i965: Move intel_context::gen and gt fields to brw_context.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "brw_context.h"
36 #include "intel_blit.h"
37 #include "intel_buffers.h"
38 #include "intel_fbo.h"
39 #include "intel_reg.h"
40 #include "intel_regions.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_mipmap_tree.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_BLIT
45
46 static void
47 intel_miptree_set_alpha_to_one(struct brw_context *brw,
48 struct intel_mipmap_tree *mt,
49 int x, int y, int width, int height);
50
51 static GLuint translate_raster_op(GLenum logicop)
52 {
53 switch(logicop) {
54 case GL_CLEAR: return 0x00;
55 case GL_AND: return 0x88;
56 case GL_AND_REVERSE: return 0x44;
57 case GL_COPY: return 0xCC;
58 case GL_AND_INVERTED: return 0x22;
59 case GL_NOOP: return 0xAA;
60 case GL_XOR: return 0x66;
61 case GL_OR: return 0xEE;
62 case GL_NOR: return 0x11;
63 case GL_EQUIV: return 0x99;
64 case GL_INVERT: return 0x55;
65 case GL_OR_REVERSE: return 0xDD;
66 case GL_COPY_INVERTED: return 0x33;
67 case GL_OR_INVERTED: return 0xBB;
68 case GL_NAND: return 0x77;
69 case GL_SET: return 0xFF;
70 default: return 0;
71 }
72 }
73
74 static uint32_t
75 br13_for_cpp(int cpp)
76 {
77 switch (cpp) {
78 case 4:
79 return BR13_8888;
80 break;
81 case 2:
82 return BR13_565;
83 break;
84 case 1:
85 return BR13_8;
86 break;
87 default:
88 assert(0);
89 return 0;
90 }
91 }
92
93 /**
94 * Emits the packet for switching the blitter from X to Y tiled or back.
95 *
96 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
97 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
98 * part of the power context, not a render context, and if the batchbuffer was
99 * to get flushed between setting and blitting, or blitting and restoring, our
100 * tiling state would leak into other unsuspecting applications (like the X
101 * server).
102 */
103 static void
104 set_blitter_tiling(struct brw_context *brw,
105 bool dst_y_tiled, bool src_y_tiled)
106 {
107 assert(brw->gen >= 6);
108
109 /* Idle the blitter before we update how tiling is interpreted. */
110 OUT_BATCH(MI_FLUSH_DW);
111 OUT_BATCH(0);
112 OUT_BATCH(0);
113 OUT_BATCH(0);
114
115 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
116 OUT_BATCH(BCS_SWCTRL);
117 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
118 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
119 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
120 }
121
122 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) do { \
123 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
124 if (dst_y_tiled || src_y_tiled) \
125 set_blitter_tiling(brw, dst_y_tiled, src_y_tiled); \
126 } while (0)
127
128 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) do { \
129 if (dst_y_tiled || src_y_tiled) \
130 set_blitter_tiling(brw, false, false); \
131 ADVANCE_BATCH(); \
132 } while (0)
133
134 /**
135 * Implements a rectangular block transfer (blit) of pixels between two
136 * miptrees.
137 *
138 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
139 * but limited, pitches and sizes allowed.
140 *
141 * The src/dst coordinates are relative to the given level/slice of the
142 * miptree.
143 *
144 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
145 * will be inverted (including scanline order) when copying. This is common
146 * in GL when copying between window system and user-created
147 * renderbuffers/textures.
148 */
149 bool
150 intel_miptree_blit(struct brw_context *brw,
151 struct intel_mipmap_tree *src_mt,
152 int src_level, int src_slice,
153 uint32_t src_x, uint32_t src_y, bool src_flip,
154 struct intel_mipmap_tree *dst_mt,
155 int dst_level, int dst_slice,
156 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
157 uint32_t width, uint32_t height,
158 GLenum logicop)
159 {
160 /* No sRGB decode or encode is done by the hardware blitter, which is
161 * consistent with what we want in the callers (glCopyTexSubImage(),
162 * glBlitFramebuffer(), texture validation, etc.).
163 */
164 gl_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
165 gl_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
166
167 /* The blitter doesn't support doing any format conversions. We do also
168 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
169 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
170 * channel to 1.0 at the end.
171 */
172 if (src_format != dst_format &&
173 ((src_format != MESA_FORMAT_ARGB8888 &&
174 src_format != MESA_FORMAT_XRGB8888) ||
175 (dst_format != MESA_FORMAT_ARGB8888 &&
176 dst_format != MESA_FORMAT_XRGB8888))) {
177 perf_debug("%s: Can't use hardware blitter from %s to %s, "
178 "falling back.\n", __FUNCTION__,
179 _mesa_get_format_name(src_format),
180 _mesa_get_format_name(dst_format));
181 return false;
182 }
183
184 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
185 * Data Size Limitations):
186 *
187 * The BLT engine is capable of transferring very large quantities of
188 * graphics data. Any graphics data read from and written to the
189 * destination is permitted to represent a number of pixels that
190 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
191 * at the destination. The maximum number of pixels that may be
192 * represented per scan line’s worth of graphics data depends on the
193 * color depth.
194 *
195 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
196 * 16-bit integer to represent buffer pitch, so it can only handle buffer
197 * pitches < 32k.
198 *
199 * As a result of these two limitations, we can only use the blitter to do
200 * this copy when the region's pitch is less than 32k.
201 */
202 if (src_mt->region->pitch > 32768 ||
203 dst_mt->region->pitch > 32768) {
204 perf_debug("Falling back due to >32k pitch\n");
205 return false;
206 }
207
208 /* The blitter has no idea about HiZ or fast color clears, so we need to
209 * resolve the miptrees before we do anything.
210 */
211 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
212 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
213 intel_miptree_resolve_color(brw, src_mt);
214 intel_miptree_resolve_color(brw, dst_mt);
215
216 if (src_flip)
217 src_y = src_mt->level[src_level].height - src_y - height;
218
219 if (dst_flip)
220 dst_y = dst_mt->level[dst_level].height - dst_y - height;
221
222 int src_pitch = src_mt->region->pitch;
223 if (src_flip != dst_flip)
224 src_pitch = -src_pitch;
225
226 uint32_t src_image_x, src_image_y;
227 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
228 &src_image_x, &src_image_y);
229 src_x += src_image_x;
230 src_y += src_image_y;
231
232 uint32_t dst_image_x, dst_image_y;
233 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
234 &dst_image_x, &dst_image_y);
235 dst_x += dst_image_x;
236 dst_y += dst_image_y;
237
238 if (!intelEmitCopyBlit(brw,
239 src_mt->cpp,
240 src_pitch,
241 src_mt->region->bo, src_mt->offset,
242 src_mt->region->tiling,
243 dst_mt->region->pitch,
244 dst_mt->region->bo, dst_mt->offset,
245 dst_mt->region->tiling,
246 src_x, src_y,
247 dst_x, dst_y,
248 width, height,
249 logicop)) {
250 return false;
251 }
252
253 if (src_mt->format == MESA_FORMAT_XRGB8888 &&
254 dst_mt->format == MESA_FORMAT_ARGB8888) {
255 intel_miptree_set_alpha_to_one(brw, dst_mt,
256 dst_x, dst_y,
257 width, height);
258 }
259
260 return true;
261 }
262
263 /* Copy BitBlt
264 */
265 bool
266 intelEmitCopyBlit(struct brw_context *brw,
267 GLuint cpp,
268 GLshort src_pitch,
269 drm_intel_bo *src_buffer,
270 GLuint src_offset,
271 uint32_t src_tiling,
272 GLshort dst_pitch,
273 drm_intel_bo *dst_buffer,
274 GLuint dst_offset,
275 uint32_t dst_tiling,
276 GLshort src_x, GLshort src_y,
277 GLshort dst_x, GLshort dst_y,
278 GLshort w, GLshort h,
279 GLenum logic_op)
280 {
281 GLuint CMD, BR13, pass = 0;
282 int dst_y2 = dst_y + h;
283 int dst_x2 = dst_x + w;
284 drm_intel_bo *aper_array[3];
285 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
286 bool src_y_tiled = src_tiling == I915_TILING_Y;
287 BATCH_LOCALS;
288
289 if (dst_tiling != I915_TILING_NONE) {
290 if (dst_offset & 4095)
291 return false;
292 }
293 if (src_tiling != I915_TILING_NONE) {
294 if (src_offset & 4095)
295 return false;
296 }
297 if ((dst_y_tiled || src_y_tiled) && brw->gen < 6)
298 return false;
299
300 /* do space check before going any further */
301 do {
302 aper_array[0] = brw->batch.bo;
303 aper_array[1] = dst_buffer;
304 aper_array[2] = src_buffer;
305
306 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
307 intel_batchbuffer_flush(brw);
308 pass++;
309 } else
310 break;
311 } while (pass < 2);
312
313 if (pass >= 2)
314 return false;
315
316 intel_batchbuffer_require_space(brw, 8 * 4, true);
317 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
318 __FUNCTION__,
319 src_buffer, src_pitch, src_offset, src_x, src_y,
320 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
321
322 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
323 * the low bits.
324 */
325 if (src_pitch % 4 != 0 || dst_pitch % 4 != 0)
326 return false;
327
328 /* For big formats (such as floating point), do the copy using 16 or 32bpp
329 * and multiply the coordinates.
330 */
331 if (cpp > 4) {
332 if (cpp % 4 == 2) {
333 dst_x *= cpp / 2;
334 dst_x2 *= cpp / 2;
335 src_x *= cpp / 2;
336 cpp = 2;
337 } else {
338 assert(cpp % 4 == 0);
339 dst_x *= cpp / 4;
340 dst_x2 *= cpp / 4;
341 src_x *= cpp / 4;
342 cpp = 4;
343 }
344 }
345
346 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
347
348 switch (cpp) {
349 case 1:
350 case 2:
351 CMD = XY_SRC_COPY_BLT_CMD;
352 break;
353 case 4:
354 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
355 break;
356 default:
357 return false;
358 }
359
360 if (dst_tiling != I915_TILING_NONE) {
361 CMD |= XY_DST_TILED;
362 dst_pitch /= 4;
363 }
364 if (src_tiling != I915_TILING_NONE) {
365 CMD |= XY_SRC_TILED;
366 src_pitch /= 4;
367 }
368
369 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
370 return true;
371 }
372
373 assert(dst_x < dst_x2);
374 assert(dst_y < dst_y2);
375
376 BEGIN_BATCH_BLT_TILED(8, dst_y_tiled, src_y_tiled);
377
378 OUT_BATCH(CMD | (8 - 2));
379 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
380 OUT_BATCH((dst_y << 16) | dst_x);
381 OUT_BATCH((dst_y2 << 16) | dst_x2);
382 OUT_RELOC_FENCED(dst_buffer,
383 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
384 dst_offset);
385 OUT_BATCH((src_y << 16) | src_x);
386 OUT_BATCH((uint16_t)src_pitch);
387 OUT_RELOC_FENCED(src_buffer,
388 I915_GEM_DOMAIN_RENDER, 0,
389 src_offset);
390
391 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
392
393 intel_batchbuffer_emit_mi_flush(brw);
394
395 return true;
396 }
397
398 bool
399 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
400 GLuint cpp,
401 GLubyte *src_bits, GLuint src_size,
402 GLuint fg_color,
403 GLshort dst_pitch,
404 drm_intel_bo *dst_buffer,
405 GLuint dst_offset,
406 uint32_t dst_tiling,
407 GLshort x, GLshort y,
408 GLshort w, GLshort h,
409 GLenum logic_op)
410 {
411 int dwords = ALIGN(src_size, 8) / 4;
412 uint32_t opcode, br13, blit_cmd;
413
414 if (dst_tiling != I915_TILING_NONE) {
415 if (dst_offset & 4095)
416 return false;
417 if (dst_tiling == I915_TILING_Y)
418 return false;
419 }
420
421 assert( logic_op - GL_CLEAR >= 0 );
422 assert( logic_op - GL_CLEAR < 0x10 );
423 assert(dst_pitch > 0);
424
425 if (w < 0 || h < 0)
426 return true;
427
428 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
429 __FUNCTION__,
430 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
431
432 intel_batchbuffer_require_space(brw, (8 * 4) + (3 * 4) + dwords * 4, true);
433
434 opcode = XY_SETUP_BLT_CMD;
435 if (cpp == 4)
436 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
437 if (dst_tiling != I915_TILING_NONE) {
438 opcode |= XY_DST_TILED;
439 dst_pitch /= 4;
440 }
441
442 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
443 br13 |= br13_for_cpp(cpp);
444
445 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
446 if (dst_tiling != I915_TILING_NONE)
447 blit_cmd |= XY_DST_TILED;
448
449 BEGIN_BATCH_BLT(8 + 3);
450 OUT_BATCH(opcode | (8 - 2));
451 OUT_BATCH(br13);
452 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
453 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
454 OUT_RELOC_FENCED(dst_buffer,
455 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
456 dst_offset);
457 OUT_BATCH(0); /* bg */
458 OUT_BATCH(fg_color); /* fg */
459 OUT_BATCH(0); /* pattern base addr */
460
461 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
462 OUT_BATCH((y << 16) | x);
463 OUT_BATCH(((y + h) << 16) | (x + w));
464 ADVANCE_BATCH();
465
466 intel_batchbuffer_data(brw, src_bits, dwords * 4, true);
467
468 intel_batchbuffer_emit_mi_flush(brw);
469
470 return true;
471 }
472
473 /* We don't have a memmove-type blit like some other hardware, so we'll do a
474 * rectangular blit covering a large space, then emit 1-scanline blit at the
475 * end to cover the last if we need.
476 */
477 void
478 intel_emit_linear_blit(struct brw_context *brw,
479 drm_intel_bo *dst_bo,
480 unsigned int dst_offset,
481 drm_intel_bo *src_bo,
482 unsigned int src_offset,
483 unsigned int size)
484 {
485 struct intel_context *intel = &brw->intel;
486 struct gl_context *ctx = &intel->ctx;
487 GLuint pitch, height;
488 bool ok;
489
490 /* The pitch given to the GPU must be DWORD aligned, and
491 * we want width to match pitch. Max width is (1 << 15 - 1),
492 * rounding that down to the nearest DWORD is 1 << 15 - 4
493 */
494 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
495 height = (pitch == 0) ? 1 : size / pitch;
496 ok = intelEmitCopyBlit(brw, 1,
497 pitch, src_bo, src_offset, I915_TILING_NONE,
498 pitch, dst_bo, dst_offset, I915_TILING_NONE,
499 0, 0, /* src x/y */
500 0, 0, /* dst x/y */
501 pitch, height, /* w, h */
502 GL_COPY);
503 if (!ok)
504 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
505
506 src_offset += pitch * height;
507 dst_offset += pitch * height;
508 size -= pitch * height;
509 assert (size < (1 << 15));
510 pitch = ALIGN(size, 4);
511 if (size != 0) {
512 ok = intelEmitCopyBlit(brw, 1,
513 pitch, src_bo, src_offset, I915_TILING_NONE,
514 pitch, dst_bo, dst_offset, I915_TILING_NONE,
515 0, 0, /* src x/y */
516 0, 0, /* dst x/y */
517 size, 1, /* w, h */
518 GL_COPY);
519 if (!ok)
520 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
521 }
522 }
523
524 /**
525 * Used to initialize the alpha value of an ARGB8888 miptree after copying
526 * into it from an XRGB8888 source.
527 *
528 * This is very common with glCopyTexImage2D(). Note that the coordinates are
529 * relative to the start of the miptree, not relative to a slice within the
530 * miptree.
531 */
532 static void
533 intel_miptree_set_alpha_to_one(struct brw_context *brw,
534 struct intel_mipmap_tree *mt,
535 int x, int y, int width, int height)
536 {
537 struct intel_region *region = mt->region;
538 uint32_t BR13, CMD;
539 int pitch, cpp;
540 drm_intel_bo *aper_array[2];
541 BATCH_LOCALS;
542
543 pitch = region->pitch;
544 cpp = region->cpp;
545
546 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
547 __FUNCTION__, region->bo, pitch, x, y, width, height);
548
549 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
550 CMD = XY_COLOR_BLT_CMD;
551 CMD |= XY_BLT_WRITE_ALPHA;
552
553 if (region->tiling != I915_TILING_NONE) {
554 CMD |= XY_DST_TILED;
555 pitch /= 4;
556 }
557 BR13 |= pitch;
558
559 /* do space check before going any further */
560 aper_array[0] = brw->batch.bo;
561 aper_array[1] = region->bo;
562
563 if (drm_intel_bufmgr_check_aperture_space(aper_array,
564 ARRAY_SIZE(aper_array)) != 0) {
565 intel_batchbuffer_flush(brw);
566 }
567
568 bool dst_y_tiled = region->tiling == I915_TILING_Y;
569
570 BEGIN_BATCH_BLT_TILED(6, dst_y_tiled, false);
571 OUT_BATCH(CMD | (6 - 2));
572 OUT_BATCH(BR13);
573 OUT_BATCH((y << 16) | x);
574 OUT_BATCH(((y + height) << 16) | (x + width));
575 OUT_RELOC_FENCED(region->bo,
576 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
577 0);
578 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
579 ADVANCE_BATCH_TILED(dst_y_tiled, false);
580
581 intel_batchbuffer_emit_mi_flush(brw);
582 }