_i915_gem_exec_object2 *entry =
784 &batch->validation_list[state_index];
785 assert(entry->handle == batch->state.bo->gem_handle);
786 entry->relocation_count = batch->state_relocs.reloc_count;
787 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
788 }
789
790 /* Set batchbuffer relocations */
791 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
792 assert(entry->handle == batch->batch.bo->gem_handle);
793 entry->relocation_count = batch->batch_relocs.reloc_count;
794 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
795
796 if (batch->use_batch_first) {
797 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
798 } else {
799 /* Move the batch to the end of the validation list */
800 struct drm_i915_gem_exec_object2 tmp;
801 struct brw_bo *tmp_bo;
802 const unsigned index = batch->exec_count - 1;
803
804 tmp = *entry;
805 *entry = batch->validation_list[index];
806 batch->validation_list[index] = tmp;
807
808 tmp_bo = batch->exec_bos[0];
809 batch->exec_bos[0] = batch->exec_bos[index];
810 batch->exec_bos[index] = tmp_bo;
811 }
812
813 ret = execbuffer(brw->screen->fd, batch, brw->hw_ctx,
814 4 * USED_BATCH(*batch),
815 in_fence_fd, out_fence_fd, flags);
816
817 throttle(brw);
818 }
819
820 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
821 gen_print_batch(&batch->decoder, batch->batch.map,
822 4 * USED_BATCH(*batch),
823 batch->batch.bo->gtt_offset, false);
824 }
825
826 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
827 brw_check_for_reset(brw);
828
829 if (ret != 0) {
830 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
831 strerror(-ret));
832 exit(1);
833 }
834
835 return ret;
836 }
837
838 /**
839 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
840 * of the fd.
841 *
842 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
843 * of the returned fd.
844 */
845 int
846 _intel_batchbuffer_flush_fence(struct brw_context *brw,
847 int in_fence_fd, int *out_fence_fd,
848 const char *file, int line)
849 {
850 int ret;
851
852 if (USED_BATCH(brw->batch) == 0)
853 return 0;
854
855 /* Check that we didn't just wrap our batchbuffer at a bad time. */
856 assert(!brw->batch.no_wrap);
857
858 brw_finish_batch(brw);
859 brw_upload_finish(&brw->upload);
860
861 finish_growing_bos(&brw->batch.batch);
862 finish_growing_bos(&brw->batch.state);
863
864 if (brw->throttle_batch[0] == NULL) {
865 brw->throttle_batch[0] = brw->batch.batch.bo;
866 brw_bo_reference(brw->throttle_batch[0]);
867 }
868
869 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
870 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
871 int bytes_for_state = brw->batch.state_used;
872 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
873 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
874 " %4d batch relocs, %4d state relocs\n", file, line,
875 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
876 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
877 brw->batch.exec_count,
878 (float) (brw->batch.aperture_space / (1024 * 1024)),
879 brw->batch.batch_relocs.reloc_count,
880 brw->batch.state_relocs.reloc_count);
881
882 dump_validation_list(&brw->batch);
883 }
884
885 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
886
887 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
888 fprintf(stderr, "waiting for idle\n");
889 brw_bo_wait_rendering(brw->batch.batch.bo);
890 }
891
892 /* Start a new batch buffer. */
893 brw_new_batch(brw);
894
895 return ret;
896 }
897
898 void
899 intel_batchbuffer_maybe_noop(struct brw_context *brw)
900 {
901 if (!brw->frontend_noop || USED_BATCH(brw->batch) != 0)
902 return;
903
904 BEGIN_BATCH(1);
905 OUT_BATCH(MI_BATCH_BUFFER_END);
906 ADVANCE_BATCH();
907 }
908
909 bool
910 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
911 {
912 unsigned index = READ_ONCE(bo->index);
913 if (index < batch->exec_count && batch->exec_bos[index] == bo)
914 return true;
915
916 for (int i = 0; i < batch->exec_count; i++) {
917 if (batch->exec_bos[i] == bo)
918 return true;
919 }
920 return false;
921 }
922
923 /* This is the only way buffers get added to the validate list.
924 */
925 static uint64_t
926 emit_reloc(struct intel_batchbuffer *batch,
927 struct brw_reloc_list *rlist, uint32_t offset,
928 struct brw_bo *target, int32_t target_offset,
929 unsigned int reloc_flags)
930 {
931 assert(target != NULL);
932
933 if (target->kflags & EXEC_OBJECT_PINNED) {
934 brw_use_pinned_bo(batch, target, reloc_flags & RELOC_WRITE);
935 return gen_canonical_address(target->gtt_offset + target_offset);
936 }
937
938 unsigned int index = add_exec_bo(batch, target);
939 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
940
941 if (rlist->reloc_count == rlist->reloc_array_size) {
942 rlist->reloc_array_size *= 2;
943 rlist->relocs = realloc(rlist->relocs,
944 rlist->reloc_array_size *
945 sizeof(struct drm_i915_gem_relocation_entry));
946 }
947
948 if (reloc_flags & RELOC_32BIT) {
949 /* Restrict this buffer to the low 32 bits of the address space.
950 *
951 * Altering the validation list flags restricts it for this batch,
952 * but we also alter the BO's kflags to restrict it permanently
953 * (until the BO is destroyed and put back in the cache). Buffers
954 * may stay bound across batches, and we want keep it constrained.
955 */
956 target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
957 entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
958
959 /* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
960 reloc_flags &= ~RELOC_32BIT;
961 }
962
963 if (reloc_flags)
964 entry->flags |= reloc_flags & batch->valid_reloc_flags;
965
966 rlist->relocs[rlist->reloc_count++] =
967 (struct drm_i915_gem_relocation_entry) {
968 .offset = offset,
969 .delta = target_offset,
970 .target_handle = batch->use_batch_first ? index : target->gem_handle,
971 .presumed_offset = entry->offset,
972 };
973
974 /* Using the old buffer offset, write in what the right data would be, in
975 * case the buffer doesn't move and we can short-circuit the relocation
976 * processing in the kernel
977 */
978 return entry->offset + target_offset;
979 }
980
981 void
982 brw_use_pinned_bo(struct intel_batchbuffer *batch, struct brw_bo *bo,
983 unsigned writable_flag)
984 {
985 assert(bo->kflags & EXEC_OBJECT_PINNED);
986 assert((writable_flag & ~EXEC_OBJECT_WRITE) == 0);
987
988 unsigned int index = add_exec_bo(batch, bo);
989 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
990 assert(entry->offset == bo->gtt_offset);
991
992 if (writable_flag)
993 entry->flags |= EXEC_OBJECT_WRITE;
994 }
995
996 uint64_t
997 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
998 struct brw_bo *target, uint32_t target_offset,
999 unsigned int reloc_flags)
1000 {
1001 assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));
1002
1003 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
1004 target, target_offset, reloc_flags);
1005 }
1006
1007 uint64_t
1008 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1009 struct brw_bo *target, uint32_t target_offset,
1010 unsigned int reloc_flags)
1011 {
1012 assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
1013
1014 return emit_reloc(batch, &batch->state_relocs, state_offset,
1015 target, target_offset, reloc_flags);
1016 }
1017
1018 /**
1019 * Reserve some space in the statebuffer, or flush.
1020 *
1021 * This is used to estimate when we're near the end of the batch,
1022 * so we can flush early.
1023 */
1024 void
1025 brw_require_statebuffer_space(struct brw_context *brw, int size)
1026 {
1027 if (brw->batch.state_used + size >= STATE_SZ)
1028 intel_batchbuffer_flush(brw);
1029 }
1030
1031 /**
1032 * Allocates a block of space in the batchbuffer for indirect state.
1033 */
1034 void *
1035 brw_state_batch(struct brw_context *brw,
1036 int size,
1037 int alignment,
1038 uint32_t *out_offset)
1039 {
1040 struct intel_batchbuffer *batch = &brw->batch;
1041
1042 assert(size < batch->state.bo->size);
1043
1044 uint32_t offset = ALIGN(batch->state_used, alignment);
1045
1046 if (offset + size >= STATE_SZ && !batch->no_wrap) {
1047 intel_batchbuffer_flush(brw);
1048 offset = ALIGN(batch->state_used, alignment);
1049 } else if (offset + size >= batch->state.bo->size) {
1050 const unsigned new_size =
1051 MIN2(batch->state.bo->size + batch->state.bo->size / 2,
1052 MAX_STATE_SIZE);
1053 grow_buffer(brw, &batch->state, batch->state_used, new_size);
1054 assert(offset + size < batch->state.bo->size);
1055 }
1056
1057 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1058 _mesa_hash_table_u64_insert(batch->state_batch_sizes,
1059 offset, (void *) (uintptr_t) size);
1060 }
1061
1062 batch->state_used = offset + size;
1063
1064 *out_offset = offset;
1065 return batch->state.map + (offset >> 2);
1066 }
1067
1068 void
1069 intel_batchbuffer_data(struct brw_context *brw,
1070 const void *data, GLuint bytes)
1071 {
1072 assert((bytes & 3) == 0);
1073 intel_batchbuffer_require_space(brw, bytes);
1074 memcpy(brw->batch.map_next, data, bytes);
1075 brw->batch.map_next += bytes >> 2;
1076 }
1077
1078 static void
1079 load_sized_register_mem(struct brw_context *brw,
1080 uint32_t reg,
1081 struct brw_bo *bo,
1082 uint32_t offset,
1083 int size)
1084 {
1085 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1086 int i;
1087
1088 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1089 assert(devinfo->gen >= 7);
1090
1091 if (devinfo->gen >= 8) {
1092 BEGIN_BATCH(4 * size);
1093 for (i = 0; i < size; i++) {
1094 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1095 OUT_BATCH(reg + i * 4);
1096 OUT_RELOC64(bo, 0, offset + i * 4);
1097 }
1098 ADVANCE_BATCH();
1099 } else {
1100 BEGIN_BATCH(3 * size);
1101 for (i = 0; i < size; i++) {
1102 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1103 OUT_BATCH(reg + i * 4);
1104 OUT_RELOC(bo, 0, offset + i * 4);
1105 }
1106 ADVANCE_BATCH();
1107 }
1108 }
1109
1110 void
1111 brw_load_register_mem(struct brw_context *brw,
1112 uint32_t reg,
1113 struct brw_bo *bo,
1114 uint32_t offset)
1115 {
1116 load_sized_register_mem(brw, reg, bo, offset, 1);
1117 }
1118
1119 void
1120 brw_load_register_mem64(struct brw_context *brw,
1121 uint32_t reg,
1122 struct brw_bo *bo,
1123 uint32_t offset)
1124 {
1125 load_sized_register_mem(brw, reg, bo, offset, 2);
1126 }
1127
1128 /*
1129 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1130 */
1131 void
1132 brw_store_register_mem32(struct brw_context *brw,
1133 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1134 {
1135 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1136
1137 assert(devinfo->gen >= 6);
1138
1139 if (devinfo->gen >= 8) {
1140 BEGIN_BATCH(4);
1141 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1142 OUT_BATCH(reg);
1143 OUT_RELOC64(bo, RELOC_WRITE, offset);
1144 ADVANCE_BATCH();
1145 } else {
1146 BEGIN_BATCH(3);
1147 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1148 OUT_BATCH(reg);
1149 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1150 ADVANCE_BATCH();
1151 }
1152 }
1153
1154 /*
1155 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1156 */
1157 void
1158 brw_store_register_mem64(struct brw_context *brw,
1159 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1160 {
1161 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1162
1163 assert(devinfo->gen >= 6);
1164
1165 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1166 * read a full 64-bit register, we need to do two of them.
1167 */
1168 if (devinfo->gen >= 8) {
1169 BEGIN_BATCH(8);
1170 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1171 OUT_BATCH(reg);
1172 OUT_RELOC64(bo, RELOC_WRITE, offset);
1173 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1174 OUT_BATCH(reg + sizeof(uint32_t));
1175 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1176 ADVANCE_BATCH();
1177 } else {
1178 BEGIN_BATCH(6);
1179 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1180 OUT_BATCH(reg);
1181 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1182 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1183 OUT_BATCH(reg + sizeof(uint32_t));
1184 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1185 ADVANCE_BATCH();
1186 }
1187 }
1188
1189 /*
1190 * Write a 32-bit register using immediate data.
1191 */
1192 void
1193 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1194 {
1195 assert(brw->screen->devinfo.gen >= 6);
1196
1197 BEGIN_BATCH(3);
1198 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1199 OUT_BATCH(reg);
1200 OUT_BATCH(imm);
1201 ADVANCE_BATCH();
1202 }
1203
1204 /*
1205 * Write a 64-bit register using immediate data.
1206 */
1207 void
1208 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1209 {
1210 assert(brw->screen->devinfo.gen >= 6);
1211
1212 BEGIN_BATCH(5);
1213 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1214 OUT_BATCH(reg);
1215 OUT_BATCH(imm & 0xffffffff);
1216 OUT_BATCH(reg + 4);
1217 OUT_BATCH(imm >> 32);
1218 ADVANCE_BATCH();
1219 }
1220
1221 /*
1222 * Copies a 32-bit register.
1223 */
1224 void
1225 brw_load_register_reg(struct brw_context *brw, uint32_t dest, uint32_t src)
1226 {
1227 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1228
1229 BEGIN_BATCH(3);
1230 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1231 OUT_BATCH(src);
1232 OUT_BATCH(dest);
1233 ADVANCE_BATCH();
1234 }
1235
1236 /*
1237 * Copies a 64-bit register.
1238 */
1239 void
1240 brw_load_register_reg64(struct brw_context *brw, uint32_t dest, uint32_t src)
1241 {
1242 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1243
1244 BEGIN_BATCH(6);
1245 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1246 OUT_BATCH(src);
1247 OUT_BATCH(dest);
1248 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1249 OUT_BATCH(src + sizeof(uint32_t));
1250 OUT_BATCH(dest + sizeof(uint32_t));
1251 ADVANCE_BATCH();
1252 }
1253
1254 /*
1255 * Write 32-bits of immediate data to a GPU memory buffer.
1256 */
1257 void
1258 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1259 uint32_t offset, uint32_t imm)
1260 {
1261 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1262
1263 assert(devinfo->gen >= 6);
1264
1265 BEGIN_BATCH(4);
1266 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1267 if (devinfo->gen >= 8)
1268 OUT_RELOC64(bo, RELOC_WRITE, offset);
1269 else {
1270 OUT_BATCH(0); /* MBZ */
1271 OUT_RELOC(bo, RELOC_WRITE, offset);
1272 }
1273 OUT_BATCH(imm);
1274 ADVANCE_BATCH();
1275 }
1276
1277 /*
1278 * Write 64-bits of immediate data to a GPU memory buffer.
1279 */
1280 void
1281 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1282 uint32_t offset, uint64_t imm)
1283 {
1284 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1285
1286 assert(devinfo->gen >= 6);
1287
1288 BEGIN_BATCH(5);
1289 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1290 if (devinfo->gen >= 8)
1291 OUT_RELOC64(bo, RELOC_WRITE, offset);
1292 else {
1293 OUT_BATCH(0); /* MBZ */
1294 OUT_RELOC(bo, RELOC_WRITE, offset);
1295 }
1296 OUT_BATCH(imm & 0xffffffffu);
1297 OUT_BATCH(imm >> 32);
1298 ADVANCE_BATCH();
1299 }