i965: Reorganize batch/state BO fields into a 'brw_growing_bo' struct.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35
36 #include "util/hash_table.h"
37
38 #include <xf86drm.h>
39 #include <i915_drm.h>
40
41 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
42
43 /**
44 * Target sizes of the batch and state buffers. We create the initial
45 * buffers at these sizes, and flush when they're nearly full. If we
46 * underestimate how close we are to the end, and suddenly need more space
47 * in the middle of a draw, we can grow the buffers, and finish the draw.
48 * At that point, we'll be over our target size, so the next operation
49 * should flush. Each time we flush the batch, we recreate both buffers
50 * at the original target size, so it doesn't grow without bound.
51 */
52 #define BATCH_SZ (20 * 1024)
53 #define STATE_SZ (16 * 1024)
54
55 static void
56 intel_batchbuffer_reset(struct brw_context *brw);
57
58 static bool
59 uint_key_compare(const void *a, const void *b)
60 {
61 return a == b;
62 }
63
64 static uint32_t
65 uint_key_hash(const void *key)
66 {
67 return (uintptr_t) key;
68 }
69
70 static void
71 init_reloc_list(struct brw_reloc_list *rlist, int count)
72 {
73 rlist->reloc_count = 0;
74 rlist->reloc_array_size = count;
75 rlist->relocs = malloc(rlist->reloc_array_size *
76 sizeof(struct drm_i915_gem_relocation_entry));
77 }
78
79 void
80 intel_batchbuffer_init(struct brw_context *brw)
81 {
82 struct intel_screen *screen = brw->screen;
83 struct intel_batchbuffer *batch = &brw->batch;
84 const struct gen_device_info *devinfo = &screen->devinfo;
85
86 if (!devinfo->has_llc) {
87 batch->batch.cpu_map = malloc(BATCH_SZ);
88 batch->batch.map = batch->batch.cpu_map;
89 batch->map_next = batch->batch.map;
90 batch->state.cpu_map = malloc(STATE_SZ);
91 batch->state.map = batch->state.cpu_map;
92 }
93
94 init_reloc_list(&batch->batch_relocs, 250);
95 init_reloc_list(&batch->state_relocs, 250);
96
97 batch->exec_count = 0;
98 batch->exec_array_size = 100;
99 batch->exec_bos =
100 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
101 batch->validation_list =
102 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
103
104 if (INTEL_DEBUG & DEBUG_BATCH) {
105 batch->state_batch_sizes =
106 _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
107 }
108
109 batch->use_batch_first =
110 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
111
112 /* PIPE_CONTROL needs a w/a but only on gen6 */
113 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
114 if (devinfo->gen == 6)
115 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
116
117 intel_batchbuffer_reset(brw);
118 }
119
120 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
121
122 static unsigned
123 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
124 {
125 unsigned index = READ_ONCE(bo->index);
126
127 if (index < batch->exec_count && batch->exec_bos[index] == bo)
128 return index;
129
130 /* May have been shared between multiple active batches */
131 for (index = 0; index < batch->exec_count; index++) {
132 if (batch->exec_bos[index] == bo)
133 return index;
134 }
135
136 brw_bo_reference(bo);
137
138 if (batch->exec_count == batch->exec_array_size) {
139 batch->exec_array_size *= 2;
140 batch->exec_bos =
141 realloc(batch->exec_bos,
142 batch->exec_array_size * sizeof(batch->exec_bos[0]));
143 batch->validation_list =
144 realloc(batch->validation_list,
145 batch->exec_array_size * sizeof(batch->validation_list[0]));
146 }
147
148 batch->validation_list[batch->exec_count] =
149 (struct drm_i915_gem_exec_object2) {
150 .handle = bo->gem_handle,
151 .alignment = bo->align,
152 .offset = bo->gtt_offset,
153 .flags = bo->kflags,
154 };
155
156 bo->index = batch->exec_count;
157 batch->exec_bos[batch->exec_count] = bo;
158 batch->aperture_space += bo->size;
159
160 return batch->exec_count++;
161 }
162
163 static void
164 intel_batchbuffer_reset(struct brw_context *brw)
165 {
166 struct intel_screen *screen = brw->screen;
167 struct intel_batchbuffer *batch = &brw->batch;
168 struct brw_bufmgr *bufmgr = screen->bufmgr;
169
170 if (batch->last_bo != NULL) {
171 brw_bo_unreference(batch->last_bo);
172 batch->last_bo = NULL;
173 }
174 batch->last_bo = batch->batch.bo;
175
176 batch->batch.bo = brw_bo_alloc(bufmgr, "batchbuffer", BATCH_SZ, 4096);
177 if (!batch->batch.cpu_map) {
178 batch->batch.map =
179 brw_bo_map(brw, batch->batch.bo, MAP_READ | MAP_WRITE);
180 }
181 batch->map_next = batch->batch.map;
182
183 batch->state.bo = brw_bo_alloc(bufmgr, "statebuffer", STATE_SZ, 4096);
184 batch->state.bo->kflags =
185 can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
186 if (!batch->state.cpu_map) {
187 batch->state.map =
188 brw_bo_map(brw, batch->state.bo, MAP_READ | MAP_WRITE);
189 }
190
191 /* Avoid making 0 a valid state offset - otherwise the decoder will try
192 * and decode data when we use offset 0 as a null pointer.
193 */
194 batch->state_used = 1;
195
196 add_exec_bo(batch, batch->batch.bo);
197 assert(batch->batch.bo->index == 0);
198
199 batch->needs_sol_reset = false;
200 batch->state_base_address_emitted = false;
201
202 /* We don't know what ring the new batch will be sent to until we see the
203 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
204 */
205 batch->ring = UNKNOWN_RING;
206
207 if (batch->state_batch_sizes)
208 _mesa_hash_table_clear(batch->state_batch_sizes, NULL);
209 }
210
211 static void
212 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
213 {
214 intel_batchbuffer_reset(brw);
215 brw_cache_sets_clear(brw);
216 }
217
218 void
219 intel_batchbuffer_save_state(struct brw_context *brw)
220 {
221 brw->batch.saved.map_next = brw->batch.map_next;
222 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
223 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
224 brw->batch.saved.exec_count = brw->batch.exec_count;
225 }
226
227 void
228 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
229 {
230 for (int i = brw->batch.saved.exec_count;
231 i < brw->batch.exec_count; i++) {
232 brw_bo_unreference(brw->batch.exec_bos[i]);
233 }
234 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
235 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
236 brw->batch.exec_count = brw->batch.saved.exec_count;
237
238 brw->batch.map_next = brw->batch.saved.map_next;
239 if (USED_BATCH(brw->batch) == 0)
240 brw->batch.ring = UNKNOWN_RING;
241 }
242
243 void
244 intel_batchbuffer_free(struct intel_batchbuffer *batch)
245 {
246 free(batch->batch.cpu_map);
247 free(batch->state.cpu_map);
248
249 for (int i = 0; i < batch->exec_count; i++) {
250 brw_bo_unreference(batch->exec_bos[i]);
251 }
252 free(batch->batch_relocs.relocs);
253 free(batch->state_relocs.relocs);
254 free(batch->exec_bos);
255 free(batch->validation_list);
256
257 brw_bo_unreference(batch->last_bo);
258 brw_bo_unreference(batch->batch.bo);
259 brw_bo_unreference(batch->state.bo);
260 if (batch->state_batch_sizes)
261 _mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
262 }
263
264 static void
265 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
266 uint32_t old_handle, uint32_t new_handle)
267 {
268 for (int i = 0; i < rlist->reloc_count; i++) {
269 if (rlist->relocs[i].target_handle == old_handle)
270 rlist->relocs[i].target_handle = new_handle;
271 }
272 }
273
274 /**
275 * Grow either the batch or state buffer to a new larger size.
276 *
277 * We can't actually grow buffers, so we allocate a new one, copy over
278 * the existing contents, and update our lists to refer to the new one.
279 *
280 * Note that this is only temporary - each new batch recreates the buffers
281 * at their original target size (BATCH_SZ or STATE_SZ).
282 */
283 static void
284 grow_buffer(struct brw_context *brw,
285 struct brw_bo **bo_ptr,
286 uint32_t **map_ptr,
287 uint32_t **cpu_map_ptr,
288 unsigned existing_bytes,
289 unsigned new_size)
290 {
291 struct intel_batchbuffer *batch = &brw->batch;
292 struct brw_bufmgr *bufmgr = brw->bufmgr;
293
294 uint32_t *old_map = *map_ptr;
295 struct brw_bo *old_bo = *bo_ptr;
296
297 struct brw_bo *new_bo =
298 brw_bo_alloc(bufmgr, old_bo->name, new_size, old_bo->align);
299 uint32_t *new_map;
300
301 perf_debug("Growing %s - ran out of space\n", old_bo->name);
302
303 /* Copy existing data to the new larger buffer */
304 if (*cpu_map_ptr) {
305 *cpu_map_ptr = new_map = realloc(*cpu_map_ptr, new_size);
306 } else {
307 new_map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
308 memcpy(new_map, old_map, existing_bytes);
309 }
310
311 /* Try to put the new BO at the same GTT offset as the old BO (which
312 * we're throwing away, so it doesn't need to be there).
313 *
314 * This guarantees that our relocations continue to work: values we've
315 * already written into the buffer, values we're going to write into the
316 * buffer, and the validation/relocation lists all will match.
317 *
318 * Also preserve kflags for EXEC_OBJECT_CAPTURE.
319 */
320 new_bo->gtt_offset = old_bo->gtt_offset;
321 new_bo->index = old_bo->index;
322 new_bo->kflags = old_bo->kflags;
323
324 /* Batch/state buffers are per-context, and if we've run out of space,
325 * we must have actually used them before, so...they will be in the list.
326 */
327 assert(old_bo->index < batch->exec_count);
328 assert(batch->exec_bos[old_bo->index] == old_bo);
329
330 /* Update the validation list to use the new BO. */
331 batch->exec_bos[old_bo->index] = new_bo;
332 batch->validation_list[old_bo->index].handle = new_bo->gem_handle;
333 brw_bo_reference(new_bo);
334 brw_bo_unreference(old_bo);
335
336 if (!batch->use_batch_first) {
337 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
338 * update the relocation list entries to point at the new BO as well.
339 * (With newer kernels, the "handle" is an offset into the validation
340 * list, which remains unchanged, so we can skip this.)
341 */
342 replace_bo_in_reloc_list(&batch->batch_relocs,
343 old_bo->gem_handle, new_bo->gem_handle);
344 replace_bo_in_reloc_list(&batch->state_relocs,
345 old_bo->gem_handle, new_bo->gem_handle);
346 }
347
348 /* Drop the *bo_ptr reference. This should free the old BO. */
349 brw_bo_unreference(old_bo);
350
351 *bo_ptr = new_bo;
352 *map_ptr = new_map;
353 }
354
355 void
356 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
357 enum brw_gpu_ring ring)
358 {
359 const struct gen_device_info *devinfo = &brw->screen->devinfo;
360 struct intel_batchbuffer *batch = &brw->batch;
361
362 /* If we're switching rings, implicitly flush the batch. */
363 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
364 devinfo->gen >= 6) {
365 intel_batchbuffer_flush(brw);
366 }
367
368 const unsigned batch_used = USED_BATCH(*batch) * 4;
369 if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
370 intel_batchbuffer_flush(brw);
371 } else if (batch_used + sz >= batch->batch.bo->size) {
372 const unsigned new_size =
373 MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
374 MAX_BATCH_SIZE);
375 grow_buffer(brw, &batch->batch.bo, &batch->batch.map,
376 &batch->batch.cpu_map, batch_used, new_size);
377 batch->map_next = (void *) batch->batch.map + batch_used;
378 assert(batch_used + sz < batch->batch.bo->size);
379 }
380
381 /* The intel_batchbuffer_flush() calls above might have changed
382 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
383 */
384 brw->batch.ring = ring;
385 }
386
387 #ifdef DEBUG
388 #define CSI "\e["
389 #define BLUE_HEADER CSI "0;44m"
390 #define NORMAL CSI "0m"
391
392
393 static void
394 decode_struct(struct brw_context *brw, struct gen_spec *spec,
395 const char *struct_name, uint32_t *data,
396 uint32_t gtt_offset, uint32_t offset, bool color)
397 {
398 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
399 if (!group)
400 return;
401
402 fprintf(stderr, "%s\n", struct_name);
403 gen_print_group(stderr, group, gtt_offset + offset,
404 &data[offset / 4], color);
405 }
406
407 static void
408 decode_structs(struct brw_context *brw, struct gen_spec *spec,
409 const char *struct_name,
410 uint32_t *data, uint32_t gtt_offset, uint32_t offset,
411 int struct_size, bool color)
412 {
413 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
414 if (!group)
415 return;
416
417 int entries = brw_state_batch_size(brw, offset) / struct_size;
418 for (int i = 0; i < entries; i++) {
419 fprintf(stderr, "%s %d\n", struct_name, i);
420 gen_print_group(stderr, group, gtt_offset + offset,
421 &data[(offset + i * struct_size) / 4], color);
422 }
423 }
424
425 static void
426 do_batch_dump(struct brw_context *brw)
427 {
428 const struct gen_device_info *devinfo = &brw->screen->devinfo;
429 struct intel_batchbuffer *batch = &brw->batch;
430 struct gen_spec *spec = gen_spec_load(&brw->screen->devinfo);
431
432 if (batch->ring != RENDER_RING)
433 return;
434
435 uint32_t *batch_data = brw_bo_map(brw, batch->batch.bo, MAP_READ);
436 uint32_t *state = brw_bo_map(brw, batch->state.bo, MAP_READ);
437 if (batch_data == NULL || state == NULL) {
438 fprintf(stderr, "WARNING: failed to map batchbuffer/statebuffer\n");
439 return;
440 }
441
442 uint32_t *end = batch_data + USED_BATCH(*batch);
443 uint32_t batch_gtt_offset = batch->batch.bo->gtt_offset;
444 uint32_t state_gtt_offset = batch->state.bo->gtt_offset;
445 int length;
446
447 bool color = INTEL_DEBUG & DEBUG_COLOR;
448 const char *header_color = color ? BLUE_HEADER : "";
449 const char *reset_color = color ? NORMAL : "";
450
451 for (uint32_t *p = batch_data; p < end; p += length) {
452 struct gen_group *inst = gen_spec_find_instruction(spec, p);
453 length = gen_group_get_length(inst, p);
454 assert(inst == NULL || length > 0);
455 length = MAX2(1, length);
456 if (inst == NULL) {
457 fprintf(stderr, "unknown instruction %08x\n", p[0]);
458 continue;
459 }
460
461 uint64_t offset = batch_gtt_offset + 4 * (p - batch_data);
462
463 fprintf(stderr, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", header_color,
464 offset, p[0], gen_group_get_name(inst), reset_color);
465
466 gen_print_group(stderr, inst, offset, p, color);
467
468 switch (gen_group_get_opcode(inst) >> 16) {
469 case _3DSTATE_PIPELINED_POINTERS:
470 /* Note: these Gen4-5 pointers are full relocations rather than
471 * offsets from the start of the statebuffer. So we need to subtract
472 * gtt_offset (the start of the statebuffer) to obtain an offset we
473 * can add to the map and get at the data.
474 */
475 decode_struct(brw, spec, "VS_STATE", state, state_gtt_offset,
476 (p[1] & ~0x1fu) - state_gtt_offset, color);
477 if (p[2] & 1) {
478 decode_struct(brw, spec, "GS_STATE", state, state_gtt_offset,
479 (p[2] & ~0x1fu) - state_gtt_offset, color);
480 }
481 if (p[3] & 1) {
482 decode_struct(brw, spec, "CLIP_STATE", state, state_gtt_offset,
483 (p[3] & ~0x1fu) - state_gtt_offset, color);
484 }
485 decode_struct(brw, spec, "SF_STATE", state, state_gtt_offset,
486 (p[4] & ~0x1fu) - state_gtt_offset, color);
487 decode_struct(brw, spec, "WM_STATE", state, state_gtt_offset,
488 (p[5] & ~0x1fu) - state_gtt_offset, color);
489 decode_struct(brw, spec, "COLOR_CALC_STATE", state, state_gtt_offset,
490 (p[6] & ~0x3fu) - state_gtt_offset, color);
491 break;
492 case _3DSTATE_BINDING_TABLE_POINTERS_VS:
493 case _3DSTATE_BINDING_TABLE_POINTERS_HS:
494 case _3DSTATE_BINDING_TABLE_POINTERS_DS:
495 case _3DSTATE_BINDING_TABLE_POINTERS_GS:
496 case _3DSTATE_BINDING_TABLE_POINTERS_PS: {
497 struct gen_group *group =
498 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
499 if (!group)
500 break;
501
502 uint32_t bt_offset = p[1] & ~0x1fu;
503 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
504 uint32_t *bt_pointers = &state[bt_offset / 4];
505 for (int i = 0; i < bt_entries; i++) {
506 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
507 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
508 &state[bt_pointers[i] / 4], color);
509 }
510 break;
511 }
512 case _3DSTATE_SAMPLER_STATE_POINTERS_VS:
513 case _3DSTATE_SAMPLER_STATE_POINTERS_HS:
514 case _3DSTATE_SAMPLER_STATE_POINTERS_DS:
515 case _3DSTATE_SAMPLER_STATE_POINTERS_GS:
516 case _3DSTATE_SAMPLER_STATE_POINTERS_PS:
517 decode_structs(brw, spec, "SAMPLER_STATE", state,
518 state_gtt_offset, p[1] & ~0x1fu, 4 * 4, color);
519 break;
520 case _3DSTATE_VIEWPORT_STATE_POINTERS:
521 decode_structs(brw, spec, "CLIP_VIEWPORT", state,
522 state_gtt_offset, p[1] & ~0x3fu, 4 * 4, color);
523 decode_structs(brw, spec, "SF_VIEWPORT", state,
524 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
525 decode_structs(brw, spec, "CC_VIEWPORT", state,
526 state_gtt_offset, p[3] & ~0x3fu, 2 * 4, color);
527 break;
528 case _3DSTATE_VIEWPORT_STATE_POINTERS_CC:
529 decode_structs(brw, spec, "CC_VIEWPORT", state,
530 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
531 break;
532 case _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL:
533 decode_structs(brw, spec, "SF_CLIP_VIEWPORT", state,
534 state_gtt_offset, p[1] & ~0x3fu, 16 * 4, color);
535 break;
536 case _3DSTATE_SCISSOR_STATE_POINTERS:
537 decode_structs(brw, spec, "SCISSOR_RECT", state,
538 state_gtt_offset, p[1] & ~0x1fu, 2 * 4, color);
539 break;
540 case _3DSTATE_BLEND_STATE_POINTERS:
541 /* TODO: handle Gen8+ extra dword at the beginning */
542 decode_structs(brw, spec, "BLEND_STATE", state,
543 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
544 break;
545 case _3DSTATE_CC_STATE_POINTERS:
546 if (devinfo->gen >= 7) {
547 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
548 state_gtt_offset, p[1] & ~0x3fu, color);
549 } else if (devinfo->gen == 6) {
550 decode_structs(brw, spec, "BLEND_STATE", state,
551 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
552 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
553 state_gtt_offset, p[2] & ~0x3fu, color);
554 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
555 state_gtt_offset, p[3] & ~0x3fu, color);
556 }
557 break;
558 case _3DSTATE_DEPTH_STENCIL_STATE_POINTERS:
559 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
560 state_gtt_offset, p[1] & ~0x3fu, color);
561 break;
562 case MEDIA_INTERFACE_DESCRIPTOR_LOAD: {
563 struct gen_group *group =
564 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
565 if (!group)
566 break;
567
568 uint32_t idd_offset = p[3] & ~0x1fu;
569 decode_struct(brw, spec, "INTERFACE_DESCRIPTOR_DATA", state,
570 state_gtt_offset, idd_offset, color);
571
572 uint32_t ss_offset = state[idd_offset / 4 + 3] & ~0x1fu;
573 decode_structs(brw, spec, "SAMPLER_STATE", state,
574 state_gtt_offset, ss_offset, 4 * 4, color);
575
576 uint32_t bt_offset = state[idd_offset / 4 + 4] & ~0x1fu;
577 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
578 uint32_t *bt_pointers = &state[bt_offset / 4];
579 for (int i = 0; i < bt_entries; i++) {
580 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
581 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
582 &state[bt_pointers[i] / 4], color);
583 }
584 break;
585 }
586 }
587 }
588
589 brw_bo_unmap(batch->batch.bo);
590 brw_bo_unmap(batch->state.bo);
591 }
592 #else
593 static void do_batch_dump(struct brw_context *brw) { }
594 #endif
595
596 /**
597 * Called when starting a new batch buffer.
598 */
599 static void
600 brw_new_batch(struct brw_context *brw)
601 {
602 /* Unreference any BOs held by the previous batch, and reset counts. */
603 for (int i = 0; i < brw->batch.exec_count; i++) {
604 brw_bo_unreference(brw->batch.exec_bos[i]);
605 brw->batch.exec_bos[i] = NULL;
606 }
607 brw->batch.batch_relocs.reloc_count = 0;
608 brw->batch.state_relocs.reloc_count = 0;
609 brw->batch.exec_count = 0;
610 brw->batch.aperture_space = 0;
611
612 brw_bo_unreference(brw->batch.state.bo);
613
614 /* Create a new batchbuffer and reset the associated state: */
615 intel_batchbuffer_reset_and_clear_render_cache(brw);
616
617 /* If the kernel supports hardware contexts, then most hardware state is
618 * preserved between batches; we only need to re-emit state that is required
619 * to be in every batch. Otherwise we need to re-emit all the state that
620 * would otherwise be stored in the context (which for all intents and
621 * purposes means everything).
622 */
623 if (brw->hw_ctx == 0) {
624 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
625 brw_upload_invariant_state(brw);
626 }
627
628 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
629
630 brw->ib.index_size = -1;
631
632 /* We need to periodically reap the shader time results, because rollover
633 * happens every few seconds. We also want to see results every once in a
634 * while, because many programs won't cleanly destroy our context, so the
635 * end-of-run printout may not happen.
636 */
637 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
638 brw_collect_and_report_shader_time(brw);
639 }
640
641 /**
642 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
643 * sending it off.
644 *
645 * This function can emit state (say, to preserve registers that aren't saved
646 * between batches).
647 */
648 static void
649 brw_finish_batch(struct brw_context *brw)
650 {
651 const struct gen_device_info *devinfo = &brw->screen->devinfo;
652
653 brw->batch.no_wrap = true;
654
655 /* Capture the closing pipeline statistics register values necessary to
656 * support query objects (in the non-hardware context world).
657 */
658 brw_emit_query_end(brw);
659
660 if (brw->batch.ring == RENDER_RING) {
661 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
662 * assume that the L3 cache is configured according to the hardware
663 * defaults.
664 */
665 if (devinfo->gen >= 7)
666 gen7_restore_default_l3_config(brw);
667
668 if (devinfo->is_haswell) {
669 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
670 * 3DSTATE_CC_STATE_POINTERS > "Note":
671 *
672 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
673 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
674 *
675 * From the example in the docs, it seems to expect a regular pipe control
676 * flush here as well. We may have done it already, but meh.
677 *
678 * See also WaAvoidRCZCounterRollover.
679 */
680 brw_emit_mi_flush(brw);
681 BEGIN_BATCH(2);
682 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
683 OUT_BATCH(brw->cc.state_offset | 1);
684 ADVANCE_BATCH();
685 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
686 PIPE_CONTROL_CS_STALL);
687 }
688 }
689
690 /* Mark the end of the buffer. */
691 intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
692 if (USED_BATCH(brw->batch) & 1) {
693 /* Round batchbuffer usage to 2 DWORDs. */
694 intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
695 }
696
697 brw->batch.no_wrap = false;
698 }
699
700 static void
701 throttle(struct brw_context *brw)
702 {
703 /* Wait for the swapbuffers before the one we just emitted, so we
704 * don't get too many swaps outstanding for apps that are GPU-heavy
705 * but not CPU-heavy.
706 *
707 * We're using intelDRI2Flush (called from the loader before
708 * swapbuffer) and glFlush (for front buffer rendering) as the
709 * indicator that a frame is done and then throttle when we get
710 * here as we prepare to render the next frame. At this point for
711 * round trips for swap/copy and getting new buffers are done and
712 * we'll spend less time waiting on the GPU.
713 *
714 * Unfortunately, we don't have a handle to the batch containing
715 * the swap, and getting our hands on that doesn't seem worth it,
716 * so we just use the first batch we emitted after the last swap.
717 */
718 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
719 if (brw->throttle_batch[1]) {
720 if (!brw->disable_throttling) {
721 /* Pass NULL rather than brw so we avoid perf_debug warnings;
722 * stalling is common and expected here...
723 */
724 brw_bo_wait_rendering(brw->throttle_batch[1]);
725 }
726 brw_bo_unreference(brw->throttle_batch[1]);
727 }
728 brw->throttle_batch[1] = brw->throttle_batch[0];
729 brw->throttle_batch[0] = NULL;
730 brw->need_swap_throttle = false;
731 /* Throttling here is more precise than the throttle ioctl, so skip it */
732 brw->need_flush_throttle = false;
733 }
734
735 if (brw->need_flush_throttle) {
736 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
737 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
738 brw->need_flush_throttle = false;
739 }
740 }
741
742 static int
743 execbuffer(int fd,
744 struct intel_batchbuffer *batch,
745 uint32_t ctx_id,
746 int used,
747 int in_fence,
748 int *out_fence,
749 int flags)
750 {
751 struct drm_i915_gem_execbuffer2 execbuf = {
752 .buffers_ptr = (uintptr_t) batch->validation_list,
753 .buffer_count = batch->exec_count,
754 .batch_start_offset = 0,
755 .batch_len = used,
756 .flags = flags,
757 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
758 };
759
760 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
761
762 if (in_fence != -1) {
763 execbuf.rsvd2 = in_fence;
764 execbuf.flags |= I915_EXEC_FENCE_IN;
765 }
766
767 if (out_fence != NULL) {
768 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
769 *out_fence = -1;
770 execbuf.flags |= I915_EXEC_FENCE_OUT;
771 }
772
773 int ret = drmIoctl(fd, cmd, &execbuf);
774 if (ret != 0)
775 ret = -errno;
776
777 for (int i = 0; i < batch->exec_count; i++) {
778 struct brw_bo *bo = batch->exec_bos[i];
779
780 bo->idle = false;
781 bo->index = -1;
782
783 /* Update brw_bo::gtt_offset */
784 if (batch->validation_list[i].offset != bo->gtt_offset) {
785 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
786 bo->gem_handle, bo->gtt_offset,
787 batch->validation_list[i].offset);
788 bo->gtt_offset = batch->validation_list[i].offset;
789 }
790 }
791
792 if (ret == 0 && out_fence != NULL)
793 *out_fence = execbuf.rsvd2 >> 32;
794
795 return ret;
796 }
797
798 static int
799 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
800 {
801 const struct gen_device_info *devinfo = &brw->screen->devinfo;
802 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
803 struct intel_batchbuffer *batch = &brw->batch;
804 int ret = 0;
805
806 if (batch->batch.cpu_map) {
807 void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
808 memcpy(bo_map, batch->batch.cpu_map, 4 * USED_BATCH(*batch));
809 }
810
811 if (batch->state.cpu_map) {
812 void *bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
813 memcpy(bo_map, batch->state.cpu_map, batch->state_used);
814 }
815
816 brw_bo_unmap(batch->batch.bo);
817 brw_bo_unmap(batch->state.bo);
818
819 if (!brw->screen->no_hw) {
820 /* The requirement for using I915_EXEC_NO_RELOC are:
821 *
822 * The addresses written in the objects must match the corresponding
823 * reloc.gtt_offset which in turn must match the corresponding
824 * execobject.offset.
825 *
826 * Any render targets written to in the batch must be flagged with
827 * EXEC_OBJECT_WRITE.
828 *
829 * To avoid stalling, execobject.offset should match the current
830 * address of that object within the active context.
831 */
832 int flags = I915_EXEC_NO_RELOC;
833
834 if (devinfo->gen >= 6 && batch->ring == BLT_RING) {
835 flags |= I915_EXEC_BLT;
836 } else {
837 flags |= I915_EXEC_RENDER;
838 }
839 if (batch->needs_sol_reset)
840 flags |= I915_EXEC_GEN7_SOL_RESET;
841
842 uint32_t hw_ctx = batch->ring == RENDER_RING ? brw->hw_ctx : 0;
843
844 /* Set statebuffer relocations */
845 const unsigned state_index = batch->state.bo->index;
846 if (state_index < batch->exec_count &&
847 batch->exec_bos[state_index] == batch->state.bo) {
848 struct drm_i915_gem_exec_object2 *entry =
849 &batch->validation_list[state_index];
850 assert(entry->handle == batch->state.bo->gem_handle);
851 entry->relocation_count = batch->state_relocs.reloc_count;
852 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
853 }
854
855 /* Set batchbuffer relocations */
856 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
857 assert(entry->handle == batch->batch.bo->gem_handle);
858 entry->relocation_count = batch->batch_relocs.reloc_count;
859 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
860
861 if (batch->use_batch_first) {
862 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
863 } else {
864 /* Move the batch to the end of the validation list */
865 struct drm_i915_gem_exec_object2 tmp;
866 const unsigned index = batch->exec_count - 1;
867
868 tmp = *entry;
869 *entry = batch->validation_list[index];
870 batch->validation_list[index] = tmp;
871 }
872
873 ret = execbuffer(dri_screen->fd, batch, hw_ctx,
874 4 * USED_BATCH(*batch),
875 in_fence_fd, out_fence_fd, flags);
876
877 throttle(brw);
878 }
879
880 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
881 do_batch_dump(brw);
882
883 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
884 brw_check_for_reset(brw);
885
886 if (ret != 0) {
887 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
888 strerror(-ret));
889 exit(1);
890 }
891
892 return ret;
893 }
894
895 /**
896 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
897 * of the fd.
898 *
899 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
900 * of the returned fd.
901 */
902 int
903 _intel_batchbuffer_flush_fence(struct brw_context *brw,
904 int in_fence_fd, int *out_fence_fd,
905 const char *file, int line)
906 {
907 int ret;
908
909 if (USED_BATCH(brw->batch) == 0)
910 return 0;
911
912 /* Check that we didn't just wrap our batchbuffer at a bad time. */
913 assert(!brw->batch.no_wrap);
914
915 brw_finish_batch(brw);
916 intel_upload_finish(brw);
917
918 if (brw->throttle_batch[0] == NULL) {
919 brw->throttle_batch[0] = brw->batch.batch.bo;
920 brw_bo_reference(brw->throttle_batch[0]);
921 }
922
923 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
924 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
925 int bytes_for_state = brw->batch.state_used;
926 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
927 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
928 " %4d batch relocs, %4d state relocs\n", file, line,
929 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
930 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
931 brw->batch.exec_count,
932 (float) brw->batch.aperture_space / (1024 * 1024),
933 brw->batch.batch_relocs.reloc_count,
934 brw->batch.state_relocs.reloc_count);
935 }
936
937 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
938
939 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
940 fprintf(stderr, "waiting for idle\n");
941 brw_bo_wait_rendering(brw->batch.batch.bo);
942 }
943
944 /* Start a new batch buffer. */
945 brw_new_batch(brw);
946
947 return ret;
948 }
949
950 bool
951 brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
952 {
953 return brw->batch.aperture_space + extra_space <=
954 brw->screen->aperture_threshold;
955 }
956
957 bool
958 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
959 {
960 unsigned index = READ_ONCE(bo->index);
961 if (index < batch->exec_count && batch->exec_bos[index] == bo)
962 return true;
963
964 for (int i = 0; i < batch->exec_count; i++) {
965 if (batch->exec_bos[i] == bo)
966 return true;
967 }
968 return false;
969 }
970
971 /* This is the only way buffers get added to the validate list.
972 */
973 static uint64_t
974 emit_reloc(struct intel_batchbuffer *batch,
975 struct brw_reloc_list *rlist, uint32_t offset,
976 struct brw_bo *target, uint32_t target_offset,
977 unsigned int reloc_flags)
978 {
979 assert(target != NULL);
980
981 if (rlist->reloc_count == rlist->reloc_array_size) {
982 rlist->reloc_array_size *= 2;
983 rlist->relocs = realloc(rlist->relocs,
984 rlist->reloc_array_size *
985 sizeof(struct drm_i915_gem_relocation_entry));
986 }
987
988 unsigned int index = add_exec_bo(batch, target);
989 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
990
991 if (reloc_flags)
992 entry->flags |= reloc_flags & batch->valid_reloc_flags;
993
994 rlist->relocs[rlist->reloc_count++] =
995 (struct drm_i915_gem_relocation_entry) {
996 .offset = offset,
997 .delta = target_offset,
998 .target_handle = batch->use_batch_first ? index : target->gem_handle,
999 .presumed_offset = entry->offset,
1000 };
1001
1002 /* Using the old buffer offset, write in what the right data would be, in
1003 * case the buffer doesn't move and we can short-circuit the relocation
1004 * processing in the kernel
1005 */
1006 return entry->offset + target_offset;
1007 }
1008
1009 uint64_t
1010 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
1011 struct brw_bo *target, uint32_t target_offset,
1012 unsigned int reloc_flags)
1013 {
1014 assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));
1015
1016 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
1017 target, target_offset, reloc_flags);
1018 }
1019
1020 uint64_t
1021 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1022 struct brw_bo *target, uint32_t target_offset,
1023 unsigned int reloc_flags)
1024 {
1025 assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
1026
1027 return emit_reloc(batch, &batch->state_relocs, state_offset,
1028 target, target_offset, reloc_flags);
1029 }
1030
1031
1032 uint32_t
1033 brw_state_batch_size(struct brw_context *brw, uint32_t offset)
1034 {
1035 struct hash_entry *entry =
1036 _mesa_hash_table_search(brw->batch.state_batch_sizes,
1037 (void *) (uintptr_t) offset);
1038 return entry ? (uintptr_t) entry->data : 0;
1039 }
1040
1041 /**
1042 * Reserve some space in the statebuffer, or flush.
1043 *
1044 * This is used to estimate when we're near the end of the batch,
1045 * so we can flush early.
1046 */
1047 void
1048 brw_require_statebuffer_space(struct brw_context *brw, int size)
1049 {
1050 if (brw->batch.state_used + size >= STATE_SZ)
1051 intel_batchbuffer_flush(brw);
1052 }
1053
1054 /**
1055 * Allocates a block of space in the batchbuffer for indirect state.
1056 */
1057 void *
1058 brw_state_batch(struct brw_context *brw,
1059 int size,
1060 int alignment,
1061 uint32_t *out_offset)
1062 {
1063 struct intel_batchbuffer *batch = &brw->batch;
1064
1065 assert(size < batch->state.bo->size);
1066
1067 uint32_t offset = ALIGN(batch->state_used, alignment);
1068
1069 if (offset + size >= STATE_SZ && !batch->no_wrap) {
1070 intel_batchbuffer_flush(brw);
1071 offset = ALIGN(batch->state_used, alignment);
1072 } else if (offset + size >= batch->state.bo->size) {
1073 const unsigned new_size =
1074 MIN2(batch->state.bo->size + batch->state.bo->size / 2,
1075 MAX_STATE_SIZE);
1076 grow_buffer(brw, &batch->state.bo, &batch->state.map,
1077 &batch->state.cpu_map, batch->state_used, new_size);
1078 assert(offset + size < batch->state.bo->size);
1079 }
1080
1081 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1082 _mesa_hash_table_insert(batch->state_batch_sizes,
1083 (void *) (uintptr_t) offset,
1084 (void *) (uintptr_t) size);
1085 }
1086
1087 batch->state_used = offset + size;
1088
1089 *out_offset = offset;
1090 return batch->state.map + (offset >> 2);
1091 }
1092
1093 void
1094 intel_batchbuffer_data(struct brw_context *brw,
1095 const void *data, GLuint bytes, enum brw_gpu_ring ring)
1096 {
1097 assert((bytes & 3) == 0);
1098 intel_batchbuffer_require_space(brw, bytes, ring);
1099 memcpy(brw->batch.map_next, data, bytes);
1100 brw->batch.map_next += bytes >> 2;
1101 }
1102
1103 static void
1104 load_sized_register_mem(struct brw_context *brw,
1105 uint32_t reg,
1106 struct brw_bo *bo,
1107 uint32_t offset,
1108 int size)
1109 {
1110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1111 int i;
1112
1113 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1114 assert(devinfo->gen >= 7);
1115
1116 if (devinfo->gen >= 8) {
1117 BEGIN_BATCH(4 * size);
1118 for (i = 0; i < size; i++) {
1119 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1120 OUT_BATCH(reg + i * 4);
1121 OUT_RELOC64(bo, 0, offset + i * 4);
1122 }
1123 ADVANCE_BATCH();
1124 } else {
1125 BEGIN_BATCH(3 * size);
1126 for (i = 0; i < size; i++) {
1127 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1128 OUT_BATCH(reg + i * 4);
1129 OUT_RELOC(bo, 0, offset + i * 4);
1130 }
1131 ADVANCE_BATCH();
1132 }
1133 }
1134
1135 void
1136 brw_load_register_mem(struct brw_context *brw,
1137 uint32_t reg,
1138 struct brw_bo *bo,
1139 uint32_t offset)
1140 {
1141 load_sized_register_mem(brw, reg, bo, offset, 1);
1142 }
1143
1144 void
1145 brw_load_register_mem64(struct brw_context *brw,
1146 uint32_t reg,
1147 struct brw_bo *bo,
1148 uint32_t offset)
1149 {
1150 load_sized_register_mem(brw, reg, bo, offset, 2);
1151 }
1152
1153 /*
1154 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1155 */
1156 void
1157 brw_store_register_mem32(struct brw_context *brw,
1158 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1159 {
1160 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1161
1162 assert(devinfo->gen >= 6);
1163
1164 if (devinfo->gen >= 8) {
1165 BEGIN_BATCH(4);
1166 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1167 OUT_BATCH(reg);
1168 OUT_RELOC64(bo, RELOC_WRITE, offset);
1169 ADVANCE_BATCH();
1170 } else {
1171 BEGIN_BATCH(3);
1172 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1173 OUT_BATCH(reg);
1174 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1175 ADVANCE_BATCH();
1176 }
1177 }
1178
1179 /*
1180 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1181 */
1182 void
1183 brw_store_register_mem64(struct brw_context *brw,
1184 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1185 {
1186 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1187
1188 assert(devinfo->gen >= 6);
1189
1190 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1191 * read a full 64-bit register, we need to do two of them.
1192 */
1193 if (devinfo->gen >= 8) {
1194 BEGIN_BATCH(8);
1195 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1196 OUT_BATCH(reg);
1197 OUT_RELOC64(bo, RELOC_WRITE, offset);
1198 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1199 OUT_BATCH(reg + sizeof(uint32_t));
1200 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1201 ADVANCE_BATCH();
1202 } else {
1203 BEGIN_BATCH(6);
1204 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1205 OUT_BATCH(reg);
1206 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1207 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1208 OUT_BATCH(reg + sizeof(uint32_t));
1209 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1210 ADVANCE_BATCH();
1211 }
1212 }
1213
1214 /*
1215 * Write a 32-bit register using immediate data.
1216 */
1217 void
1218 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1219 {
1220 assert(brw->screen->devinfo.gen >= 6);
1221
1222 BEGIN_BATCH(3);
1223 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1224 OUT_BATCH(reg);
1225 OUT_BATCH(imm);
1226 ADVANCE_BATCH();
1227 }
1228
1229 /*
1230 * Write a 64-bit register using immediate data.
1231 */
1232 void
1233 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1234 {
1235 assert(brw->screen->devinfo.gen >= 6);
1236
1237 BEGIN_BATCH(5);
1238 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1239 OUT_BATCH(reg);
1240 OUT_BATCH(imm & 0xffffffff);
1241 OUT_BATCH(reg + 4);
1242 OUT_BATCH(imm >> 32);
1243 ADVANCE_BATCH();
1244 }
1245
1246 /*
1247 * Copies a 32-bit register.
1248 */
1249 void
1250 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
1251 {
1252 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1253
1254 BEGIN_BATCH(3);
1255 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1256 OUT_BATCH(src);
1257 OUT_BATCH(dest);
1258 ADVANCE_BATCH();
1259 }
1260
1261 /*
1262 * Copies a 64-bit register.
1263 */
1264 void
1265 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
1266 {
1267 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1268
1269 BEGIN_BATCH(6);
1270 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1271 OUT_BATCH(src);
1272 OUT_BATCH(dest);
1273 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1274 OUT_BATCH(src + sizeof(uint32_t));
1275 OUT_BATCH(dest + sizeof(uint32_t));
1276 ADVANCE_BATCH();
1277 }
1278
1279 /*
1280 * Write 32-bits of immediate data to a GPU memory buffer.
1281 */
1282 void
1283 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1284 uint32_t offset, uint32_t imm)
1285 {
1286 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1287
1288 assert(devinfo->gen >= 6);
1289
1290 BEGIN_BATCH(4);
1291 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1292 if (devinfo->gen >= 8)
1293 OUT_RELOC64(bo, RELOC_WRITE, offset);
1294 else {
1295 OUT_BATCH(0); /* MBZ */
1296 OUT_RELOC(bo, RELOC_WRITE, offset);
1297 }
1298 OUT_BATCH(imm);
1299 ADVANCE_BATCH();
1300 }
1301
1302 /*
1303 * Write 64-bits of immediate data to a GPU memory buffer.
1304 */
1305 void
1306 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1307 uint32_t offset, uint64_t imm)
1308 {
1309 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1310
1311 assert(devinfo->gen >= 6);
1312
1313 BEGIN_BATCH(5);
1314 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1315 if (devinfo->gen >= 8)
1316 OUT_RELOC64(bo, 0, offset);
1317 else {
1318 OUT_BATCH(0); /* MBZ */
1319 OUT_RELOC(bo, RELOC_WRITE, offset);
1320 }
1321 OUT_BATCH(imm & 0xffffffffu);
1322 OUT_BATCH(imm >> 32);
1323 ADVANCE_BATCH();
1324 }