i965: Move intel_context::perf_debug to brw_context.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "brw_context.h"
36 #include "intel_blit.h"
37 #include "intel_buffers.h"
38 #include "intel_fbo.h"
39 #include "intel_reg.h"
40 #include "intel_regions.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_mipmap_tree.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_BLIT
45
46 static void
47 intel_miptree_set_alpha_to_one(struct brw_context *brw,
48 struct intel_mipmap_tree *mt,
49 int x, int y, int width, int height);
50
51 static GLuint translate_raster_op(GLenum logicop)
52 {
53 switch(logicop) {
54 case GL_CLEAR: return 0x00;
55 case GL_AND: return 0x88;
56 case GL_AND_REVERSE: return 0x44;
57 case GL_COPY: return 0xCC;
58 case GL_AND_INVERTED: return 0x22;
59 case GL_NOOP: return 0xAA;
60 case GL_XOR: return 0x66;
61 case GL_OR: return 0xEE;
62 case GL_NOR: return 0x11;
63 case GL_EQUIV: return 0x99;
64 case GL_INVERT: return 0x55;
65 case GL_OR_REVERSE: return 0xDD;
66 case GL_COPY_INVERTED: return 0x33;
67 case GL_OR_INVERTED: return 0xBB;
68 case GL_NAND: return 0x77;
69 case GL_SET: return 0xFF;
70 default: return 0;
71 }
72 }
73
74 static uint32_t
75 br13_for_cpp(int cpp)
76 {
77 switch (cpp) {
78 case 4:
79 return BR13_8888;
80 break;
81 case 2:
82 return BR13_565;
83 break;
84 case 1:
85 return BR13_8;
86 break;
87 default:
88 assert(0);
89 return 0;
90 }
91 }
92
93 /**
94 * Emits the packet for switching the blitter from X to Y tiled or back.
95 *
96 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
97 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
98 * part of the power context, not a render context, and if the batchbuffer was
99 * to get flushed between setting and blitting, or blitting and restoring, our
100 * tiling state would leak into other unsuspecting applications (like the X
101 * server).
102 */
103 static void
104 set_blitter_tiling(struct brw_context *brw,
105 bool dst_y_tiled, bool src_y_tiled)
106 {
107 struct intel_context *intel = &brw->intel;
108 assert(intel->gen >= 6);
109
110 /* Idle the blitter before we update how tiling is interpreted. */
111 OUT_BATCH(MI_FLUSH_DW);
112 OUT_BATCH(0);
113 OUT_BATCH(0);
114 OUT_BATCH(0);
115
116 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
117 OUT_BATCH(BCS_SWCTRL);
118 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
119 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
120 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
121 }
122
123 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) do { \
124 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
125 if (dst_y_tiled || src_y_tiled) \
126 set_blitter_tiling(brw, dst_y_tiled, src_y_tiled); \
127 } while (0)
128
129 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) do { \
130 if (dst_y_tiled || src_y_tiled) \
131 set_blitter_tiling(brw, false, false); \
132 ADVANCE_BATCH(); \
133 } while (0)
134
135 /**
136 * Implements a rectangular block transfer (blit) of pixels between two
137 * miptrees.
138 *
139 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
140 * but limited, pitches and sizes allowed.
141 *
142 * The src/dst coordinates are relative to the given level/slice of the
143 * miptree.
144 *
145 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
146 * will be inverted (including scanline order) when copying. This is common
147 * in GL when copying between window system and user-created
148 * renderbuffers/textures.
149 */
150 bool
151 intel_miptree_blit(struct brw_context *brw,
152 struct intel_mipmap_tree *src_mt,
153 int src_level, int src_slice,
154 uint32_t src_x, uint32_t src_y, bool src_flip,
155 struct intel_mipmap_tree *dst_mt,
156 int dst_level, int dst_slice,
157 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
158 uint32_t width, uint32_t height,
159 GLenum logicop)
160 {
161 /* No sRGB decode or encode is done by the hardware blitter, which is
162 * consistent with what we want in the callers (glCopyTexSubImage(),
163 * glBlitFramebuffer(), texture validation, etc.).
164 */
165 gl_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
166 gl_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
167
168 /* The blitter doesn't support doing any format conversions. We do also
169 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
170 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
171 * channel to 1.0 at the end.
172 */
173 if (src_format != dst_format &&
174 ((src_format != MESA_FORMAT_ARGB8888 &&
175 src_format != MESA_FORMAT_XRGB8888) ||
176 (dst_format != MESA_FORMAT_ARGB8888 &&
177 dst_format != MESA_FORMAT_XRGB8888))) {
178 perf_debug("%s: Can't use hardware blitter from %s to %s, "
179 "falling back.\n", __FUNCTION__,
180 _mesa_get_format_name(src_format),
181 _mesa_get_format_name(dst_format));
182 return false;
183 }
184
185 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
186 * Data Size Limitations):
187 *
188 * The BLT engine is capable of transferring very large quantities of
189 * graphics data. Any graphics data read from and written to the
190 * destination is permitted to represent a number of pixels that
191 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
192 * at the destination. The maximum number of pixels that may be
193 * represented per scan line’s worth of graphics data depends on the
194 * color depth.
195 *
196 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
197 * 16-bit integer to represent buffer pitch, so it can only handle buffer
198 * pitches < 32k.
199 *
200 * As a result of these two limitations, we can only use the blitter to do
201 * this copy when the region's pitch is less than 32k.
202 */
203 if (src_mt->region->pitch > 32768 ||
204 dst_mt->region->pitch > 32768) {
205 perf_debug("Falling back due to >32k pitch\n");
206 return false;
207 }
208
209 /* The blitter has no idea about HiZ or fast color clears, so we need to
210 * resolve the miptrees before we do anything.
211 */
212 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
213 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
214 intel_miptree_resolve_color(brw, src_mt);
215 intel_miptree_resolve_color(brw, dst_mt);
216
217 if (src_flip)
218 src_y = src_mt->level[src_level].height - src_y - height;
219
220 if (dst_flip)
221 dst_y = dst_mt->level[dst_level].height - dst_y - height;
222
223 int src_pitch = src_mt->region->pitch;
224 if (src_flip != dst_flip)
225 src_pitch = -src_pitch;
226
227 uint32_t src_image_x, src_image_y;
228 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
229 &src_image_x, &src_image_y);
230 src_x += src_image_x;
231 src_y += src_image_y;
232
233 uint32_t dst_image_x, dst_image_y;
234 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
235 &dst_image_x, &dst_image_y);
236 dst_x += dst_image_x;
237 dst_y += dst_image_y;
238
239 if (!intelEmitCopyBlit(brw,
240 src_mt->cpp,
241 src_pitch,
242 src_mt->region->bo, src_mt->offset,
243 src_mt->region->tiling,
244 dst_mt->region->pitch,
245 dst_mt->region->bo, dst_mt->offset,
246 dst_mt->region->tiling,
247 src_x, src_y,
248 dst_x, dst_y,
249 width, height,
250 logicop)) {
251 return false;
252 }
253
254 if (src_mt->format == MESA_FORMAT_XRGB8888 &&
255 dst_mt->format == MESA_FORMAT_ARGB8888) {
256 intel_miptree_set_alpha_to_one(brw, dst_mt,
257 dst_x, dst_y,
258 width, height);
259 }
260
261 return true;
262 }
263
264 /* Copy BitBlt
265 */
266 bool
267 intelEmitCopyBlit(struct brw_context *brw,
268 GLuint cpp,
269 GLshort src_pitch,
270 drm_intel_bo *src_buffer,
271 GLuint src_offset,
272 uint32_t src_tiling,
273 GLshort dst_pitch,
274 drm_intel_bo *dst_buffer,
275 GLuint dst_offset,
276 uint32_t dst_tiling,
277 GLshort src_x, GLshort src_y,
278 GLshort dst_x, GLshort dst_y,
279 GLshort w, GLshort h,
280 GLenum logic_op)
281 {
282 struct intel_context *intel = &brw->intel;
283 GLuint CMD, BR13, pass = 0;
284 int dst_y2 = dst_y + h;
285 int dst_x2 = dst_x + w;
286 drm_intel_bo *aper_array[3];
287 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
288 bool src_y_tiled = src_tiling == I915_TILING_Y;
289 BATCH_LOCALS;
290
291 if (dst_tiling != I915_TILING_NONE) {
292 if (dst_offset & 4095)
293 return false;
294 }
295 if (src_tiling != I915_TILING_NONE) {
296 if (src_offset & 4095)
297 return false;
298 }
299 if ((dst_y_tiled || src_y_tiled) && intel->gen < 6)
300 return false;
301
302 /* do space check before going any further */
303 do {
304 aper_array[0] = brw->batch.bo;
305 aper_array[1] = dst_buffer;
306 aper_array[2] = src_buffer;
307
308 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
309 intel_batchbuffer_flush(brw);
310 pass++;
311 } else
312 break;
313 } while (pass < 2);
314
315 if (pass >= 2)
316 return false;
317
318 intel_batchbuffer_require_space(brw, 8 * 4, true);
319 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
320 __FUNCTION__,
321 src_buffer, src_pitch, src_offset, src_x, src_y,
322 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
323
324 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
325 * the low bits.
326 */
327 if (src_pitch % 4 != 0 || dst_pitch % 4 != 0)
328 return false;
329
330 /* For big formats (such as floating point), do the copy using 16 or 32bpp
331 * and multiply the coordinates.
332 */
333 if (cpp > 4) {
334 if (cpp % 4 == 2) {
335 dst_x *= cpp / 2;
336 dst_x2 *= cpp / 2;
337 src_x *= cpp / 2;
338 cpp = 2;
339 } else {
340 assert(cpp % 4 == 0);
341 dst_x *= cpp / 4;
342 dst_x2 *= cpp / 4;
343 src_x *= cpp / 4;
344 cpp = 4;
345 }
346 }
347
348 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
349
350 switch (cpp) {
351 case 1:
352 case 2:
353 CMD = XY_SRC_COPY_BLT_CMD;
354 break;
355 case 4:
356 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
357 break;
358 default:
359 return false;
360 }
361
362 if (dst_tiling != I915_TILING_NONE) {
363 CMD |= XY_DST_TILED;
364 dst_pitch /= 4;
365 }
366 if (src_tiling != I915_TILING_NONE) {
367 CMD |= XY_SRC_TILED;
368 src_pitch /= 4;
369 }
370
371 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
372 return true;
373 }
374
375 assert(dst_x < dst_x2);
376 assert(dst_y < dst_y2);
377
378 BEGIN_BATCH_BLT_TILED(8, dst_y_tiled, src_y_tiled);
379
380 OUT_BATCH(CMD | (8 - 2));
381 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
382 OUT_BATCH((dst_y << 16) | dst_x);
383 OUT_BATCH((dst_y2 << 16) | dst_x2);
384 OUT_RELOC_FENCED(dst_buffer,
385 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
386 dst_offset);
387 OUT_BATCH((src_y << 16) | src_x);
388 OUT_BATCH((uint16_t)src_pitch);
389 OUT_RELOC_FENCED(src_buffer,
390 I915_GEM_DOMAIN_RENDER, 0,
391 src_offset);
392
393 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
394
395 intel_batchbuffer_emit_mi_flush(brw);
396
397 return true;
398 }
399
400 bool
401 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
402 GLuint cpp,
403 GLubyte *src_bits, GLuint src_size,
404 GLuint fg_color,
405 GLshort dst_pitch,
406 drm_intel_bo *dst_buffer,
407 GLuint dst_offset,
408 uint32_t dst_tiling,
409 GLshort x, GLshort y,
410 GLshort w, GLshort h,
411 GLenum logic_op)
412 {
413 int dwords = ALIGN(src_size, 8) / 4;
414 uint32_t opcode, br13, blit_cmd;
415
416 if (dst_tiling != I915_TILING_NONE) {
417 if (dst_offset & 4095)
418 return false;
419 if (dst_tiling == I915_TILING_Y)
420 return false;
421 }
422
423 assert( logic_op - GL_CLEAR >= 0 );
424 assert( logic_op - GL_CLEAR < 0x10 );
425 assert(dst_pitch > 0);
426
427 if (w < 0 || h < 0)
428 return true;
429
430 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
431 __FUNCTION__,
432 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
433
434 intel_batchbuffer_require_space(brw, (8 * 4) + (3 * 4) + dwords * 4, true);
435
436 opcode = XY_SETUP_BLT_CMD;
437 if (cpp == 4)
438 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
439 if (dst_tiling != I915_TILING_NONE) {
440 opcode |= XY_DST_TILED;
441 dst_pitch /= 4;
442 }
443
444 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
445 br13 |= br13_for_cpp(cpp);
446
447 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
448 if (dst_tiling != I915_TILING_NONE)
449 blit_cmd |= XY_DST_TILED;
450
451 BEGIN_BATCH_BLT(8 + 3);
452 OUT_BATCH(opcode | (8 - 2));
453 OUT_BATCH(br13);
454 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
455 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
456 OUT_RELOC_FENCED(dst_buffer,
457 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
458 dst_offset);
459 OUT_BATCH(0); /* bg */
460 OUT_BATCH(fg_color); /* fg */
461 OUT_BATCH(0); /* pattern base addr */
462
463 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
464 OUT_BATCH((y << 16) | x);
465 OUT_BATCH(((y + h) << 16) | (x + w));
466 ADVANCE_BATCH();
467
468 intel_batchbuffer_data(brw, src_bits, dwords * 4, true);
469
470 intel_batchbuffer_emit_mi_flush(brw);
471
472 return true;
473 }
474
475 /* We don't have a memmove-type blit like some other hardware, so we'll do a
476 * rectangular blit covering a large space, then emit 1-scanline blit at the
477 * end to cover the last if we need.
478 */
479 void
480 intel_emit_linear_blit(struct brw_context *brw,
481 drm_intel_bo *dst_bo,
482 unsigned int dst_offset,
483 drm_intel_bo *src_bo,
484 unsigned int src_offset,
485 unsigned int size)
486 {
487 struct intel_context *intel = &brw->intel;
488 struct gl_context *ctx = &intel->ctx;
489 GLuint pitch, height;
490 bool ok;
491
492 /* The pitch given to the GPU must be DWORD aligned, and
493 * we want width to match pitch. Max width is (1 << 15 - 1),
494 * rounding that down to the nearest DWORD is 1 << 15 - 4
495 */
496 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
497 height = (pitch == 0) ? 1 : size / pitch;
498 ok = intelEmitCopyBlit(brw, 1,
499 pitch, src_bo, src_offset, I915_TILING_NONE,
500 pitch, dst_bo, dst_offset, I915_TILING_NONE,
501 0, 0, /* src x/y */
502 0, 0, /* dst x/y */
503 pitch, height, /* w, h */
504 GL_COPY);
505 if (!ok)
506 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
507
508 src_offset += pitch * height;
509 dst_offset += pitch * height;
510 size -= pitch * height;
511 assert (size < (1 << 15));
512 pitch = ALIGN(size, 4);
513 if (size != 0) {
514 ok = intelEmitCopyBlit(brw, 1,
515 pitch, src_bo, src_offset, I915_TILING_NONE,
516 pitch, dst_bo, dst_offset, I915_TILING_NONE,
517 0, 0, /* src x/y */
518 0, 0, /* dst x/y */
519 size, 1, /* w, h */
520 GL_COPY);
521 if (!ok)
522 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
523 }
524 }
525
526 /**
527 * Used to initialize the alpha value of an ARGB8888 miptree after copying
528 * into it from an XRGB8888 source.
529 *
530 * This is very common with glCopyTexImage2D(). Note that the coordinates are
531 * relative to the start of the miptree, not relative to a slice within the
532 * miptree.
533 */
534 static void
535 intel_miptree_set_alpha_to_one(struct brw_context *brw,
536 struct intel_mipmap_tree *mt,
537 int x, int y, int width, int height)
538 {
539 struct intel_region *region = mt->region;
540 uint32_t BR13, CMD;
541 int pitch, cpp;
542 drm_intel_bo *aper_array[2];
543 BATCH_LOCALS;
544
545 pitch = region->pitch;
546 cpp = region->cpp;
547
548 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
549 __FUNCTION__, region->bo, pitch, x, y, width, height);
550
551 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
552 CMD = XY_COLOR_BLT_CMD;
553 CMD |= XY_BLT_WRITE_ALPHA;
554
555 if (region->tiling != I915_TILING_NONE) {
556 CMD |= XY_DST_TILED;
557 pitch /= 4;
558 }
559 BR13 |= pitch;
560
561 /* do space check before going any further */
562 aper_array[0] = brw->batch.bo;
563 aper_array[1] = region->bo;
564
565 if (drm_intel_bufmgr_check_aperture_space(aper_array,
566 ARRAY_SIZE(aper_array)) != 0) {
567 intel_batchbuffer_flush(brw);
568 }
569
570 bool dst_y_tiled = region->tiling == I915_TILING_Y;
571
572 BEGIN_BATCH_BLT_TILED(6, dst_y_tiled, false);
573 OUT_BATCH(CMD | (6 - 2));
574 OUT_BATCH(BR13);
575 OUT_BATCH((y << 16) | x);
576 OUT_BATCH(((y + height) << 16) | (x + width));
577 OUT_RELOC_FENCED(region->bo,
578 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
579 0);
580 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
581 ADVANCE_BATCH_TILED(dst_y_tiled, false);
582
583 intel_batchbuffer_emit_mi_flush(brw);
584 }