i956: Add a function to load a 64-bit register from a buffer
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "intel_batchbuffer.h"
29 #include "intel_buffer_objects.h"
30 #include "intel_reg.h"
31 #include "intel_bufmgr.h"
32 #include "intel_buffers.h"
33 #include "intel_fbo.h"
34 #include "brw_context.h"
35
36 #include <xf86drm.h>
37 #include <i915_drm.h>
38
39 static void
40 intel_batchbuffer_reset(struct brw_context *brw);
41
42 void
43 intel_batchbuffer_init(struct brw_context *brw)
44 {
45 intel_batchbuffer_reset(brw);
46
47 if (brw->gen >= 6) {
48 /* We can't just use brw_state_batch to get a chunk of space for
49 * the gen6 workaround because it involves actually writing to
50 * the buffer, and the kernel doesn't let us write to the batch.
51 */
52 brw->batch.workaround_bo = drm_intel_bo_alloc(brw->bufmgr,
53 "pipe_control workaround",
54 4096, 4096);
55 }
56
57 if (!brw->has_llc) {
58 brw->batch.cpu_map = malloc(BATCH_SZ);
59 brw->batch.map = brw->batch.cpu_map;
60 }
61 }
62
63 static void
64 intel_batchbuffer_reset(struct brw_context *brw)
65 {
66 if (brw->batch.last_bo != NULL) {
67 drm_intel_bo_unreference(brw->batch.last_bo);
68 brw->batch.last_bo = NULL;
69 }
70 brw->batch.last_bo = brw->batch.bo;
71
72 brw_render_cache_set_clear(brw);
73
74 brw->batch.bo = drm_intel_bo_alloc(brw->bufmgr, "batchbuffer",
75 BATCH_SZ, 4096);
76 if (brw->has_llc) {
77 drm_intel_bo_map(brw->batch.bo, true);
78 brw->batch.map = brw->batch.bo->virtual;
79 }
80
81 brw->batch.reserved_space = BATCH_RESERVED;
82 brw->batch.state_batch_offset = brw->batch.bo->size;
83 brw->batch.used = 0;
84 brw->batch.needs_sol_reset = false;
85 brw->batch.pipe_controls_since_last_cs_stall = 0;
86
87 /* We don't know what ring the new batch will be sent to until we see the
88 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
89 */
90 brw->batch.ring = UNKNOWN_RING;
91 }
92
93 void
94 intel_batchbuffer_save_state(struct brw_context *brw)
95 {
96 brw->batch.saved.used = brw->batch.used;
97 brw->batch.saved.reloc_count =
98 drm_intel_gem_bo_get_reloc_count(brw->batch.bo);
99 }
100
101 void
102 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
103 {
104 drm_intel_gem_bo_clear_relocs(brw->batch.bo, brw->batch.saved.reloc_count);
105
106 brw->batch.used = brw->batch.saved.used;
107 if (brw->batch.used == 0)
108 brw->batch.ring = UNKNOWN_RING;
109 }
110
111 void
112 intel_batchbuffer_free(struct brw_context *brw)
113 {
114 free(brw->batch.cpu_map);
115 drm_intel_bo_unreference(brw->batch.last_bo);
116 drm_intel_bo_unreference(brw->batch.bo);
117 drm_intel_bo_unreference(brw->batch.workaround_bo);
118 }
119
120 static void
121 do_batch_dump(struct brw_context *brw)
122 {
123 struct drm_intel_decode *decode;
124 struct intel_batchbuffer *batch = &brw->batch;
125 int ret;
126
127 decode = drm_intel_decode_context_alloc(brw->intelScreen->deviceID);
128 if (!decode)
129 return;
130
131 ret = drm_intel_bo_map(batch->bo, false);
132 if (ret == 0) {
133 drm_intel_decode_set_batch_pointer(decode,
134 batch->bo->virtual,
135 batch->bo->offset64,
136 batch->used);
137 } else {
138 fprintf(stderr,
139 "WARNING: failed to map batchbuffer (%s), "
140 "dumping uploaded data instead.\n", strerror(ret));
141
142 drm_intel_decode_set_batch_pointer(decode,
143 batch->map,
144 batch->bo->offset64,
145 batch->used);
146 }
147
148 drm_intel_decode_set_output_file(decode, stderr);
149 drm_intel_decode(decode);
150
151 drm_intel_decode_context_free(decode);
152
153 if (ret == 0) {
154 drm_intel_bo_unmap(batch->bo);
155
156 brw_debug_batch(brw);
157 }
158 }
159
160 void
161 intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw)
162 {
163 /* We may need to enable and snapshot OA counters. */
164 brw_perf_monitor_new_batch(brw);
165 }
166
167 /**
168 * Called when starting a new batch buffer.
169 */
170 static void
171 brw_new_batch(struct brw_context *brw)
172 {
173 /* Create a new batchbuffer and reset the associated state: */
174 drm_intel_gem_bo_clear_relocs(brw->batch.bo, 0);
175 intel_batchbuffer_reset(brw);
176
177 /* If the kernel supports hardware contexts, then most hardware state is
178 * preserved between batches; we only need to re-emit state that is required
179 * to be in every batch. Otherwise we need to re-emit all the state that
180 * would otherwise be stored in the context (which for all intents and
181 * purposes means everything).
182 */
183 if (brw->hw_ctx == NULL)
184 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
185
186 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
187
188 brw->state_batch_count = 0;
189
190 brw->ib.type = -1;
191
192 /* We need to periodically reap the shader time results, because rollover
193 * happens every few seconds. We also want to see results every once in a
194 * while, because many programs won't cleanly destroy our context, so the
195 * end-of-run printout may not happen.
196 */
197 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
198 brw_collect_and_report_shader_time(brw);
199
200 if (INTEL_DEBUG & DEBUG_PERFMON)
201 brw_dump_perf_monitors(brw);
202 }
203
204 /**
205 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
206 * sending it off.
207 *
208 * This function can emit state (say, to preserve registers that aren't saved
209 * between batches). All of this state MUST fit in the reserved space at the
210 * end of the batchbuffer. If you add more GPU state, increase the reserved
211 * space by updating the BATCH_RESERVED macro.
212 */
213 static void
214 brw_finish_batch(struct brw_context *brw)
215 {
216 /* Capture the closing pipeline statistics register values necessary to
217 * support query objects (in the non-hardware context world).
218 */
219 brw_emit_query_end(brw);
220
221 /* We may also need to snapshot and disable OA counters. */
222 if (brw->batch.ring == RENDER_RING)
223 brw_perf_monitor_finish_batch(brw);
224
225 /* Mark that the current program cache BO has been used by the GPU.
226 * It will be reallocated if we need to put new programs in for the
227 * next batch.
228 */
229 brw->cache.bo_used_by_gpu = true;
230 }
231
232 static void
233 throttle(struct brw_context *brw)
234 {
235 /* Wait for the swapbuffers before the one we just emitted, so we
236 * don't get too many swaps outstanding for apps that are GPU-heavy
237 * but not CPU-heavy.
238 *
239 * We're using intelDRI2Flush (called from the loader before
240 * swapbuffer) and glFlush (for front buffer rendering) as the
241 * indicator that a frame is done and then throttle when we get
242 * here as we prepare to render the next frame. At this point for
243 * round trips for swap/copy and getting new buffers are done and
244 * we'll spend less time waiting on the GPU.
245 *
246 * Unfortunately, we don't have a handle to the batch containing
247 * the swap, and getting our hands on that doesn't seem worth it,
248 * so we just use the first batch we emitted after the last swap.
249 */
250 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
251 if (brw->throttle_batch[1]) {
252 if (!brw->disable_throttling)
253 drm_intel_bo_wait_rendering(brw->throttle_batch[1]);
254 drm_intel_bo_unreference(brw->throttle_batch[1]);
255 }
256 brw->throttle_batch[1] = brw->throttle_batch[0];
257 brw->throttle_batch[0] = NULL;
258 brw->need_swap_throttle = false;
259 /* Throttling here is more precise than the throttle ioctl, so skip it */
260 brw->need_flush_throttle = false;
261 }
262
263 if (brw->need_flush_throttle) {
264 __DRIscreen *psp = brw->intelScreen->driScrnPriv;
265 drmCommandNone(psp->fd, DRM_I915_GEM_THROTTLE);
266 brw->need_flush_throttle = false;
267 }
268 }
269
270 /* TODO: Push this whole function into bufmgr.
271 */
272 static int
273 do_flush_locked(struct brw_context *brw)
274 {
275 struct intel_batchbuffer *batch = &brw->batch;
276 int ret = 0;
277
278 if (brw->has_llc) {
279 drm_intel_bo_unmap(batch->bo);
280 } else {
281 ret = drm_intel_bo_subdata(batch->bo, 0, 4*batch->used, batch->map);
282 if (ret == 0 && batch->state_batch_offset != batch->bo->size) {
283 ret = drm_intel_bo_subdata(batch->bo,
284 batch->state_batch_offset,
285 batch->bo->size - batch->state_batch_offset,
286 (char *)batch->map + batch->state_batch_offset);
287 }
288 }
289
290 if (!brw->intelScreen->no_hw) {
291 int flags;
292
293 if (brw->gen >= 6 && batch->ring == BLT_RING) {
294 flags = I915_EXEC_BLT;
295 } else {
296 flags = I915_EXEC_RENDER;
297 }
298 if (batch->needs_sol_reset)
299 flags |= I915_EXEC_GEN7_SOL_RESET;
300
301 if (ret == 0) {
302 if (unlikely(INTEL_DEBUG & DEBUG_AUB))
303 brw_annotate_aub(brw);
304
305 if (brw->hw_ctx == NULL || batch->ring != RENDER_RING) {
306 ret = drm_intel_bo_mrb_exec(batch->bo, 4 * batch->used, NULL, 0, 0,
307 flags);
308 } else {
309 ret = drm_intel_gem_bo_context_exec(batch->bo, brw->hw_ctx,
310 4 * batch->used, flags);
311 }
312 }
313
314 throttle(brw);
315 }
316
317 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
318 do_batch_dump(brw);
319
320 if (ret != 0) {
321 fprintf(stderr, "intel_do_flush_locked failed: %s\n", strerror(-ret));
322 exit(1);
323 }
324
325 return ret;
326 }
327
328 int
329 _intel_batchbuffer_flush(struct brw_context *brw,
330 const char *file, int line)
331 {
332 int ret;
333
334 if (brw->batch.used == 0)
335 return 0;
336
337 if (brw->throttle_batch[0] == NULL) {
338 brw->throttle_batch[0] = brw->batch.bo;
339 drm_intel_bo_reference(brw->throttle_batch[0]);
340 }
341
342 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
343 int bytes_for_commands = 4 * brw->batch.used;
344 int bytes_for_state = brw->batch.bo->size - brw->batch.state_batch_offset;
345 int total_bytes = bytes_for_commands + bytes_for_state;
346 fprintf(stderr, "%s:%d: Batchbuffer flush with %4db (pkt) + "
347 "%4db (state) = %4db (%0.1f%%)\n", file, line,
348 bytes_for_commands, bytes_for_state,
349 total_bytes,
350 100.0f * total_bytes / BATCH_SZ);
351 }
352
353 brw->batch.reserved_space = 0;
354
355 brw_finish_batch(brw);
356
357 /* Mark the end of the buffer. */
358 intel_batchbuffer_emit_dword(brw, MI_BATCH_BUFFER_END);
359 if (brw->batch.used & 1) {
360 /* Round batchbuffer usage to 2 DWORDs. */
361 intel_batchbuffer_emit_dword(brw, MI_NOOP);
362 }
363
364 intel_upload_finish(brw);
365
366 /* Check that we didn't just wrap our batchbuffer at a bad time. */
367 assert(!brw->no_batch_wrap);
368
369 ret = do_flush_locked(brw);
370
371 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
372 fprintf(stderr, "waiting for idle\n");
373 drm_intel_bo_wait_rendering(brw->batch.bo);
374 }
375
376 /* Start a new batch buffer. */
377 brw_new_batch(brw);
378
379 return ret;
380 }
381
382
383 /* This is the only way buffers get added to the validate list.
384 */
385 bool
386 intel_batchbuffer_emit_reloc(struct brw_context *brw,
387 drm_intel_bo *buffer,
388 uint32_t read_domains, uint32_t write_domain,
389 uint32_t delta)
390 {
391 int ret;
392
393 ret = drm_intel_bo_emit_reloc(brw->batch.bo, 4*brw->batch.used,
394 buffer, delta,
395 read_domains, write_domain);
396 assert(ret == 0);
397 (void)ret;
398
399 /* Using the old buffer offset, write in what the right data would be, in
400 * case the buffer doesn't move and we can short-circuit the relocation
401 * processing in the kernel
402 */
403 intel_batchbuffer_emit_dword(brw, buffer->offset64 + delta);
404
405 return true;
406 }
407
408 bool
409 intel_batchbuffer_emit_reloc64(struct brw_context *brw,
410 drm_intel_bo *buffer,
411 uint32_t read_domains, uint32_t write_domain,
412 uint32_t delta)
413 {
414 int ret = drm_intel_bo_emit_reloc(brw->batch.bo, 4*brw->batch.used,
415 buffer, delta,
416 read_domains, write_domain);
417 assert(ret == 0);
418 (void) ret;
419
420 /* Using the old buffer offset, write in what the right data would be, in
421 * case the buffer doesn't move and we can short-circuit the relocation
422 * processing in the kernel
423 */
424 uint64_t offset = buffer->offset64 + delta;
425 intel_batchbuffer_emit_dword(brw, offset);
426 intel_batchbuffer_emit_dword(brw, offset >> 32);
427
428 return true;
429 }
430
431
432 void
433 intel_batchbuffer_data(struct brw_context *brw,
434 const void *data, GLuint bytes, enum brw_gpu_ring ring)
435 {
436 assert((bytes & 3) == 0);
437 intel_batchbuffer_require_space(brw, bytes, ring);
438 memcpy(brw->batch.map + brw->batch.used, data, bytes);
439 brw->batch.used += bytes >> 2;
440 }
441
442 /**
443 * According to the latest documentation, any PIPE_CONTROL with the
444 * "Command Streamer Stall" bit set must also have another bit set,
445 * with five different options:
446 *
447 * - Render Target Cache Flush
448 * - Depth Cache Flush
449 * - Stall at Pixel Scoreboard
450 * - Post-Sync Operation
451 * - Depth Stall
452 *
453 * I chose "Stall at Pixel Scoreboard" since we've used it effectively
454 * in the past, but the choice is fairly arbitrary.
455 */
456 static void
457 gen8_add_cs_stall_workaround_bits(uint32_t *flags)
458 {
459 uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
460 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
461 PIPE_CONTROL_WRITE_IMMEDIATE |
462 PIPE_CONTROL_WRITE_DEPTH_COUNT |
463 PIPE_CONTROL_WRITE_TIMESTAMP |
464 PIPE_CONTROL_STALL_AT_SCOREBOARD |
465 PIPE_CONTROL_DEPTH_STALL;
466
467 /* If we're doing a CS stall, and don't already have one of the
468 * workaround bits set, add "Stall at Pixel Scoreboard."
469 */
470 if ((*flags & PIPE_CONTROL_CS_STALL) != 0 && (*flags & wa_bits) == 0)
471 *flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
472 }
473
474 /* Implement the WaCsStallAtEveryFourthPipecontrol workaround on IVB, BYT:
475 *
476 * "Every 4th PIPE_CONTROL command, not counting the PIPE_CONTROL with
477 * only read-cache-invalidate bit(s) set, must have a CS_STALL bit set."
478 *
479 * Note that the kernel does CS stalls between batches, so we only need
480 * to count them within a batch.
481 */
482 static uint32_t
483 gen7_cs_stall_every_four_pipe_controls(struct brw_context *brw, uint32_t flags)
484 {
485 if (brw->gen == 7 && !brw->is_haswell) {
486 if (flags & PIPE_CONTROL_CS_STALL) {
487 /* If we're doing a CS stall, reset the counter and carry on. */
488 brw->batch.pipe_controls_since_last_cs_stall = 0;
489 return 0;
490 }
491
492 /* If this is the fourth pipe control without a CS stall, do one now. */
493 if (++brw->batch.pipe_controls_since_last_cs_stall == 4) {
494 brw->batch.pipe_controls_since_last_cs_stall = 0;
495 return PIPE_CONTROL_CS_STALL;
496 }
497 }
498 return 0;
499 }
500
501 /**
502 * Emit a PIPE_CONTROL with various flushing flags.
503 *
504 * The caller is responsible for deciding what flags are appropriate for the
505 * given generation.
506 */
507 void
508 brw_emit_pipe_control_flush(struct brw_context *brw, uint32_t flags)
509 {
510 if (brw->gen >= 8) {
511 gen8_add_cs_stall_workaround_bits(&flags);
512
513 BEGIN_BATCH(6);
514 OUT_BATCH(_3DSTATE_PIPE_CONTROL | (6 - 2));
515 OUT_BATCH(flags);
516 OUT_BATCH(0);
517 OUT_BATCH(0);
518 OUT_BATCH(0);
519 OUT_BATCH(0);
520 ADVANCE_BATCH();
521 } else if (brw->gen >= 6) {
522 flags |= gen7_cs_stall_every_four_pipe_controls(brw, flags);
523
524 BEGIN_BATCH(5);
525 OUT_BATCH(_3DSTATE_PIPE_CONTROL | (5 - 2));
526 OUT_BATCH(flags);
527 OUT_BATCH(0);
528 OUT_BATCH(0);
529 OUT_BATCH(0);
530 ADVANCE_BATCH();
531 } else {
532 BEGIN_BATCH(4);
533 OUT_BATCH(_3DSTATE_PIPE_CONTROL | flags | (4 - 2));
534 OUT_BATCH(0);
535 OUT_BATCH(0);
536 OUT_BATCH(0);
537 ADVANCE_BATCH();
538 }
539 }
540
541 /**
542 * Emit a PIPE_CONTROL that writes to a buffer object.
543 *
544 * \p flags should contain one of the following items:
545 * - PIPE_CONTROL_WRITE_IMMEDIATE
546 * - PIPE_CONTROL_WRITE_TIMESTAMP
547 * - PIPE_CONTROL_WRITE_DEPTH_COUNT
548 */
549 void
550 brw_emit_pipe_control_write(struct brw_context *brw, uint32_t flags,
551 drm_intel_bo *bo, uint32_t offset,
552 uint32_t imm_lower, uint32_t imm_upper)
553 {
554 if (brw->gen >= 8) {
555 gen8_add_cs_stall_workaround_bits(&flags);
556
557 BEGIN_BATCH(6);
558 OUT_BATCH(_3DSTATE_PIPE_CONTROL | (6 - 2));
559 OUT_BATCH(flags);
560 OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
561 offset);
562 OUT_BATCH(imm_lower);
563 OUT_BATCH(imm_upper);
564 ADVANCE_BATCH();
565 } else if (brw->gen >= 6) {
566 flags |= gen7_cs_stall_every_four_pipe_controls(brw, flags);
567
568 /* PPGTT/GGTT is selected by DW2 bit 2 on Sandybridge, but DW1 bit 24
569 * on later platforms. We always use PPGTT on Gen7+.
570 */
571 unsigned gen6_gtt = brw->gen == 6 ? PIPE_CONTROL_GLOBAL_GTT_WRITE : 0;
572
573 BEGIN_BATCH(5);
574 OUT_BATCH(_3DSTATE_PIPE_CONTROL | (5 - 2));
575 OUT_BATCH(flags);
576 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
577 gen6_gtt | offset);
578 OUT_BATCH(imm_lower);
579 OUT_BATCH(imm_upper);
580 ADVANCE_BATCH();
581 } else {
582 BEGIN_BATCH(4);
583 OUT_BATCH(_3DSTATE_PIPE_CONTROL | flags | (4 - 2));
584 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
585 PIPE_CONTROL_GLOBAL_GTT_WRITE | offset);
586 OUT_BATCH(imm_lower);
587 OUT_BATCH(imm_upper);
588 ADVANCE_BATCH();
589 }
590 }
591
592 /**
593 * Restriction [DevSNB, DevIVB]:
594 *
595 * Prior to changing Depth/Stencil Buffer state (i.e. any combination of
596 * 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, 3DSTATE_STENCIL_BUFFER,
597 * 3DSTATE_HIER_DEPTH_BUFFER) SW must first issue a pipelined depth stall
598 * (PIPE_CONTROL with Depth Stall bit set), followed by a pipelined depth
599 * cache flush (PIPE_CONTROL with Depth Flush Bit set), followed by
600 * another pipelined depth stall (PIPE_CONTROL with Depth Stall bit set),
601 * unless SW can otherwise guarantee that the pipeline from WM onwards is
602 * already flushed (e.g., via a preceding MI_FLUSH).
603 */
604 void
605 intel_emit_depth_stall_flushes(struct brw_context *brw)
606 {
607 assert(brw->gen >= 6 && brw->gen <= 9);
608
609 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DEPTH_STALL);
610 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DEPTH_CACHE_FLUSH);
611 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DEPTH_STALL);
612 }
613
614 /**
615 * From the Ivybridge PRM, Volume 2 Part 1, Section 3.2 (VS Stage Input):
616 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
617 * stall needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
618 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
619 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL needs
620 * to be sent before any combination of VS associated 3DSTATE."
621 */
622 void
623 gen7_emit_vs_workaround_flush(struct brw_context *brw)
624 {
625 assert(brw->gen == 7);
626 brw_emit_pipe_control_write(brw,
627 PIPE_CONTROL_WRITE_IMMEDIATE
628 | PIPE_CONTROL_DEPTH_STALL,
629 brw->batch.workaround_bo, 0,
630 0, 0);
631 }
632
633
634 /**
635 * Emit a PIPE_CONTROL command for gen7 with the CS Stall bit set.
636 */
637 void
638 gen7_emit_cs_stall_flush(struct brw_context *brw)
639 {
640 brw_emit_pipe_control_write(brw,
641 PIPE_CONTROL_CS_STALL
642 | PIPE_CONTROL_WRITE_IMMEDIATE,
643 brw->batch.workaround_bo, 0,
644 0, 0);
645 }
646
647
648 /**
649 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
650 * implementing two workarounds on gen6. From section 1.4.7.1
651 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
652 *
653 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
654 * produced by non-pipelined state commands), software needs to first
655 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
656 * 0.
657 *
658 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
659 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
660 *
661 * And the workaround for these two requires this workaround first:
662 *
663 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
664 * BEFORE the pipe-control with a post-sync op and no write-cache
665 * flushes.
666 *
667 * And this last workaround is tricky because of the requirements on
668 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
669 * volume 2 part 1:
670 *
671 * "1 of the following must also be set:
672 * - Render Target Cache Flush Enable ([12] of DW1)
673 * - Depth Cache Flush Enable ([0] of DW1)
674 * - Stall at Pixel Scoreboard ([1] of DW1)
675 * - Depth Stall ([13] of DW1)
676 * - Post-Sync Operation ([13] of DW1)
677 * - Notify Enable ([8] of DW1)"
678 *
679 * The cache flushes require the workaround flush that triggered this
680 * one, so we can't use it. Depth stall would trigger the same.
681 * Post-sync nonzero is what triggered this second workaround, so we
682 * can't use that one either. Notify enable is IRQs, which aren't
683 * really our business. That leaves only stall at scoreboard.
684 */
685 void
686 intel_emit_post_sync_nonzero_flush(struct brw_context *brw)
687 {
688 brw_emit_pipe_control_flush(brw,
689 PIPE_CONTROL_CS_STALL |
690 PIPE_CONTROL_STALL_AT_SCOREBOARD);
691
692 brw_emit_pipe_control_write(brw, PIPE_CONTROL_WRITE_IMMEDIATE,
693 brw->batch.workaround_bo, 0, 0, 0);
694 }
695
696 /* Emit a pipelined flush to either flush render and texture cache for
697 * reading from a FBO-drawn texture, or flush so that frontbuffer
698 * render appears on the screen in DRI1.
699 *
700 * This is also used for the always_flush_cache driconf debug option.
701 */
702 void
703 intel_batchbuffer_emit_mi_flush(struct brw_context *brw)
704 {
705 if (brw->batch.ring == BLT_RING && brw->gen >= 6) {
706 BEGIN_BATCH_BLT(4);
707 OUT_BATCH(MI_FLUSH_DW);
708 OUT_BATCH(0);
709 OUT_BATCH(0);
710 OUT_BATCH(0);
711 ADVANCE_BATCH();
712 } else {
713 int flags = PIPE_CONTROL_NO_WRITE | PIPE_CONTROL_RENDER_TARGET_FLUSH;
714 if (brw->gen >= 6) {
715 if (brw->gen == 9) {
716 /* Hardware workaround: SKL
717 *
718 * Emit Pipe Control with all bits set to zero before emitting
719 * a Pipe Control with VF Cache Invalidate set.
720 */
721 brw_emit_pipe_control_flush(brw, 0);
722 }
723
724 flags |= PIPE_CONTROL_INSTRUCTION_INVALIDATE |
725 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
726 PIPE_CONTROL_VF_CACHE_INVALIDATE |
727 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
728 PIPE_CONTROL_CS_STALL;
729
730 if (brw->gen == 6) {
731 /* Hardware workaround: SNB B-Spec says:
732 *
733 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache
734 * Flush Enable =1, a PIPE_CONTROL with any non-zero
735 * post-sync-op is required.
736 */
737 intel_emit_post_sync_nonzero_flush(brw);
738 }
739 }
740 brw_emit_pipe_control_flush(brw, flags);
741 }
742
743 brw_render_cache_set_clear(brw);
744 }
745
746 static void
747 load_sized_register_mem(struct brw_context *brw,
748 uint32_t reg,
749 drm_intel_bo *bo,
750 uint32_t read_domains, uint32_t write_domain,
751 uint32_t offset,
752 int size)
753 {
754 int i;
755
756 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
757 assert(brw->gen >= 7);
758
759 if (brw->gen >= 8) {
760 BEGIN_BATCH(4 * size);
761 for (i = 0; i < size; i++) {
762 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
763 OUT_BATCH(reg + i * 4);
764 OUT_RELOC64(bo, read_domains, write_domain, offset + i * 4);
765 }
766 ADVANCE_BATCH();
767 } else {
768 BEGIN_BATCH(3 * size);
769 for (i = 0; i < size; i++) {
770 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
771 OUT_BATCH(reg + i * 4);
772 OUT_RELOC(bo, read_domains, write_domain, offset + i * 4);
773 }
774 ADVANCE_BATCH();
775 }
776 }
777
778 void
779 brw_load_register_mem(struct brw_context *brw,
780 uint32_t reg,
781 drm_intel_bo *bo,
782 uint32_t read_domains, uint32_t write_domain,
783 uint32_t offset)
784 {
785 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 1);
786 }
787
788 void
789 brw_load_register_mem64(struct brw_context *brw,
790 uint32_t reg,
791 drm_intel_bo *bo,
792 uint32_t read_domains, uint32_t write_domain,
793 uint32_t offset)
794 {
795 load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 2);
796 }