i965: Drop unused alignment parameter from brw_bo_alloc().
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35
36 #include "util/hash_table.h"
37
38 #include <xf86drm.h>
39 #include <i915_drm.h>
40
41 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
42
43 /**
44 * Target sizes of the batch and state buffers. We create the initial
45 * buffers at these sizes, and flush when they're nearly full. If we
46 * underestimate how close we are to the end, and suddenly need more space
47 * in the middle of a draw, we can grow the buffers, and finish the draw.
48 * At that point, we'll be over our target size, so the next operation
49 * should flush. Each time we flush the batch, we recreate both buffers
50 * at the original target size, so it doesn't grow without bound.
51 */
52 #define BATCH_SZ (20 * 1024)
53 #define STATE_SZ (16 * 1024)
54
55 static void
56 intel_batchbuffer_reset(struct brw_context *brw);
57
58 UNUSED static void
59 dump_validation_list(struct intel_batchbuffer *batch)
60 {
61 fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
62
63 for (int i = 0; i < batch->exec_count; i++) {
64 uint64_t flags = batch->validation_list[i].flags;
65 assert(batch->validation_list[i].handle ==
66 batch->exec_bos[i]->gem_handle);
67 fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%016llu%s (%"PRIu64"B)\n",
68 i,
69 batch->validation_list[i].handle,
70 batch->exec_bos[i]->name,
71 batch->exec_bos[i],
72 (flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b",
73 (flags & EXEC_OBJECT_WRITE) ? " write)" : ")",
74 batch->validation_list[i].offset,
75 (flags & EXEC_OBJECT_PINNED) ? " (pinned)" : "",
76 batch->exec_bos[i]->size);
77 }
78 }
79
80 static bool
81 uint_key_compare(const void *a, const void *b)
82 {
83 return a == b;
84 }
85
86 static uint32_t
87 uint_key_hash(const void *key)
88 {
89 return (uintptr_t) key;
90 }
91
92 static void
93 init_reloc_list(struct brw_reloc_list *rlist, int count)
94 {
95 rlist->reloc_count = 0;
96 rlist->reloc_array_size = count;
97 rlist->relocs = malloc(rlist->reloc_array_size *
98 sizeof(struct drm_i915_gem_relocation_entry));
99 }
100
101 void
102 intel_batchbuffer_init(struct brw_context *brw)
103 {
104 struct intel_screen *screen = brw->screen;
105 struct intel_batchbuffer *batch = &brw->batch;
106 const struct gen_device_info *devinfo = &screen->devinfo;
107
108 batch->use_shadow_copy = !devinfo->has_llc;
109
110 if (batch->use_shadow_copy) {
111 batch->batch.map = malloc(BATCH_SZ);
112 batch->map_next = batch->batch.map;
113 batch->state.map = malloc(STATE_SZ);
114 }
115
116 init_reloc_list(&batch->batch_relocs, 250);
117 init_reloc_list(&batch->state_relocs, 250);
118
119 batch->exec_count = 0;
120 batch->exec_array_size = 100;
121 batch->exec_bos =
122 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
123 batch->validation_list =
124 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
125
126 if (INTEL_DEBUG & DEBUG_BATCH) {
127 batch->state_batch_sizes =
128 _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
129 }
130
131 batch->use_batch_first =
132 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
133
134 /* PIPE_CONTROL needs a w/a but only on gen6 */
135 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
136 if (devinfo->gen == 6)
137 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
138
139 intel_batchbuffer_reset(brw);
140 }
141
142 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
143
144 static unsigned
145 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
146 {
147 unsigned index = READ_ONCE(bo->index);
148
149 if (index < batch->exec_count && batch->exec_bos[index] == bo)
150 return index;
151
152 /* May have been shared between multiple active batches */
153 for (index = 0; index < batch->exec_count; index++) {
154 if (batch->exec_bos[index] == bo)
155 return index;
156 }
157
158 brw_bo_reference(bo);
159
160 if (batch->exec_count == batch->exec_array_size) {
161 batch->exec_array_size *= 2;
162 batch->exec_bos =
163 realloc(batch->exec_bos,
164 batch->exec_array_size * sizeof(batch->exec_bos[0]));
165 batch->validation_list =
166 realloc(batch->validation_list,
167 batch->exec_array_size * sizeof(batch->validation_list[0]));
168 }
169
170 batch->validation_list[batch->exec_count] =
171 (struct drm_i915_gem_exec_object2) {
172 .handle = bo->gem_handle,
173 .alignment = bo->align,
174 .offset = bo->gtt_offset,
175 .flags = bo->kflags,
176 };
177
178 bo->index = batch->exec_count;
179 batch->exec_bos[batch->exec_count] = bo;
180 batch->aperture_space += bo->size;
181
182 return batch->exec_count++;
183 }
184
185 static void
186 recreate_growing_buffer(struct brw_context *brw,
187 struct brw_growing_bo *grow,
188 const char *name, unsigned size)
189 {
190 struct intel_screen *screen = brw->screen;
191 struct intel_batchbuffer *batch = &brw->batch;
192 struct brw_bufmgr *bufmgr = screen->bufmgr;
193
194 grow->bo = brw_bo_alloc(bufmgr, name, size);
195 grow->bo->kflags = can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
196 grow->partial_bo = NULL;
197 grow->partial_bo_map = NULL;
198 grow->partial_bytes = 0;
199
200 if (!batch->use_shadow_copy)
201 grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE);
202 }
203
204 static void
205 intel_batchbuffer_reset(struct brw_context *brw)
206 {
207 struct intel_batchbuffer *batch = &brw->batch;
208
209 if (batch->last_bo != NULL) {
210 brw_bo_unreference(batch->last_bo);
211 batch->last_bo = NULL;
212 }
213 batch->last_bo = batch->batch.bo;
214
215 recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ);
216 batch->map_next = batch->batch.map;
217
218 recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ);
219
220 /* Avoid making 0 a valid state offset - otherwise the decoder will try
221 * and decode data when we use offset 0 as a null pointer.
222 */
223 batch->state_used = 1;
224
225 add_exec_bo(batch, batch->batch.bo);
226 assert(batch->batch.bo->index == 0);
227
228 batch->needs_sol_reset = false;
229 batch->state_base_address_emitted = false;
230
231 /* We don't know what ring the new batch will be sent to until we see the
232 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
233 */
234 batch->ring = UNKNOWN_RING;
235
236 if (batch->state_batch_sizes)
237 _mesa_hash_table_clear(batch->state_batch_sizes, NULL);
238 }
239
240 static void
241 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
242 {
243 intel_batchbuffer_reset(brw);
244 brw_cache_sets_clear(brw);
245 }
246
247 void
248 intel_batchbuffer_save_state(struct brw_context *brw)
249 {
250 brw->batch.saved.map_next = brw->batch.map_next;
251 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
252 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
253 brw->batch.saved.exec_count = brw->batch.exec_count;
254 }
255
256 void
257 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
258 {
259 for (int i = brw->batch.saved.exec_count;
260 i < brw->batch.exec_count; i++) {
261 brw_bo_unreference(brw->batch.exec_bos[i]);
262 }
263 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
264 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
265 brw->batch.exec_count = brw->batch.saved.exec_count;
266
267 brw->batch.map_next = brw->batch.saved.map_next;
268 if (USED_BATCH(brw->batch) == 0)
269 brw->batch.ring = UNKNOWN_RING;
270 }
271
272 void
273 intel_batchbuffer_free(struct intel_batchbuffer *batch)
274 {
275 if (batch->use_shadow_copy) {
276 free(batch->batch.map);
277 free(batch->state.map);
278 }
279
280 for (int i = 0; i < batch->exec_count; i++) {
281 brw_bo_unreference(batch->exec_bos[i]);
282 }
283 free(batch->batch_relocs.relocs);
284 free(batch->state_relocs.relocs);
285 free(batch->exec_bos);
286 free(batch->validation_list);
287
288 brw_bo_unreference(batch->last_bo);
289 brw_bo_unreference(batch->batch.bo);
290 brw_bo_unreference(batch->state.bo);
291 if (batch->state_batch_sizes)
292 _mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
293 }
294
295 /**
296 * Finish copying the old batch/state buffer's contents to the new one
297 * after we tried to "grow" the buffer in an earlier operation.
298 */
299 static void
300 finish_growing_bos(struct brw_growing_bo *grow)
301 {
302 struct brw_bo *old_bo = grow->partial_bo;
303 if (!old_bo)
304 return;
305
306 memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
307
308 grow->partial_bo = NULL;
309 grow->partial_bo_map = NULL;
310 grow->partial_bytes = 0;
311
312 brw_bo_unreference(old_bo);
313 }
314
315 static void
316 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
317 uint32_t old_handle, uint32_t new_handle)
318 {
319 for (int i = 0; i < rlist->reloc_count; i++) {
320 if (rlist->relocs[i].target_handle == old_handle)
321 rlist->relocs[i].target_handle = new_handle;
322 }
323 }
324
325 /**
326 * Grow either the batch or state buffer to a new larger size.
327 *
328 * We can't actually grow buffers, so we allocate a new one, copy over
329 * the existing contents, and update our lists to refer to the new one.
330 *
331 * Note that this is only temporary - each new batch recreates the buffers
332 * at their original target size (BATCH_SZ or STATE_SZ).
333 */
334 static void
335 grow_buffer(struct brw_context *brw,
336 struct brw_growing_bo *grow,
337 unsigned existing_bytes,
338 unsigned new_size)
339 {
340 struct intel_batchbuffer *batch = &brw->batch;
341 struct brw_bufmgr *bufmgr = brw->bufmgr;
342 struct brw_bo *bo = grow->bo;
343
344 perf_debug("Growing %s - ran out of space\n", bo->name);
345
346 if (grow->partial_bo) {
347 /* We've already grown once, and now we need to do it again.
348 * Finish our last grow operation so we can start a new one.
349 * This should basically never happen.
350 */
351 perf_debug("Had to grow multiple times");
352 finish_growing_bos(grow);
353 }
354
355 struct brw_bo *new_bo = brw_bo_alloc(bufmgr, bo->name, new_size);
356
357 /* Copy existing data to the new larger buffer */
358 grow->partial_bo_map = grow->map;
359
360 if (batch->use_shadow_copy) {
361 /* We can't safely use realloc, as it may move the existing buffer,
362 * breaking existing pointers the caller may still be using. Just
363 * malloc a new copy and memcpy it like the normal BO path.
364 */
365 grow->map = malloc(new_size);
366 } else {
367 grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
368 }
369
370 /* Try to put the new BO at the same GTT offset as the old BO (which
371 * we're throwing away, so it doesn't need to be there).
372 *
373 * This guarantees that our relocations continue to work: values we've
374 * already written into the buffer, values we're going to write into the
375 * buffer, and the validation/relocation lists all will match.
376 *
377 * Also preserve kflags for EXEC_OBJECT_CAPTURE.
378 */
379 new_bo->gtt_offset = bo->gtt_offset;
380 new_bo->index = bo->index;
381 new_bo->kflags = bo->kflags;
382
383 /* Batch/state buffers are per-context, and if we've run out of space,
384 * we must have actually used them before, so...they will be in the list.
385 */
386 assert(bo->index < batch->exec_count);
387 assert(batch->exec_bos[bo->index] == bo);
388
389 /* Update the validation list to use the new BO. */
390 batch->validation_list[bo->index].handle = new_bo->gem_handle;
391
392 if (!batch->use_batch_first) {
393 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
394 * update the relocation list entries to point at the new BO as well.
395 * (With newer kernels, the "handle" is an offset into the validation
396 * list, which remains unchanged, so we can skip this.)
397 */
398 replace_bo_in_reloc_list(&batch->batch_relocs,
399 bo->gem_handle, new_bo->gem_handle);
400 replace_bo_in_reloc_list(&batch->state_relocs,
401 bo->gem_handle, new_bo->gem_handle);
402 }
403
404 /* Exchange the two BOs...without breaking pointers to the old BO.
405 *
406 * Consider this scenario:
407 *
408 * 1. Somebody calls brw_state_batch() to get a region of memory, and
409 * and then creates a brw_address pointing to brw->batch.state.bo.
410 * 2. They then call brw_state_batch() a second time, which happens to
411 * grow and replace the state buffer. They then try to emit a
412 * relocation to their first section of memory.
413 *
414 * If we replace the brw->batch.state.bo pointer at step 2, we would
415 * break the address created in step 1. They'd have a pointer to the
416 * old destroyed BO. Emitting a relocation would add this dead BO to
417 * the validation list...causing /both/ statebuffers to be in the list,
418 * and all kinds of disasters.
419 *
420 * This is not a contrived case - BLORP vertex data upload hits this.
421 *
422 * There are worse scenarios too. Fences for GL sync objects reference
423 * brw->batch.batch.bo. If we replaced the batch pointer when growing,
424 * we'd need to chase down every fence and update it to point to the
425 * new BO. Otherwise, it would refer to a "batch" that never actually
426 * gets submitted, and would fail to trigger.
427 *
428 * To work around both of these issues, we transmutate the buffers in
429 * place, making the existing struct brw_bo represent the new buffer,
430 * and "new_bo" represent the old BO. This is highly unusual, but it
431 * seems like a necessary evil.
432 *
433 * We also defer the memcpy of the existing batch's contents. Callers
434 * may make multiple brw_state_batch calls, and retain pointers to the
435 * old BO's map. We'll perform the memcpy in finish_growing_bo() when
436 * we finally submit the batch, at which point we've finished uploading
437 * state, and nobody should have any old references anymore.
438 *
439 * To do that, we keep a reference to the old BO in grow->partial_bo,
440 * and store the number of bytes to copy in grow->partial_bytes. We
441 * can monkey with the refcounts directly without atomics because these
442 * are per-context BOs and they can only be touched by this thread.
443 */
444 assert(new_bo->refcount == 1);
445 new_bo->refcount = bo->refcount;
446 bo->refcount = 1;
447
448 struct brw_bo tmp;
449 memcpy(&tmp, bo, sizeof(struct brw_bo));
450 memcpy(bo, new_bo, sizeof(struct brw_bo));
451 memcpy(new_bo, &tmp, sizeof(struct brw_bo));
452
453 grow->partial_bo = new_bo; /* the one reference of the OLD bo */
454 grow->partial_bytes = existing_bytes;
455 }
456
457 void
458 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
459 enum brw_gpu_ring ring)
460 {
461 const struct gen_device_info *devinfo = &brw->screen->devinfo;
462 struct intel_batchbuffer *batch = &brw->batch;
463
464 /* If we're switching rings, implicitly flush the batch. */
465 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
466 devinfo->gen >= 6) {
467 intel_batchbuffer_flush(brw);
468 }
469
470 const unsigned batch_used = USED_BATCH(*batch) * 4;
471 if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
472 intel_batchbuffer_flush(brw);
473 } else if (batch_used + sz >= batch->batch.bo->size) {
474 const unsigned new_size =
475 MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
476 MAX_BATCH_SIZE);
477 grow_buffer(brw, &batch->batch, batch_used, new_size);
478 batch->map_next = (void *) batch->batch.map + batch_used;
479 assert(batch_used + sz < batch->batch.bo->size);
480 }
481
482 /* The intel_batchbuffer_flush() calls above might have changed
483 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
484 */
485 brw->batch.ring = ring;
486 }
487
488 #ifdef DEBUG
489 #define CSI "\e["
490 #define BLUE_HEADER CSI "0;44m"
491 #define NORMAL CSI "0m"
492
493
494 static void
495 decode_struct(struct brw_context *brw, struct gen_spec *spec,
496 const char *struct_name, uint32_t *data,
497 uint32_t gtt_offset, uint32_t offset, bool color)
498 {
499 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
500 if (!group)
501 return;
502
503 fprintf(stderr, "%s\n", struct_name);
504 gen_print_group(stderr, group, gtt_offset + offset,
505 &data[offset / 4], 0, color);
506 }
507
508 static void
509 decode_structs(struct brw_context *brw, struct gen_spec *spec,
510 const char *struct_name,
511 uint32_t *data, uint32_t gtt_offset, uint32_t offset,
512 int struct_size, bool color)
513 {
514 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
515 if (!group)
516 return;
517
518 int entries = brw_state_batch_size(brw, offset) / struct_size;
519 for (int i = 0; i < entries; i++) {
520 fprintf(stderr, "%s %d\n", struct_name, i);
521 gen_print_group(stderr, group, gtt_offset + offset,
522 &data[(offset + i * struct_size) / 4], 0, color);
523 }
524 }
525
526 static void
527 do_batch_dump(struct brw_context *brw)
528 {
529 const struct gen_device_info *devinfo = &brw->screen->devinfo;
530 struct intel_batchbuffer *batch = &brw->batch;
531 struct gen_spec *spec = gen_spec_load(&brw->screen->devinfo);
532
533 if (batch->ring != RENDER_RING)
534 return;
535
536 uint32_t *batch_data = brw_bo_map(brw, batch->batch.bo, MAP_READ);
537 uint32_t *state = brw_bo_map(brw, batch->state.bo, MAP_READ);
538 if (batch_data == NULL || state == NULL) {
539 fprintf(stderr, "WARNING: failed to map batchbuffer/statebuffer\n");
540 return;
541 }
542
543 uint32_t *end = batch_data + USED_BATCH(*batch);
544 uint32_t batch_gtt_offset = batch->batch.bo->gtt_offset;
545 uint32_t state_gtt_offset = batch->state.bo->gtt_offset;
546 int length;
547
548 bool color = INTEL_DEBUG & DEBUG_COLOR;
549 const char *header_color = color ? BLUE_HEADER : "";
550 const char *reset_color = color ? NORMAL : "";
551
552 for (uint32_t *p = batch_data; p < end; p += length) {
553 struct gen_group *inst = gen_spec_find_instruction(spec, p);
554 length = gen_group_get_length(inst, p);
555 assert(inst == NULL || length > 0);
556 length = MAX2(1, length);
557 if (inst == NULL) {
558 fprintf(stderr, "unknown instruction %08x\n", p[0]);
559 continue;
560 }
561
562 uint64_t offset = batch_gtt_offset + 4 * (p - batch_data);
563
564 fprintf(stderr, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", header_color,
565 offset, p[0], gen_group_get_name(inst), reset_color);
566
567 gen_print_group(stderr, inst, offset, p, 0, color);
568
569 switch (gen_group_get_opcode(inst) >> 16) {
570 case _3DSTATE_PIPELINED_POINTERS:
571 /* Note: these Gen4-5 pointers are full relocations rather than
572 * offsets from the start of the statebuffer. So we need to subtract
573 * gtt_offset (the start of the statebuffer) to obtain an offset we
574 * can add to the map and get at the data.
575 */
576 decode_struct(brw, spec, "VS_STATE", state, state_gtt_offset,
577 (p[1] & ~0x1fu) - state_gtt_offset, color);
578 if (p[2] & 1) {
579 decode_struct(brw, spec, "GS_STATE", state, state_gtt_offset,
580 (p[2] & ~0x1fu) - state_gtt_offset, color);
581 }
582 if (p[3] & 1) {
583 decode_struct(brw, spec, "CLIP_STATE", state, state_gtt_offset,
584 (p[3] & ~0x1fu) - state_gtt_offset, color);
585 }
586 decode_struct(brw, spec, "SF_STATE", state, state_gtt_offset,
587 (p[4] & ~0x1fu) - state_gtt_offset, color);
588 decode_struct(brw, spec, "WM_STATE", state, state_gtt_offset,
589 (p[5] & ~0x1fu) - state_gtt_offset, color);
590 decode_struct(brw, spec, "COLOR_CALC_STATE", state, state_gtt_offset,
591 (p[6] & ~0x3fu) - state_gtt_offset, color);
592 break;
593 case _3DSTATE_BINDING_TABLE_POINTERS_VS:
594 case _3DSTATE_BINDING_TABLE_POINTERS_HS:
595 case _3DSTATE_BINDING_TABLE_POINTERS_DS:
596 case _3DSTATE_BINDING_TABLE_POINTERS_GS:
597 case _3DSTATE_BINDING_TABLE_POINTERS_PS: {
598 struct gen_group *group =
599 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
600 if (!group)
601 break;
602
603 uint32_t bt_offset = p[1] & ~0x1fu;
604 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
605 uint32_t *bt_pointers = &state[bt_offset / 4];
606 for (int i = 0; i < bt_entries; i++) {
607 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
608 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
609 &state[bt_pointers[i] / 4], 0, color);
610 }
611 break;
612 }
613 case _3DSTATE_SAMPLER_STATE_POINTERS_VS:
614 case _3DSTATE_SAMPLER_STATE_POINTERS_HS:
615 case _3DSTATE_SAMPLER_STATE_POINTERS_DS:
616 case _3DSTATE_SAMPLER_STATE_POINTERS_GS:
617 case _3DSTATE_SAMPLER_STATE_POINTERS_PS:
618 decode_structs(brw, spec, "SAMPLER_STATE", state,
619 state_gtt_offset, p[1] & ~0x1fu, 4 * 4, color);
620 break;
621 case _3DSTATE_VIEWPORT_STATE_POINTERS:
622 decode_structs(brw, spec, "CLIP_VIEWPORT", state,
623 state_gtt_offset, p[1] & ~0x3fu, 4 * 4, color);
624 decode_structs(brw, spec, "SF_VIEWPORT", state,
625 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
626 decode_structs(brw, spec, "CC_VIEWPORT", state,
627 state_gtt_offset, p[3] & ~0x3fu, 2 * 4, color);
628 break;
629 case _3DSTATE_VIEWPORT_STATE_POINTERS_CC:
630 decode_structs(brw, spec, "CC_VIEWPORT", state,
631 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
632 break;
633 case _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL:
634 decode_structs(brw, spec, "SF_CLIP_VIEWPORT", state,
635 state_gtt_offset, p[1] & ~0x3fu, 16 * 4, color);
636 break;
637 case _3DSTATE_SCISSOR_STATE_POINTERS:
638 decode_structs(brw, spec, "SCISSOR_RECT", state,
639 state_gtt_offset, p[1] & ~0x1fu, 2 * 4, color);
640 break;
641 case _3DSTATE_BLEND_STATE_POINTERS:
642 /* TODO: handle Gen8+ extra dword at the beginning */
643 decode_structs(brw, spec, "BLEND_STATE", state,
644 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
645 break;
646 case _3DSTATE_CC_STATE_POINTERS:
647 if (devinfo->gen >= 7) {
648 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
649 state_gtt_offset, p[1] & ~0x3fu, color);
650 } else if (devinfo->gen == 6) {
651 decode_structs(brw, spec, "BLEND_STATE", state,
652 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
653 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
654 state_gtt_offset, p[2] & ~0x3fu, color);
655 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
656 state_gtt_offset, p[3] & ~0x3fu, color);
657 }
658 break;
659 case _3DSTATE_DEPTH_STENCIL_STATE_POINTERS:
660 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
661 state_gtt_offset, p[1] & ~0x3fu, color);
662 break;
663 case MEDIA_INTERFACE_DESCRIPTOR_LOAD: {
664 struct gen_group *group =
665 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
666 if (!group)
667 break;
668
669 uint32_t idd_offset = p[3] & ~0x1fu;
670 decode_struct(brw, spec, "INTERFACE_DESCRIPTOR_DATA", state,
671 state_gtt_offset, idd_offset, color);
672
673 uint32_t ss_offset = state[idd_offset / 4 + 3] & ~0x1fu;
674 decode_structs(brw, spec, "SAMPLER_STATE", state,
675 state_gtt_offset, ss_offset, 4 * 4, color);
676
677 uint32_t bt_offset = state[idd_offset / 4 + 4] & ~0x1fu;
678 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
679 uint32_t *bt_pointers = &state[bt_offset / 4];
680 for (int i = 0; i < bt_entries; i++) {
681 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
682 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
683 &state[bt_pointers[i] / 4], 0, color);
684 }
685 break;
686 }
687 }
688 }
689
690 brw_bo_unmap(batch->batch.bo);
691 brw_bo_unmap(batch->state.bo);
692 }
693 #else
694 static void do_batch_dump(struct brw_context *brw) { }
695 #endif
696
697 /**
698 * Called when starting a new batch buffer.
699 */
700 static void
701 brw_new_batch(struct brw_context *brw)
702 {
703 /* Unreference any BOs held by the previous batch, and reset counts. */
704 for (int i = 0; i < brw->batch.exec_count; i++) {
705 brw_bo_unreference(brw->batch.exec_bos[i]);
706 brw->batch.exec_bos[i] = NULL;
707 }
708 brw->batch.batch_relocs.reloc_count = 0;
709 brw->batch.state_relocs.reloc_count = 0;
710 brw->batch.exec_count = 0;
711 brw->batch.aperture_space = 0;
712
713 brw_bo_unreference(brw->batch.state.bo);
714
715 /* Create a new batchbuffer and reset the associated state: */
716 intel_batchbuffer_reset_and_clear_render_cache(brw);
717
718 /* If the kernel supports hardware contexts, then most hardware state is
719 * preserved between batches; we only need to re-emit state that is required
720 * to be in every batch. Otherwise we need to re-emit all the state that
721 * would otherwise be stored in the context (which for all intents and
722 * purposes means everything).
723 */
724 if (brw->hw_ctx == 0) {
725 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
726 brw_upload_invariant_state(brw);
727 }
728
729 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
730
731 brw->ib.index_size = -1;
732
733 /* We need to periodically reap the shader time results, because rollover
734 * happens every few seconds. We also want to see results every once in a
735 * while, because many programs won't cleanly destroy our context, so the
736 * end-of-run printout may not happen.
737 */
738 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
739 brw_collect_and_report_shader_time(brw);
740 }
741
742 /**
743 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
744 * sending it off.
745 *
746 * This function can emit state (say, to preserve registers that aren't saved
747 * between batches).
748 */
749 static void
750 brw_finish_batch(struct brw_context *brw)
751 {
752 const struct gen_device_info *devinfo = &brw->screen->devinfo;
753
754 brw->batch.no_wrap = true;
755
756 /* Capture the closing pipeline statistics register values necessary to
757 * support query objects (in the non-hardware context world).
758 */
759 brw_emit_query_end(brw);
760
761 if (brw->batch.ring == RENDER_RING) {
762 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
763 * assume that the L3 cache is configured according to the hardware
764 * defaults. On Kernel 4.16+, we no longer need to do this.
765 */
766 if (devinfo->gen >= 7 &&
767 !(brw->screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION))
768 gen7_restore_default_l3_config(brw);
769
770 if (devinfo->is_haswell) {
771 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
772 * 3DSTATE_CC_STATE_POINTERS > "Note":
773 *
774 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
775 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
776 *
777 * From the example in the docs, it seems to expect a regular pipe control
778 * flush here as well. We may have done it already, but meh.
779 *
780 * See also WaAvoidRCZCounterRollover.
781 */
782 brw_emit_mi_flush(brw);
783 BEGIN_BATCH(2);
784 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
785 OUT_BATCH(brw->cc.state_offset | 1);
786 ADVANCE_BATCH();
787 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
788 PIPE_CONTROL_CS_STALL);
789 }
790
791 /* Do not restore push constant packets during context restore. */
792 if (devinfo->gen >= 7)
793 gen10_emit_isp_disable(brw);
794 }
795
796 /* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2
797 * requires our batch size to be QWord aligned, so we pad it out if
798 * necessary by emitting an extra MI_NOOP after the end.
799 */
800 intel_batchbuffer_require_space(brw, 8, brw->batch.ring);
801 *brw->batch.map_next++ = MI_BATCH_BUFFER_END;
802 if (USED_BATCH(brw->batch) & 1) {
803 *brw->batch.map_next++ = MI_NOOP;
804 }
805
806 brw->batch.no_wrap = false;
807 }
808
809 static void
810 throttle(struct brw_context *brw)
811 {
812 /* Wait for the swapbuffers before the one we just emitted, so we
813 * don't get too many swaps outstanding for apps that are GPU-heavy
814 * but not CPU-heavy.
815 *
816 * We're using intelDRI2Flush (called from the loader before
817 * swapbuffer) and glFlush (for front buffer rendering) as the
818 * indicator that a frame is done and then throttle when we get
819 * here as we prepare to render the next frame. At this point for
820 * round trips for swap/copy and getting new buffers are done and
821 * we'll spend less time waiting on the GPU.
822 *
823 * Unfortunately, we don't have a handle to the batch containing
824 * the swap, and getting our hands on that doesn't seem worth it,
825 * so we just use the first batch we emitted after the last swap.
826 */
827 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
828 if (brw->throttle_batch[1]) {
829 if (!brw->disable_throttling) {
830 brw_bo_wait_rendering(brw->throttle_batch[1]);
831 }
832 brw_bo_unreference(brw->throttle_batch[1]);
833 }
834 brw->throttle_batch[1] = brw->throttle_batch[0];
835 brw->throttle_batch[0] = NULL;
836 brw->need_swap_throttle = false;
837 /* Throttling here is more precise than the throttle ioctl, so skip it */
838 brw->need_flush_throttle = false;
839 }
840
841 if (brw->need_flush_throttle) {
842 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
843 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
844 brw->need_flush_throttle = false;
845 }
846 }
847
848 static int
849 execbuffer(int fd,
850 struct intel_batchbuffer *batch,
851 uint32_t ctx_id,
852 int used,
853 int in_fence,
854 int *out_fence,
855 int flags)
856 {
857 struct drm_i915_gem_execbuffer2 execbuf = {
858 .buffers_ptr = (uintptr_t) batch->validation_list,
859 .buffer_count = batch->exec_count,
860 .batch_start_offset = 0,
861 .batch_len = used,
862 .flags = flags,
863 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
864 };
865
866 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
867
868 if (in_fence != -1) {
869 execbuf.rsvd2 = in_fence;
870 execbuf.flags |= I915_EXEC_FENCE_IN;
871 }
872
873 if (out_fence != NULL) {
874 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
875 *out_fence = -1;
876 execbuf.flags |= I915_EXEC_FENCE_OUT;
877 }
878
879 int ret = drmIoctl(fd, cmd, &execbuf);
880 if (ret != 0)
881 ret = -errno;
882
883 for (int i = 0; i < batch->exec_count; i++) {
884 struct brw_bo *bo = batch->exec_bos[i];
885
886 bo->idle = false;
887 bo->index = -1;
888
889 /* Update brw_bo::gtt_offset */
890 if (batch->validation_list[i].offset != bo->gtt_offset) {
891 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
892 bo->gem_handle, bo->gtt_offset,
893 batch->validation_list[i].offset);
894 bo->gtt_offset = batch->validation_list[i].offset;
895 }
896 }
897
898 if (ret == 0 && out_fence != NULL)
899 *out_fence = execbuf.rsvd2 >> 32;
900
901 return ret;
902 }
903
904 static int
905 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
906 {
907 const struct gen_device_info *devinfo = &brw->screen->devinfo;
908 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
909 struct intel_batchbuffer *batch = &brw->batch;
910 int ret = 0;
911
912 if (batch->use_shadow_copy) {
913 void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
914 memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch));
915
916 bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
917 memcpy(bo_map, batch->state.map, batch->state_used);
918 }
919
920 brw_bo_unmap(batch->batch.bo);
921 brw_bo_unmap(batch->state.bo);
922
923 if (!brw->screen->no_hw) {
924 /* The requirement for using I915_EXEC_NO_RELOC are:
925 *
926 * The addresses written in the objects must match the corresponding
927 * reloc.gtt_offset which in turn must match the corresponding
928 * execobject.offset.
929 *
930 * Any render targets written to in the batch must be flagged with
931 * EXEC_OBJECT_WRITE.
932 *
933 * To avoid stalling, execobject.offset should match the current
934 * address of that object within the active context.
935 */
936 int flags = I915_EXEC_NO_RELOC;
937
938 if (devinfo->gen >= 6 && batch->ring == BLT_RING) {
939 flags |= I915_EXEC_BLT;
940 } else {
941 flags |= I915_EXEC_RENDER;
942 }
943 if (batch->needs_sol_reset)
944 flags |= I915_EXEC_GEN7_SOL_RESET;
945
946 uint32_t hw_ctx = batch->ring == RENDER_RING ? brw->hw_ctx : 0;
947
948 /* Set statebuffer relocations */
949 const unsigned state_index = batch->state.bo->index;
950 if (state_index < batch->exec_count &&
951 batch->exec_bos[state_index] == batch->state.bo) {
952 struct drm_i915_gem_exec_object2 *entry =
953 &batch->validation_list[state_index];
954 assert(entry->handle == batch->state.bo->gem_handle);
955 entry->relocation_count = batch->state_relocs.reloc_count;
956 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
957 }
958
959 /* Set batchbuffer relocations */
960 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
961 assert(entry->handle == batch->batch.bo->gem_handle);
962 entry->relocation_count = batch->batch_relocs.reloc_count;
963 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
964
965 if (batch->use_batch_first) {
966 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
967 } else {
968 /* Move the batch to the end of the validation list */
969 struct drm_i915_gem_exec_object2 tmp;
970 const unsigned index = batch->exec_count - 1;
971
972 tmp = *entry;
973 *entry = batch->validation_list[index];
974 batch->validation_list[index] = tmp;
975 }
976
977 ret = execbuffer(dri_screen->fd, batch, hw_ctx,
978 4 * USED_BATCH(*batch),
979 in_fence_fd, out_fence_fd, flags);
980
981 throttle(brw);
982 }
983
984 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
985 do_batch_dump(brw);
986
987 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
988 brw_check_for_reset(brw);
989
990 if (ret != 0) {
991 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
992 strerror(-ret));
993 exit(1);
994 }
995
996 return ret;
997 }
998
999 /**
1000 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
1001 * of the fd.
1002 *
1003 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
1004 * of the returned fd.
1005 */
1006 int
1007 _intel_batchbuffer_flush_fence(struct brw_context *brw,
1008 int in_fence_fd, int *out_fence_fd,
1009 const char *file, int line)
1010 {
1011 int ret;
1012
1013 if (USED_BATCH(brw->batch) == 0)
1014 return 0;
1015
1016 /* Check that we didn't just wrap our batchbuffer at a bad time. */
1017 assert(!brw->batch.no_wrap);
1018
1019 brw_finish_batch(brw);
1020 brw_upload_finish(&brw->upload);
1021
1022 finish_growing_bos(&brw->batch.batch);
1023 finish_growing_bos(&brw->batch.state);
1024
1025 if (brw->throttle_batch[0] == NULL) {
1026 brw->throttle_batch[0] = brw->batch.batch.bo;
1027 brw_bo_reference(brw->throttle_batch[0]);
1028 }
1029
1030 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
1031 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
1032 int bytes_for_state = brw->batch.state_used;
1033 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
1034 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
1035 " %4d batch relocs, %4d state relocs\n", file, line,
1036 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
1037 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
1038 brw->batch.exec_count,
1039 (float) brw->batch.aperture_space / (1024 * 1024),
1040 brw->batch.batch_relocs.reloc_count,
1041 brw->batch.state_relocs.reloc_count);
1042 }
1043
1044 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
1045
1046 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
1047 fprintf(stderr, "waiting for idle\n");
1048 brw_bo_wait_rendering(brw->batch.batch.bo);
1049 }
1050
1051 /* Start a new batch buffer. */
1052 brw_new_batch(brw);
1053
1054 return ret;
1055 }
1056
1057 bool
1058 brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
1059 {
1060 return brw->batch.aperture_space + extra_space <=
1061 brw->screen->aperture_threshold;
1062 }
1063
1064 bool
1065 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
1066 {
1067 unsigned index = READ_ONCE(bo->index);
1068 if (index < batch->exec_count && batch->exec_bos[index] == bo)
1069 return true;
1070
1071 for (int i = 0; i < batch->exec_count; i++) {
1072 if (batch->exec_bos[i] == bo)
1073 return true;
1074 }
1075 return false;
1076 }
1077
1078 /* This is the only way buffers get added to the validate list.
1079 */
1080 static uint64_t
1081 emit_reloc(struct intel_batchbuffer *batch,
1082 struct brw_reloc_list *rlist, uint32_t offset,
1083 struct brw_bo *target, uint32_t target_offset,
1084 unsigned int reloc_flags)
1085 {
1086 assert(target != NULL);
1087
1088 if (rlist->reloc_count == rlist->reloc_array_size) {
1089 rlist->reloc_array_size *= 2;
1090 rlist->relocs = realloc(rlist->relocs,
1091 rlist->reloc_array_size *
1092 sizeof(struct drm_i915_gem_relocation_entry));
1093 }
1094
1095 unsigned int index = add_exec_bo(batch, target);
1096 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
1097
1098 if (reloc_flags & RELOC_32BIT) {
1099 /* Restrict this buffer to the low 32 bits of the address space.
1100 *
1101 * Altering the validation list flags restricts it for this batch,
1102 * but we also alter the BO's kflags to restrict it permanently
1103 * (until the BO is destroyed and put back in the cache). Buffers
1104 * may stay bound across batches, and we want keep it constrained.
1105 */
1106 target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1107 entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1108
1109 /* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
1110 reloc_flags &= ~RELOC_32BIT;
1111 }
1112
1113 if (reloc_flags)
1114 entry->flags |= reloc_flags & batch->valid_reloc_flags;
1115
1116 rlist->relocs[rlist->reloc_count++] =
1117 (struct drm_i915_gem_relocation_entry) {
1118 .offset = offset,
1119 .delta = target_offset,
1120 .target_handle = batch->use_batch_first ? index : target->gem_handle,
1121 .presumed_offset = entry->offset,
1122 };
1123
1124 /* Using the old buffer offset, write in what the right data would be, in
1125 * case the buffer doesn't move and we can short-circuit the relocation
1126 * processing in the kernel
1127 */
1128 return entry->offset + target_offset;
1129 }
1130
1131 uint64_t
1132 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
1133 struct brw_bo *target, uint32_t target_offset,
1134 unsigned int reloc_flags)
1135 {
1136 assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));
1137
1138 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
1139 target, target_offset, reloc_flags);
1140 }
1141
1142 uint64_t
1143 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1144 struct brw_bo *target, uint32_t target_offset,
1145 unsigned int reloc_flags)
1146 {
1147 assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
1148
1149 return emit_reloc(batch, &batch->state_relocs, state_offset,
1150 target, target_offset, reloc_flags);
1151 }
1152
1153
1154 uint32_t
1155 brw_state_batch_size(struct brw_context *brw, uint32_t offset)
1156 {
1157 struct hash_entry *entry =
1158 _mesa_hash_table_search(brw->batch.state_batch_sizes,
1159 (void *) (uintptr_t) offset);
1160 return entry ? (uintptr_t) entry->data : 0;
1161 }
1162
1163 /**
1164 * Reserve some space in the statebuffer, or flush.
1165 *
1166 * This is used to estimate when we're near the end of the batch,
1167 * so we can flush early.
1168 */
1169 void
1170 brw_require_statebuffer_space(struct brw_context *brw, int size)
1171 {
1172 if (brw->batch.state_used + size >= STATE_SZ)
1173 intel_batchbuffer_flush(brw);
1174 }
1175
1176 /**
1177 * Allocates a block of space in the batchbuffer for indirect state.
1178 */
1179 void *
1180 brw_state_batch(struct brw_context *brw,
1181 int size,
1182 int alignment,
1183 uint32_t *out_offset)
1184 {
1185 struct intel_batchbuffer *batch = &brw->batch;
1186
1187 assert(size < batch->state.bo->size);
1188
1189 uint32_t offset = ALIGN(batch->state_used, alignment);
1190
1191 if (offset + size >= STATE_SZ && !batch->no_wrap) {
1192 intel_batchbuffer_flush(brw);
1193 offset = ALIGN(batch->state_used, alignment);
1194 } else if (offset + size >= batch->state.bo->size) {
1195 const unsigned new_size =
1196 MIN2(batch->state.bo->size + batch->state.bo->size / 2,
1197 MAX_STATE_SIZE);
1198 grow_buffer(brw, &batch->state, batch->state_used, new_size);
1199 assert(offset + size < batch->state.bo->size);
1200 }
1201
1202 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1203 _mesa_hash_table_insert(batch->state_batch_sizes,
1204 (void *) (uintptr_t) offset,
1205 (void *) (uintptr_t) size);
1206 }
1207
1208 batch->state_used = offset + size;
1209
1210 *out_offset = offset;
1211 return batch->state.map + (offset >> 2);
1212 }
1213
1214 void
1215 intel_batchbuffer_data(struct brw_context *brw,
1216 const void *data, GLuint bytes, enum brw_gpu_ring ring)
1217 {
1218 assert((bytes & 3) == 0);
1219 intel_batchbuffer_require_space(brw, bytes, ring);
1220 memcpy(brw->batch.map_next, data, bytes);
1221 brw->batch.map_next += bytes >> 2;
1222 }
1223
1224 static void
1225 load_sized_register_mem(struct brw_context *brw,
1226 uint32_t reg,
1227 struct brw_bo *bo,
1228 uint32_t offset,
1229 int size)
1230 {
1231 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1232 int i;
1233
1234 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1235 assert(devinfo->gen >= 7);
1236
1237 if (devinfo->gen >= 8) {
1238 BEGIN_BATCH(4 * size);
1239 for (i = 0; i < size; i++) {
1240 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1241 OUT_BATCH(reg + i * 4);
1242 OUT_RELOC64(bo, 0, offset + i * 4);
1243 }
1244 ADVANCE_BATCH();
1245 } else {
1246 BEGIN_BATCH(3 * size);
1247 for (i = 0; i < size; i++) {
1248 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1249 OUT_BATCH(reg + i * 4);
1250 OUT_RELOC(bo, 0, offset + i * 4);
1251 }
1252 ADVANCE_BATCH();
1253 }
1254 }
1255
1256 void
1257 brw_load_register_mem(struct brw_context *brw,
1258 uint32_t reg,
1259 struct brw_bo *bo,
1260 uint32_t offset)
1261 {
1262 load_sized_register_mem(brw, reg, bo, offset, 1);
1263 }
1264
1265 void
1266 brw_load_register_mem64(struct brw_context *brw,
1267 uint32_t reg,
1268 struct brw_bo *bo,
1269 uint32_t offset)
1270 {
1271 load_sized_register_mem(brw, reg, bo, offset, 2);
1272 }
1273
1274 /*
1275 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1276 */
1277 void
1278 brw_store_register_mem32(struct brw_context *brw,
1279 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1280 {
1281 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1282
1283 assert(devinfo->gen >= 6);
1284
1285 if (devinfo->gen >= 8) {
1286 BEGIN_BATCH(4);
1287 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1288 OUT_BATCH(reg);
1289 OUT_RELOC64(bo, RELOC_WRITE, offset);
1290 ADVANCE_BATCH();
1291 } else {
1292 BEGIN_BATCH(3);
1293 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1294 OUT_BATCH(reg);
1295 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1296 ADVANCE_BATCH();
1297 }
1298 }
1299
1300 /*
1301 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1302 */
1303 void
1304 brw_store_register_mem64(struct brw_context *brw,
1305 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1306 {
1307 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1308
1309 assert(devinfo->gen >= 6);
1310
1311 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1312 * read a full 64-bit register, we need to do two of them.
1313 */
1314 if (devinfo->gen >= 8) {
1315 BEGIN_BATCH(8);
1316 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1317 OUT_BATCH(reg);
1318 OUT_RELOC64(bo, RELOC_WRITE, offset);
1319 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1320 OUT_BATCH(reg + sizeof(uint32_t));
1321 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1322 ADVANCE_BATCH();
1323 } else {
1324 BEGIN_BATCH(6);
1325 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1326 OUT_BATCH(reg);
1327 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1328 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1329 OUT_BATCH(reg + sizeof(uint32_t));
1330 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1331 ADVANCE_BATCH();
1332 }
1333 }
1334
1335 /*
1336 * Write a 32-bit register using immediate data.
1337 */
1338 void
1339 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1340 {
1341 assert(brw->screen->devinfo.gen >= 6);
1342
1343 BEGIN_BATCH(3);
1344 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1345 OUT_BATCH(reg);
1346 OUT_BATCH(imm);
1347 ADVANCE_BATCH();
1348 }
1349
1350 /*
1351 * Write a 64-bit register using immediate data.
1352 */
1353 void
1354 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1355 {
1356 assert(brw->screen->devinfo.gen >= 6);
1357
1358 BEGIN_BATCH(5);
1359 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1360 OUT_BATCH(reg);
1361 OUT_BATCH(imm & 0xffffffff);
1362 OUT_BATCH(reg + 4);
1363 OUT_BATCH(imm >> 32);
1364 ADVANCE_BATCH();
1365 }
1366
1367 /*
1368 * Copies a 32-bit register.
1369 */
1370 void
1371 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
1372 {
1373 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1374
1375 BEGIN_BATCH(3);
1376 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1377 OUT_BATCH(src);
1378 OUT_BATCH(dest);
1379 ADVANCE_BATCH();
1380 }
1381
1382 /*
1383 * Copies a 64-bit register.
1384 */
1385 void
1386 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
1387 {
1388 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1389
1390 BEGIN_BATCH(6);
1391 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1392 OUT_BATCH(src);
1393 OUT_BATCH(dest);
1394 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1395 OUT_BATCH(src + sizeof(uint32_t));
1396 OUT_BATCH(dest + sizeof(uint32_t));
1397 ADVANCE_BATCH();
1398 }
1399
1400 /*
1401 * Write 32-bits of immediate data to a GPU memory buffer.
1402 */
1403 void
1404 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1405 uint32_t offset, uint32_t imm)
1406 {
1407 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1408
1409 assert(devinfo->gen >= 6);
1410
1411 BEGIN_BATCH(4);
1412 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1413 if (devinfo->gen >= 8)
1414 OUT_RELOC64(bo, RELOC_WRITE, offset);
1415 else {
1416 OUT_BATCH(0); /* MBZ */
1417 OUT_RELOC(bo, RELOC_WRITE, offset);
1418 }
1419 OUT_BATCH(imm);
1420 ADVANCE_BATCH();
1421 }
1422
1423 /*
1424 * Write 64-bits of immediate data to a GPU memory buffer.
1425 */
1426 void
1427 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1428 uint32_t offset, uint64_t imm)
1429 {
1430 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1431
1432 assert(devinfo->gen >= 6);
1433
1434 BEGIN_BATCH(5);
1435 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1436 if (devinfo->gen >= 8)
1437 OUT_RELOC64(bo, RELOC_WRITE, offset);
1438 else {
1439 OUT_BATCH(0); /* MBZ */
1440 OUT_RELOC(bo, RELOC_WRITE, offset);
1441 }
1442 OUT_BATCH(imm & 0xffffffffu);
1443 OUT_BATCH(imm >> 32);
1444 ADVANCE_BATCH();
1445 }