i965/blit: Break blits into chunks in intel_miptree_blit
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/mtypes.h"
27 #include "main/blit.h"
28 #include "main/context.h"
29 #include "main/enums.h"
30 #include "main/fbobject.h"
31
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "intel_blit.h"
35 #include "intel_buffers.h"
36 #include "intel_fbo.h"
37 #include "intel_batchbuffer.h"
38 #include "intel_mipmap_tree.h"
39
40 #define FILE_DEBUG_FLAG DEBUG_BLIT
41
42 #define SET_TILING_XY_FAST_COPY_BLT(tiling, tr_mode, type) \
43 ({ \
44 switch (tiling) { \
45 case I915_TILING_X: \
46 CMD |= type ## _TILED_X; \
47 break; \
48 case I915_TILING_Y: \
49 if (tr_mode == INTEL_MIPTREE_TRMODE_YS) \
50 CMD |= type ## _TILED_64K; \
51 else \
52 CMD |= type ## _TILED_Y; \
53 break; \
54 default: \
55 unreachable("not reached"); \
56 } \
57 })
58
59 static void
60 intel_miptree_set_alpha_to_one(struct brw_context *brw,
61 struct intel_mipmap_tree *mt,
62 int x, int y, int width, int height);
63
64 static GLuint translate_raster_op(GLenum logicop)
65 {
66 switch(logicop) {
67 case GL_CLEAR: return 0x00;
68 case GL_AND: return 0x88;
69 case GL_AND_REVERSE: return 0x44;
70 case GL_COPY: return 0xCC;
71 case GL_AND_INVERTED: return 0x22;
72 case GL_NOOP: return 0xAA;
73 case GL_XOR: return 0x66;
74 case GL_OR: return 0xEE;
75 case GL_NOR: return 0x11;
76 case GL_EQUIV: return 0x99;
77 case GL_INVERT: return 0x55;
78 case GL_OR_REVERSE: return 0xDD;
79 case GL_COPY_INVERTED: return 0x33;
80 case GL_OR_INVERTED: return 0xBB;
81 case GL_NAND: return 0x77;
82 case GL_SET: return 0xFF;
83 default: return 0;
84 }
85 }
86
87 static uint32_t
88 br13_for_cpp(int cpp)
89 {
90 switch (cpp) {
91 case 16:
92 return BR13_32323232;
93 case 8:
94 return BR13_16161616;
95 case 4:
96 return BR13_8888;
97 case 2:
98 return BR13_565;
99 case 1:
100 return BR13_8;
101 default:
102 unreachable("not reached");
103 }
104 }
105
106 /**
107 * Emits the packet for switching the blitter from X to Y tiled or back.
108 *
109 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
110 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
111 * part of the power context, not a render context, and if the batchbuffer was
112 * to get flushed between setting and blitting, or blitting and restoring, our
113 * tiling state would leak into other unsuspecting applications (like the X
114 * server).
115 */
116 static uint32_t *
117 set_blitter_tiling(struct brw_context *brw,
118 bool dst_y_tiled, bool src_y_tiled,
119 uint32_t *__map)
120 {
121 assert(brw->gen >= 6);
122
123 /* Idle the blitter before we update how tiling is interpreted. */
124 OUT_BATCH(MI_FLUSH_DW);
125 OUT_BATCH(0);
126 OUT_BATCH(0);
127 OUT_BATCH(0);
128
129 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
130 OUT_BATCH(BCS_SWCTRL);
131 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
132 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
133 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
134 return __map;
135 }
136 #define SET_BLITTER_TILING(...) __map = set_blitter_tiling(__VA_ARGS__, __map)
137
138 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) \
139 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
140 if (dst_y_tiled || src_y_tiled) \
141 SET_BLITTER_TILING(brw, dst_y_tiled, src_y_tiled)
142
143 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) \
144 if (dst_y_tiled || src_y_tiled) \
145 SET_BLITTER_TILING(brw, false, false); \
146 ADVANCE_BATCH()
147
148 static int
149 blt_pitch(struct intel_mipmap_tree *mt)
150 {
151 int pitch = mt->pitch;
152 if (mt->tiling)
153 pitch /= 4;
154 return pitch;
155 }
156
157 bool
158 intel_miptree_blit_compatible_formats(mesa_format src, mesa_format dst)
159 {
160 /* The BLT doesn't handle sRGB conversion */
161 assert(src == _mesa_get_srgb_format_linear(src));
162 assert(dst == _mesa_get_srgb_format_linear(dst));
163
164 /* No swizzle or format conversions possible, except... */
165 if (src == dst)
166 return true;
167
168 /* ...we can either discard the alpha channel when going from A->X,
169 * or we can fill the alpha channel with 0xff when going from X->A
170 */
171 if (src == MESA_FORMAT_B8G8R8A8_UNORM || src == MESA_FORMAT_B8G8R8X8_UNORM)
172 return (dst == MESA_FORMAT_B8G8R8A8_UNORM ||
173 dst == MESA_FORMAT_B8G8R8X8_UNORM);
174
175 if (src == MESA_FORMAT_R8G8B8A8_UNORM || src == MESA_FORMAT_R8G8B8X8_UNORM)
176 return (dst == MESA_FORMAT_R8G8B8A8_UNORM ||
177 dst == MESA_FORMAT_R8G8B8X8_UNORM);
178
179 return false;
180 }
181
182 static void
183 get_blit_intratile_offset_el(const struct brw_context *brw,
184 struct intel_mipmap_tree *mt,
185 uint32_t total_x_offset_el,
186 uint32_t total_y_offset_el,
187 uint32_t *base_address_offset,
188 uint32_t *x_offset_el,
189 uint32_t *y_offset_el)
190 {
191 enum isl_tiling tiling = intel_miptree_get_isl_tiling(mt);
192 isl_tiling_get_intratile_offset_el(&brw->isl_dev,
193 tiling, mt->cpp, mt->pitch,
194 total_x_offset_el, total_y_offset_el,
195 base_address_offset,
196 x_offset_el, y_offset_el);
197 if (tiling == ISL_TILING_LINEAR) {
198 /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
199 *
200 * "Base address of the destination surface: X=0, Y=0. Lower 32bits
201 * of the 48bit addressing. When Src Tiling is enabled (Bit_15
202 * enabled), this address must be 4KB-aligned. When Tiling is not
203 * enabled, this address should be CL (64byte) aligned."
204 *
205 * The offsets we get from ISL in the tiled case are already aligned.
206 * In the linear case, we need to do some of our own aligning.
207 */
208 assert(mt->pitch % 64 == 0);
209 uint32_t delta = *base_address_offset & 63;
210 assert(delta % mt->cpp == 0);
211 *base_address_offset -= delta;
212 *x_offset_el += delta / mt->cpp;
213 } else {
214 assert(*base_address_offset % 4096 == 0);
215 }
216 }
217
218 /**
219 * Implements a rectangular block transfer (blit) of pixels between two
220 * miptrees.
221 *
222 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
223 * but limited, pitches and sizes allowed.
224 *
225 * The src/dst coordinates are relative to the given level/slice of the
226 * miptree.
227 *
228 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
229 * will be inverted (including scanline order) when copying. This is common
230 * in GL when copying between window system and user-created
231 * renderbuffers/textures.
232 */
233 bool
234 intel_miptree_blit(struct brw_context *brw,
235 struct intel_mipmap_tree *src_mt,
236 int src_level, int src_slice,
237 uint32_t src_x, uint32_t src_y, bool src_flip,
238 struct intel_mipmap_tree *dst_mt,
239 int dst_level, int dst_slice,
240 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
241 uint32_t width, uint32_t height,
242 GLenum logicop)
243 {
244 /* The blitter doesn't understand multisampling at all. */
245 if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
246 return false;
247
248 /* No sRGB decode or encode is done by the hardware blitter, which is
249 * consistent with what we want in many callers (glCopyTexSubImage(),
250 * texture validation, etc.).
251 */
252 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
253 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
254
255 /* The blitter doesn't support doing any format conversions. We do also
256 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
257 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
258 * channel to 1.0 at the end.
259 */
260 if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) {
261 perf_debug("%s: Can't use hardware blitter from %s to %s, "
262 "falling back.\n", __func__,
263 _mesa_get_format_name(src_format),
264 _mesa_get_format_name(dst_format));
265 return false;
266 }
267
268 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
269 * Data Size Limitations):
270 *
271 * The BLT engine is capable of transferring very large quantities of
272 * graphics data. Any graphics data read from and written to the
273 * destination is permitted to represent a number of pixels that
274 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
275 * at the destination. The maximum number of pixels that may be
276 * represented per scan line’s worth of graphics data depends on the
277 * color depth.
278 *
279 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
280 * 16-bit integer to represent buffer pitch, so it can only handle buffer
281 * pitches < 32k. However, the pitch is measured in bytes for linear buffers
282 * and dwords for tiled buffers.
283 *
284 * As a result of these two limitations, we can only use the blitter to do
285 * this copy when the miptree's pitch is less than 32k linear or 128k tiled.
286 */
287 if (blt_pitch(src_mt) >= 32768 || blt_pitch(dst_mt) >= 32768) {
288 perf_debug("Falling back due to >= 32k/128k pitch\n");
289 return false;
290 }
291
292 /* The blitter has no idea about HiZ or fast color clears, so we need to
293 * resolve the miptrees before we do anything.
294 */
295 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
296 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
297 intel_miptree_resolve_color(brw, src_mt, 0);
298 intel_miptree_resolve_color(brw, dst_mt, 0);
299
300 if (src_flip)
301 src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height;
302
303 if (dst_flip)
304 dst_y = minify(dst_mt->physical_height0, dst_level - dst_mt->first_level) - dst_y - height;
305
306 uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
307 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
308 &src_image_x, &src_image_y);
309 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
310 &dst_image_x, &dst_image_y);
311 src_x += src_image_x;
312 src_y += src_image_y;
313 dst_x += dst_image_x;
314 dst_y += dst_image_y;
315
316 /* We need to split the blit into chunks that each fit within the blitter's
317 * restrictions. We can't use a chunk size of 32768 because we need to
318 * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
319 * a nice round power of two, big enough that performance won't suffer, and
320 * small enough to guarantee everything fits.
321 */
322 const uint32_t max_chunk_size = 16384;
323
324 for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
325 for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
326 const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
327 const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
328
329 uint32_t src_offset, src_tile_x, src_tile_y;
330 get_blit_intratile_offset_el(brw, src_mt,
331 src_x + chunk_x, src_y + chunk_y,
332 &src_offset, &src_tile_x, &src_tile_y);
333
334 uint32_t dst_offset, dst_tile_x, dst_tile_y;
335 get_blit_intratile_offset_el(brw, dst_mt,
336 dst_x + chunk_x, dst_y + chunk_y,
337 &dst_offset, &dst_tile_x, &dst_tile_y);
338
339 if (!intelEmitCopyBlit(brw,
340 src_mt->cpp,
341 src_flip == dst_flip ? src_mt->pitch :
342 -src_mt->pitch,
343 src_mt->bo, src_mt->offset + src_offset,
344 src_mt->tiling,
345 src_mt->tr_mode,
346 dst_mt->pitch,
347 dst_mt->bo, dst_mt->offset + dst_offset,
348 dst_mt->tiling,
349 dst_mt->tr_mode,
350 src_tile_x, src_tile_y,
351 dst_tile_x, dst_tile_y,
352 chunk_w, chunk_h,
353 logicop)) {
354 /* If this is ever going to fail, it will fail on the first chunk */
355 assert(chunk_x == 0 && chunk_y == 0);
356 return false;
357 }
358 }
359 }
360
361 /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */
362 if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 &&
363 _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) {
364 intel_miptree_set_alpha_to_one(brw, dst_mt,
365 dst_x, dst_y,
366 width, height);
367 }
368
369 return true;
370 }
371
372 static bool
373 alignment_valid(struct brw_context *brw, unsigned offset, uint32_t tiling)
374 {
375 /* Tiled buffers must be page-aligned (4K). */
376 if (tiling != I915_TILING_NONE)
377 return (offset & 4095) == 0;
378
379 /* On Gen8+, linear buffers must be cacheline-aligned. */
380 if (brw->gen >= 8)
381 return (offset & 63) == 0;
382
383 return true;
384 }
385
386 static bool
387 can_fast_copy_blit(struct brw_context *brw,
388 drm_intel_bo *src_buffer,
389 int16_t src_x, int16_t src_y,
390 uintptr_t src_offset, uint32_t src_pitch,
391 uint32_t src_tiling, uint32_t src_tr_mode,
392 drm_intel_bo *dst_buffer,
393 int16_t dst_x, int16_t dst_y,
394 uintptr_t dst_offset, uint32_t dst_pitch,
395 uint32_t dst_tiling, uint32_t dst_tr_mode,
396 int16_t w, int16_t h, uint32_t cpp,
397 GLenum logic_op)
398 {
399 const bool dst_tiling_none = dst_tiling == I915_TILING_NONE;
400 const bool src_tiling_none = src_tiling == I915_TILING_NONE;
401
402 if (brw->gen < 9)
403 return false;
404
405 /* Enable fast copy blit only if the surfaces are Yf/Ys tiled.
406 * FIXME: Based on performance data, remove this condition later to
407 * enable for all types of surfaces.
408 */
409 if (src_tr_mode == INTEL_MIPTREE_TRMODE_NONE &&
410 dst_tr_mode == INTEL_MIPTREE_TRMODE_NONE)
411 return false;
412
413 if (logic_op != GL_COPY)
414 return false;
415
416 /* The start pixel for Fast Copy blit should be on an OWord boundary. */
417 if ((dst_x * cpp | src_x * cpp) & 15)
418 return false;
419
420 /* For all surface types buffers must be cacheline-aligned. */
421 if ((dst_offset | src_offset) & 63)
422 return false;
423
424 /* Color depths which are not power of 2 or greater than 128 bits are
425 * not supported.
426 */
427 if (!_mesa_is_pow_two(cpp) || cpp > 16)
428 return false;
429
430 /* For Fast Copy Blits the pitch cannot be a negative number. So, bit 15
431 * of the destination pitch must be zero.
432 */
433 if ((src_pitch >> 15 & 1) != 0 || (dst_pitch >> 15 & 1) != 0)
434 return false;
435
436 /* For Linear surfaces, the pitch has to be an OWord (16byte) multiple. */
437 if ((src_tiling_none && src_pitch % 16 != 0) ||
438 (dst_tiling_none && dst_pitch % 16 != 0))
439 return false;
440
441 return true;
442 }
443
444 static uint32_t
445 xy_blit_cmd(uint32_t src_tiling, uint32_t src_tr_mode,
446 uint32_t dst_tiling, uint32_t dst_tr_mode,
447 uint32_t cpp, bool use_fast_copy_blit)
448 {
449 uint32_t CMD = 0;
450
451 if (use_fast_copy_blit) {
452 CMD = XY_FAST_COPY_BLT_CMD;
453
454 if (dst_tiling != I915_TILING_NONE)
455 SET_TILING_XY_FAST_COPY_BLT(dst_tiling, dst_tr_mode, XY_FAST_DST);
456
457 if (src_tiling != I915_TILING_NONE)
458 SET_TILING_XY_FAST_COPY_BLT(src_tiling, src_tr_mode, XY_FAST_SRC);
459 } else {
460 assert(cpp <= 4);
461 switch (cpp) {
462 case 1:
463 case 2:
464 CMD = XY_SRC_COPY_BLT_CMD;
465 break;
466 case 4:
467 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
468 break;
469 default:
470 unreachable("not reached");
471 }
472
473 if (dst_tiling != I915_TILING_NONE)
474 CMD |= XY_DST_TILED;
475
476 if (src_tiling != I915_TILING_NONE)
477 CMD |= XY_SRC_TILED;
478 }
479 return CMD;
480 }
481
482 /* Copy BitBlt
483 */
484 bool
485 intelEmitCopyBlit(struct brw_context *brw,
486 GLuint cpp,
487 GLshort src_pitch,
488 drm_intel_bo *src_buffer,
489 GLuint src_offset,
490 uint32_t src_tiling,
491 uint32_t src_tr_mode,
492 GLshort dst_pitch,
493 drm_intel_bo *dst_buffer,
494 GLuint dst_offset,
495 uint32_t dst_tiling,
496 uint32_t dst_tr_mode,
497 GLshort src_x, GLshort src_y,
498 GLshort dst_x, GLshort dst_y,
499 GLshort w, GLshort h,
500 GLenum logic_op)
501 {
502 GLuint CMD, BR13, pass = 0;
503 int dst_y2 = dst_y + h;
504 int dst_x2 = dst_x + w;
505 drm_intel_bo *aper_array[3];
506 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
507 bool src_y_tiled = src_tiling == I915_TILING_Y;
508 bool use_fast_copy_blit = false;
509 uint32_t src_tile_w, src_tile_h;
510 uint32_t dst_tile_w, dst_tile_h;
511
512 if ((dst_y_tiled || src_y_tiled) && brw->gen < 6)
513 return false;
514
515 /* do space check before going any further */
516 do {
517 aper_array[0] = brw->batch.bo;
518 aper_array[1] = dst_buffer;
519 aper_array[2] = src_buffer;
520
521 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
522 intel_batchbuffer_flush(brw);
523 pass++;
524 } else
525 break;
526 } while (pass < 2);
527
528 if (pass >= 2)
529 return false;
530
531 unsigned length = brw->gen >= 8 ? 10 : 8;
532
533 intel_batchbuffer_require_space(brw, length * 4, BLT_RING);
534 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
535 __func__,
536 src_buffer, src_pitch, src_offset, src_x, src_y,
537 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
538
539 intel_get_tile_dims(src_tiling, src_tr_mode, cpp, &src_tile_w, &src_tile_h);
540 intel_get_tile_dims(dst_tiling, dst_tr_mode, cpp, &dst_tile_w, &dst_tile_h);
541
542 /* For Tiled surfaces, the pitch has to be a multiple of the Tile width
543 * (X direction width of the Tile). This is ensured while allocating the
544 * buffer object.
545 */
546 assert(src_tiling == I915_TILING_NONE || (src_pitch % src_tile_w) == 0);
547 assert(dst_tiling == I915_TILING_NONE || (dst_pitch % dst_tile_w) == 0);
548
549 use_fast_copy_blit = can_fast_copy_blit(brw,
550 src_buffer,
551 src_x, src_y,
552 src_offset, src_pitch,
553 src_tiling, src_tr_mode,
554 dst_buffer,
555 dst_x, dst_y,
556 dst_offset, dst_pitch,
557 dst_tiling, dst_tr_mode,
558 w, h, cpp, logic_op);
559 if (!use_fast_copy_blit &&
560 (src_tr_mode != INTEL_MIPTREE_TRMODE_NONE ||
561 dst_tr_mode != INTEL_MIPTREE_TRMODE_NONE))
562 return false;
563
564 if (use_fast_copy_blit) {
565 assert(logic_op == GL_COPY);
566
567 /* When two sequential fast copy blits have different source surfaces,
568 * but their destinations refer to the same destination surfaces and
569 * therefore destinations overlap it is imperative that a flush be
570 * inserted between the two blits.
571 *
572 * FIXME: Figure out a way to avoid flushing when not required.
573 */
574 brw_emit_mi_flush(brw);
575
576 assert(cpp <= 16);
577 BR13 = br13_for_cpp(cpp);
578
579 if (src_tr_mode == INTEL_MIPTREE_TRMODE_YF)
580 BR13 |= XY_FAST_SRC_TRMODE_YF;
581
582 if (dst_tr_mode == INTEL_MIPTREE_TRMODE_YF)
583 BR13 |= XY_FAST_DST_TRMODE_YF;
584
585 CMD = xy_blit_cmd(src_tiling, src_tr_mode,
586 dst_tiling, dst_tr_mode,
587 cpp, use_fast_copy_blit);
588
589 } else {
590 /* For big formats (such as floating point), do the copy using 16 or
591 * 32bpp and multiply the coordinates.
592 */
593 if (cpp > 4) {
594 if (cpp % 4 == 2) {
595 dst_x *= cpp / 2;
596 dst_x2 *= cpp / 2;
597 src_x *= cpp / 2;
598 cpp = 2;
599 } else {
600 assert(cpp % 4 == 0);
601 dst_x *= cpp / 4;
602 dst_x2 *= cpp / 4;
603 src_x *= cpp / 4;
604 cpp = 4;
605 }
606 }
607
608 if (!alignment_valid(brw, dst_offset, dst_tiling))
609 return false;
610 if (!alignment_valid(brw, src_offset, src_tiling))
611 return false;
612
613 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
614 * the low bits. Offsets must be naturally aligned.
615 */
616 if (src_pitch % 4 != 0 || src_offset % cpp != 0 ||
617 dst_pitch % 4 != 0 || dst_offset % cpp != 0)
618 return false;
619
620 assert(cpp <= 4);
621 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
622
623 CMD = xy_blit_cmd(src_tiling, src_tr_mode,
624 dst_tiling, dst_tr_mode,
625 cpp, use_fast_copy_blit);
626 }
627
628 /* For tiled source and destination, pitch value should be specified
629 * as a number of Dwords.
630 */
631 if (dst_tiling != I915_TILING_NONE)
632 dst_pitch /= 4;
633
634 if (src_tiling != I915_TILING_NONE)
635 src_pitch /= 4;
636
637 if (dst_y2 <= dst_y || dst_x2 <= dst_x)
638 return true;
639
640 assert(dst_x < dst_x2);
641 assert(dst_y < dst_y2);
642
643 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled);
644 OUT_BATCH(CMD | (length - 2));
645 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
646 OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X));
647 OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X));
648 if (brw->gen >= 8) {
649 OUT_RELOC64(dst_buffer,
650 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
651 dst_offset);
652 } else {
653 OUT_RELOC(dst_buffer,
654 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
655 dst_offset);
656 }
657 OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X));
658 OUT_BATCH((uint16_t)src_pitch);
659 if (brw->gen >= 8) {
660 OUT_RELOC64(src_buffer,
661 I915_GEM_DOMAIN_RENDER, 0,
662 src_offset);
663 } else {
664 OUT_RELOC(src_buffer,
665 I915_GEM_DOMAIN_RENDER, 0,
666 src_offset);
667 }
668
669 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
670
671 brw_emit_mi_flush(brw);
672
673 return true;
674 }
675
676 bool
677 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
678 GLuint cpp,
679 GLubyte *src_bits, GLuint src_size,
680 GLuint fg_color,
681 GLshort dst_pitch,
682 drm_intel_bo *dst_buffer,
683 GLuint dst_offset,
684 uint32_t dst_tiling,
685 GLshort x, GLshort y,
686 GLshort w, GLshort h,
687 GLenum logic_op)
688 {
689 int dwords = ALIGN(src_size, 8) / 4;
690 uint32_t opcode, br13, blit_cmd;
691
692 if (dst_tiling != I915_TILING_NONE) {
693 if (dst_offset & 4095)
694 return false;
695 if (dst_tiling == I915_TILING_Y)
696 return false;
697 }
698
699 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
700 assert(dst_pitch > 0);
701
702 if (w < 0 || h < 0)
703 return true;
704
705 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
706 __func__,
707 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
708
709 unsigned xy_setup_blt_length = brw->gen >= 8 ? 10 : 8;
710 intel_batchbuffer_require_space(brw, (xy_setup_blt_length * 4) +
711 (3 * 4) + dwords * 4, BLT_RING);
712
713 opcode = XY_SETUP_BLT_CMD;
714 if (cpp == 4)
715 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
716 if (dst_tiling != I915_TILING_NONE) {
717 opcode |= XY_DST_TILED;
718 dst_pitch /= 4;
719 }
720
721 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
722 br13 |= br13_for_cpp(cpp);
723
724 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
725 if (dst_tiling != I915_TILING_NONE)
726 blit_cmd |= XY_DST_TILED;
727
728 BEGIN_BATCH_BLT(xy_setup_blt_length + 3);
729 OUT_BATCH(opcode | (xy_setup_blt_length - 2));
730 OUT_BATCH(br13);
731 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
732 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
733 if (brw->gen >= 8) {
734 OUT_RELOC64(dst_buffer,
735 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
736 dst_offset);
737 } else {
738 OUT_RELOC(dst_buffer,
739 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
740 dst_offset);
741 }
742 OUT_BATCH(0); /* bg */
743 OUT_BATCH(fg_color); /* fg */
744 OUT_BATCH(0); /* pattern base addr */
745 if (brw->gen >= 8)
746 OUT_BATCH(0);
747
748 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
749 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
750 OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X));
751 ADVANCE_BATCH();
752
753 intel_batchbuffer_data(brw, src_bits, dwords * 4, BLT_RING);
754
755 brw_emit_mi_flush(brw);
756
757 return true;
758 }
759
760 /* We don't have a memmove-type blit like some other hardware, so we'll do a
761 * rectangular blit covering a large space, then emit 1-scanline blit at the
762 * end to cover the last if we need.
763 */
764 void
765 intel_emit_linear_blit(struct brw_context *brw,
766 drm_intel_bo *dst_bo,
767 unsigned int dst_offset,
768 drm_intel_bo *src_bo,
769 unsigned int src_offset,
770 unsigned int size)
771 {
772 struct gl_context *ctx = &brw->ctx;
773 GLuint pitch, height;
774 int16_t src_x, dst_x;
775 bool ok;
776
777 do {
778 /* The pitch given to the GPU must be DWORD aligned, and
779 * we want width to match pitch. Max width is (1 << 15 - 1),
780 * rounding that down to the nearest DWORD is 1 << 15 - 4
781 */
782 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 64), 4);
783 height = (size < pitch || pitch == 0) ? 1 : size / pitch;
784
785 src_x = src_offset % 64;
786 dst_x = dst_offset % 64;
787 pitch = ALIGN(MIN2(size, (1 << 15) - 64), 4);
788 assert(src_x + pitch < 1 << 15);
789 assert(dst_x + pitch < 1 << 15);
790
791 ok = intelEmitCopyBlit(brw, 1,
792 pitch, src_bo, src_offset - src_x, I915_TILING_NONE,
793 INTEL_MIPTREE_TRMODE_NONE,
794 pitch, dst_bo, dst_offset - dst_x, I915_TILING_NONE,
795 INTEL_MIPTREE_TRMODE_NONE,
796 src_x, 0, /* src x/y */
797 dst_x, 0, /* dst x/y */
798 MIN2(size, pitch), height, /* w, h */
799 GL_COPY);
800 if (!ok) {
801 _mesa_problem(ctx, "Failed to linear blit %dx%d\n",
802 MIN2(size, pitch), height);
803 return;
804 }
805
806 pitch *= height;
807 if (size <= pitch)
808 return;
809
810 src_offset += pitch;
811 dst_offset += pitch;
812 size -= pitch;
813 } while (1);
814 }
815
816 /**
817 * Used to initialize the alpha value of an ARGB8888 miptree after copying
818 * into it from an XRGB8888 source.
819 *
820 * This is very common with glCopyTexImage2D(). Note that the coordinates are
821 * relative to the start of the miptree, not relative to a slice within the
822 * miptree.
823 */
824 static void
825 intel_miptree_set_alpha_to_one(struct brw_context *brw,
826 struct intel_mipmap_tree *mt,
827 int x, int y, int width, int height)
828 {
829 uint32_t BR13, CMD;
830 int pitch, cpp;
831 drm_intel_bo *aper_array[2];
832
833 pitch = mt->pitch;
834 cpp = mt->cpp;
835
836 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
837 __func__, mt->bo, pitch, x, y, width, height);
838
839 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
840 CMD = XY_COLOR_BLT_CMD;
841 CMD |= XY_BLT_WRITE_ALPHA;
842
843 if (mt->tiling != I915_TILING_NONE) {
844 CMD |= XY_DST_TILED;
845 pitch /= 4;
846 }
847 BR13 |= pitch;
848
849 /* do space check before going any further */
850 aper_array[0] = brw->batch.bo;
851 aper_array[1] = mt->bo;
852
853 if (drm_intel_bufmgr_check_aperture_space(aper_array,
854 ARRAY_SIZE(aper_array)) != 0) {
855 intel_batchbuffer_flush(brw);
856 }
857
858 unsigned length = brw->gen >= 8 ? 7 : 6;
859 bool dst_y_tiled = mt->tiling == I915_TILING_Y;
860
861 /* We need to split the blit into chunks that each fit within the blitter's
862 * restrictions. We can't use a chunk size of 32768 because we need to
863 * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
864 * a nice round power of two, big enough that performance won't suffer, and
865 * small enough to guarantee everything fits.
866 */
867 const uint32_t max_chunk_size = 16384;
868
869 for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
870 for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
871 const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
872 const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
873
874 uint32_t offset, tile_x, tile_y;
875 get_blit_intratile_offset_el(brw, mt,
876 x + chunk_x, y + chunk_y,
877 &offset, &tile_x, &tile_y);
878
879 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false);
880 OUT_BATCH(CMD | (length - 2));
881 OUT_BATCH(BR13);
882 OUT_BATCH(SET_FIELD(y + chunk_y, BLT_Y) |
883 SET_FIELD(x + chunk_x, BLT_X));
884 OUT_BATCH(SET_FIELD(y + chunk_y + chunk_h, BLT_Y) |
885 SET_FIELD(x + chunk_x + chunk_w, BLT_X));
886 if (brw->gen >= 8) {
887 OUT_RELOC64(mt->bo,
888 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
889 offset);
890 } else {
891 OUT_RELOC(mt->bo,
892 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
893 offset);
894 }
895 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
896 ADVANCE_BATCH_TILED(dst_y_tiled, false);
897 }
898 }
899
900 brw_emit_mi_flush(brw);
901 }