i965: Don't grow batch/state buffer on every emit after an overflow.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35
36 #include "util/hash_table.h"
37
38 #include <xf86drm.h>
39 #include <i915_drm.h>
40
41 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
42
43 /**
44 * Target sizes of the batch and state buffers. We create the initial
45 * buffers at these sizes, and flush when they're nearly full. If we
46 * underestimate how close we are to the end, and suddenly need more space
47 * in the middle of a draw, we can grow the buffers, and finish the draw.
48 * At that point, we'll be over our target size, so the next operation
49 * should flush. Each time we flush the batch, we recreate both buffers
50 * at the original target size, so it doesn't grow without bound.
51 */
52 #define BATCH_SZ (20 * 1024)
53 #define STATE_SZ (16 * 1024)
54
55 static void
56 intel_batchbuffer_reset(struct brw_context *brw);
57
58 static bool
59 uint_key_compare(const void *a, const void *b)
60 {
61 return a == b;
62 }
63
64 static uint32_t
65 uint_key_hash(const void *key)
66 {
67 return (uintptr_t) key;
68 }
69
70 static void
71 init_reloc_list(struct brw_reloc_list *rlist, int count)
72 {
73 rlist->reloc_count = 0;
74 rlist->reloc_array_size = count;
75 rlist->relocs = malloc(rlist->reloc_array_size *
76 sizeof(struct drm_i915_gem_relocation_entry));
77 }
78
79 void
80 intel_batchbuffer_init(struct brw_context *brw)
81 {
82 struct intel_screen *screen = brw->screen;
83 struct intel_batchbuffer *batch = &brw->batch;
84 const struct gen_device_info *devinfo = &screen->devinfo;
85
86 if (!devinfo->has_llc) {
87 batch->batch_cpu_map = malloc(BATCH_SZ);
88 batch->map = batch->batch_cpu_map;
89 batch->map_next = batch->map;
90 batch->state_cpu_map = malloc(STATE_SZ);
91 batch->state_map = batch->state_cpu_map;
92 }
93
94 init_reloc_list(&batch->batch_relocs, 250);
95 init_reloc_list(&batch->state_relocs, 250);
96
97 batch->exec_count = 0;
98 batch->exec_array_size = 100;
99 batch->exec_bos =
100 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
101 batch->validation_list =
102 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
103
104 if (INTEL_DEBUG & DEBUG_BATCH) {
105 batch->state_batch_sizes =
106 _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
107 }
108
109 batch->use_batch_first =
110 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
111
112 /* PIPE_CONTROL needs a w/a but only on gen6 */
113 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
114 if (devinfo->gen == 6)
115 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
116
117 intel_batchbuffer_reset(brw);
118 }
119
120 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
121
122 static unsigned
123 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
124 {
125 unsigned index = READ_ONCE(bo->index);
126
127 if (index < batch->exec_count && batch->exec_bos[index] == bo)
128 return index;
129
130 /* May have been shared between multiple active batches */
131 for (index = 0; index < batch->exec_count; index++) {
132 if (batch->exec_bos[index] == bo)
133 return index;
134 }
135
136 brw_bo_reference(bo);
137
138 if (batch->exec_count == batch->exec_array_size) {
139 batch->exec_array_size *= 2;
140 batch->exec_bos =
141 realloc(batch->exec_bos,
142 batch->exec_array_size * sizeof(batch->exec_bos[0]));
143 batch->validation_list =
144 realloc(batch->validation_list,
145 batch->exec_array_size * sizeof(batch->validation_list[0]));
146 }
147
148 batch->validation_list[batch->exec_count] =
149 (struct drm_i915_gem_exec_object2) {
150 .handle = bo->gem_handle,
151 .alignment = bo->align,
152 .offset = bo->gtt_offset,
153 .flags = bo->kflags,
154 };
155
156 bo->index = batch->exec_count;
157 batch->exec_bos[batch->exec_count] = bo;
158 batch->aperture_space += bo->size;
159
160 return batch->exec_count++;
161 }
162
163 static void
164 intel_batchbuffer_reset(struct brw_context *brw)
165 {
166 struct intel_screen *screen = brw->screen;
167 struct intel_batchbuffer *batch = &brw->batch;
168 struct brw_bufmgr *bufmgr = screen->bufmgr;
169
170 if (batch->last_bo != NULL) {
171 brw_bo_unreference(batch->last_bo);
172 batch->last_bo = NULL;
173 }
174 batch->last_bo = batch->bo;
175
176 batch->bo = brw_bo_alloc(bufmgr, "batchbuffer", BATCH_SZ, 4096);
177 if (!batch->batch_cpu_map) {
178 batch->map = brw_bo_map(brw, batch->bo, MAP_READ | MAP_WRITE);
179 }
180 batch->map_next = batch->map;
181
182 batch->state_bo = brw_bo_alloc(bufmgr, "statebuffer", STATE_SZ, 4096);
183 batch->state_bo->kflags =
184 can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
185 if (!batch->state_cpu_map) {
186 batch->state_map =
187 brw_bo_map(brw, batch->state_bo, MAP_READ | MAP_WRITE);
188 }
189
190 /* Avoid making 0 a valid state offset - otherwise the decoder will try
191 * and decode data when we use offset 0 as a null pointer.
192 */
193 batch->state_used = 1;
194
195 add_exec_bo(batch, batch->bo);
196 assert(batch->bo->index == 0);
197
198 batch->needs_sol_reset = false;
199 batch->state_base_address_emitted = false;
200
201 /* We don't know what ring the new batch will be sent to until we see the
202 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
203 */
204 batch->ring = UNKNOWN_RING;
205
206 if (batch->state_batch_sizes)
207 _mesa_hash_table_clear(batch->state_batch_sizes, NULL);
208 }
209
210 static void
211 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
212 {
213 intel_batchbuffer_reset(brw);
214 brw_cache_sets_clear(brw);
215 }
216
217 void
218 intel_batchbuffer_save_state(struct brw_context *brw)
219 {
220 brw->batch.saved.map_next = brw->batch.map_next;
221 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
222 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
223 brw->batch.saved.exec_count = brw->batch.exec_count;
224 }
225
226 void
227 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
228 {
229 for (int i = brw->batch.saved.exec_count;
230 i < brw->batch.exec_count; i++) {
231 brw_bo_unreference(brw->batch.exec_bos[i]);
232 }
233 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
234 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
235 brw->batch.exec_count = brw->batch.saved.exec_count;
236
237 brw->batch.map_next = brw->batch.saved.map_next;
238 if (USED_BATCH(brw->batch) == 0)
239 brw->batch.ring = UNKNOWN_RING;
240 }
241
242 void
243 intel_batchbuffer_free(struct intel_batchbuffer *batch)
244 {
245 free(batch->batch_cpu_map);
246 free(batch->state_cpu_map);
247
248 for (int i = 0; i < batch->exec_count; i++) {
249 brw_bo_unreference(batch->exec_bos[i]);
250 }
251 free(batch->batch_relocs.relocs);
252 free(batch->state_relocs.relocs);
253 free(batch->exec_bos);
254 free(batch->validation_list);
255
256 brw_bo_unreference(batch->last_bo);
257 brw_bo_unreference(batch->bo);
258 brw_bo_unreference(batch->state_bo);
259 if (batch->state_batch_sizes)
260 _mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
261 }
262
263 static void
264 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
265 uint32_t old_handle, uint32_t new_handle)
266 {
267 for (int i = 0; i < rlist->reloc_count; i++) {
268 if (rlist->relocs[i].target_handle == old_handle)
269 rlist->relocs[i].target_handle = new_handle;
270 }
271 }
272
273 /**
274 * Grow either the batch or state buffer to a new larger size.
275 *
276 * We can't actually grow buffers, so we allocate a new one, copy over
277 * the existing contents, and update our lists to refer to the new one.
278 *
279 * Note that this is only temporary - each new batch recreates the buffers
280 * at their original target size (BATCH_SZ or STATE_SZ).
281 */
282 static void
283 grow_buffer(struct brw_context *brw,
284 struct brw_bo **bo_ptr,
285 uint32_t **map_ptr,
286 uint32_t **cpu_map_ptr,
287 unsigned existing_bytes,
288 unsigned new_size)
289 {
290 struct intel_batchbuffer *batch = &brw->batch;
291 struct brw_bufmgr *bufmgr = brw->bufmgr;
292
293 uint32_t *old_map = *map_ptr;
294 struct brw_bo *old_bo = *bo_ptr;
295
296 struct brw_bo *new_bo =
297 brw_bo_alloc(bufmgr, old_bo->name, new_size, old_bo->align);
298 uint32_t *new_map;
299
300 perf_debug("Growing %s - ran out of space\n", old_bo->name);
301
302 /* Copy existing data to the new larger buffer */
303 if (*cpu_map_ptr) {
304 *cpu_map_ptr = new_map = realloc(*cpu_map_ptr, new_size);
305 } else {
306 new_map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
307 memcpy(new_map, old_map, existing_bytes);
308 }
309
310 /* Try to put the new BO at the same GTT offset as the old BO (which
311 * we're throwing away, so it doesn't need to be there).
312 *
313 * This guarantees that our relocations continue to work: values we've
314 * already written into the buffer, values we're going to write into the
315 * buffer, and the validation/relocation lists all will match.
316 *
317 * Also preserve kflags for EXEC_OBJECT_CAPTURE.
318 */
319 new_bo->gtt_offset = old_bo->gtt_offset;
320 new_bo->index = old_bo->index;
321 new_bo->kflags = old_bo->kflags;
322
323 /* Batch/state buffers are per-context, and if we've run out of space,
324 * we must have actually used them before, so...they will be in the list.
325 */
326 assert(old_bo->index < batch->exec_count);
327 assert(batch->exec_bos[old_bo->index] == old_bo);
328
329 /* Update the validation list to use the new BO. */
330 batch->exec_bos[old_bo->index] = new_bo;
331 batch->validation_list[old_bo->index].handle = new_bo->gem_handle;
332 brw_bo_reference(new_bo);
333 brw_bo_unreference(old_bo);
334
335 if (!batch->use_batch_first) {
336 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
337 * update the relocation list entries to point at the new BO as well.
338 * (With newer kernels, the "handle" is an offset into the validation
339 * list, which remains unchanged, so we can skip this.)
340 */
341 replace_bo_in_reloc_list(&batch->batch_relocs,
342 old_bo->gem_handle, new_bo->gem_handle);
343 replace_bo_in_reloc_list(&batch->state_relocs,
344 old_bo->gem_handle, new_bo->gem_handle);
345 }
346
347 /* Drop the *bo_ptr reference. This should free the old BO. */
348 brw_bo_unreference(old_bo);
349
350 *bo_ptr = new_bo;
351 *map_ptr = new_map;
352 }
353
354 void
355 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
356 enum brw_gpu_ring ring)
357 {
358 const struct gen_device_info *devinfo = &brw->screen->devinfo;
359 struct intel_batchbuffer *batch = &brw->batch;
360
361 /* If we're switching rings, implicitly flush the batch. */
362 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
363 devinfo->gen >= 6) {
364 intel_batchbuffer_flush(brw);
365 }
366
367 const unsigned batch_used = USED_BATCH(*batch) * 4;
368 if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
369 intel_batchbuffer_flush(brw);
370 } else if (batch_used + sz >= batch->bo->size) {
371 const unsigned new_size =
372 MIN2(batch->bo->size + batch->bo->size / 2, MAX_BATCH_SIZE);
373 grow_buffer(brw, &batch->bo, &batch->map, &batch->batch_cpu_map,
374 batch_used, new_size);
375 batch->map_next = (void *) batch->map + batch_used;
376 assert(batch_used + sz < batch->bo->size);
377 }
378
379 /* The intel_batchbuffer_flush() calls above might have changed
380 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
381 */
382 brw->batch.ring = ring;
383 }
384
385 #ifdef DEBUG
386 #define CSI "\e["
387 #define BLUE_HEADER CSI "0;44m"
388 #define NORMAL CSI "0m"
389
390
391 static void
392 decode_struct(struct brw_context *brw, struct gen_spec *spec,
393 const char *struct_name, uint32_t *data,
394 uint32_t gtt_offset, uint32_t offset, bool color)
395 {
396 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
397 if (!group)
398 return;
399
400 fprintf(stderr, "%s\n", struct_name);
401 gen_print_group(stderr, group, gtt_offset + offset,
402 &data[offset / 4], color);
403 }
404
405 static void
406 decode_structs(struct brw_context *brw, struct gen_spec *spec,
407 const char *struct_name,
408 uint32_t *data, uint32_t gtt_offset, uint32_t offset,
409 int struct_size, bool color)
410 {
411 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
412 if (!group)
413 return;
414
415 int entries = brw_state_batch_size(brw, offset) / struct_size;
416 for (int i = 0; i < entries; i++) {
417 fprintf(stderr, "%s %d\n", struct_name, i);
418 gen_print_group(stderr, group, gtt_offset + offset,
419 &data[(offset + i * struct_size) / 4], color);
420 }
421 }
422
423 static void
424 do_batch_dump(struct brw_context *brw)
425 {
426 const struct gen_device_info *devinfo = &brw->screen->devinfo;
427 struct intel_batchbuffer *batch = &brw->batch;
428 struct gen_spec *spec = gen_spec_load(&brw->screen->devinfo);
429
430 if (batch->ring != RENDER_RING)
431 return;
432
433 uint32_t *batch_data = brw_bo_map(brw, batch->bo, MAP_READ);
434 uint32_t *state = brw_bo_map(brw, batch->state_bo, MAP_READ);
435 if (batch_data == NULL || state == NULL) {
436 fprintf(stderr, "WARNING: failed to map batchbuffer/statebuffer\n");
437 return;
438 }
439
440 uint32_t *end = batch_data + USED_BATCH(*batch);
441 uint32_t batch_gtt_offset = batch->bo->gtt_offset;
442 uint32_t state_gtt_offset = batch->state_bo->gtt_offset;
443 int length;
444
445 bool color = INTEL_DEBUG & DEBUG_COLOR;
446 const char *header_color = color ? BLUE_HEADER : "";
447 const char *reset_color = color ? NORMAL : "";
448
449 for (uint32_t *p = batch_data; p < end; p += length) {
450 struct gen_group *inst = gen_spec_find_instruction(spec, p);
451 length = gen_group_get_length(inst, p);
452 assert(inst == NULL || length > 0);
453 length = MAX2(1, length);
454 if (inst == NULL) {
455 fprintf(stderr, "unknown instruction %08x\n", p[0]);
456 continue;
457 }
458
459 uint64_t offset = batch_gtt_offset + 4 * (p - batch_data);
460
461 fprintf(stderr, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", header_color,
462 offset, p[0], gen_group_get_name(inst), reset_color);
463
464 gen_print_group(stderr, inst, offset, p, color);
465
466 switch (gen_group_get_opcode(inst) >> 16) {
467 case _3DSTATE_PIPELINED_POINTERS:
468 /* Note: these Gen4-5 pointers are full relocations rather than
469 * offsets from the start of the statebuffer. So we need to subtract
470 * gtt_offset (the start of the statebuffer) to obtain an offset we
471 * can add to the map and get at the data.
472 */
473 decode_struct(brw, spec, "VS_STATE", state, state_gtt_offset,
474 (p[1] & ~0x1fu) - state_gtt_offset, color);
475 if (p[2] & 1) {
476 decode_struct(brw, spec, "GS_STATE", state, state_gtt_offset,
477 (p[2] & ~0x1fu) - state_gtt_offset, color);
478 }
479 if (p[3] & 1) {
480 decode_struct(brw, spec, "CLIP_STATE", state, state_gtt_offset,
481 (p[3] & ~0x1fu) - state_gtt_offset, color);
482 }
483 decode_struct(brw, spec, "SF_STATE", state, state_gtt_offset,
484 (p[4] & ~0x1fu) - state_gtt_offset, color);
485 decode_struct(brw, spec, "WM_STATE", state, state_gtt_offset,
486 (p[5] & ~0x1fu) - state_gtt_offset, color);
487 decode_struct(brw, spec, "COLOR_CALC_STATE", state, state_gtt_offset,
488 (p[6] & ~0x3fu) - state_gtt_offset, color);
489 break;
490 case _3DSTATE_BINDING_TABLE_POINTERS_VS:
491 case _3DSTATE_BINDING_TABLE_POINTERS_HS:
492 case _3DSTATE_BINDING_TABLE_POINTERS_DS:
493 case _3DSTATE_BINDING_TABLE_POINTERS_GS:
494 case _3DSTATE_BINDING_TABLE_POINTERS_PS: {
495 struct gen_group *group =
496 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
497 if (!group)
498 break;
499
500 uint32_t bt_offset = p[1] & ~0x1fu;
501 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
502 uint32_t *bt_pointers = &state[bt_offset / 4];
503 for (int i = 0; i < bt_entries; i++) {
504 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
505 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
506 &state[bt_pointers[i] / 4], color);
507 }
508 break;
509 }
510 case _3DSTATE_SAMPLER_STATE_POINTERS_VS:
511 case _3DSTATE_SAMPLER_STATE_POINTERS_HS:
512 case _3DSTATE_SAMPLER_STATE_POINTERS_DS:
513 case _3DSTATE_SAMPLER_STATE_POINTERS_GS:
514 case _3DSTATE_SAMPLER_STATE_POINTERS_PS:
515 decode_structs(brw, spec, "SAMPLER_STATE", state,
516 state_gtt_offset, p[1] & ~0x1fu, 4 * 4, color);
517 break;
518 case _3DSTATE_VIEWPORT_STATE_POINTERS:
519 decode_structs(brw, spec, "CLIP_VIEWPORT", state,
520 state_gtt_offset, p[1] & ~0x3fu, 4 * 4, color);
521 decode_structs(brw, spec, "SF_VIEWPORT", state,
522 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
523 decode_structs(brw, spec, "CC_VIEWPORT", state,
524 state_gtt_offset, p[3] & ~0x3fu, 2 * 4, color);
525 break;
526 case _3DSTATE_VIEWPORT_STATE_POINTERS_CC:
527 decode_structs(brw, spec, "CC_VIEWPORT", state,
528 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
529 break;
530 case _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL:
531 decode_structs(brw, spec, "SF_CLIP_VIEWPORT", state,
532 state_gtt_offset, p[1] & ~0x3fu, 16 * 4, color);
533 break;
534 case _3DSTATE_SCISSOR_STATE_POINTERS:
535 decode_structs(brw, spec, "SCISSOR_RECT", state,
536 state_gtt_offset, p[1] & ~0x1fu, 2 * 4, color);
537 break;
538 case _3DSTATE_BLEND_STATE_POINTERS:
539 /* TODO: handle Gen8+ extra dword at the beginning */
540 decode_structs(brw, spec, "BLEND_STATE", state,
541 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
542 break;
543 case _3DSTATE_CC_STATE_POINTERS:
544 if (devinfo->gen >= 7) {
545 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
546 state_gtt_offset, p[1] & ~0x3fu, color);
547 } else if (devinfo->gen == 6) {
548 decode_structs(brw, spec, "BLEND_STATE", state,
549 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
550 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
551 state_gtt_offset, p[2] & ~0x3fu, color);
552 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
553 state_gtt_offset, p[3] & ~0x3fu, color);
554 }
555 break;
556 case _3DSTATE_DEPTH_STENCIL_STATE_POINTERS:
557 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
558 state_gtt_offset, p[1] & ~0x3fu, color);
559 break;
560 case MEDIA_INTERFACE_DESCRIPTOR_LOAD: {
561 struct gen_group *group =
562 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
563 if (!group)
564 break;
565
566 uint32_t idd_offset = p[3] & ~0x1fu;
567 decode_struct(brw, spec, "INTERFACE_DESCRIPTOR_DATA", state,
568 state_gtt_offset, idd_offset, color);
569
570 uint32_t ss_offset = state[idd_offset / 4 + 3] & ~0x1fu;
571 decode_structs(brw, spec, "SAMPLER_STATE", state,
572 state_gtt_offset, ss_offset, 4 * 4, color);
573
574 uint32_t bt_offset = state[idd_offset / 4 + 4] & ~0x1fu;
575 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
576 uint32_t *bt_pointers = &state[bt_offset / 4];
577 for (int i = 0; i < bt_entries; i++) {
578 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
579 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
580 &state[bt_pointers[i] / 4], color);
581 }
582 break;
583 }
584 }
585 }
586
587 brw_bo_unmap(batch->bo);
588 brw_bo_unmap(batch->state_bo);
589 }
590 #else
591 static void do_batch_dump(struct brw_context *brw) { }
592 #endif
593
594 /**
595 * Called when starting a new batch buffer.
596 */
597 static void
598 brw_new_batch(struct brw_context *brw)
599 {
600 /* Unreference any BOs held by the previous batch, and reset counts. */
601 for (int i = 0; i < brw->batch.exec_count; i++) {
602 brw_bo_unreference(brw->batch.exec_bos[i]);
603 brw->batch.exec_bos[i] = NULL;
604 }
605 brw->batch.batch_relocs.reloc_count = 0;
606 brw->batch.state_relocs.reloc_count = 0;
607 brw->batch.exec_count = 0;
608 brw->batch.aperture_space = 0;
609
610 brw_bo_unreference(brw->batch.state_bo);
611
612 /* Create a new batchbuffer and reset the associated state: */
613 intel_batchbuffer_reset_and_clear_render_cache(brw);
614
615 /* If the kernel supports hardware contexts, then most hardware state is
616 * preserved between batches; we only need to re-emit state that is required
617 * to be in every batch. Otherwise we need to re-emit all the state that
618 * would otherwise be stored in the context (which for all intents and
619 * purposes means everything).
620 */
621 if (brw->hw_ctx == 0) {
622 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
623 brw_upload_invariant_state(brw);
624 }
625
626 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
627
628 brw->ib.index_size = -1;
629
630 /* We need to periodically reap the shader time results, because rollover
631 * happens every few seconds. We also want to see results every once in a
632 * while, because many programs won't cleanly destroy our context, so the
633 * end-of-run printout may not happen.
634 */
635 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
636 brw_collect_and_report_shader_time(brw);
637 }
638
639 /**
640 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
641 * sending it off.
642 *
643 * This function can emit state (say, to preserve registers that aren't saved
644 * between batches).
645 */
646 static void
647 brw_finish_batch(struct brw_context *brw)
648 {
649 const struct gen_device_info *devinfo = &brw->screen->devinfo;
650
651 brw->batch.no_wrap = true;
652
653 /* Capture the closing pipeline statistics register values necessary to
654 * support query objects (in the non-hardware context world).
655 */
656 brw_emit_query_end(brw);
657
658 if (brw->batch.ring == RENDER_RING) {
659 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
660 * assume that the L3 cache is configured according to the hardware
661 * defaults.
662 */
663 if (devinfo->gen >= 7)
664 gen7_restore_default_l3_config(brw);
665
666 if (devinfo->is_haswell) {
667 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
668 * 3DSTATE_CC_STATE_POINTERS > "Note":
669 *
670 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
671 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
672 *
673 * From the example in the docs, it seems to expect a regular pipe control
674 * flush here as well. We may have done it already, but meh.
675 *
676 * See also WaAvoidRCZCounterRollover.
677 */
678 brw_emit_mi_flush(brw);
679 BEGIN_BATCH(2);
680 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
681 OUT_BATCH(brw->cc.state_offset | 1);
682 ADVANCE_BATCH();
683 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
684 PIPE_CONTROL_CS_STALL);
685 }
686 }
687
688 /* Mark the end of the buffer. */
689 intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
690 if (USED_BATCH(brw->batch) & 1) {
691 /* Round batchbuffer usage to 2 DWORDs. */
692 intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
693 }
694
695 brw->batch.no_wrap = false;
696 }
697
698 static void
699 throttle(struct brw_context *brw)
700 {
701 /* Wait for the swapbuffers before the one we just emitted, so we
702 * don't get too many swaps outstanding for apps that are GPU-heavy
703 * but not CPU-heavy.
704 *
705 * We're using intelDRI2Flush (called from the loader before
706 * swapbuffer) and glFlush (for front buffer rendering) as the
707 * indicator that a frame is done and then throttle when we get
708 * here as we prepare to render the next frame. At this point for
709 * round trips for swap/copy and getting new buffers are done and
710 * we'll spend less time waiting on the GPU.
711 *
712 * Unfortunately, we don't have a handle to the batch containing
713 * the swap, and getting our hands on that doesn't seem worth it,
714 * so we just use the first batch we emitted after the last swap.
715 */
716 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
717 if (brw->throttle_batch[1]) {
718 if (!brw->disable_throttling) {
719 /* Pass NULL rather than brw so we avoid perf_debug warnings;
720 * stalling is common and expected here...
721 */
722 brw_bo_wait_rendering(brw->throttle_batch[1]);
723 }
724 brw_bo_unreference(brw->throttle_batch[1]);
725 }
726 brw->throttle_batch[1] = brw->throttle_batch[0];
727 brw->throttle_batch[0] = NULL;
728 brw->need_swap_throttle = false;
729 /* Throttling here is more precise than the throttle ioctl, so skip it */
730 brw->need_flush_throttle = false;
731 }
732
733 if (brw->need_flush_throttle) {
734 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
735 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
736 brw->need_flush_throttle = false;
737 }
738 }
739
740 static int
741 execbuffer(int fd,
742 struct intel_batchbuffer *batch,
743 uint32_t ctx_id,
744 int used,
745 int in_fence,
746 int *out_fence,
747 int flags)
748 {
749 struct drm_i915_gem_execbuffer2 execbuf = {
750 .buffers_ptr = (uintptr_t) batch->validation_list,
751 .buffer_count = batch->exec_count,
752 .batch_start_offset = 0,
753 .batch_len = used,
754 .flags = flags,
755 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
756 };
757
758 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
759
760 if (in_fence != -1) {
761 execbuf.rsvd2 = in_fence;
762 execbuf.flags |= I915_EXEC_FENCE_IN;
763 }
764
765 if (out_fence != NULL) {
766 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
767 *out_fence = -1;
768 execbuf.flags |= I915_EXEC_FENCE_OUT;
769 }
770
771 int ret = drmIoctl(fd, cmd, &execbuf);
772 if (ret != 0)
773 ret = -errno;
774
775 for (int i = 0; i < batch->exec_count; i++) {
776 struct brw_bo *bo = batch->exec_bos[i];
777
778 bo->idle = false;
779 bo->index = -1;
780
781 /* Update brw_bo::gtt_offset */
782 if (batch->validation_list[i].offset != bo->gtt_offset) {
783 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
784 bo->gem_handle, bo->gtt_offset,
785 batch->validation_list[i].offset);
786 bo->gtt_offset = batch->validation_list[i].offset;
787 }
788 }
789
790 if (ret == 0 && out_fence != NULL)
791 *out_fence = execbuf.rsvd2 >> 32;
792
793 return ret;
794 }
795
796 static int
797 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
798 {
799 const struct gen_device_info *devinfo = &brw->screen->devinfo;
800 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
801 struct intel_batchbuffer *batch = &brw->batch;
802 int ret = 0;
803
804 if (batch->batch_cpu_map) {
805 void *bo_map = brw_bo_map(brw, batch->bo, MAP_WRITE);
806 memcpy(bo_map, batch->batch_cpu_map, 4 * USED_BATCH(*batch));
807 }
808
809 if (batch->state_cpu_map) {
810 void *bo_map = brw_bo_map(brw, batch->state_bo, MAP_WRITE);
811 memcpy(bo_map, batch->state_cpu_map, batch->state_used);
812 }
813
814 brw_bo_unmap(batch->bo);
815 brw_bo_unmap(batch->state_bo);
816
817 if (!brw->screen->no_hw) {
818 /* The requirement for using I915_EXEC_NO_RELOC are:
819 *
820 * The addresses written in the objects must match the corresponding
821 * reloc.gtt_offset which in turn must match the corresponding
822 * execobject.offset.
823 *
824 * Any render targets written to in the batch must be flagged with
825 * EXEC_OBJECT_WRITE.
826 *
827 * To avoid stalling, execobject.offset should match the current
828 * address of that object within the active context.
829 */
830 int flags = I915_EXEC_NO_RELOC;
831
832 if (devinfo->gen >= 6 && batch->ring == BLT_RING) {
833 flags |= I915_EXEC_BLT;
834 } else {
835 flags |= I915_EXEC_RENDER;
836 }
837 if (batch->needs_sol_reset)
838 flags |= I915_EXEC_GEN7_SOL_RESET;
839
840 uint32_t hw_ctx = batch->ring == RENDER_RING ? brw->hw_ctx : 0;
841
842 /* Set statebuffer relocations */
843 const unsigned state_index = batch->state_bo->index;
844 if (state_index < batch->exec_count &&
845 batch->exec_bos[state_index] == batch->state_bo) {
846 struct drm_i915_gem_exec_object2 *entry =
847 &batch->validation_list[state_index];
848 assert(entry->handle == batch->state_bo->gem_handle);
849 entry->relocation_count = batch->state_relocs.reloc_count;
850 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
851 }
852
853 /* Set batchbuffer relocations */
854 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
855 assert(entry->handle == batch->bo->gem_handle);
856 entry->relocation_count = batch->batch_relocs.reloc_count;
857 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
858
859 if (batch->use_batch_first) {
860 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
861 } else {
862 /* Move the batch to the end of the validation list */
863 struct drm_i915_gem_exec_object2 tmp;
864 const unsigned index = batch->exec_count - 1;
865
866 tmp = *entry;
867 *entry = batch->validation_list[index];
868 batch->validation_list[index] = tmp;
869 }
870
871 ret = execbuffer(dri_screen->fd, batch, hw_ctx,
872 4 * USED_BATCH(*batch),
873 in_fence_fd, out_fence_fd, flags);
874
875 throttle(brw);
876 }
877
878 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
879 do_batch_dump(brw);
880
881 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
882 brw_check_for_reset(brw);
883
884 if (ret != 0) {
885 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
886 strerror(-ret));
887 exit(1);
888 }
889
890 return ret;
891 }
892
893 /**
894 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
895 * of the fd.
896 *
897 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
898 * of the returned fd.
899 */
900 int
901 _intel_batchbuffer_flush_fence(struct brw_context *brw,
902 int in_fence_fd, int *out_fence_fd,
903 const char *file, int line)
904 {
905 int ret;
906
907 if (USED_BATCH(brw->batch) == 0)
908 return 0;
909
910 /* Check that we didn't just wrap our batchbuffer at a bad time. */
911 assert(!brw->batch.no_wrap);
912
913 brw_finish_batch(brw);
914 intel_upload_finish(brw);
915
916 if (brw->throttle_batch[0] == NULL) {
917 brw->throttle_batch[0] = brw->batch.bo;
918 brw_bo_reference(brw->throttle_batch[0]);
919 }
920
921 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
922 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
923 int bytes_for_state = brw->batch.state_used;
924 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
925 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
926 " %4d batch relocs, %4d state relocs\n", file, line,
927 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
928 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
929 brw->batch.exec_count,
930 (float) brw->batch.aperture_space / (1024 * 1024),
931 brw->batch.batch_relocs.reloc_count,
932 brw->batch.state_relocs.reloc_count);
933 }
934
935 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
936
937 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
938 fprintf(stderr, "waiting for idle\n");
939 brw_bo_wait_rendering(brw->batch.bo);
940 }
941
942 /* Start a new batch buffer. */
943 brw_new_batch(brw);
944
945 return ret;
946 }
947
948 bool
949 brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
950 {
951 return brw->batch.aperture_space + extra_space <=
952 brw->screen->aperture_threshold;
953 }
954
955 bool
956 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
957 {
958 unsigned index = READ_ONCE(bo->index);
959 if (index < batch->exec_count && batch->exec_bos[index] == bo)
960 return true;
961
962 for (int i = 0; i < batch->exec_count; i++) {
963 if (batch->exec_bos[i] == bo)
964 return true;
965 }
966 return false;
967 }
968
969 /* This is the only way buffers get added to the validate list.
970 */
971 static uint64_t
972 emit_reloc(struct intel_batchbuffer *batch,
973 struct brw_reloc_list *rlist, uint32_t offset,
974 struct brw_bo *target, uint32_t target_offset,
975 unsigned int reloc_flags)
976 {
977 assert(target != NULL);
978
979 if (rlist->reloc_count == rlist->reloc_array_size) {
980 rlist->reloc_array_size *= 2;
981 rlist->relocs = realloc(rlist->relocs,
982 rlist->reloc_array_size *
983 sizeof(struct drm_i915_gem_relocation_entry));
984 }
985
986 unsigned int index = add_exec_bo(batch, target);
987 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
988
989 if (reloc_flags)
990 entry->flags |= reloc_flags & batch->valid_reloc_flags;
991
992 rlist->relocs[rlist->reloc_count++] =
993 (struct drm_i915_gem_relocation_entry) {
994 .offset = offset,
995 .delta = target_offset,
996 .target_handle = batch->use_batch_first ? index : target->gem_handle,
997 .presumed_offset = entry->offset,
998 };
999
1000 /* Using the old buffer offset, write in what the right data would be, in
1001 * case the buffer doesn't move and we can short-circuit the relocation
1002 * processing in the kernel
1003 */
1004 return entry->offset + target_offset;
1005 }
1006
1007 uint64_t
1008 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
1009 struct brw_bo *target, uint32_t target_offset,
1010 unsigned int reloc_flags)
1011 {
1012 assert(batch_offset <= batch->bo->size - sizeof(uint32_t));
1013
1014 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
1015 target, target_offset, reloc_flags);
1016 }
1017
1018 uint64_t
1019 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1020 struct brw_bo *target, uint32_t target_offset,
1021 unsigned int reloc_flags)
1022 {
1023 assert(state_offset <= batch->state_bo->size - sizeof(uint32_t));
1024
1025 return emit_reloc(batch, &batch->state_relocs, state_offset,
1026 target, target_offset, reloc_flags);
1027 }
1028
1029
1030 uint32_t
1031 brw_state_batch_size(struct brw_context *brw, uint32_t offset)
1032 {
1033 struct hash_entry *entry =
1034 _mesa_hash_table_search(brw->batch.state_batch_sizes,
1035 (void *) (uintptr_t) offset);
1036 return entry ? (uintptr_t) entry->data : 0;
1037 }
1038
1039 /**
1040 * Reserve some space in the statebuffer, or flush.
1041 *
1042 * This is used to estimate when we're near the end of the batch,
1043 * so we can flush early.
1044 */
1045 void
1046 brw_require_statebuffer_space(struct brw_context *brw, int size)
1047 {
1048 if (brw->batch.state_used + size >= STATE_SZ)
1049 intel_batchbuffer_flush(brw);
1050 }
1051
1052 /**
1053 * Allocates a block of space in the batchbuffer for indirect state.
1054 */
1055 void *
1056 brw_state_batch(struct brw_context *brw,
1057 int size,
1058 int alignment,
1059 uint32_t *out_offset)
1060 {
1061 struct intel_batchbuffer *batch = &brw->batch;
1062
1063 assert(size < batch->bo->size);
1064
1065 uint32_t offset = ALIGN(batch->state_used, alignment);
1066
1067 if (offset + size >= STATE_SZ && !batch->no_wrap) {
1068 intel_batchbuffer_flush(brw);
1069 offset = ALIGN(batch->state_used, alignment);
1070 } else if (offset + size >= batch->state_bo->size) {
1071 const unsigned new_size =
1072 MIN2(batch->state_bo->size + batch->state_bo->size / 2,
1073 MAX_STATE_SIZE);
1074 grow_buffer(brw, &batch->state_bo, &batch->state_map,
1075 &batch->state_cpu_map, batch->state_used, new_size);
1076 assert(offset + size < batch->state_bo->size);
1077 }
1078
1079 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1080 _mesa_hash_table_insert(batch->state_batch_sizes,
1081 (void *) (uintptr_t) offset,
1082 (void *) (uintptr_t) size);
1083 }
1084
1085 batch->state_used = offset + size;
1086
1087 *out_offset = offset;
1088 return batch->state_map + (offset >> 2);
1089 }
1090
1091 void
1092 intel_batchbuffer_data(struct brw_context *brw,
1093 const void *data, GLuint bytes, enum brw_gpu_ring ring)
1094 {
1095 assert((bytes & 3) == 0);
1096 intel_batchbuffer_require_space(brw, bytes, ring);
1097 memcpy(brw->batch.map_next, data, bytes);
1098 brw->batch.map_next += bytes >> 2;
1099 }
1100
1101 static void
1102 load_sized_register_mem(struct brw_context *brw,
1103 uint32_t reg,
1104 struct brw_bo *bo,
1105 uint32_t offset,
1106 int size)
1107 {
1108 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1109 int i;
1110
1111 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1112 assert(devinfo->gen >= 7);
1113
1114 if (devinfo->gen >= 8) {
1115 BEGIN_BATCH(4 * size);
1116 for (i = 0; i < size; i++) {
1117 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1118 OUT_BATCH(reg + i * 4);
1119 OUT_RELOC64(bo, 0, offset + i * 4);
1120 }
1121 ADVANCE_BATCH();
1122 } else {
1123 BEGIN_BATCH(3 * size);
1124 for (i = 0; i < size; i++) {
1125 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1126 OUT_BATCH(reg + i * 4);
1127 OUT_RELOC(bo, 0, offset + i * 4);
1128 }
1129 ADVANCE_BATCH();
1130 }
1131 }
1132
1133 void
1134 brw_load_register_mem(struct brw_context *brw,
1135 uint32_t reg,
1136 struct brw_bo *bo,
1137 uint32_t offset)
1138 {
1139 load_sized_register_mem(brw, reg, bo, offset, 1);
1140 }
1141
1142 void
1143 brw_load_register_mem64(struct brw_context *brw,
1144 uint32_t reg,
1145 struct brw_bo *bo,
1146 uint32_t offset)
1147 {
1148 load_sized_register_mem(brw, reg, bo, offset, 2);
1149 }
1150
1151 /*
1152 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1153 */
1154 void
1155 brw_store_register_mem32(struct brw_context *brw,
1156 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1157 {
1158 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1159
1160 assert(devinfo->gen >= 6);
1161
1162 if (devinfo->gen >= 8) {
1163 BEGIN_BATCH(4);
1164 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1165 OUT_BATCH(reg);
1166 OUT_RELOC64(bo, RELOC_WRITE, offset);
1167 ADVANCE_BATCH();
1168 } else {
1169 BEGIN_BATCH(3);
1170 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1171 OUT_BATCH(reg);
1172 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1173 ADVANCE_BATCH();
1174 }
1175 }
1176
1177 /*
1178 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1179 */
1180 void
1181 brw_store_register_mem64(struct brw_context *brw,
1182 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1183 {
1184 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1185
1186 assert(devinfo->gen >= 6);
1187
1188 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1189 * read a full 64-bit register, we need to do two of them.
1190 */
1191 if (devinfo->gen >= 8) {
1192 BEGIN_BATCH(8);
1193 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1194 OUT_BATCH(reg);
1195 OUT_RELOC64(bo, RELOC_WRITE, offset);
1196 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1197 OUT_BATCH(reg + sizeof(uint32_t));
1198 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1199 ADVANCE_BATCH();
1200 } else {
1201 BEGIN_BATCH(6);
1202 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1203 OUT_BATCH(reg);
1204 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1205 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1206 OUT_BATCH(reg + sizeof(uint32_t));
1207 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1208 ADVANCE_BATCH();
1209 }
1210 }
1211
1212 /*
1213 * Write a 32-bit register using immediate data.
1214 */
1215 void
1216 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1217 {
1218 assert(brw->screen->devinfo.gen >= 6);
1219
1220 BEGIN_BATCH(3);
1221 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1222 OUT_BATCH(reg);
1223 OUT_BATCH(imm);
1224 ADVANCE_BATCH();
1225 }
1226
1227 /*
1228 * Write a 64-bit register using immediate data.
1229 */
1230 void
1231 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1232 {
1233 assert(brw->screen->devinfo.gen >= 6);
1234
1235 BEGIN_BATCH(5);
1236 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1237 OUT_BATCH(reg);
1238 OUT_BATCH(imm & 0xffffffff);
1239 OUT_BATCH(reg + 4);
1240 OUT_BATCH(imm >> 32);
1241 ADVANCE_BATCH();
1242 }
1243
1244 /*
1245 * Copies a 32-bit register.
1246 */
1247 void
1248 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
1249 {
1250 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1251
1252 BEGIN_BATCH(3);
1253 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1254 OUT_BATCH(src);
1255 OUT_BATCH(dest);
1256 ADVANCE_BATCH();
1257 }
1258
1259 /*
1260 * Copies a 64-bit register.
1261 */
1262 void
1263 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
1264 {
1265 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1266
1267 BEGIN_BATCH(6);
1268 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1269 OUT_BATCH(src);
1270 OUT_BATCH(dest);
1271 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1272 OUT_BATCH(src + sizeof(uint32_t));
1273 OUT_BATCH(dest + sizeof(uint32_t));
1274 ADVANCE_BATCH();
1275 }
1276
1277 /*
1278 * Write 32-bits of immediate data to a GPU memory buffer.
1279 */
1280 void
1281 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1282 uint32_t offset, uint32_t imm)
1283 {
1284 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1285
1286 assert(devinfo->gen >= 6);
1287
1288 BEGIN_BATCH(4);
1289 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1290 if (devinfo->gen >= 8)
1291 OUT_RELOC64(bo, RELOC_WRITE, offset);
1292 else {
1293 OUT_BATCH(0); /* MBZ */
1294 OUT_RELOC(bo, RELOC_WRITE, offset);
1295 }
1296 OUT_BATCH(imm);
1297 ADVANCE_BATCH();
1298 }
1299
1300 /*
1301 * Write 64-bits of immediate data to a GPU memory buffer.
1302 */
1303 void
1304 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1305 uint32_t offset, uint64_t imm)
1306 {
1307 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1308
1309 assert(devinfo->gen >= 6);
1310
1311 BEGIN_BATCH(5);
1312 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1313 if (devinfo->gen >= 8)
1314 OUT_RELOC64(bo, 0, offset);
1315 else {
1316 OUT_BATCH(0); /* MBZ */
1317 OUT_RELOC(bo, RELOC_WRITE, offset);
1318 }
1319 OUT_BATCH(imm & 0xffffffffu);
1320 OUT_BATCH(imm >> 32);
1321 ADVANCE_BATCH();
1322 }