49e68bd7392e23ae8b68f2623da29b616bf0a6d4
[mesa.git] / src / mesa / drivers / dri / i965 / intel_buffer_objects.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * @file intel_buffer_objects.c
28 *
29 * This provides core GL buffer object functionality.
30 */
31
32 #include "main/imports.h"
33 #include "main/mtypes.h"
34 #include "main/macros.h"
35 #include "main/streaming-load-memcpy.h"
36 #include "main/bufferobj.h"
37 #include "x86/common_x86_asm.h"
38
39 #include "brw_context.h"
40 #include "brw_blorp.h"
41 #include "intel_buffer_objects.h"
42 #include "intel_batchbuffer.h"
43 #include "intel_tiled_memcpy.h"
44
45 static void
46 mark_buffer_gpu_usage(struct intel_buffer_object *intel_obj,
47 uint32_t offset, uint32_t size)
48 {
49 intel_obj->gpu_active_start = MIN2(intel_obj->gpu_active_start, offset);
50 intel_obj->gpu_active_end = MAX2(intel_obj->gpu_active_end, offset + size);
51 }
52
53 static void
54 mark_buffer_inactive(struct intel_buffer_object *intel_obj)
55 {
56 intel_obj->gpu_active_start = ~0;
57 intel_obj->gpu_active_end = 0;
58 }
59
60 static void
61 mark_buffer_valid_data(struct intel_buffer_object *intel_obj,
62 uint32_t offset, uint32_t size)
63 {
64 intel_obj->valid_data_start = MIN2(intel_obj->valid_data_start, offset);
65 intel_obj->valid_data_end = MAX2(intel_obj->valid_data_end, offset + size);
66 }
67
68 static void
69 mark_buffer_invalid(struct intel_buffer_object *intel_obj)
70 {
71 intel_obj->valid_data_start = ~0;
72 intel_obj->valid_data_end = 0;
73 }
74
75 /** Allocates a new brw_bo to store the data for the buffer object. */
76 static void
77 alloc_buffer_object(struct brw_context *brw,
78 struct intel_buffer_object *intel_obj)
79 {
80 const struct gl_context *ctx = &brw->ctx;
81
82 uint64_t size = intel_obj->Base.Size;
83 if (ctx->Const.RobustAccess) {
84 /* Pad out buffer objects with an extra 2kB (half a page).
85 *
86 * When pushing UBOs, we need to safeguard against 3DSTATE_CONSTANT_*
87 * reading out of bounds memory. The application might bind a UBO that's
88 * smaller than what the program expects. Ideally, we'd bind an extra
89 * push buffer containing zeros, but we have a limited number of those,
90 * so it's not always viable. Our only safe option is to pad all buffer
91 * objects by the maximum push data length, so that it will never read
92 * past the end of a BO.
93 *
94 * This is unfortunate, but it should result in at most 1 extra page,
95 * which probably isn't too terrible.
96 */
97 size += 64 * 32; /* max read length of 64 256-bit units */
98 }
99 intel_obj->buffer = brw_bo_alloc(brw->bufmgr, "bufferobj", size, 64);
100
101 /* the buffer might be bound as a uniform buffer, need to update it
102 */
103 if (intel_obj->Base.UsageHistory & USAGE_UNIFORM_BUFFER)
104 brw->ctx.NewDriverState |= BRW_NEW_UNIFORM_BUFFER;
105 if (intel_obj->Base.UsageHistory & USAGE_SHADER_STORAGE_BUFFER)
106 brw->ctx.NewDriverState |= BRW_NEW_UNIFORM_BUFFER;
107 if (intel_obj->Base.UsageHistory & USAGE_TEXTURE_BUFFER)
108 brw->ctx.NewDriverState |= BRW_NEW_TEXTURE_BUFFER;
109 if (intel_obj->Base.UsageHistory & USAGE_ATOMIC_COUNTER_BUFFER)
110 brw->ctx.NewDriverState |= BRW_NEW_ATOMIC_BUFFER;
111
112 mark_buffer_inactive(intel_obj);
113 mark_buffer_invalid(intel_obj);
114 }
115
116 static void
117 release_buffer(struct intel_buffer_object *intel_obj)
118 {
119 brw_bo_unreference(intel_obj->buffer);
120 intel_obj->buffer = NULL;
121 }
122
123 /**
124 * The NewBufferObject() driver hook.
125 *
126 * Allocates a new intel_buffer_object structure and initializes it.
127 *
128 * There is some duplication between mesa's bufferobjects and our
129 * bufmgr buffers. Both have an integer handle and a hashtable to
130 * lookup an opaque structure. It would be nice if the handles and
131 * internal structure where somehow shared.
132 */
133 static struct gl_buffer_object *
134 brw_new_buffer_object(struct gl_context * ctx, GLuint name)
135 {
136 struct intel_buffer_object *obj = CALLOC_STRUCT(intel_buffer_object);
137 if (!obj) {
138 _mesa_error_no_memory(__func__);
139 return NULL;
140 }
141
142 _mesa_initialize_buffer_object(ctx, &obj->Base, name);
143
144 obj->buffer = NULL;
145
146 return &obj->Base;
147 }
148
149 /**
150 * The DeleteBuffer() driver hook.
151 *
152 * Deletes a single OpenGL buffer object. Used by glDeleteBuffers().
153 */
154 static void
155 brw_delete_buffer(struct gl_context * ctx, struct gl_buffer_object *obj)
156 {
157 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
158
159 assert(intel_obj);
160
161 /* Buffer objects are automatically unmapped when deleting according
162 * to the spec, but Mesa doesn't do UnmapBuffer for us at context destroy
163 * (though it does if you call glDeleteBuffers)
164 */
165 _mesa_buffer_unmap_all_mappings(ctx, obj);
166
167 brw_bo_unreference(intel_obj->buffer);
168 _mesa_delete_buffer_object(ctx, obj);
169 }
170
171
172 /**
173 * The BufferData() driver hook.
174 *
175 * Implements glBufferData(), which recreates a buffer object's data store
176 * and populates it with the given data, if present.
177 *
178 * Any data that was previously stored in the buffer object is lost.
179 *
180 * \return true for success, false if out of memory
181 */
182 static GLboolean
183 brw_buffer_data(struct gl_context *ctx,
184 GLenum target,
185 GLsizeiptrARB size,
186 const GLvoid *data,
187 GLenum usage,
188 GLbitfield storageFlags,
189 struct gl_buffer_object *obj)
190 {
191 struct brw_context *brw = brw_context(ctx);
192 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
193
194 /* Part of the ABI, but this function doesn't use it.
195 */
196 (void) target;
197
198 intel_obj->Base.Size = size;
199 intel_obj->Base.Usage = usage;
200 intel_obj->Base.StorageFlags = storageFlags;
201
202 assert(!obj->Mappings[MAP_USER].Pointer); /* Mesa should have unmapped it */
203 assert(!obj->Mappings[MAP_INTERNAL].Pointer);
204
205 if (intel_obj->buffer != NULL)
206 release_buffer(intel_obj);
207
208 if (size != 0) {
209 alloc_buffer_object(brw, intel_obj);
210 if (!intel_obj->buffer)
211 return false;
212
213 if (data != NULL) {
214 brw_bo_subdata(intel_obj->buffer, 0, size, data);
215 mark_buffer_valid_data(intel_obj, 0, size);
216 }
217 }
218
219 return true;
220 }
221
222
223 /**
224 * The BufferSubData() driver hook.
225 *
226 * Implements glBufferSubData(), which replaces a portion of the data in a
227 * buffer object.
228 *
229 * If the data range specified by (size + offset) extends beyond the end of
230 * the buffer or if data is NULL, no copy is performed.
231 */
232 static void
233 brw_buffer_subdata(struct gl_context *ctx,
234 GLintptrARB offset,
235 GLsizeiptrARB size,
236 const GLvoid *data,
237 struct gl_buffer_object *obj)
238 {
239 struct brw_context *brw = brw_context(ctx);
240 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
241 bool busy;
242
243 if (size == 0)
244 return;
245
246 assert(intel_obj);
247
248 /* See if we can unsynchronized write the data into the user's BO. This
249 * avoids GPU stalls in unfortunately common user patterns (uploading
250 * sequentially into a BO, with draw calls in between each upload).
251 *
252 * Once we've hit this path, we mark this GL BO as preferring stalling to
253 * blits, so that we can hopefully hit this path again in the future
254 * (otherwise, an app that might occasionally stall but mostly not will end
255 * up with blitting all the time, at the cost of bandwidth)
256 */
257 if (offset + size <= intel_obj->gpu_active_start ||
258 intel_obj->gpu_active_end <= offset ||
259 offset + size <= intel_obj->valid_data_start ||
260 intel_obj->valid_data_end <= offset) {
261 void *map = brw_bo_map(brw, intel_obj->buffer, MAP_WRITE | MAP_ASYNC);
262 memcpy(map + offset, data, size);
263 brw_bo_unmap(intel_obj->buffer);
264
265 if (intel_obj->gpu_active_end > intel_obj->gpu_active_start)
266 intel_obj->prefer_stall_to_blit = true;
267
268 mark_buffer_valid_data(intel_obj, offset, size);
269 return;
270 }
271
272 busy =
273 brw_bo_busy(intel_obj->buffer) ||
274 brw_batch_references(&brw->batch, intel_obj->buffer);
275
276 if (busy) {
277 if (size == intel_obj->Base.Size ||
278 (intel_obj->valid_data_start >= offset &&
279 intel_obj->valid_data_end <= offset + size)) {
280 /* Replace the current busy bo so the subdata doesn't stall. */
281 brw_bo_unreference(intel_obj->buffer);
282 alloc_buffer_object(brw, intel_obj);
283 } else if (!intel_obj->prefer_stall_to_blit) {
284 perf_debug("Using a blit copy to avoid stalling on "
285 "glBufferSubData(%ld, %ld) (%ldkb) to a busy "
286 "(%d-%d) / valid (%d-%d) buffer object.\n",
287 (long)offset, (long)offset + size, (long)(size/1024),
288 intel_obj->gpu_active_start,
289 intel_obj->gpu_active_end,
290 intel_obj->valid_data_start,
291 intel_obj->valid_data_end);
292 struct brw_bo *temp_bo =
293 brw_bo_alloc(brw->bufmgr, "subdata temp", size, 64);
294
295 brw_bo_subdata(temp_bo, 0, size, data);
296
297 brw_blorp_copy_buffers(brw,
298 temp_bo, 0,
299 intel_obj->buffer, offset,
300 size);
301 brw_emit_mi_flush(brw);
302
303 brw_bo_unreference(temp_bo);
304 mark_buffer_valid_data(intel_obj, offset, size);
305 return;
306 } else {
307 perf_debug("Stalling on glBufferSubData(%ld, %ld) (%ldkb) to a busy "
308 "(%d-%d) buffer object. Use glMapBufferRange() to "
309 "avoid this.\n",
310 (long)offset, (long)offset + size, (long)(size/1024),
311 intel_obj->gpu_active_start,
312 intel_obj->gpu_active_end);
313 intel_batchbuffer_flush(brw);
314 }
315 }
316
317 brw_bo_subdata(intel_obj->buffer, offset, size, data);
318 mark_buffer_inactive(intel_obj);
319 mark_buffer_valid_data(intel_obj, offset, size);
320 }
321
322
323 /**
324 * The GetBufferSubData() driver hook.
325 *
326 * Implements glGetBufferSubData(), which copies a subrange of a buffer
327 * object into user memory.
328 */
329 static void
330 brw_get_buffer_subdata(struct gl_context *ctx,
331 GLintptrARB offset,
332 GLsizeiptrARB size,
333 GLvoid *data,
334 struct gl_buffer_object *obj)
335 {
336 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
337 struct brw_context *brw = brw_context(ctx);
338
339 assert(intel_obj);
340 if (brw_batch_references(&brw->batch, intel_obj->buffer)) {
341 intel_batchbuffer_flush(brw);
342 }
343
344 unsigned int map_flags = MAP_READ;
345 mem_copy_fn memcpy_fn = memcpy;
346 #ifdef USE_SSE41
347 if (!intel_obj->buffer->cache_coherent && cpu_has_sse4_1) {
348 /* Rather than acquire a new WB mmaping of the buffer object and pull
349 * it into the CPU cache, keep using the WC mmap that we have for writes,
350 * and use the magic movntd instructions instead.
351 */
352 map_flags |= MAP_COHERENT;
353 memcpy_fn = (mem_copy_fn) _mesa_streaming_load_memcpy;
354 }
355 #endif
356
357 void *map = brw_bo_map(brw, intel_obj->buffer, map_flags);
358 if (unlikely(!map)) {
359 _mesa_error_no_memory(__func__);
360 return;
361 }
362 memcpy_fn(data, map + offset, size);
363 brw_bo_unmap(intel_obj->buffer);
364
365 mark_buffer_inactive(intel_obj);
366 }
367
368
369 /**
370 * The MapBufferRange() driver hook.
371 *
372 * This implements both glMapBufferRange() and glMapBuffer().
373 *
374 * The goal of this extension is to allow apps to accumulate their rendering
375 * at the same time as they accumulate their buffer object. Without it,
376 * you'd end up blocking on execution of rendering every time you mapped
377 * the buffer to put new data in.
378 *
379 * We support it in 3 ways: If unsynchronized, then don't bother
380 * flushing the batchbuffer before mapping the buffer, which can save blocking
381 * in many cases. If we would still block, and they allow the whole buffer
382 * to be invalidated, then just allocate a new buffer to replace the old one.
383 * If not, and we'd block, and they allow the subrange of the buffer to be
384 * invalidated, then we can make a new little BO, let them write into that,
385 * and blit it into the real BO at unmap time.
386 */
387 static void *
388 brw_map_buffer_range(struct gl_context *ctx,
389 GLintptr offset, GLsizeiptr length,
390 GLbitfield access, struct gl_buffer_object *obj,
391 gl_map_buffer_index index)
392 {
393 struct brw_context *brw = brw_context(ctx);
394 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
395
396 assert(intel_obj);
397
398 STATIC_ASSERT(GL_MAP_UNSYNCHRONIZED_BIT == MAP_ASYNC);
399 STATIC_ASSERT(GL_MAP_WRITE_BIT == MAP_WRITE);
400 STATIC_ASSERT(GL_MAP_READ_BIT == MAP_READ);
401 STATIC_ASSERT(GL_MAP_PERSISTENT_BIT == MAP_PERSISTENT);
402 STATIC_ASSERT(GL_MAP_COHERENT_BIT == MAP_COHERENT);
403 assert((access & MAP_INTERNAL_MASK) == 0);
404
405 /* _mesa_MapBufferRange (GL entrypoint) sets these, but the vbo module also
406 * internally uses our functions directly.
407 */
408 obj->Mappings[index].Offset = offset;
409 obj->Mappings[index].Length = length;
410 obj->Mappings[index].AccessFlags = access;
411
412 if (intel_obj->buffer == NULL) {
413 obj->Mappings[index].Pointer = NULL;
414 return NULL;
415 }
416
417 /* If the access is synchronized (like a normal buffer mapping), then get
418 * things flushed out so the later mapping syncs appropriately through GEM.
419 * If the user doesn't care about existing buffer contents and mapping would
420 * cause us to block, then throw out the old buffer.
421 *
422 * If they set INVALIDATE_BUFFER, we can pitch the current contents to
423 * achieve the required synchronization.
424 */
425 if (!(access & GL_MAP_UNSYNCHRONIZED_BIT)) {
426 if (brw_batch_references(&brw->batch, intel_obj->buffer)) {
427 if (access & GL_MAP_INVALIDATE_BUFFER_BIT) {
428 brw_bo_unreference(intel_obj->buffer);
429 alloc_buffer_object(brw, intel_obj);
430 } else {
431 perf_debug("Stalling on the GPU for mapping a busy buffer "
432 "object\n");
433 intel_batchbuffer_flush(brw);
434 }
435 } else if (brw_bo_busy(intel_obj->buffer) &&
436 (access & GL_MAP_INVALIDATE_BUFFER_BIT)) {
437 brw_bo_unreference(intel_obj->buffer);
438 alloc_buffer_object(brw, intel_obj);
439 }
440 }
441
442 if (access & MAP_WRITE)
443 mark_buffer_valid_data(intel_obj, offset, length);
444
445 /* If the user is mapping a range of an active buffer object but
446 * doesn't require the current contents of that range, make a new
447 * BO, and we'll copy what they put in there out at unmap or
448 * FlushRange time.
449 *
450 * That is, unless they're looking for a persistent mapping -- we would
451 * need to do blits in the MemoryBarrier call, and it's easier to just do a
452 * GPU stall and do a mapping.
453 */
454 if (!(access & (GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_PERSISTENT_BIT)) &&
455 (access & GL_MAP_INVALIDATE_RANGE_BIT) &&
456 brw_bo_busy(intel_obj->buffer)) {
457 /* Ensure that the base alignment of the allocation meets the alignment
458 * guarantees the driver has advertised to the application.
459 */
460 const unsigned alignment = ctx->Const.MinMapBufferAlignment;
461
462 intel_obj->map_extra[index] = (uintptr_t) offset % alignment;
463 intel_obj->range_map_bo[index] =
464 brw_bo_alloc(brw->bufmgr, "BO blit temp",
465 length + intel_obj->map_extra[index], alignment);
466 void *map = brw_bo_map(brw, intel_obj->range_map_bo[index], access);
467 obj->Mappings[index].Pointer = map + intel_obj->map_extra[index];
468 return obj->Mappings[index].Pointer;
469 }
470
471 void *map = brw_bo_map(brw, intel_obj->buffer, access);
472 if (!(access & GL_MAP_UNSYNCHRONIZED_BIT)) {
473 mark_buffer_inactive(intel_obj);
474 }
475
476 obj->Mappings[index].Pointer = map + offset;
477 return obj->Mappings[index].Pointer;
478 }
479
480 /**
481 * The FlushMappedBufferRange() driver hook.
482 *
483 * Implements glFlushMappedBufferRange(), which signifies that modifications
484 * have been made to a range of a mapped buffer, and it should be flushed.
485 *
486 * This is only used for buffers mapped with GL_MAP_FLUSH_EXPLICIT_BIT.
487 *
488 * Ideally we'd use a BO to avoid taking up cache space for the temporary
489 * data, but FlushMappedBufferRange may be followed by further writes to
490 * the pointer, so we would have to re-map after emitting our blit, which
491 * would defeat the point.
492 */
493 static void
494 brw_flush_mapped_buffer_range(struct gl_context *ctx,
495 GLintptr offset, GLsizeiptr length,
496 struct gl_buffer_object *obj,
497 gl_map_buffer_index index)
498 {
499 struct brw_context *brw = brw_context(ctx);
500 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
501
502 assert(obj->Mappings[index].AccessFlags & GL_MAP_FLUSH_EXPLICIT_BIT);
503
504 /* If we gave a direct mapping of the buffer instead of using a temporary,
505 * then there's nothing to do.
506 */
507 if (intel_obj->range_map_bo[index] == NULL)
508 return;
509
510 if (length == 0)
511 return;
512
513 /* Note that we're not unmapping our buffer while executing the blit. We
514 * need to have a mapping still at the end of this call, since the user
515 * gets to make further modifications and glFlushMappedBufferRange() calls.
516 * This is safe, because:
517 *
518 * - On LLC platforms, we're using a CPU mapping that's coherent with the
519 * GPU (except for the render caches), so the kernel doesn't need to do
520 * any flushing work for us except for what happens at batch exec time
521 * anyway.
522 *
523 * - On non-LLC platforms, we're using a GTT mapping that writes directly
524 * to system memory (except for the chipset cache that gets flushed at
525 * batch exec time).
526 *
527 * In both cases we don't need to stall for the previous blit to complete
528 * so we can re-map (and we definitely don't want to, since that would be
529 * slow): If the user edits a part of their buffer that's previously been
530 * blitted, then our lack of synchoronization is fine, because either
531 * they'll get some too-new data in the first blit and not do another blit
532 * of that area (but in that case the results are undefined), or they'll do
533 * another blit of that area and the complete newer data will land the
534 * second time.
535 */
536 brw_blorp_copy_buffers(brw,
537 intel_obj->range_map_bo[index],
538 intel_obj->map_extra[index] + offset,
539 intel_obj->buffer,
540 obj->Mappings[index].Offset + offset,
541 length);
542 mark_buffer_gpu_usage(intel_obj,
543 obj->Mappings[index].Offset + offset,
544 length);
545 brw_emit_mi_flush(brw);
546 }
547
548
549 /**
550 * The UnmapBuffer() driver hook.
551 *
552 * Implements glUnmapBuffer().
553 */
554 static GLboolean
555 brw_unmap_buffer(struct gl_context *ctx,
556 struct gl_buffer_object *obj,
557 gl_map_buffer_index index)
558 {
559 struct brw_context *brw = brw_context(ctx);
560 struct intel_buffer_object *intel_obj = intel_buffer_object(obj);
561
562 assert(intel_obj);
563 assert(obj->Mappings[index].Pointer);
564 if (intel_obj->range_map_bo[index] != NULL) {
565 brw_bo_unmap(intel_obj->range_map_bo[index]);
566
567 if (!(obj->Mappings[index].AccessFlags & GL_MAP_FLUSH_EXPLICIT_BIT)) {
568 brw_blorp_copy_buffers(brw,
569 intel_obj->range_map_bo[index],
570 intel_obj->map_extra[index],
571 intel_obj->buffer, obj->Mappings[index].Offset,
572 obj->Mappings[index].Length);
573 mark_buffer_gpu_usage(intel_obj, obj->Mappings[index].Offset,
574 obj->Mappings[index].Length);
575 brw_emit_mi_flush(brw);
576 }
577
578 /* Since we've emitted some blits to buffers that will (likely) be used
579 * in rendering operations in other cache domains in this batch, emit a
580 * flush. Once again, we wish for a domain tracker in libdrm to cover
581 * usage inside of a batchbuffer.
582 */
583
584 brw_bo_unreference(intel_obj->range_map_bo[index]);
585 intel_obj->range_map_bo[index] = NULL;
586 } else if (intel_obj->buffer != NULL) {
587 brw_bo_unmap(intel_obj->buffer);
588 }
589 obj->Mappings[index].Pointer = NULL;
590 obj->Mappings[index].Offset = 0;
591 obj->Mappings[index].Length = 0;
592
593 return true;
594 }
595
596 /**
597 * Gets a pointer to the object's BO, and marks the given range as being used
598 * on the GPU.
599 *
600 * Anywhere that uses buffer objects in the pipeline should be using this to
601 * mark the range of the buffer that is being accessed by the pipeline.
602 */
603 struct brw_bo *
604 intel_bufferobj_buffer(struct brw_context *brw,
605 struct intel_buffer_object *intel_obj,
606 uint32_t offset, uint32_t size, bool write)
607 {
608 /* This is needed so that things like transform feedback and texture buffer
609 * objects that need a BO but don't want to check that they exist for
610 * draw-time validation can just always get a BO from a GL buffer object.
611 */
612 if (intel_obj->buffer == NULL)
613 alloc_buffer_object(brw, intel_obj);
614
615 mark_buffer_gpu_usage(intel_obj, offset, size);
616
617 /* If writing, (conservatively) mark this section as having valid data. */
618 if (write)
619 mark_buffer_valid_data(intel_obj, offset, size);
620
621 return intel_obj->buffer;
622 }
623
624 /**
625 * The CopyBufferSubData() driver hook.
626 *
627 * Implements glCopyBufferSubData(), which copies a portion of one buffer
628 * object's data to another. Independent source and destination offsets
629 * are allowed.
630 */
631 static void
632 brw_copy_buffer_subdata(struct gl_context *ctx,
633 struct gl_buffer_object *src,
634 struct gl_buffer_object *dst,
635 GLintptr read_offset, GLintptr write_offset,
636 GLsizeiptr size)
637 {
638 struct brw_context *brw = brw_context(ctx);
639 struct intel_buffer_object *intel_src = intel_buffer_object(src);
640 struct intel_buffer_object *intel_dst = intel_buffer_object(dst);
641 struct brw_bo *src_bo, *dst_bo;
642
643 if (size == 0)
644 return;
645
646 dst_bo = intel_bufferobj_buffer(brw, intel_dst, write_offset, size, true);
647 src_bo = intel_bufferobj_buffer(brw, intel_src, read_offset, size, false);
648
649 brw_blorp_copy_buffers(brw,
650 src_bo, read_offset,
651 dst_bo, write_offset, size);
652
653 /* Since we've emitted some blits to buffers that will (likely) be used
654 * in rendering operations in other cache domains in this batch, emit a
655 * flush. Once again, we wish for a domain tracker in libdrm to cover
656 * usage inside of a batchbuffer.
657 */
658 brw_emit_mi_flush(brw);
659 }
660
661 void
662 intelInitBufferObjectFuncs(struct dd_function_table *functions)
663 {
664 functions->NewBufferObject = brw_new_buffer_object;
665 functions->DeleteBuffer = brw_delete_buffer;
666 functions->BufferData = brw_buffer_data;
667 functions->BufferSubData = brw_buffer_subdata;
668 functions->GetBufferSubData = brw_get_buffer_subdata;
669 functions->MapBufferRange = brw_map_buffer_range;
670 functions->FlushMappedBufferRange = brw_flush_mapped_buffer_range;
671 functions->UnmapBuffer = brw_unmap_buffer;
672 functions->CopyBufferSubData = brw_copy_buffer_subdata;
673 }