i965: fix unused var warnings in release build
[mesa.git] / src / mesa / drivers / dri / i965 / intel_batchbuffer.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "intel_batchbuffer.h"
27 #include "intel_buffer_objects.h"
28 #include "brw_bufmgr.h"
29 #include "intel_buffers.h"
30 #include "intel_fbo.h"
31 #include "brw_context.h"
32 #include "brw_defines.h"
33 #include "brw_state.h"
34 #include "common/gen_decoder.h"
35
36 #include "util/hash_table.h"
37
38 #include <xf86drm.h>
39 #include <i915_drm.h>
40
41 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
42
43 /**
44 * Target sizes of the batch and state buffers. We create the initial
45 * buffers at these sizes, and flush when they're nearly full. If we
46 * underestimate how close we are to the end, and suddenly need more space
47 * in the middle of a draw, we can grow the buffers, and finish the draw.
48 * At that point, we'll be over our target size, so the next operation
49 * should flush. Each time we flush the batch, we recreate both buffers
50 * at the original target size, so it doesn't grow without bound.
51 */
52 #define BATCH_SZ (20 * 1024)
53 #define STATE_SZ (16 * 1024)
54
55 /* The kernel assumes batchbuffers are smaller than 256kB. */
56 #define MAX_BATCH_SIZE (256 * 1024)
57
58 /* 3DSTATE_BINDING_TABLE_POINTERS has a U16 offset from Surface State Base
59 * Address, which means that we can't put binding tables beyond 64kB. This
60 * effectively limits the maximum statebuffer size to 64kB.
61 */
62 #define MAX_STATE_SIZE (64 * 1024)
63
64 static void
65 intel_batchbuffer_reset(struct brw_context *brw);
66
67 static bool
68 uint_key_compare(const void *a, const void *b)
69 {
70 return a == b;
71 }
72
73 static uint32_t
74 uint_key_hash(const void *key)
75 {
76 return (uintptr_t) key;
77 }
78
79 static void
80 init_reloc_list(struct brw_reloc_list *rlist, int count)
81 {
82 rlist->reloc_count = 0;
83 rlist->reloc_array_size = count;
84 rlist->relocs = malloc(rlist->reloc_array_size *
85 sizeof(struct drm_i915_gem_relocation_entry));
86 }
87
88 void
89 intel_batchbuffer_init(struct brw_context *brw)
90 {
91 struct intel_screen *screen = brw->screen;
92 struct intel_batchbuffer *batch = &brw->batch;
93 const struct gen_device_info *devinfo = &screen->devinfo;
94
95 if (!devinfo->has_llc) {
96 batch->batch_cpu_map = malloc(BATCH_SZ);
97 batch->map = batch->batch_cpu_map;
98 batch->map_next = batch->map;
99 batch->state_cpu_map = malloc(STATE_SZ);
100 batch->state_map = batch->state_cpu_map;
101 }
102
103 init_reloc_list(&batch->batch_relocs, 250);
104 init_reloc_list(&batch->state_relocs, 250);
105
106 batch->exec_count = 0;
107 batch->exec_array_size = 100;
108 batch->exec_bos =
109 malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
110 batch->validation_list =
111 malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
112
113 if (INTEL_DEBUG & DEBUG_BATCH) {
114 batch->state_batch_sizes =
115 _mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
116 }
117
118 batch->use_batch_first =
119 screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
120
121 /* PIPE_CONTROL needs a w/a but only on gen6 */
122 batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
123 if (devinfo->gen == 6)
124 batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
125
126 intel_batchbuffer_reset(brw);
127 }
128
129 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
130
131 static unsigned
132 add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
133 {
134 unsigned index = READ_ONCE(bo->index);
135
136 if (index < batch->exec_count && batch->exec_bos[index] == bo)
137 return index;
138
139 /* May have been shared between multiple active batches */
140 for (index = 0; index < batch->exec_count; index++) {
141 if (batch->exec_bos[index] == bo)
142 return index;
143 }
144
145 brw_bo_reference(bo);
146
147 if (batch->exec_count == batch->exec_array_size) {
148 batch->exec_array_size *= 2;
149 batch->exec_bos =
150 realloc(batch->exec_bos,
151 batch->exec_array_size * sizeof(batch->exec_bos[0]));
152 batch->validation_list =
153 realloc(batch->validation_list,
154 batch->exec_array_size * sizeof(batch->validation_list[0]));
155 }
156
157 batch->validation_list[batch->exec_count] =
158 (struct drm_i915_gem_exec_object2) {
159 .handle = bo->gem_handle,
160 .alignment = bo->align,
161 .offset = bo->gtt_offset,
162 .flags = bo->kflags,
163 };
164
165 bo->index = batch->exec_count;
166 batch->exec_bos[batch->exec_count] = bo;
167 batch->aperture_space += bo->size;
168
169 return batch->exec_count++;
170 }
171
172 static void
173 intel_batchbuffer_reset(struct brw_context *brw)
174 {
175 struct intel_screen *screen = brw->screen;
176 struct intel_batchbuffer *batch = &brw->batch;
177 struct brw_bufmgr *bufmgr = screen->bufmgr;
178
179 if (batch->last_bo != NULL) {
180 brw_bo_unreference(batch->last_bo);
181 batch->last_bo = NULL;
182 }
183 batch->last_bo = batch->bo;
184
185 batch->bo = brw_bo_alloc(bufmgr, "batchbuffer", BATCH_SZ, 4096);
186 if (!batch->batch_cpu_map) {
187 batch->map = brw_bo_map(brw, batch->bo, MAP_READ | MAP_WRITE);
188 }
189 batch->map_next = batch->map;
190
191 batch->state_bo = brw_bo_alloc(bufmgr, "statebuffer", STATE_SZ, 4096);
192 batch->state_bo->kflags =
193 can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
194 if (!batch->state_cpu_map) {
195 batch->state_map =
196 brw_bo_map(brw, batch->state_bo, MAP_READ | MAP_WRITE);
197 }
198
199 /* Avoid making 0 a valid state offset - otherwise the decoder will try
200 * and decode data when we use offset 0 as a null pointer.
201 */
202 batch->state_used = 1;
203
204 add_exec_bo(batch, batch->bo);
205 assert(batch->bo->index == 0);
206
207 batch->needs_sol_reset = false;
208 batch->state_base_address_emitted = false;
209
210 /* We don't know what ring the new batch will be sent to until we see the
211 * first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
212 */
213 batch->ring = UNKNOWN_RING;
214
215 if (batch->state_batch_sizes)
216 _mesa_hash_table_clear(batch->state_batch_sizes, NULL);
217 }
218
219 static void
220 intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
221 {
222 intel_batchbuffer_reset(brw);
223 brw_render_cache_set_clear(brw);
224 }
225
226 void
227 intel_batchbuffer_save_state(struct brw_context *brw)
228 {
229 brw->batch.saved.map_next = brw->batch.map_next;
230 brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
231 brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
232 brw->batch.saved.exec_count = brw->batch.exec_count;
233 }
234
235 void
236 intel_batchbuffer_reset_to_saved(struct brw_context *brw)
237 {
238 for (int i = brw->batch.saved.exec_count;
239 i < brw->batch.exec_count; i++) {
240 brw_bo_unreference(brw->batch.exec_bos[i]);
241 }
242 brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
243 brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
244 brw->batch.exec_count = brw->batch.saved.exec_count;
245
246 brw->batch.map_next = brw->batch.saved.map_next;
247 if (USED_BATCH(brw->batch) == 0)
248 brw->batch.ring = UNKNOWN_RING;
249 }
250
251 void
252 intel_batchbuffer_free(struct intel_batchbuffer *batch)
253 {
254 free(batch->batch_cpu_map);
255 free(batch->state_cpu_map);
256
257 for (int i = 0; i < batch->exec_count; i++) {
258 brw_bo_unreference(batch->exec_bos[i]);
259 }
260 free(batch->batch_relocs.relocs);
261 free(batch->state_relocs.relocs);
262 free(batch->exec_bos);
263 free(batch->validation_list);
264
265 brw_bo_unreference(batch->last_bo);
266 brw_bo_unreference(batch->bo);
267 brw_bo_unreference(batch->state_bo);
268 if (batch->state_batch_sizes)
269 _mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
270 }
271
272 static void
273 replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
274 uint32_t old_handle, uint32_t new_handle)
275 {
276 for (int i = 0; i < rlist->reloc_count; i++) {
277 if (rlist->relocs[i].target_handle == old_handle)
278 rlist->relocs[i].target_handle = new_handle;
279 }
280 }
281
282 /**
283 * Grow either the batch or state buffer to a new larger size.
284 *
285 * We can't actually grow buffers, so we allocate a new one, copy over
286 * the existing contents, and update our lists to refer to the new one.
287 *
288 * Note that this is only temporary - each new batch recreates the buffers
289 * at their original target size (BATCH_SZ or STATE_SZ).
290 */
291 static void
292 grow_buffer(struct brw_context *brw,
293 struct brw_bo **bo_ptr,
294 uint32_t **map_ptr,
295 uint32_t **cpu_map_ptr,
296 unsigned existing_bytes,
297 unsigned new_size)
298 {
299 struct intel_batchbuffer *batch = &brw->batch;
300 struct brw_bufmgr *bufmgr = brw->bufmgr;
301
302 uint32_t *old_map = *map_ptr;
303 struct brw_bo *old_bo = *bo_ptr;
304
305 struct brw_bo *new_bo = brw_bo_alloc(bufmgr, old_bo->name, new_size, 4096);
306 uint32_t *new_map;
307
308 perf_debug("Growing %s - ran out of space\n", old_bo->name);
309
310 /* Copy existing data to the new larger buffer */
311 if (*cpu_map_ptr) {
312 *cpu_map_ptr = new_map = realloc(*cpu_map_ptr, new_size);
313 } else {
314 new_map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
315 memcpy(new_map, old_map, existing_bytes);
316 }
317
318 /* Try to put the new BO at the same GTT offset as the old BO (which
319 * we're throwing away, so it doesn't need to be there).
320 *
321 * This guarantees that our relocations continue to work: values we've
322 * already written into the buffer, values we're going to write into the
323 * buffer, and the validation/relocation lists all will match.
324 */
325 new_bo->gtt_offset = old_bo->gtt_offset;
326 new_bo->index = old_bo->index;
327
328 /* Batch/state buffers are per-context, and if we've run out of space,
329 * we must have actually used them before, so...they will be in the list.
330 */
331 assert(old_bo->index < batch->exec_count);
332 assert(batch->exec_bos[old_bo->index] == old_bo);
333
334 /* Update the validation list to use the new BO. */
335 batch->exec_bos[old_bo->index] = new_bo;
336 batch->validation_list[old_bo->index].handle = new_bo->gem_handle;
337 brw_bo_reference(new_bo);
338 brw_bo_unreference(old_bo);
339
340 if (!batch->use_batch_first) {
341 /* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
342 * update the relocation list entries to point at the new BO as well.
343 * (With newer kernels, the "handle" is an offset into the validation
344 * list, which remains unchanged, so we can skip this.)
345 */
346 replace_bo_in_reloc_list(&batch->batch_relocs,
347 old_bo->gem_handle, new_bo->gem_handle);
348 replace_bo_in_reloc_list(&batch->state_relocs,
349 old_bo->gem_handle, new_bo->gem_handle);
350 }
351
352 /* Drop the *bo_ptr reference. This should free the old BO. */
353 brw_bo_unreference(old_bo);
354
355 *bo_ptr = new_bo;
356 *map_ptr = new_map;
357 }
358
359 void
360 intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
361 enum brw_gpu_ring ring)
362 {
363 const struct gen_device_info *devinfo = &brw->screen->devinfo;
364 struct intel_batchbuffer *batch = &brw->batch;
365
366 /* If we're switching rings, implicitly flush the batch. */
367 if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
368 devinfo->gen >= 6) {
369 intel_batchbuffer_flush(brw);
370 }
371
372 const unsigned batch_used = USED_BATCH(*batch) * 4;
373 if (batch_used + sz >= BATCH_SZ) {
374 if (!batch->no_wrap) {
375 intel_batchbuffer_flush(brw);
376 } else {
377 const unsigned new_size =
378 MIN2(batch->bo->size + batch->bo->size / 2, MAX_BATCH_SIZE);
379 grow_buffer(brw, &batch->bo, &batch->map, &batch->batch_cpu_map,
380 batch_used, new_size);
381 batch->map_next = (void *) batch->map + batch_used;
382 assert(batch_used + sz < batch->bo->size);
383 }
384 }
385
386 /* The intel_batchbuffer_flush() calls above might have changed
387 * brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
388 */
389 brw->batch.ring = ring;
390 }
391
392 #ifdef DEBUG
393 #define CSI "\e["
394 #define BLUE_HEADER CSI "0;44m"
395 #define NORMAL CSI "0m"
396
397
398 static void
399 decode_struct(struct brw_context *brw, struct gen_spec *spec,
400 const char *struct_name, uint32_t *data,
401 uint32_t gtt_offset, uint32_t offset, bool color)
402 {
403 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
404 if (!group)
405 return;
406
407 fprintf(stderr, "%s\n", struct_name);
408 gen_print_group(stderr, group, gtt_offset + offset,
409 &data[offset / 4], color);
410 }
411
412 static void
413 decode_structs(struct brw_context *brw, struct gen_spec *spec,
414 const char *struct_name,
415 uint32_t *data, uint32_t gtt_offset, uint32_t offset,
416 int struct_size, bool color)
417 {
418 struct gen_group *group = gen_spec_find_struct(spec, struct_name);
419 if (!group)
420 return;
421
422 int entries = brw_state_batch_size(brw, offset) / struct_size;
423 for (int i = 0; i < entries; i++) {
424 fprintf(stderr, "%s %d\n", struct_name, i);
425 gen_print_group(stderr, group, gtt_offset + offset,
426 &data[(offset + i * struct_size) / 4], color);
427 }
428 }
429
430 static void
431 do_batch_dump(struct brw_context *brw)
432 {
433 const struct gen_device_info *devinfo = &brw->screen->devinfo;
434 struct intel_batchbuffer *batch = &brw->batch;
435 struct gen_spec *spec = gen_spec_load(&brw->screen->devinfo);
436
437 if (batch->ring != RENDER_RING)
438 return;
439
440 uint32_t *batch_data = brw_bo_map(brw, batch->bo, MAP_READ);
441 uint32_t *state = brw_bo_map(brw, batch->state_bo, MAP_READ);
442 if (batch_data == NULL || state == NULL) {
443 fprintf(stderr, "WARNING: failed to map batchbuffer/statebuffer\n");
444 return;
445 }
446
447 uint32_t *end = batch_data + USED_BATCH(*batch);
448 uint32_t batch_gtt_offset = batch->bo->gtt_offset;
449 uint32_t state_gtt_offset = batch->state_bo->gtt_offset;
450 int length;
451
452 bool color = INTEL_DEBUG & DEBUG_COLOR;
453 const char *header_color = color ? BLUE_HEADER : "";
454 const char *reset_color = color ? NORMAL : "";
455
456 for (uint32_t *p = batch_data; p < end; p += length) {
457 struct gen_group *inst = gen_spec_find_instruction(spec, p);
458 length = gen_group_get_length(inst, p);
459 assert(inst == NULL || length > 0);
460 length = MAX2(1, length);
461 if (inst == NULL) {
462 fprintf(stderr, "unknown instruction %08x\n", p[0]);
463 continue;
464 }
465
466 uint64_t offset = batch_gtt_offset + 4 * (p - batch_data);
467
468 fprintf(stderr, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n", header_color,
469 offset, p[0], gen_group_get_name(inst), reset_color);
470
471 gen_print_group(stderr, inst, offset, p, color);
472
473 switch (gen_group_get_opcode(inst) >> 16) {
474 case _3DSTATE_PIPELINED_POINTERS:
475 /* Note: these Gen4-5 pointers are full relocations rather than
476 * offsets from the start of the statebuffer. So we need to subtract
477 * gtt_offset (the start of the statebuffer) to obtain an offset we
478 * can add to the map and get at the data.
479 */
480 decode_struct(brw, spec, "VS_STATE", state, state_gtt_offset,
481 (p[1] & ~0x1fu) - state_gtt_offset, color);
482 if (p[2] & 1) {
483 decode_struct(brw, spec, "GS_STATE", state, state_gtt_offset,
484 (p[2] & ~0x1fu) - state_gtt_offset, color);
485 }
486 if (p[3] & 1) {
487 decode_struct(brw, spec, "CLIP_STATE", state, state_gtt_offset,
488 (p[3] & ~0x1fu) - state_gtt_offset, color);
489 }
490 decode_struct(brw, spec, "SF_STATE", state, state_gtt_offset,
491 (p[4] & ~0x1fu) - state_gtt_offset, color);
492 decode_struct(brw, spec, "WM_STATE", state, state_gtt_offset,
493 (p[5] & ~0x1fu) - state_gtt_offset, color);
494 decode_struct(brw, spec, "COLOR_CALC_STATE", state, state_gtt_offset,
495 (p[6] & ~0x3fu) - state_gtt_offset, color);
496 break;
497 case _3DSTATE_BINDING_TABLE_POINTERS_VS:
498 case _3DSTATE_BINDING_TABLE_POINTERS_HS:
499 case _3DSTATE_BINDING_TABLE_POINTERS_DS:
500 case _3DSTATE_BINDING_TABLE_POINTERS_GS:
501 case _3DSTATE_BINDING_TABLE_POINTERS_PS: {
502 struct gen_group *group =
503 gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
504 if (!group)
505 break;
506
507 uint32_t bt_offset = p[1] & ~0x1fu;
508 int bt_entries = brw_state_batch_size(brw, bt_offset) / 4;
509 uint32_t *bt_pointers = &state[bt_offset / 4];
510 for (int i = 0; i < bt_entries; i++) {
511 fprintf(stderr, "SURFACE_STATE - BTI = %d\n", i);
512 gen_print_group(stderr, group, state_gtt_offset + bt_pointers[i],
513 &state[bt_pointers[i] / 4], color);
514 }
515 break;
516 }
517 case _3DSTATE_SAMPLER_STATE_POINTERS_VS:
518 case _3DSTATE_SAMPLER_STATE_POINTERS_HS:
519 case _3DSTATE_SAMPLER_STATE_POINTERS_DS:
520 case _3DSTATE_SAMPLER_STATE_POINTERS_GS:
521 case _3DSTATE_SAMPLER_STATE_POINTERS_PS:
522 decode_structs(brw, spec, "SAMPLER_STATE", state,
523 state_gtt_offset, p[1] & ~0x1fu, 4 * 4, color);
524 break;
525 case _3DSTATE_VIEWPORT_STATE_POINTERS:
526 decode_structs(brw, spec, "CLIP_VIEWPORT", state,
527 state_gtt_offset, p[1] & ~0x3fu, 4 * 4, color);
528 decode_structs(brw, spec, "SF_VIEWPORT", state,
529 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
530 decode_structs(brw, spec, "CC_VIEWPORT", state,
531 state_gtt_offset, p[3] & ~0x3fu, 2 * 4, color);
532 break;
533 case _3DSTATE_VIEWPORT_STATE_POINTERS_CC:
534 decode_structs(brw, spec, "CC_VIEWPORT", state,
535 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
536 break;
537 case _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CL:
538 decode_structs(brw, spec, "SF_CLIP_VIEWPORT", state,
539 state_gtt_offset, p[1] & ~0x3fu, 16 * 4, color);
540 break;
541 case _3DSTATE_SCISSOR_STATE_POINTERS:
542 decode_structs(brw, spec, "SCISSOR_RECT", state,
543 state_gtt_offset, p[1] & ~0x1fu, 2 * 4, color);
544 break;
545 case _3DSTATE_BLEND_STATE_POINTERS:
546 /* TODO: handle Gen8+ extra dword at the beginning */
547 decode_structs(brw, spec, "BLEND_STATE", state,
548 state_gtt_offset, p[1] & ~0x3fu, 8 * 4, color);
549 break;
550 case _3DSTATE_CC_STATE_POINTERS:
551 if (devinfo->gen >= 7) {
552 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
553 state_gtt_offset, p[1] & ~0x3fu, color);
554 } else if (devinfo->gen == 6) {
555 decode_structs(brw, spec, "BLEND_STATE", state,
556 state_gtt_offset, p[1] & ~0x3fu, 2 * 4, color);
557 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
558 state_gtt_offset, p[2] & ~0x3fu, color);
559 decode_struct(brw, spec, "COLOR_CALC_STATE", state,
560 state_gtt_offset, p[3] & ~0x3fu, color);
561 }
562 break;
563 case _3DSTATE_DEPTH_STENCIL_STATE_POINTERS:
564 decode_struct(brw, spec, "DEPTH_STENCIL_STATE", state,
565 state_gtt_offset, p[1] & ~0x3fu, color);
566 break;
567 }
568 }
569
570 brw_bo_unmap(batch->bo);
571 brw_bo_unmap(batch->state_bo);
572 }
573 #else
574 static void do_batch_dump(struct brw_context *brw) { }
575 #endif
576
577 /**
578 * Called when starting a new batch buffer.
579 */
580 static void
581 brw_new_batch(struct brw_context *brw)
582 {
583 /* Unreference any BOs held by the previous batch, and reset counts. */
584 for (int i = 0; i < brw->batch.exec_count; i++) {
585 brw_bo_unreference(brw->batch.exec_bos[i]);
586 brw->batch.exec_bos[i] = NULL;
587 }
588 brw->batch.batch_relocs.reloc_count = 0;
589 brw->batch.state_relocs.reloc_count = 0;
590 brw->batch.exec_count = 0;
591 brw->batch.aperture_space = 0;
592
593 brw_bo_unreference(brw->batch.state_bo);
594
595 /* Create a new batchbuffer and reset the associated state: */
596 intel_batchbuffer_reset_and_clear_render_cache(brw);
597
598 /* If the kernel supports hardware contexts, then most hardware state is
599 * preserved between batches; we only need to re-emit state that is required
600 * to be in every batch. Otherwise we need to re-emit all the state that
601 * would otherwise be stored in the context (which for all intents and
602 * purposes means everything).
603 */
604 if (brw->hw_ctx == 0)
605 brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
606
607 brw->ctx.NewDriverState |= BRW_NEW_BATCH;
608
609 brw->ib.index_size = -1;
610
611 /* We need to periodically reap the shader time results, because rollover
612 * happens every few seconds. We also want to see results every once in a
613 * while, because many programs won't cleanly destroy our context, so the
614 * end-of-run printout may not happen.
615 */
616 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
617 brw_collect_and_report_shader_time(brw);
618 }
619
620 /**
621 * Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
622 * sending it off.
623 *
624 * This function can emit state (say, to preserve registers that aren't saved
625 * between batches). All of this state MUST fit in the reserved space at the
626 * end of the batchbuffer. If you add more GPU state, increase the reserved
627 * space by updating the BATCH_RESERVED macro.
628 */
629 static void
630 brw_finish_batch(struct brw_context *brw)
631 {
632 const struct gen_device_info *devinfo = &brw->screen->devinfo;
633
634 brw->batch.no_wrap = true;
635
636 /* Capture the closing pipeline statistics register values necessary to
637 * support query objects (in the non-hardware context world).
638 */
639 brw_emit_query_end(brw);
640
641 if (brw->batch.ring == RENDER_RING) {
642 /* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
643 * assume that the L3 cache is configured according to the hardware
644 * defaults.
645 */
646 if (devinfo->gen >= 7)
647 gen7_restore_default_l3_config(brw);
648
649 if (devinfo->is_haswell) {
650 /* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
651 * 3DSTATE_CC_STATE_POINTERS > "Note":
652 *
653 * "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
654 * 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
655 *
656 * From the example in the docs, it seems to expect a regular pipe control
657 * flush here as well. We may have done it already, but meh.
658 *
659 * See also WaAvoidRCZCounterRollover.
660 */
661 brw_emit_mi_flush(brw);
662 BEGIN_BATCH(2);
663 OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
664 OUT_BATCH(brw->cc.state_offset | 1);
665 ADVANCE_BATCH();
666 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
667 PIPE_CONTROL_CS_STALL);
668 }
669 }
670
671 /* Mark the end of the buffer. */
672 intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
673 if (USED_BATCH(brw->batch) & 1) {
674 /* Round batchbuffer usage to 2 DWORDs. */
675 intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
676 }
677
678 brw->batch.no_wrap = false;
679 }
680
681 static void
682 throttle(struct brw_context *brw)
683 {
684 /* Wait for the swapbuffers before the one we just emitted, so we
685 * don't get too many swaps outstanding for apps that are GPU-heavy
686 * but not CPU-heavy.
687 *
688 * We're using intelDRI2Flush (called from the loader before
689 * swapbuffer) and glFlush (for front buffer rendering) as the
690 * indicator that a frame is done and then throttle when we get
691 * here as we prepare to render the next frame. At this point for
692 * round trips for swap/copy and getting new buffers are done and
693 * we'll spend less time waiting on the GPU.
694 *
695 * Unfortunately, we don't have a handle to the batch containing
696 * the swap, and getting our hands on that doesn't seem worth it,
697 * so we just use the first batch we emitted after the last swap.
698 */
699 if (brw->need_swap_throttle && brw->throttle_batch[0]) {
700 if (brw->throttle_batch[1]) {
701 if (!brw->disable_throttling) {
702 /* Pass NULL rather than brw so we avoid perf_debug warnings;
703 * stalling is common and expected here...
704 */
705 brw_bo_wait_rendering(brw->throttle_batch[1]);
706 }
707 brw_bo_unreference(brw->throttle_batch[1]);
708 }
709 brw->throttle_batch[1] = brw->throttle_batch[0];
710 brw->throttle_batch[0] = NULL;
711 brw->need_swap_throttle = false;
712 /* Throttling here is more precise than the throttle ioctl, so skip it */
713 brw->need_flush_throttle = false;
714 }
715
716 if (brw->need_flush_throttle) {
717 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
718 drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
719 brw->need_flush_throttle = false;
720 }
721 }
722
723 static int
724 execbuffer(int fd,
725 struct intel_batchbuffer *batch,
726 uint32_t ctx_id,
727 int used,
728 int in_fence,
729 int *out_fence,
730 int flags)
731 {
732 struct drm_i915_gem_execbuffer2 execbuf = {
733 .buffers_ptr = (uintptr_t) batch->validation_list,
734 .buffer_count = batch->exec_count,
735 .batch_start_offset = 0,
736 .batch_len = used,
737 .flags = flags,
738 .rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
739 };
740
741 unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
742
743 if (in_fence != -1) {
744 execbuf.rsvd2 = in_fence;
745 execbuf.flags |= I915_EXEC_FENCE_IN;
746 }
747
748 if (out_fence != NULL) {
749 cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
750 *out_fence = -1;
751 execbuf.flags |= I915_EXEC_FENCE_OUT;
752 }
753
754 int ret = drmIoctl(fd, cmd, &execbuf);
755 if (ret != 0)
756 ret = -errno;
757
758 for (int i = 0; i < batch->exec_count; i++) {
759 struct brw_bo *bo = batch->exec_bos[i];
760
761 bo->idle = false;
762 bo->index = -1;
763
764 /* Update brw_bo::gtt_offset */
765 if (batch->validation_list[i].offset != bo->gtt_offset) {
766 DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
767 bo->gem_handle, bo->gtt_offset,
768 batch->validation_list[i].offset);
769 bo->gtt_offset = batch->validation_list[i].offset;
770 }
771 }
772
773 if (ret == 0 && out_fence != NULL)
774 *out_fence = execbuf.rsvd2 >> 32;
775
776 return ret;
777 }
778
779 static int
780 submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
781 {
782 const struct gen_device_info *devinfo = &brw->screen->devinfo;
783 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
784 struct intel_batchbuffer *batch = &brw->batch;
785 int ret = 0;
786
787 if (batch->batch_cpu_map) {
788 void *bo_map = brw_bo_map(brw, batch->bo, MAP_WRITE);
789 memcpy(bo_map, batch->batch_cpu_map, 4 * USED_BATCH(*batch));
790 }
791
792 if (batch->state_cpu_map) {
793 void *bo_map = brw_bo_map(brw, batch->state_bo, MAP_WRITE);
794 memcpy(bo_map, batch->state_cpu_map, batch->state_used);
795 }
796
797 brw_bo_unmap(batch->bo);
798 brw_bo_unmap(batch->state_bo);
799
800 if (!brw->screen->no_hw) {
801 /* The requirement for using I915_EXEC_NO_RELOC are:
802 *
803 * The addresses written in the objects must match the corresponding
804 * reloc.gtt_offset which in turn must match the corresponding
805 * execobject.offset.
806 *
807 * Any render targets written to in the batch must be flagged with
808 * EXEC_OBJECT_WRITE.
809 *
810 * To avoid stalling, execobject.offset should match the current
811 * address of that object within the active context.
812 */
813 int flags = I915_EXEC_NO_RELOC;
814
815 if (devinfo->gen >= 6 && batch->ring == BLT_RING) {
816 flags |= I915_EXEC_BLT;
817 } else {
818 flags |= I915_EXEC_RENDER;
819 }
820 if (batch->needs_sol_reset)
821 flags |= I915_EXEC_GEN7_SOL_RESET;
822
823 uint32_t hw_ctx = batch->ring == RENDER_RING ? brw->hw_ctx : 0;
824
825 /* Set statebuffer relocations */
826 const unsigned state_index = batch->state_bo->index;
827 if (state_index < batch->exec_count &&
828 batch->exec_bos[state_index] == batch->state_bo) {
829 struct drm_i915_gem_exec_object2 *entry =
830 &batch->validation_list[state_index];
831 assert(entry->handle == batch->state_bo->gem_handle);
832 entry->relocation_count = batch->state_relocs.reloc_count;
833 entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
834 }
835
836 /* Set batchbuffer relocations */
837 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
838 assert(entry->handle == batch->bo->gem_handle);
839 entry->relocation_count = batch->batch_relocs.reloc_count;
840 entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
841
842 if (batch->use_batch_first) {
843 flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
844 } else {
845 /* Move the batch to the end of the validation list */
846 struct drm_i915_gem_exec_object2 tmp;
847 const unsigned index = batch->exec_count - 1;
848
849 tmp = *entry;
850 *entry = batch->validation_list[index];
851 batch->validation_list[index] = tmp;
852 }
853
854 ret = execbuffer(dri_screen->fd, batch, hw_ctx,
855 4 * USED_BATCH(*batch),
856 in_fence_fd, out_fence_fd, flags);
857
858 throttle(brw);
859 }
860
861 if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
862 do_batch_dump(brw);
863
864 if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
865 brw_check_for_reset(brw);
866
867 if (ret != 0) {
868 fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
869 strerror(-ret));
870 exit(1);
871 }
872
873 return ret;
874 }
875
876 /**
877 * The in_fence_fd is ignored if -1. Otherwise this function takes ownership
878 * of the fd.
879 *
880 * The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
881 * of the returned fd.
882 */
883 int
884 _intel_batchbuffer_flush_fence(struct brw_context *brw,
885 int in_fence_fd, int *out_fence_fd,
886 const char *file, int line)
887 {
888 int ret;
889
890 if (USED_BATCH(brw->batch) == 0)
891 return 0;
892
893 /* Check that we didn't just wrap our batchbuffer at a bad time. */
894 assert(!brw->batch.no_wrap);
895
896 brw_finish_batch(brw);
897 intel_upload_finish(brw);
898
899 if (brw->throttle_batch[0] == NULL) {
900 brw->throttle_batch[0] = brw->batch.bo;
901 brw_bo_reference(brw->throttle_batch[0]);
902 }
903
904 if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
905 int bytes_for_commands = 4 * USED_BATCH(brw->batch);
906 int bytes_for_state = brw->batch.state_used;
907 fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
908 " %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
909 " %4d batch relocs, %4d state relocs\n", file, line,
910 bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
911 bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
912 brw->batch.exec_count,
913 (float) brw->batch.aperture_space / (1024 * 1024),
914 brw->batch.batch_relocs.reloc_count,
915 brw->batch.state_relocs.reloc_count);
916 }
917
918 ret = submit_batch(brw, in_fence_fd, out_fence_fd);
919
920 if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
921 fprintf(stderr, "waiting for idle\n");
922 brw_bo_wait_rendering(brw->batch.bo);
923 }
924
925 /* Start a new batch buffer. */
926 brw_new_batch(brw);
927
928 return ret;
929 }
930
931 bool
932 brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
933 {
934 return brw->batch.aperture_space + extra_space <=
935 brw->screen->aperture_threshold;
936 }
937
938 bool
939 brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
940 {
941 unsigned index = READ_ONCE(bo->index);
942 if (index < batch->exec_count && batch->exec_bos[index] == bo)
943 return true;
944
945 for (int i = 0; i < batch->exec_count; i++) {
946 if (batch->exec_bos[i] == bo)
947 return true;
948 }
949 return false;
950 }
951
952 /* This is the only way buffers get added to the validate list.
953 */
954 static uint64_t
955 emit_reloc(struct intel_batchbuffer *batch,
956 struct brw_reloc_list *rlist, uint32_t offset,
957 struct brw_bo *target, uint32_t target_offset,
958 unsigned int reloc_flags)
959 {
960 assert(target != NULL);
961
962 if (rlist->reloc_count == rlist->reloc_array_size) {
963 rlist->reloc_array_size *= 2;
964 rlist->relocs = realloc(rlist->relocs,
965 rlist->reloc_array_size *
966 sizeof(struct drm_i915_gem_relocation_entry));
967 }
968
969 unsigned int index = add_exec_bo(batch, target);
970 struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
971
972 if (reloc_flags)
973 entry->flags |= reloc_flags & batch->valid_reloc_flags;
974
975 rlist->relocs[rlist->reloc_count++] =
976 (struct drm_i915_gem_relocation_entry) {
977 .offset = offset,
978 .delta = target_offset,
979 .target_handle = batch->use_batch_first ? index : target->gem_handle,
980 .presumed_offset = entry->offset,
981 };
982
983 /* Using the old buffer offset, write in what the right data would be, in
984 * case the buffer doesn't move and we can short-circuit the relocation
985 * processing in the kernel
986 */
987 return entry->offset + target_offset;
988 }
989
990 uint64_t
991 brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
992 struct brw_bo *target, uint32_t target_offset,
993 unsigned int reloc_flags)
994 {
995 assert(batch_offset <= batch->bo->size - sizeof(uint32_t));
996
997 return emit_reloc(batch, &batch->batch_relocs, batch_offset,
998 target, target_offset, reloc_flags);
999 }
1000
1001 uint64_t
1002 brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
1003 struct brw_bo *target, uint32_t target_offset,
1004 unsigned int reloc_flags)
1005 {
1006 assert(state_offset <= batch->state_bo->size - sizeof(uint32_t));
1007
1008 return emit_reloc(batch, &batch->state_relocs, state_offset,
1009 target, target_offset, reloc_flags);
1010 }
1011
1012
1013 uint32_t
1014 brw_state_batch_size(struct brw_context *brw, uint32_t offset)
1015 {
1016 struct hash_entry *entry =
1017 _mesa_hash_table_search(brw->batch.state_batch_sizes,
1018 (void *) (uintptr_t) offset);
1019 return entry ? (uintptr_t) entry->data : 0;
1020 }
1021
1022 /**
1023 * Reserve some space in the statebuffer, or flush.
1024 *
1025 * This is used to estimate when we're near the end of the batch,
1026 * so we can flush early.
1027 */
1028 void
1029 brw_require_statebuffer_space(struct brw_context *brw, int size)
1030 {
1031 if (brw->batch.state_used + size >= STATE_SZ)
1032 intel_batchbuffer_flush(brw);
1033 }
1034
1035 /**
1036 * Allocates a block of space in the batchbuffer for indirect state.
1037 */
1038 void *
1039 brw_state_batch(struct brw_context *brw,
1040 int size,
1041 int alignment,
1042 uint32_t *out_offset)
1043 {
1044 struct intel_batchbuffer *batch = &brw->batch;
1045
1046 assert(size < batch->bo->size);
1047
1048 uint32_t offset = ALIGN(batch->state_used, alignment);
1049
1050 if (offset + size >= STATE_SZ) {
1051 if (!batch->no_wrap) {
1052 intel_batchbuffer_flush(brw);
1053 offset = ALIGN(batch->state_used, alignment);
1054 } else {
1055 const unsigned new_size =
1056 MIN2(batch->state_bo->size + batch->state_bo->size / 2,
1057 MAX_STATE_SIZE);
1058 grow_buffer(brw, &batch->state_bo, &batch->state_map,
1059 &batch->state_cpu_map, batch->state_used, new_size);
1060 assert(offset + size < batch->state_bo->size);
1061 }
1062 }
1063
1064 if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
1065 _mesa_hash_table_insert(batch->state_batch_sizes,
1066 (void *) (uintptr_t) offset,
1067 (void *) (uintptr_t) size);
1068 }
1069
1070 batch->state_used = offset + size;
1071
1072 *out_offset = offset;
1073 return batch->state_map + (offset >> 2);
1074 }
1075
1076 void
1077 intel_batchbuffer_data(struct brw_context *brw,
1078 const void *data, GLuint bytes, enum brw_gpu_ring ring)
1079 {
1080 assert((bytes & 3) == 0);
1081 intel_batchbuffer_require_space(brw, bytes, ring);
1082 memcpy(brw->batch.map_next, data, bytes);
1083 brw->batch.map_next += bytes >> 2;
1084 }
1085
1086 static void
1087 load_sized_register_mem(struct brw_context *brw,
1088 uint32_t reg,
1089 struct brw_bo *bo,
1090 uint32_t offset,
1091 int size)
1092 {
1093 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1094 int i;
1095
1096 /* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
1097 assert(devinfo->gen >= 7);
1098
1099 if (devinfo->gen >= 8) {
1100 BEGIN_BATCH(4 * size);
1101 for (i = 0; i < size; i++) {
1102 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
1103 OUT_BATCH(reg + i * 4);
1104 OUT_RELOC64(bo, 0, offset + i * 4);
1105 }
1106 ADVANCE_BATCH();
1107 } else {
1108 BEGIN_BATCH(3 * size);
1109 for (i = 0; i < size; i++) {
1110 OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
1111 OUT_BATCH(reg + i * 4);
1112 OUT_RELOC(bo, 0, offset + i * 4);
1113 }
1114 ADVANCE_BATCH();
1115 }
1116 }
1117
1118 void
1119 brw_load_register_mem(struct brw_context *brw,
1120 uint32_t reg,
1121 struct brw_bo *bo,
1122 uint32_t offset)
1123 {
1124 load_sized_register_mem(brw, reg, bo, offset, 1);
1125 }
1126
1127 void
1128 brw_load_register_mem64(struct brw_context *brw,
1129 uint32_t reg,
1130 struct brw_bo *bo,
1131 uint32_t offset)
1132 {
1133 load_sized_register_mem(brw, reg, bo, offset, 2);
1134 }
1135
1136 /*
1137 * Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
1138 */
1139 void
1140 brw_store_register_mem32(struct brw_context *brw,
1141 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1142 {
1143 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1144
1145 assert(devinfo->gen >= 6);
1146
1147 if (devinfo->gen >= 8) {
1148 BEGIN_BATCH(4);
1149 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1150 OUT_BATCH(reg);
1151 OUT_RELOC64(bo, RELOC_WRITE, offset);
1152 ADVANCE_BATCH();
1153 } else {
1154 BEGIN_BATCH(3);
1155 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1156 OUT_BATCH(reg);
1157 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1158 ADVANCE_BATCH();
1159 }
1160 }
1161
1162 /*
1163 * Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
1164 */
1165 void
1166 brw_store_register_mem64(struct brw_context *brw,
1167 struct brw_bo *bo, uint32_t reg, uint32_t offset)
1168 {
1169 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1170
1171 assert(devinfo->gen >= 6);
1172
1173 /* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
1174 * read a full 64-bit register, we need to do two of them.
1175 */
1176 if (devinfo->gen >= 8) {
1177 BEGIN_BATCH(8);
1178 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1179 OUT_BATCH(reg);
1180 OUT_RELOC64(bo, RELOC_WRITE, offset);
1181 OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
1182 OUT_BATCH(reg + sizeof(uint32_t));
1183 OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
1184 ADVANCE_BATCH();
1185 } else {
1186 BEGIN_BATCH(6);
1187 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1188 OUT_BATCH(reg);
1189 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
1190 OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
1191 OUT_BATCH(reg + sizeof(uint32_t));
1192 OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
1193 ADVANCE_BATCH();
1194 }
1195 }
1196
1197 /*
1198 * Write a 32-bit register using immediate data.
1199 */
1200 void
1201 brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
1202 {
1203 assert(brw->screen->devinfo.gen >= 6);
1204
1205 BEGIN_BATCH(3);
1206 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
1207 OUT_BATCH(reg);
1208 OUT_BATCH(imm);
1209 ADVANCE_BATCH();
1210 }
1211
1212 /*
1213 * Write a 64-bit register using immediate data.
1214 */
1215 void
1216 brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
1217 {
1218 assert(brw->screen->devinfo.gen >= 6);
1219
1220 BEGIN_BATCH(5);
1221 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
1222 OUT_BATCH(reg);
1223 OUT_BATCH(imm & 0xffffffff);
1224 OUT_BATCH(reg + 4);
1225 OUT_BATCH(imm >> 32);
1226 ADVANCE_BATCH();
1227 }
1228
1229 /*
1230 * Copies a 32-bit register.
1231 */
1232 void
1233 brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
1234 {
1235 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1236
1237 BEGIN_BATCH(3);
1238 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1239 OUT_BATCH(src);
1240 OUT_BATCH(dest);
1241 ADVANCE_BATCH();
1242 }
1243
1244 /*
1245 * Copies a 64-bit register.
1246 */
1247 void
1248 brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
1249 {
1250 assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
1251
1252 BEGIN_BATCH(6);
1253 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1254 OUT_BATCH(src);
1255 OUT_BATCH(dest);
1256 OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
1257 OUT_BATCH(src + sizeof(uint32_t));
1258 OUT_BATCH(dest + sizeof(uint32_t));
1259 ADVANCE_BATCH();
1260 }
1261
1262 /*
1263 * Write 32-bits of immediate data to a GPU memory buffer.
1264 */
1265 void
1266 brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
1267 uint32_t offset, uint32_t imm)
1268 {
1269 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1270
1271 assert(devinfo->gen >= 6);
1272
1273 BEGIN_BATCH(4);
1274 OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
1275 if (devinfo->gen >= 8)
1276 OUT_RELOC64(bo, RELOC_WRITE, offset);
1277 else {
1278 OUT_BATCH(0); /* MBZ */
1279 OUT_RELOC(bo, RELOC_WRITE, offset);
1280 }
1281 OUT_BATCH(imm);
1282 ADVANCE_BATCH();
1283 }
1284
1285 /*
1286 * Write 64-bits of immediate data to a GPU memory buffer.
1287 */
1288 void
1289 brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
1290 uint32_t offset, uint64_t imm)
1291 {
1292 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1293
1294 assert(devinfo->gen >= 6);
1295
1296 BEGIN_BATCH(5);
1297 OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
1298 if (devinfo->gen >= 8)
1299 OUT_RELOC64(bo, 0, offset);
1300 else {
1301 OUT_BATCH(0); /* MBZ */
1302 OUT_RELOC(bo, RELOC_WRITE, offset);
1303 }
1304 OUT_BATCH(imm & 0xffffffffu);
1305 OUT_BATCH(imm >> 32);
1306 ADVANCE_BATCH();
1307 }