i965: Drop mt->levels[].width/height.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "brw_context.h"
36 #include "brw_defines.h"
37 #include "intel_blit.h"
38 #include "intel_buffers.h"
39 #include "intel_fbo.h"
40 #include "intel_reg.h"
41 #include "intel_regions.h"
42 #include "intel_batchbuffer.h"
43 #include "intel_mipmap_tree.h"
44
45 #define FILE_DEBUG_FLAG DEBUG_BLIT
46
47 static void
48 intel_miptree_set_alpha_to_one(struct brw_context *brw,
49 struct intel_mipmap_tree *mt,
50 int x, int y, int width, int height);
51
52 static GLuint translate_raster_op(GLenum logicop)
53 {
54 switch(logicop) {
55 case GL_CLEAR: return 0x00;
56 case GL_AND: return 0x88;
57 case GL_AND_REVERSE: return 0x44;
58 case GL_COPY: return 0xCC;
59 case GL_AND_INVERTED: return 0x22;
60 case GL_NOOP: return 0xAA;
61 case GL_XOR: return 0x66;
62 case GL_OR: return 0xEE;
63 case GL_NOR: return 0x11;
64 case GL_EQUIV: return 0x99;
65 case GL_INVERT: return 0x55;
66 case GL_OR_REVERSE: return 0xDD;
67 case GL_COPY_INVERTED: return 0x33;
68 case GL_OR_INVERTED: return 0xBB;
69 case GL_NAND: return 0x77;
70 case GL_SET: return 0xFF;
71 default: return 0;
72 }
73 }
74
75 static uint32_t
76 br13_for_cpp(int cpp)
77 {
78 switch (cpp) {
79 case 4:
80 return BR13_8888;
81 break;
82 case 2:
83 return BR13_565;
84 break;
85 case 1:
86 return BR13_8;
87 break;
88 default:
89 assert(0);
90 return 0;
91 }
92 }
93
94 /**
95 * Emits the packet for switching the blitter from X to Y tiled or back.
96 *
97 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
98 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
99 * part of the power context, not a render context, and if the batchbuffer was
100 * to get flushed between setting and blitting, or blitting and restoring, our
101 * tiling state would leak into other unsuspecting applications (like the X
102 * server).
103 */
104 static void
105 set_blitter_tiling(struct brw_context *brw,
106 bool dst_y_tiled, bool src_y_tiled)
107 {
108 assert(brw->gen >= 6);
109
110 /* Idle the blitter before we update how tiling is interpreted. */
111 OUT_BATCH(MI_FLUSH_DW);
112 OUT_BATCH(0);
113 OUT_BATCH(0);
114 OUT_BATCH(0);
115
116 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
117 OUT_BATCH(BCS_SWCTRL);
118 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
119 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
120 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
121 }
122
123 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) do { \
124 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
125 if (dst_y_tiled || src_y_tiled) \
126 set_blitter_tiling(brw, dst_y_tiled, src_y_tiled); \
127 } while (0)
128
129 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) do { \
130 if (dst_y_tiled || src_y_tiled) \
131 set_blitter_tiling(brw, false, false); \
132 ADVANCE_BATCH(); \
133 } while (0)
134
135 /**
136 * Implements a rectangular block transfer (blit) of pixels between two
137 * miptrees.
138 *
139 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
140 * but limited, pitches and sizes allowed.
141 *
142 * The src/dst coordinates are relative to the given level/slice of the
143 * miptree.
144 *
145 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
146 * will be inverted (including scanline order) when copying. This is common
147 * in GL when copying between window system and user-created
148 * renderbuffers/textures.
149 */
150 bool
151 intel_miptree_blit(struct brw_context *brw,
152 struct intel_mipmap_tree *src_mt,
153 int src_level, int src_slice,
154 uint32_t src_x, uint32_t src_y, bool src_flip,
155 struct intel_mipmap_tree *dst_mt,
156 int dst_level, int dst_slice,
157 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
158 uint32_t width, uint32_t height,
159 GLenum logicop)
160 {
161 /* No sRGB decode or encode is done by the hardware blitter, which is
162 * consistent with what we want in the callers (glCopyTexSubImage(),
163 * glBlitFramebuffer(), texture validation, etc.).
164 */
165 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
166 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
167
168 /* The blitter doesn't support doing any format conversions. We do also
169 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
170 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
171 * channel to 1.0 at the end.
172 */
173 if (src_format != dst_format &&
174 ((src_format != MESA_FORMAT_B8G8R8A8_UNORM &&
175 src_format != MESA_FORMAT_B8G8R8X8_UNORM) ||
176 (dst_format != MESA_FORMAT_B8G8R8A8_UNORM &&
177 dst_format != MESA_FORMAT_B8G8R8X8_UNORM))) {
178 perf_debug("%s: Can't use hardware blitter from %s to %s, "
179 "falling back.\n", __FUNCTION__,
180 _mesa_get_format_name(src_format),
181 _mesa_get_format_name(dst_format));
182 return false;
183 }
184
185 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
186 * Data Size Limitations):
187 *
188 * The BLT engine is capable of transferring very large quantities of
189 * graphics data. Any graphics data read from and written to the
190 * destination is permitted to represent a number of pixels that
191 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
192 * at the destination. The maximum number of pixels that may be
193 * represented per scan line’s worth of graphics data depends on the
194 * color depth.
195 *
196 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
197 * 16-bit integer to represent buffer pitch, so it can only handle buffer
198 * pitches < 32k.
199 *
200 * As a result of these two limitations, we can only use the blitter to do
201 * this copy when the region's pitch is less than 32k.
202 */
203 if (src_mt->region->pitch > 32768 ||
204 dst_mt->region->pitch > 32768) {
205 perf_debug("Falling back due to >32k pitch\n");
206 return false;
207 }
208
209 /* The blitter has no idea about HiZ or fast color clears, so we need to
210 * resolve the miptrees before we do anything.
211 */
212 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
213 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
214 intel_miptree_resolve_color(brw, src_mt);
215 intel_miptree_resolve_color(brw, dst_mt);
216
217 if (src_flip)
218 src_y = minify(src_mt->physical_height0, src_level) - src_y - height;
219
220 if (dst_flip)
221 dst_y = minify(dst_mt->physical_height0, dst_level) - dst_y - height;
222
223 int src_pitch = src_mt->region->pitch;
224 if (src_flip != dst_flip)
225 src_pitch = -src_pitch;
226
227 uint32_t src_image_x, src_image_y;
228 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
229 &src_image_x, &src_image_y);
230 src_x += src_image_x;
231 src_y += src_image_y;
232
233 /* The blitter interprets the 16-bit src x/y as a signed 16-bit value,
234 * where negative values are invalid. The values we're working with are
235 * unsigned, so make sure we don't overflow.
236 */
237 if (src_x >= 32768 || src_y >= 32768) {
238 perf_debug("Falling back due to >=32k src offset (%d, %d)\n",
239 src_x, src_y);
240 return false;
241 }
242
243 uint32_t dst_image_x, dst_image_y;
244 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
245 &dst_image_x, &dst_image_y);
246 dst_x += dst_image_x;
247 dst_y += dst_image_y;
248
249 /* The blitter interprets the 16-bit destination x/y as a signed 16-bit
250 * value. The values we're working with are unsigned, so make sure we
251 * don't overflow.
252 */
253 if (dst_x >= 32768 || dst_y >= 32768) {
254 perf_debug("Falling back due to >=32k dst offset (%d, %d)\n",
255 dst_x, dst_y);
256 return false;
257 }
258
259 if (!intelEmitCopyBlit(brw,
260 src_mt->cpp,
261 src_pitch,
262 src_mt->region->bo, src_mt->offset,
263 src_mt->region->tiling,
264 dst_mt->region->pitch,
265 dst_mt->region->bo, dst_mt->offset,
266 dst_mt->region->tiling,
267 src_x, src_y,
268 dst_x, dst_y,
269 width, height,
270 logicop)) {
271 return false;
272 }
273
274 if (src_mt->format == MESA_FORMAT_B8G8R8X8_UNORM &&
275 dst_mt->format == MESA_FORMAT_B8G8R8A8_UNORM) {
276 intel_miptree_set_alpha_to_one(brw, dst_mt,
277 dst_x, dst_y,
278 width, height);
279 }
280
281 return true;
282 }
283
284 /* Copy BitBlt
285 */
286 bool
287 intelEmitCopyBlit(struct brw_context *brw,
288 GLuint cpp,
289 GLshort src_pitch,
290 drm_intel_bo *src_buffer,
291 GLuint src_offset,
292 uint32_t src_tiling,
293 GLshort dst_pitch,
294 drm_intel_bo *dst_buffer,
295 GLuint dst_offset,
296 uint32_t dst_tiling,
297 GLshort src_x, GLshort src_y,
298 GLshort dst_x, GLshort dst_y,
299 GLshort w, GLshort h,
300 GLenum logic_op)
301 {
302 GLuint CMD, BR13, pass = 0;
303 int dst_y2 = dst_y + h;
304 int dst_x2 = dst_x + w;
305 drm_intel_bo *aper_array[3];
306 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
307 bool src_y_tiled = src_tiling == I915_TILING_Y;
308
309 if (dst_tiling != I915_TILING_NONE) {
310 if (dst_offset & 4095)
311 return false;
312 }
313 if (src_tiling != I915_TILING_NONE) {
314 if (src_offset & 4095)
315 return false;
316 }
317 if ((dst_y_tiled || src_y_tiled) && brw->gen < 6)
318 return false;
319
320 /* do space check before going any further */
321 do {
322 aper_array[0] = brw->batch.bo;
323 aper_array[1] = dst_buffer;
324 aper_array[2] = src_buffer;
325
326 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
327 intel_batchbuffer_flush(brw);
328 pass++;
329 } else
330 break;
331 } while (pass < 2);
332
333 if (pass >= 2)
334 return false;
335
336 intel_batchbuffer_require_space(brw, 8 * 4, BLT_RING);
337 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
338 __FUNCTION__,
339 src_buffer, src_pitch, src_offset, src_x, src_y,
340 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
341
342 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
343 * the low bits.
344 */
345 if (src_pitch % 4 != 0 || dst_pitch % 4 != 0)
346 return false;
347
348 /* For big formats (such as floating point), do the copy using 16 or 32bpp
349 * and multiply the coordinates.
350 */
351 if (cpp > 4) {
352 if (cpp % 4 == 2) {
353 dst_x *= cpp / 2;
354 dst_x2 *= cpp / 2;
355 src_x *= cpp / 2;
356 cpp = 2;
357 } else {
358 assert(cpp % 4 == 0);
359 dst_x *= cpp / 4;
360 dst_x2 *= cpp / 4;
361 src_x *= cpp / 4;
362 cpp = 4;
363 }
364 }
365
366 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
367
368 switch (cpp) {
369 case 1:
370 case 2:
371 CMD = XY_SRC_COPY_BLT_CMD;
372 break;
373 case 4:
374 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
375 break;
376 default:
377 return false;
378 }
379
380 if (dst_tiling != I915_TILING_NONE) {
381 CMD |= XY_DST_TILED;
382 dst_pitch /= 4;
383 }
384 if (src_tiling != I915_TILING_NONE) {
385 CMD |= XY_SRC_TILED;
386 src_pitch /= 4;
387 }
388
389 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
390 return true;
391 }
392
393 assert(dst_x < dst_x2);
394 assert(dst_y < dst_y2);
395 assert(src_offset + (src_y + h - 1) * abs(src_pitch) +
396 (w * cpp) <= src_buffer->size);
397 assert(dst_offset + (dst_y + h - 1) * abs(dst_pitch) +
398 (w * cpp) <= dst_buffer->size);
399
400 unsigned length = brw->gen >= 8 ? 10 : 8;
401
402 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled);
403 OUT_BATCH(CMD | (length - 2));
404 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
405 OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X));
406 OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X));
407 if (brw->gen >= 8) {
408 OUT_RELOC64(dst_buffer,
409 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
410 dst_offset);
411 } else {
412 OUT_RELOC(dst_buffer,
413 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
414 dst_offset);
415 }
416 OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X));
417 OUT_BATCH((uint16_t)src_pitch);
418 if (brw->gen >= 8) {
419 OUT_RELOC64(src_buffer,
420 I915_GEM_DOMAIN_RENDER, 0,
421 src_offset);
422 } else {
423 OUT_RELOC(src_buffer,
424 I915_GEM_DOMAIN_RENDER, 0,
425 src_offset);
426 }
427
428 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
429
430 intel_batchbuffer_emit_mi_flush(brw);
431
432 return true;
433 }
434
435 bool
436 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
437 GLuint cpp,
438 GLubyte *src_bits, GLuint src_size,
439 GLuint fg_color,
440 GLshort dst_pitch,
441 drm_intel_bo *dst_buffer,
442 GLuint dst_offset,
443 uint32_t dst_tiling,
444 GLshort x, GLshort y,
445 GLshort w, GLshort h,
446 GLenum logic_op)
447 {
448 int dwords = ALIGN(src_size, 8) / 4;
449 uint32_t opcode, br13, blit_cmd;
450
451 if (dst_tiling != I915_TILING_NONE) {
452 if (dst_offset & 4095)
453 return false;
454 if (dst_tiling == I915_TILING_Y)
455 return false;
456 }
457
458 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
459 assert(dst_pitch > 0);
460
461 if (w < 0 || h < 0)
462 return true;
463
464 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
465 __FUNCTION__,
466 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
467
468 intel_batchbuffer_require_space(brw, (8 * 4) + (3 * 4) + dwords * 4, BLT_RING);
469
470 opcode = XY_SETUP_BLT_CMD;
471 if (cpp == 4)
472 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
473 if (dst_tiling != I915_TILING_NONE) {
474 opcode |= XY_DST_TILED;
475 dst_pitch /= 4;
476 }
477
478 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
479 br13 |= br13_for_cpp(cpp);
480
481 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
482 if (dst_tiling != I915_TILING_NONE)
483 blit_cmd |= XY_DST_TILED;
484
485 unsigned xy_setup_blt_length = brw->gen >= 8 ? 10 : 8;
486
487 BEGIN_BATCH_BLT(xy_setup_blt_length + 3);
488 OUT_BATCH(opcode | (xy_setup_blt_length - 2));
489 OUT_BATCH(br13);
490 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
491 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
492 if (brw->gen >= 8) {
493 OUT_RELOC64(dst_buffer,
494 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
495 dst_offset);
496 } else {
497 OUT_RELOC(dst_buffer,
498 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
499 dst_offset);
500 }
501 OUT_BATCH(0); /* bg */
502 OUT_BATCH(fg_color); /* fg */
503 OUT_BATCH(0); /* pattern base addr */
504 if (brw->gen >= 8)
505 OUT_BATCH(0);
506
507 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
508 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
509 OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X));
510 ADVANCE_BATCH();
511
512 intel_batchbuffer_data(brw, src_bits, dwords * 4, BLT_RING);
513
514 intel_batchbuffer_emit_mi_flush(brw);
515
516 return true;
517 }
518
519 /* We don't have a memmove-type blit like some other hardware, so we'll do a
520 * rectangular blit covering a large space, then emit 1-scanline blit at the
521 * end to cover the last if we need.
522 */
523 void
524 intel_emit_linear_blit(struct brw_context *brw,
525 drm_intel_bo *dst_bo,
526 unsigned int dst_offset,
527 drm_intel_bo *src_bo,
528 unsigned int src_offset,
529 unsigned int size)
530 {
531 struct gl_context *ctx = &brw->ctx;
532 GLuint pitch, height;
533 bool ok;
534
535 /* The pitch given to the GPU must be DWORD aligned, and
536 * we want width to match pitch. Max width is (1 << 15 - 1),
537 * rounding that down to the nearest DWORD is 1 << 15 - 4
538 */
539 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
540 height = (pitch == 0) ? 1 : size / pitch;
541 ok = intelEmitCopyBlit(brw, 1,
542 pitch, src_bo, src_offset, I915_TILING_NONE,
543 pitch, dst_bo, dst_offset, I915_TILING_NONE,
544 0, 0, /* src x/y */
545 0, 0, /* dst x/y */
546 pitch, height, /* w, h */
547 GL_COPY);
548 if (!ok)
549 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
550
551 src_offset += pitch * height;
552 dst_offset += pitch * height;
553 size -= pitch * height;
554 assert (size < (1 << 15));
555 pitch = ALIGN(size, 4);
556 if (size != 0) {
557 ok = intelEmitCopyBlit(brw, 1,
558 pitch, src_bo, src_offset, I915_TILING_NONE,
559 pitch, dst_bo, dst_offset, I915_TILING_NONE,
560 0, 0, /* src x/y */
561 0, 0, /* dst x/y */
562 size, 1, /* w, h */
563 GL_COPY);
564 if (!ok)
565 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
566 }
567 }
568
569 /**
570 * Used to initialize the alpha value of an ARGB8888 miptree after copying
571 * into it from an XRGB8888 source.
572 *
573 * This is very common with glCopyTexImage2D(). Note that the coordinates are
574 * relative to the start of the miptree, not relative to a slice within the
575 * miptree.
576 */
577 static void
578 intel_miptree_set_alpha_to_one(struct brw_context *brw,
579 struct intel_mipmap_tree *mt,
580 int x, int y, int width, int height)
581 {
582 struct intel_region *region = mt->region;
583 uint32_t BR13, CMD;
584 int pitch, cpp;
585 drm_intel_bo *aper_array[2];
586
587 pitch = region->pitch;
588 cpp = region->cpp;
589
590 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
591 __FUNCTION__, region->bo, pitch, x, y, width, height);
592
593 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
594 CMD = XY_COLOR_BLT_CMD;
595 CMD |= XY_BLT_WRITE_ALPHA;
596
597 if (region->tiling != I915_TILING_NONE) {
598 CMD |= XY_DST_TILED;
599 pitch /= 4;
600 }
601 BR13 |= pitch;
602
603 /* do space check before going any further */
604 aper_array[0] = brw->batch.bo;
605 aper_array[1] = region->bo;
606
607 if (drm_intel_bufmgr_check_aperture_space(aper_array,
608 ARRAY_SIZE(aper_array)) != 0) {
609 intel_batchbuffer_flush(brw);
610 }
611
612 unsigned length = brw->gen >= 8 ? 7 : 6;
613 bool dst_y_tiled = region->tiling == I915_TILING_Y;
614
615 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false);
616 OUT_BATCH(CMD | (length - 2));
617 OUT_BATCH(BR13);
618 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
619 OUT_BATCH(SET_FIELD(y + height, BLT_Y) | SET_FIELD(x + width, BLT_X));
620 if (brw->gen >= 8) {
621 OUT_RELOC64(region->bo,
622 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
623 0);
624 } else {
625 OUT_RELOC(region->bo,
626 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
627 0);
628 }
629 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
630 ADVANCE_BATCH_TILED(dst_y_tiled, false);
631
632 intel_batchbuffer_emit_mi_flush(brw);
633 }