i965: Import libdrm_intel.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_bufmgr_gem.c
1 /**************************************************************************
2 *
3 * Copyright © 2007 Red Hat Inc.
4 * Copyright © 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40
41 #include <xf86drm.h>
42 #include <xf86atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "libdrm_macros.h"
60 #include "libdrm_lists.h"
61 #include "intel_bufmgr.h"
62 #include "intel_bufmgr_priv.h"
63 #include "intel_chipset.h"
64 #include "string.h"
65
66 #include "i915_drm.h"
67 #include "uthash.h"
68
69 #ifdef HAVE_VALGRIND
70 #include <valgrind.h>
71 #include <memcheck.h>
72 #define VG(x) x
73 #else
74 #define VG(x)
75 #endif
76
77 #define memclear(s) memset(&s, 0, sizeof(s))
78
79 #define DBG(...) do { \
80 if (bufmgr_gem->bufmgr.debug) \
81 fprintf(stderr, __VA_ARGS__); \
82 } while (0)
83
84 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
85 #define MAX2(A, B) ((A) > (B) ? (A) : (B))
86
87 /**
88 * upper_32_bits - return bits 32-63 of a number
89 * @n: the number we're accessing
90 *
91 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
92 * the "right shift count >= width of type" warning when that quantity is
93 * 32-bits.
94 */
95 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
96
97 /**
98 * lower_32_bits - return bits 0-31 of a number
99 * @n: the number we're accessing
100 */
101 #define lower_32_bits(n) ((__u32)(n))
102
103 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
104
105 struct drm_intel_gem_bo_bucket {
106 drmMMListHead head;
107 unsigned long size;
108 };
109
110 typedef struct _drm_intel_bufmgr_gem {
111 drm_intel_bufmgr bufmgr;
112
113 atomic_t refcount;
114
115 int fd;
116
117 int max_relocs;
118
119 pthread_mutex_t lock;
120
121 struct drm_i915_gem_exec_object *exec_objects;
122 struct drm_i915_gem_exec_object2 *exec2_objects;
123 drm_intel_bo **exec_bos;
124 int exec_size;
125 int exec_count;
126
127 /** Array of lists of cached gem objects of power-of-two sizes */
128 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
129 int num_buckets;
130 time_t time;
131
132 drmMMListHead managers;
133
134 drm_intel_bo_gem *name_table;
135 drm_intel_bo_gem *handle_table;
136
137 drmMMListHead vma_cache;
138 int vma_count, vma_open, vma_max;
139
140 uint64_t gtt_size;
141 int available_fences;
142 int pci_device;
143 int gen;
144 unsigned int has_bsd : 1;
145 unsigned int has_blt : 1;
146 unsigned int has_relaxed_fencing : 1;
147 unsigned int has_llc : 1;
148 unsigned int has_wait_timeout : 1;
149 unsigned int bo_reuse : 1;
150 unsigned int no_exec : 1;
151 unsigned int has_vebox : 1;
152 unsigned int has_exec_async : 1;
153 bool fenced_relocs;
154
155 struct {
156 void *ptr;
157 uint32_t handle;
158 } userptr_active;
159
160 } drm_intel_bufmgr_gem;
161
162 #define DRM_INTEL_RELOC_FENCE (1<<0)
163
164 typedef struct _drm_intel_reloc_target_info {
165 drm_intel_bo *bo;
166 int flags;
167 } drm_intel_reloc_target;
168
169 struct _drm_intel_bo_gem {
170 drm_intel_bo bo;
171
172 atomic_t refcount;
173 uint32_t gem_handle;
174 const char *name;
175
176 /**
177 * Kenel-assigned global name for this object
178 *
179 * List contains both flink named and prime fd'd objects
180 */
181 unsigned int global_name;
182
183 UT_hash_handle handle_hh;
184 UT_hash_handle name_hh;
185
186 /**
187 * Index of the buffer within the validation list while preparing a
188 * batchbuffer execution.
189 */
190 int validate_index;
191
192 /**
193 * Current tiling mode
194 */
195 uint32_t tiling_mode;
196 uint32_t swizzle_mode;
197 unsigned long stride;
198
199 unsigned long kflags;
200
201 time_t free_time;
202
203 /** Array passed to the DRM containing relocation information. */
204 struct drm_i915_gem_relocation_entry *relocs;
205 /**
206 * Array of info structs corresponding to relocs[i].target_handle etc
207 */
208 drm_intel_reloc_target *reloc_target_info;
209 /** Number of entries in relocs */
210 int reloc_count;
211 /** Array of BOs that are referenced by this buffer and will be softpinned */
212 drm_intel_bo **softpin_target;
213 /** Number softpinned BOs that are referenced by this buffer */
214 int softpin_target_count;
215 /** Maximum amount of softpinned BOs that are referenced by this buffer */
216 int softpin_target_size;
217
218 /** Mapped address for the buffer, saved across map/unmap cycles */
219 void *mem_virtual;
220 /** GTT virtual address for the buffer, saved across map/unmap cycles */
221 void *gtt_virtual;
222 /** WC CPU address for the buffer, saved across map/unmap cycles */
223 void *wc_virtual;
224 /**
225 * Virtual address of the buffer allocated by user, used for userptr
226 * objects only.
227 */
228 void *user_virtual;
229 int map_count;
230 drmMMListHead vma_list;
231
232 /** BO cache list */
233 drmMMListHead head;
234
235 /**
236 * Boolean of whether this BO and its children have been included in
237 * the current drm_intel_bufmgr_check_aperture_space() total.
238 */
239 bool included_in_check_aperture;
240
241 /**
242 * Boolean of whether this buffer has been used as a relocation
243 * target and had its size accounted for, and thus can't have any
244 * further relocations added to it.
245 */
246 bool used_as_reloc_target;
247
248 /**
249 * Boolean of whether we have encountered an error whilst building the relocation tree.
250 */
251 bool has_error;
252
253 /**
254 * Boolean of whether this buffer can be re-used
255 */
256 bool reusable;
257
258 /**
259 * Boolean of whether the GPU is definitely not accessing the buffer.
260 *
261 * This is only valid when reusable, since non-reusable
262 * buffers are those that have been shared with other
263 * processes, so we don't know their state.
264 */
265 bool idle;
266
267 /**
268 * Boolean of whether this buffer was allocated with userptr
269 */
270 bool is_userptr;
271
272 /**
273 * Size in bytes of this buffer and its relocation descendents.
274 *
275 * Used to avoid costly tree walking in
276 * drm_intel_bufmgr_check_aperture in the common case.
277 */
278 int reloc_tree_size;
279
280 /**
281 * Number of potential fence registers required by this buffer and its
282 * relocations.
283 */
284 int reloc_tree_fences;
285
286 /** Flags that we may need to do the SW_FINISH ioctl on unmap. */
287 bool mapped_cpu_write;
288 };
289
290 static unsigned int
291 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
292
293 static unsigned int
294 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
295
296 static int
297 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
298 uint32_t * swizzle_mode);
299
300 static int
301 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
302 uint32_t tiling_mode,
303 uint32_t stride);
304
305 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
306 time_t time);
307
308 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
309
310 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
311
312 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
313 {
314 return (drm_intel_bo_gem *)bo;
315 }
316
317 static unsigned long
318 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
319 uint32_t *tiling_mode)
320 {
321 unsigned long min_size, max_size;
322 unsigned long i;
323
324 if (*tiling_mode == I915_TILING_NONE)
325 return size;
326
327 /* 965+ just need multiples of page size for tiling */
328 if (bufmgr_gem->gen >= 4)
329 return ROUND_UP_TO(size, 4096);
330
331 /* Older chips need powers of two, of at least 512k or 1M */
332 if (bufmgr_gem->gen == 3) {
333 min_size = 1024*1024;
334 max_size = 128*1024*1024;
335 } else {
336 min_size = 512*1024;
337 max_size = 64*1024*1024;
338 }
339
340 if (size > max_size) {
341 *tiling_mode = I915_TILING_NONE;
342 return size;
343 }
344
345 /* Do we need to allocate every page for the fence? */
346 if (bufmgr_gem->has_relaxed_fencing)
347 return ROUND_UP_TO(size, 4096);
348
349 for (i = min_size; i < size; i <<= 1)
350 ;
351
352 return i;
353 }
354
355 /*
356 * Round a given pitch up to the minimum required for X tiling on a
357 * given chip. We use 512 as the minimum to allow for a later tiling
358 * change.
359 */
360 static unsigned long
361 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
362 unsigned long pitch, uint32_t *tiling_mode)
363 {
364 unsigned long tile_width;
365 unsigned long i;
366
367 /* If untiled, then just align it so that we can do rendering
368 * to it with the 3D engine.
369 */
370 if (*tiling_mode == I915_TILING_NONE)
371 return ALIGN(pitch, 64);
372
373 if (*tiling_mode == I915_TILING_X
374 || (IS_915(bufmgr_gem->pci_device)
375 && *tiling_mode == I915_TILING_Y))
376 tile_width = 512;
377 else
378 tile_width = 128;
379
380 /* 965 is flexible */
381 if (bufmgr_gem->gen >= 4)
382 return ROUND_UP_TO(pitch, tile_width);
383
384 /* The older hardware has a maximum pitch of 8192 with tiled
385 * surfaces, so fallback to untiled if it's too large.
386 */
387 if (pitch > 8192) {
388 *tiling_mode = I915_TILING_NONE;
389 return ALIGN(pitch, 64);
390 }
391
392 /* Pre-965 needs power of two tile width */
393 for (i = tile_width; i < pitch; i <<= 1)
394 ;
395
396 return i;
397 }
398
399 static struct drm_intel_gem_bo_bucket *
400 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
401 unsigned long size)
402 {
403 int i;
404
405 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
406 struct drm_intel_gem_bo_bucket *bucket =
407 &bufmgr_gem->cache_bucket[i];
408 if (bucket->size >= size) {
409 return bucket;
410 }
411 }
412
413 return NULL;
414 }
415
416 static void
417 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
418 {
419 int i, j;
420
421 for (i = 0; i < bufmgr_gem->exec_count; i++) {
422 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
423 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
424
425 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
426 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
427 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
428 bo_gem->name);
429 continue;
430 }
431
432 for (j = 0; j < bo_gem->reloc_count; j++) {
433 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
434 drm_intel_bo_gem *target_gem =
435 (drm_intel_bo_gem *) target_bo;
436
437 DBG("%2d: %d %s(%s)@0x%08x %08x -> "
438 "%d (%s)@0x%08x %08x + 0x%08x\n",
439 i,
440 bo_gem->gem_handle,
441 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
442 bo_gem->name,
443 upper_32_bits(bo_gem->relocs[j].offset),
444 lower_32_bits(bo_gem->relocs[j].offset),
445 target_gem->gem_handle,
446 target_gem->name,
447 upper_32_bits(target_bo->offset64),
448 lower_32_bits(target_bo->offset64),
449 bo_gem->relocs[j].delta);
450 }
451
452 for (j = 0; j < bo_gem->softpin_target_count; j++) {
453 drm_intel_bo *target_bo = bo_gem->softpin_target[j];
454 drm_intel_bo_gem *target_gem =
455 (drm_intel_bo_gem *) target_bo;
456 DBG("%2d: %d %s(%s) -> "
457 "%d *(%s)@0x%08x %08x\n",
458 i,
459 bo_gem->gem_handle,
460 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
461 bo_gem->name,
462 target_gem->gem_handle,
463 target_gem->name,
464 upper_32_bits(target_bo->offset64),
465 lower_32_bits(target_bo->offset64));
466 }
467 }
468 }
469
470 static inline void
471 drm_intel_gem_bo_reference(drm_intel_bo *bo)
472 {
473 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
474
475 atomic_inc(&bo_gem->refcount);
476 }
477
478 /**
479 * Adds the given buffer to the list of buffers to be validated (moved into the
480 * appropriate memory type) with the next batch submission.
481 *
482 * If a buffer is validated multiple times in a batch submission, it ends up
483 * with the intersection of the memory type flags and the union of the
484 * access flags.
485 */
486 static void
487 drm_intel_add_validate_buffer(drm_intel_bo *bo)
488 {
489 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
490 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
491 int index;
492
493 if (bo_gem->validate_index != -1)
494 return;
495
496 /* Extend the array of validation entries as necessary. */
497 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
498 int new_size = bufmgr_gem->exec_size * 2;
499
500 if (new_size == 0)
501 new_size = 5;
502
503 bufmgr_gem->exec_objects =
504 realloc(bufmgr_gem->exec_objects,
505 sizeof(*bufmgr_gem->exec_objects) * new_size);
506 bufmgr_gem->exec_bos =
507 realloc(bufmgr_gem->exec_bos,
508 sizeof(*bufmgr_gem->exec_bos) * new_size);
509 bufmgr_gem->exec_size = new_size;
510 }
511
512 index = bufmgr_gem->exec_count;
513 bo_gem->validate_index = index;
514 /* Fill in array entry */
515 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
516 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
517 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
518 bufmgr_gem->exec_objects[index].alignment = bo->align;
519 bufmgr_gem->exec_objects[index].offset = 0;
520 bufmgr_gem->exec_bos[index] = bo;
521 bufmgr_gem->exec_count++;
522 }
523
524 static void
525 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
526 {
527 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
528 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
529 int index;
530 unsigned long flags;
531
532 flags = 0;
533 if (need_fence)
534 flags |= EXEC_OBJECT_NEEDS_FENCE;
535
536 if (bo_gem->validate_index != -1) {
537 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
538 return;
539 }
540
541 /* Extend the array of validation entries as necessary. */
542 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
543 int new_size = bufmgr_gem->exec_size * 2;
544
545 if (new_size == 0)
546 new_size = 5;
547
548 bufmgr_gem->exec2_objects =
549 realloc(bufmgr_gem->exec2_objects,
550 sizeof(*bufmgr_gem->exec2_objects) * new_size);
551 bufmgr_gem->exec_bos =
552 realloc(bufmgr_gem->exec_bos,
553 sizeof(*bufmgr_gem->exec_bos) * new_size);
554 bufmgr_gem->exec_size = new_size;
555 }
556
557 index = bufmgr_gem->exec_count;
558 bo_gem->validate_index = index;
559 /* Fill in array entry */
560 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
561 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
562 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
563 bufmgr_gem->exec2_objects[index].alignment = bo->align;
564 bufmgr_gem->exec2_objects[index].offset = bo->offset64;
565 bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags;
566 bufmgr_gem->exec2_objects[index].rsvd1 = 0;
567 bufmgr_gem->exec2_objects[index].rsvd2 = 0;
568 bufmgr_gem->exec_bos[index] = bo;
569 bufmgr_gem->exec_count++;
570 }
571
572 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
573 sizeof(uint32_t))
574
575 static void
576 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
577 drm_intel_bo_gem *bo_gem,
578 unsigned int alignment)
579 {
580 unsigned int size;
581
582 assert(!bo_gem->used_as_reloc_target);
583
584 /* The older chipsets are far-less flexible in terms of tiling,
585 * and require tiled buffer to be size aligned in the aperture.
586 * This means that in the worst possible case we will need a hole
587 * twice as large as the object in order for it to fit into the
588 * aperture. Optimal packing is for wimps.
589 */
590 size = bo_gem->bo.size;
591 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
592 unsigned int min_size;
593
594 if (bufmgr_gem->has_relaxed_fencing) {
595 if (bufmgr_gem->gen == 3)
596 min_size = 1024*1024;
597 else
598 min_size = 512*1024;
599
600 while (min_size < size)
601 min_size *= 2;
602 } else
603 min_size = size;
604
605 /* Account for worst-case alignment. */
606 alignment = MAX2(alignment, min_size);
607 }
608
609 bo_gem->reloc_tree_size = size + alignment;
610 }
611
612 static int
613 drm_intel_setup_reloc_list(drm_intel_bo *bo)
614 {
615 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
616 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
617 unsigned int max_relocs = bufmgr_gem->max_relocs;
618
619 if (bo->size / 4 < max_relocs)
620 max_relocs = bo->size / 4;
621
622 bo_gem->relocs = malloc(max_relocs *
623 sizeof(struct drm_i915_gem_relocation_entry));
624 bo_gem->reloc_target_info = malloc(max_relocs *
625 sizeof(drm_intel_reloc_target));
626 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
627 bo_gem->has_error = true;
628
629 free (bo_gem->relocs);
630 bo_gem->relocs = NULL;
631
632 free (bo_gem->reloc_target_info);
633 bo_gem->reloc_target_info = NULL;
634
635 return 1;
636 }
637
638 return 0;
639 }
640
641 static int
642 drm_intel_gem_bo_busy(drm_intel_bo *bo)
643 {
644 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
645 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
646 struct drm_i915_gem_busy busy;
647 int ret;
648
649 if (bo_gem->reusable && bo_gem->idle)
650 return false;
651
652 memclear(busy);
653 busy.handle = bo_gem->gem_handle;
654
655 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
656 if (ret == 0) {
657 bo_gem->idle = !busy.busy;
658 return busy.busy;
659 } else {
660 return false;
661 }
662 return (ret == 0 && busy.busy);
663 }
664
665 static int
666 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
667 drm_intel_bo_gem *bo_gem, int state)
668 {
669 struct drm_i915_gem_madvise madv;
670
671 memclear(madv);
672 madv.handle = bo_gem->gem_handle;
673 madv.madv = state;
674 madv.retained = 1;
675 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
676
677 return madv.retained;
678 }
679
680 static int
681 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
682 {
683 return drm_intel_gem_bo_madvise_internal
684 ((drm_intel_bufmgr_gem *) bo->bufmgr,
685 (drm_intel_bo_gem *) bo,
686 madv);
687 }
688
689 /* drop the oldest entries that have been purged by the kernel */
690 static void
691 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
692 struct drm_intel_gem_bo_bucket *bucket)
693 {
694 while (!DRMLISTEMPTY(&bucket->head)) {
695 drm_intel_bo_gem *bo_gem;
696
697 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
698 bucket->head.next, head);
699 if (drm_intel_gem_bo_madvise_internal
700 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
701 break;
702
703 DRMLISTDEL(&bo_gem->head);
704 drm_intel_gem_bo_free(&bo_gem->bo);
705 }
706 }
707
708 static drm_intel_bo *
709 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
710 const char *name,
711 unsigned long size,
712 unsigned long flags,
713 uint32_t tiling_mode,
714 unsigned long stride,
715 unsigned int alignment)
716 {
717 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
718 drm_intel_bo_gem *bo_gem;
719 unsigned int page_size = getpagesize();
720 int ret;
721 struct drm_intel_gem_bo_bucket *bucket;
722 bool alloc_from_cache;
723 unsigned long bo_size;
724 bool for_render = false;
725
726 if (flags & BO_ALLOC_FOR_RENDER)
727 for_render = true;
728
729 /* Round the allocated size up to a power of two number of pages. */
730 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
731
732 /* If we don't have caching at this size, don't actually round the
733 * allocation up.
734 */
735 if (bucket == NULL) {
736 bo_size = size;
737 if (bo_size < page_size)
738 bo_size = page_size;
739 } else {
740 bo_size = bucket->size;
741 }
742
743 pthread_mutex_lock(&bufmgr_gem->lock);
744 /* Get a buffer out of the cache if available */
745 retry:
746 alloc_from_cache = false;
747 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
748 if (for_render) {
749 /* Allocate new render-target BOs from the tail (MRU)
750 * of the list, as it will likely be hot in the GPU
751 * cache and in the aperture for us.
752 */
753 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
754 bucket->head.prev, head);
755 DRMLISTDEL(&bo_gem->head);
756 alloc_from_cache = true;
757 bo_gem->bo.align = alignment;
758 } else {
759 assert(alignment == 0);
760 /* For non-render-target BOs (where we're probably
761 * going to map it first thing in order to fill it
762 * with data), check if the last BO in the cache is
763 * unbusy, and only reuse in that case. Otherwise,
764 * allocating a new buffer is probably faster than
765 * waiting for the GPU to finish.
766 */
767 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
768 bucket->head.next, head);
769 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
770 alloc_from_cache = true;
771 DRMLISTDEL(&bo_gem->head);
772 }
773 }
774
775 if (alloc_from_cache) {
776 if (!drm_intel_gem_bo_madvise_internal
777 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
778 drm_intel_gem_bo_free(&bo_gem->bo);
779 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
780 bucket);
781 goto retry;
782 }
783
784 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
785 tiling_mode,
786 stride)) {
787 drm_intel_gem_bo_free(&bo_gem->bo);
788 goto retry;
789 }
790 }
791 }
792
793 if (!alloc_from_cache) {
794 struct drm_i915_gem_create create;
795
796 bo_gem = calloc(1, sizeof(*bo_gem));
797 if (!bo_gem)
798 goto err;
799
800 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
801 list (vma_list), so better set the list head here */
802 DRMINITLISTHEAD(&bo_gem->vma_list);
803
804 bo_gem->bo.size = bo_size;
805
806 memclear(create);
807 create.size = bo_size;
808
809 ret = drmIoctl(bufmgr_gem->fd,
810 DRM_IOCTL_I915_GEM_CREATE,
811 &create);
812 if (ret != 0) {
813 free(bo_gem);
814 goto err;
815 }
816
817 bo_gem->gem_handle = create.handle;
818 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
819 gem_handle, sizeof(bo_gem->gem_handle),
820 bo_gem);
821
822 bo_gem->bo.handle = bo_gem->gem_handle;
823 bo_gem->bo.bufmgr = bufmgr;
824 bo_gem->bo.align = alignment;
825
826 bo_gem->tiling_mode = I915_TILING_NONE;
827 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
828 bo_gem->stride = 0;
829
830 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
831 tiling_mode,
832 stride))
833 goto err_free;
834 }
835
836 bo_gem->name = name;
837 atomic_set(&bo_gem->refcount, 1);
838 bo_gem->validate_index = -1;
839 bo_gem->reloc_tree_fences = 0;
840 bo_gem->used_as_reloc_target = false;
841 bo_gem->has_error = false;
842 bo_gem->reusable = true;
843
844 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
845 pthread_mutex_unlock(&bufmgr_gem->lock);
846
847 DBG("bo_create: buf %d (%s) %ldb\n",
848 bo_gem->gem_handle, bo_gem->name, size);
849
850 return &bo_gem->bo;
851
852 err_free:
853 drm_intel_gem_bo_free(&bo_gem->bo);
854 err:
855 pthread_mutex_unlock(&bufmgr_gem->lock);
856 return NULL;
857 }
858
859 static drm_intel_bo *
860 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
861 const char *name,
862 unsigned long size,
863 unsigned int alignment)
864 {
865 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
866 BO_ALLOC_FOR_RENDER,
867 I915_TILING_NONE, 0,
868 alignment);
869 }
870
871 static drm_intel_bo *
872 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
873 const char *name,
874 unsigned long size,
875 unsigned int alignment)
876 {
877 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
878 I915_TILING_NONE, 0, 0);
879 }
880
881 static drm_intel_bo *
882 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
883 int x, int y, int cpp, uint32_t *tiling_mode,
884 unsigned long *pitch, unsigned long flags)
885 {
886 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
887 unsigned long size, stride;
888 uint32_t tiling;
889
890 do {
891 unsigned long aligned_y, height_alignment;
892
893 tiling = *tiling_mode;
894
895 /* If we're tiled, our allocations are in 8 or 32-row blocks,
896 * so failure to align our height means that we won't allocate
897 * enough pages.
898 *
899 * If we're untiled, we still have to align to 2 rows high
900 * because the data port accesses 2x2 blocks even if the
901 * bottom row isn't to be rendered, so failure to align means
902 * we could walk off the end of the GTT and fault. This is
903 * documented on 965, and may be the case on older chipsets
904 * too so we try to be careful.
905 */
906 aligned_y = y;
907 height_alignment = 2;
908
909 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
910 height_alignment = 16;
911 else if (tiling == I915_TILING_X
912 || (IS_915(bufmgr_gem->pci_device)
913 && tiling == I915_TILING_Y))
914 height_alignment = 8;
915 else if (tiling == I915_TILING_Y)
916 height_alignment = 32;
917 aligned_y = ALIGN(y, height_alignment);
918
919 stride = x * cpp;
920 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
921 size = stride * aligned_y;
922 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
923 } while (*tiling_mode != tiling);
924 *pitch = stride;
925
926 if (tiling == I915_TILING_NONE)
927 stride = 0;
928
929 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
930 tiling, stride, 0);
931 }
932
933 static drm_intel_bo *
934 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
935 const char *name,
936 void *addr,
937 uint32_t tiling_mode,
938 uint32_t stride,
939 unsigned long size,
940 unsigned long flags)
941 {
942 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
943 drm_intel_bo_gem *bo_gem;
944 int ret;
945 struct drm_i915_gem_userptr userptr;
946
947 /* Tiling with userptr surfaces is not supported
948 * on all hardware so refuse it for time being.
949 */
950 if (tiling_mode != I915_TILING_NONE)
951 return NULL;
952
953 bo_gem = calloc(1, sizeof(*bo_gem));
954 if (!bo_gem)
955 return NULL;
956
957 atomic_set(&bo_gem->refcount, 1);
958 DRMINITLISTHEAD(&bo_gem->vma_list);
959
960 bo_gem->bo.size = size;
961
962 memclear(userptr);
963 userptr.user_ptr = (__u64)((unsigned long)addr);
964 userptr.user_size = size;
965 userptr.flags = flags;
966
967 ret = drmIoctl(bufmgr_gem->fd,
968 DRM_IOCTL_I915_GEM_USERPTR,
969 &userptr);
970 if (ret != 0) {
971 DBG("bo_create_userptr: "
972 "ioctl failed with user ptr %p size 0x%lx, "
973 "user flags 0x%lx\n", addr, size, flags);
974 free(bo_gem);
975 return NULL;
976 }
977
978 pthread_mutex_lock(&bufmgr_gem->lock);
979
980 bo_gem->gem_handle = userptr.handle;
981 bo_gem->bo.handle = bo_gem->gem_handle;
982 bo_gem->bo.bufmgr = bufmgr;
983 bo_gem->is_userptr = true;
984 bo_gem->bo.virtual = addr;
985 /* Save the address provided by user */
986 bo_gem->user_virtual = addr;
987 bo_gem->tiling_mode = I915_TILING_NONE;
988 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
989 bo_gem->stride = 0;
990
991 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
992 gem_handle, sizeof(bo_gem->gem_handle),
993 bo_gem);
994
995 bo_gem->name = name;
996 bo_gem->validate_index = -1;
997 bo_gem->reloc_tree_fences = 0;
998 bo_gem->used_as_reloc_target = false;
999 bo_gem->has_error = false;
1000 bo_gem->reusable = false;
1001
1002 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1003 pthread_mutex_unlock(&bufmgr_gem->lock);
1004
1005 DBG("bo_create_userptr: "
1006 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1007 addr, bo_gem->gem_handle, bo_gem->name,
1008 size, stride, tiling_mode);
1009
1010 return &bo_gem->bo;
1011 }
1012
1013 static bool
1014 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1015 {
1016 int ret;
1017 void *ptr;
1018 long pgsz;
1019 struct drm_i915_gem_userptr userptr;
1020
1021 pgsz = sysconf(_SC_PAGESIZE);
1022 assert(pgsz > 0);
1023
1024 ret = posix_memalign(&ptr, pgsz, pgsz);
1025 if (ret) {
1026 DBG("Failed to get a page (%ld) for userptr detection!\n",
1027 pgsz);
1028 return false;
1029 }
1030
1031 memclear(userptr);
1032 userptr.user_ptr = (__u64)(unsigned long)ptr;
1033 userptr.user_size = pgsz;
1034
1035 retry:
1036 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1037 if (ret) {
1038 if (errno == ENODEV && userptr.flags == 0) {
1039 userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1040 goto retry;
1041 }
1042 free(ptr);
1043 return false;
1044 }
1045
1046 /* We don't release the userptr bo here as we want to keep the
1047 * kernel mm tracking alive for our lifetime. The first time we
1048 * create a userptr object the kernel has to install a mmu_notifer
1049 * which is a heavyweight operation (e.g. it requires taking all
1050 * mm_locks and stop_machine()).
1051 */
1052
1053 bufmgr_gem->userptr_active.ptr = ptr;
1054 bufmgr_gem->userptr_active.handle = userptr.handle;
1055
1056 return true;
1057 }
1058
1059 static drm_intel_bo *
1060 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1061 const char *name,
1062 void *addr,
1063 uint32_t tiling_mode,
1064 uint32_t stride,
1065 unsigned long size,
1066 unsigned long flags)
1067 {
1068 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1069 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1070 else
1071 bufmgr->bo_alloc_userptr = NULL;
1072
1073 return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1074 tiling_mode, stride, size, flags);
1075 }
1076
1077 /**
1078 * Returns a drm_intel_bo wrapping the given buffer object handle.
1079 *
1080 * This can be used when one application needs to pass a buffer object
1081 * to another.
1082 */
1083 drm_intel_bo *
1084 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1085 const char *name,
1086 unsigned int handle)
1087 {
1088 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1089 drm_intel_bo_gem *bo_gem;
1090 int ret;
1091 struct drm_gem_open open_arg;
1092 struct drm_i915_gem_get_tiling get_tiling;
1093
1094 /* At the moment most applications only have a few named bo.
1095 * For instance, in a DRI client only the render buffers passed
1096 * between X and the client are named. And since X returns the
1097 * alternating names for the front/back buffer a linear search
1098 * provides a sufficiently fast match.
1099 */
1100 pthread_mutex_lock(&bufmgr_gem->lock);
1101 HASH_FIND(name_hh, bufmgr_gem->name_table,
1102 &handle, sizeof(handle), bo_gem);
1103 if (bo_gem) {
1104 drm_intel_gem_bo_reference(&bo_gem->bo);
1105 goto out;
1106 }
1107
1108 memclear(open_arg);
1109 open_arg.name = handle;
1110 ret = drmIoctl(bufmgr_gem->fd,
1111 DRM_IOCTL_GEM_OPEN,
1112 &open_arg);
1113 if (ret != 0) {
1114 DBG("Couldn't reference %s handle 0x%08x: %s\n",
1115 name, handle, strerror(errno));
1116 bo_gem = NULL;
1117 goto out;
1118 }
1119 /* Now see if someone has used a prime handle to get this
1120 * object from the kernel before by looking through the list
1121 * again for a matching gem_handle
1122 */
1123 HASH_FIND(handle_hh, bufmgr_gem->handle_table,
1124 &open_arg.handle, sizeof(open_arg.handle), bo_gem);
1125 if (bo_gem) {
1126 drm_intel_gem_bo_reference(&bo_gem->bo);
1127 goto out;
1128 }
1129
1130 bo_gem = calloc(1, sizeof(*bo_gem));
1131 if (!bo_gem)
1132 goto out;
1133
1134 atomic_set(&bo_gem->refcount, 1);
1135 DRMINITLISTHEAD(&bo_gem->vma_list);
1136
1137 bo_gem->bo.size = open_arg.size;
1138 bo_gem->bo.offset = 0;
1139 bo_gem->bo.offset64 = 0;
1140 bo_gem->bo.virtual = NULL;
1141 bo_gem->bo.bufmgr = bufmgr;
1142 bo_gem->name = name;
1143 bo_gem->validate_index = -1;
1144 bo_gem->gem_handle = open_arg.handle;
1145 bo_gem->bo.handle = open_arg.handle;
1146 bo_gem->global_name = handle;
1147 bo_gem->reusable = false;
1148
1149 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
1150 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
1151 HASH_ADD(name_hh, bufmgr_gem->name_table,
1152 global_name, sizeof(bo_gem->global_name), bo_gem);
1153
1154 memclear(get_tiling);
1155 get_tiling.handle = bo_gem->gem_handle;
1156 ret = drmIoctl(bufmgr_gem->fd,
1157 DRM_IOCTL_I915_GEM_GET_TILING,
1158 &get_tiling);
1159 if (ret != 0)
1160 goto err_unref;
1161
1162 bo_gem->tiling_mode = get_tiling.tiling_mode;
1163 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1164 /* XXX stride is unknown */
1165 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1166 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1167
1168 out:
1169 pthread_mutex_unlock(&bufmgr_gem->lock);
1170 return &bo_gem->bo;
1171
1172 err_unref:
1173 drm_intel_gem_bo_free(&bo_gem->bo);
1174 pthread_mutex_unlock(&bufmgr_gem->lock);
1175 return NULL;
1176 }
1177
1178 static void
1179 drm_intel_gem_bo_free(drm_intel_bo *bo)
1180 {
1181 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1182 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1183 struct drm_gem_close close;
1184 int ret;
1185
1186 DRMLISTDEL(&bo_gem->vma_list);
1187 if (bo_gem->mem_virtual) {
1188 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1189 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1190 bufmgr_gem->vma_count--;
1191 }
1192 if (bo_gem->wc_virtual) {
1193 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0));
1194 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1195 bufmgr_gem->vma_count--;
1196 }
1197 if (bo_gem->gtt_virtual) {
1198 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1199 bufmgr_gem->vma_count--;
1200 }
1201
1202 if (bo_gem->global_name)
1203 HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem);
1204 HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem);
1205
1206 /* Close this object */
1207 memclear(close);
1208 close.handle = bo_gem->gem_handle;
1209 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1210 if (ret != 0) {
1211 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1212 bo_gem->gem_handle, bo_gem->name, strerror(errno));
1213 }
1214 free(bo);
1215 }
1216
1217 static void
1218 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1219 {
1220 #if HAVE_VALGRIND
1221 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1222
1223 if (bo_gem->mem_virtual)
1224 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1225
1226 if (bo_gem->wc_virtual)
1227 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size);
1228
1229 if (bo_gem->gtt_virtual)
1230 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1231 #endif
1232 }
1233
1234 /** Frees all cached buffers significantly older than @time. */
1235 static void
1236 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1237 {
1238 int i;
1239
1240 if (bufmgr_gem->time == time)
1241 return;
1242
1243 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1244 struct drm_intel_gem_bo_bucket *bucket =
1245 &bufmgr_gem->cache_bucket[i];
1246
1247 while (!DRMLISTEMPTY(&bucket->head)) {
1248 drm_intel_bo_gem *bo_gem;
1249
1250 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1251 bucket->head.next, head);
1252 if (time - bo_gem->free_time <= 1)
1253 break;
1254
1255 DRMLISTDEL(&bo_gem->head);
1256
1257 drm_intel_gem_bo_free(&bo_gem->bo);
1258 }
1259 }
1260
1261 bufmgr_gem->time = time;
1262 }
1263
1264 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1265 {
1266 int limit;
1267
1268 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1269 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1270
1271 if (bufmgr_gem->vma_max < 0)
1272 return;
1273
1274 /* We may need to evict a few entries in order to create new mmaps */
1275 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1276 if (limit < 0)
1277 limit = 0;
1278
1279 while (bufmgr_gem->vma_count > limit) {
1280 drm_intel_bo_gem *bo_gem;
1281
1282 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1283 bufmgr_gem->vma_cache.next,
1284 vma_list);
1285 assert(bo_gem->map_count == 0);
1286 DRMLISTDELINIT(&bo_gem->vma_list);
1287
1288 if (bo_gem->mem_virtual) {
1289 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1290 bo_gem->mem_virtual = NULL;
1291 bufmgr_gem->vma_count--;
1292 }
1293 if (bo_gem->wc_virtual) {
1294 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1295 bo_gem->wc_virtual = NULL;
1296 bufmgr_gem->vma_count--;
1297 }
1298 if (bo_gem->gtt_virtual) {
1299 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1300 bo_gem->gtt_virtual = NULL;
1301 bufmgr_gem->vma_count--;
1302 }
1303 }
1304 }
1305
1306 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1307 drm_intel_bo_gem *bo_gem)
1308 {
1309 bufmgr_gem->vma_open--;
1310 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1311 if (bo_gem->mem_virtual)
1312 bufmgr_gem->vma_count++;
1313 if (bo_gem->wc_virtual)
1314 bufmgr_gem->vma_count++;
1315 if (bo_gem->gtt_virtual)
1316 bufmgr_gem->vma_count++;
1317 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1318 }
1319
1320 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1321 drm_intel_bo_gem *bo_gem)
1322 {
1323 bufmgr_gem->vma_open++;
1324 DRMLISTDEL(&bo_gem->vma_list);
1325 if (bo_gem->mem_virtual)
1326 bufmgr_gem->vma_count--;
1327 if (bo_gem->wc_virtual)
1328 bufmgr_gem->vma_count--;
1329 if (bo_gem->gtt_virtual)
1330 bufmgr_gem->vma_count--;
1331 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1332 }
1333
1334 static void
1335 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1336 {
1337 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1338 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1339 struct drm_intel_gem_bo_bucket *bucket;
1340 int i;
1341
1342 /* Unreference all the target buffers */
1343 for (i = 0; i < bo_gem->reloc_count; i++) {
1344 if (bo_gem->reloc_target_info[i].bo != bo) {
1345 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1346 reloc_target_info[i].bo,
1347 time);
1348 }
1349 }
1350 for (i = 0; i < bo_gem->softpin_target_count; i++)
1351 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1352 time);
1353 bo_gem->kflags = 0;
1354 bo_gem->reloc_count = 0;
1355 bo_gem->used_as_reloc_target = false;
1356 bo_gem->softpin_target_count = 0;
1357
1358 DBG("bo_unreference final: %d (%s)\n",
1359 bo_gem->gem_handle, bo_gem->name);
1360
1361 /* release memory associated with this object */
1362 if (bo_gem->reloc_target_info) {
1363 free(bo_gem->reloc_target_info);
1364 bo_gem->reloc_target_info = NULL;
1365 }
1366 if (bo_gem->relocs) {
1367 free(bo_gem->relocs);
1368 bo_gem->relocs = NULL;
1369 }
1370 if (bo_gem->softpin_target) {
1371 free(bo_gem->softpin_target);
1372 bo_gem->softpin_target = NULL;
1373 bo_gem->softpin_target_size = 0;
1374 }
1375
1376 /* Clear any left-over mappings */
1377 if (bo_gem->map_count) {
1378 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1379 bo_gem->map_count = 0;
1380 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1381 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1382 }
1383
1384 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1385 /* Put the buffer into our internal cache for reuse if we can. */
1386 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1387 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1388 I915_MADV_DONTNEED)) {
1389 bo_gem->free_time = time;
1390
1391 bo_gem->name = NULL;
1392 bo_gem->validate_index = -1;
1393
1394 DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1395 } else {
1396 drm_intel_gem_bo_free(bo);
1397 }
1398 }
1399
1400 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1401 time_t time)
1402 {
1403 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1404
1405 assert(atomic_read(&bo_gem->refcount) > 0);
1406 if (atomic_dec_and_test(&bo_gem->refcount))
1407 drm_intel_gem_bo_unreference_final(bo, time);
1408 }
1409
1410 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1411 {
1412 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1413
1414 assert(atomic_read(&bo_gem->refcount) > 0);
1415
1416 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1417 drm_intel_bufmgr_gem *bufmgr_gem =
1418 (drm_intel_bufmgr_gem *) bo->bufmgr;
1419 struct timespec time;
1420
1421 clock_gettime(CLOCK_MONOTONIC, &time);
1422
1423 pthread_mutex_lock(&bufmgr_gem->lock);
1424
1425 if (atomic_dec_and_test(&bo_gem->refcount)) {
1426 drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1427 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1428 }
1429
1430 pthread_mutex_unlock(&bufmgr_gem->lock);
1431 }
1432 }
1433
1434 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1435 {
1436 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1437 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1438 struct drm_i915_gem_set_domain set_domain;
1439 int ret;
1440
1441 if (bo_gem->is_userptr) {
1442 /* Return the same user ptr */
1443 bo->virtual = bo_gem->user_virtual;
1444 return 0;
1445 }
1446
1447 pthread_mutex_lock(&bufmgr_gem->lock);
1448
1449 if (bo_gem->map_count++ == 0)
1450 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1451
1452 if (!bo_gem->mem_virtual) {
1453 struct drm_i915_gem_mmap mmap_arg;
1454
1455 DBG("bo_map: %d (%s), map_count=%d\n",
1456 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1457
1458 memclear(mmap_arg);
1459 mmap_arg.handle = bo_gem->gem_handle;
1460 mmap_arg.size = bo->size;
1461 ret = drmIoctl(bufmgr_gem->fd,
1462 DRM_IOCTL_I915_GEM_MMAP,
1463 &mmap_arg);
1464 if (ret != 0) {
1465 ret = -errno;
1466 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1467 __FILE__, __LINE__, bo_gem->gem_handle,
1468 bo_gem->name, strerror(errno));
1469 if (--bo_gem->map_count == 0)
1470 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1471 pthread_mutex_unlock(&bufmgr_gem->lock);
1472 return ret;
1473 }
1474 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1475 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1476 }
1477 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1478 bo_gem->mem_virtual);
1479 bo->virtual = bo_gem->mem_virtual;
1480
1481 memclear(set_domain);
1482 set_domain.handle = bo_gem->gem_handle;
1483 set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1484 if (write_enable)
1485 set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1486 else
1487 set_domain.write_domain = 0;
1488 ret = drmIoctl(bufmgr_gem->fd,
1489 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1490 &set_domain);
1491 if (ret != 0) {
1492 DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1493 __FILE__, __LINE__, bo_gem->gem_handle,
1494 strerror(errno));
1495 }
1496
1497 if (write_enable)
1498 bo_gem->mapped_cpu_write = true;
1499
1500 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1501 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1502 pthread_mutex_unlock(&bufmgr_gem->lock);
1503
1504 return 0;
1505 }
1506
1507 static int
1508 map_gtt(drm_intel_bo *bo)
1509 {
1510 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1511 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1512 int ret;
1513
1514 if (bo_gem->is_userptr)
1515 return -EINVAL;
1516
1517 if (bo_gem->map_count++ == 0)
1518 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1519
1520 /* Get a mapping of the buffer if we haven't before. */
1521 if (bo_gem->gtt_virtual == NULL) {
1522 struct drm_i915_gem_mmap_gtt mmap_arg;
1523
1524 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1525 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1526
1527 memclear(mmap_arg);
1528 mmap_arg.handle = bo_gem->gem_handle;
1529
1530 /* Get the fake offset back... */
1531 ret = drmIoctl(bufmgr_gem->fd,
1532 DRM_IOCTL_I915_GEM_MMAP_GTT,
1533 &mmap_arg);
1534 if (ret != 0) {
1535 ret = -errno;
1536 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1537 __FILE__, __LINE__,
1538 bo_gem->gem_handle, bo_gem->name,
1539 strerror(errno));
1540 if (--bo_gem->map_count == 0)
1541 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1542 return ret;
1543 }
1544
1545 /* and mmap it */
1546 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1547 MAP_SHARED, bufmgr_gem->fd,
1548 mmap_arg.offset);
1549 if (bo_gem->gtt_virtual == MAP_FAILED) {
1550 bo_gem->gtt_virtual = NULL;
1551 ret = -errno;
1552 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1553 __FILE__, __LINE__,
1554 bo_gem->gem_handle, bo_gem->name,
1555 strerror(errno));
1556 if (--bo_gem->map_count == 0)
1557 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1558 return ret;
1559 }
1560 }
1561
1562 bo->virtual = bo_gem->gtt_virtual;
1563
1564 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1565 bo_gem->gtt_virtual);
1566
1567 return 0;
1568 }
1569
1570 int
1571 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1572 {
1573 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1574 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1575 struct drm_i915_gem_set_domain set_domain;
1576 int ret;
1577
1578 pthread_mutex_lock(&bufmgr_gem->lock);
1579
1580 ret = map_gtt(bo);
1581 if (ret) {
1582 pthread_mutex_unlock(&bufmgr_gem->lock);
1583 return ret;
1584 }
1585
1586 /* Now move it to the GTT domain so that the GPU and CPU
1587 * caches are flushed and the GPU isn't actively using the
1588 * buffer.
1589 *
1590 * The pagefault handler does this domain change for us when
1591 * it has unbound the BO from the GTT, but it's up to us to
1592 * tell it when we're about to use things if we had done
1593 * rendering and it still happens to be bound to the GTT.
1594 */
1595 memclear(set_domain);
1596 set_domain.handle = bo_gem->gem_handle;
1597 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1598 set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1599 ret = drmIoctl(bufmgr_gem->fd,
1600 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1601 &set_domain);
1602 if (ret != 0) {
1603 DBG("%s:%d: Error setting domain %d: %s\n",
1604 __FILE__, __LINE__, bo_gem->gem_handle,
1605 strerror(errno));
1606 }
1607
1608 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1609 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1610 pthread_mutex_unlock(&bufmgr_gem->lock);
1611
1612 return 0;
1613 }
1614
1615 /**
1616 * Performs a mapping of the buffer object like the normal GTT
1617 * mapping, but avoids waiting for the GPU to be done reading from or
1618 * rendering to the buffer.
1619 *
1620 * This is used in the implementation of GL_ARB_map_buffer_range: The
1621 * user asks to create a buffer, then does a mapping, fills some
1622 * space, runs a drawing command, then asks to map it again without
1623 * synchronizing because it guarantees that it won't write over the
1624 * data that the GPU is busy using (or, more specifically, that if it
1625 * does write over the data, it acknowledges that rendering is
1626 * undefined).
1627 */
1628
1629 int
1630 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1631 {
1632 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1633 #ifdef HAVE_VALGRIND
1634 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1635 #endif
1636 int ret;
1637
1638 /* If the CPU cache isn't coherent with the GTT, then use a
1639 * regular synchronized mapping. The problem is that we don't
1640 * track where the buffer was last used on the CPU side in
1641 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1642 * we would potentially corrupt the buffer even when the user
1643 * does reasonable things.
1644 */
1645 if (!bufmgr_gem->has_llc)
1646 return drm_intel_gem_bo_map_gtt(bo);
1647
1648 pthread_mutex_lock(&bufmgr_gem->lock);
1649
1650 ret = map_gtt(bo);
1651 if (ret == 0) {
1652 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1653 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1654 }
1655
1656 pthread_mutex_unlock(&bufmgr_gem->lock);
1657
1658 return ret;
1659 }
1660
1661 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1662 {
1663 drm_intel_bufmgr_gem *bufmgr_gem;
1664 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1665 int ret = 0;
1666
1667 if (bo == NULL)
1668 return 0;
1669
1670 if (bo_gem->is_userptr)
1671 return 0;
1672
1673 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1674
1675 pthread_mutex_lock(&bufmgr_gem->lock);
1676
1677 if (bo_gem->map_count <= 0) {
1678 DBG("attempted to unmap an unmapped bo\n");
1679 pthread_mutex_unlock(&bufmgr_gem->lock);
1680 /* Preserve the old behaviour of just treating this as a
1681 * no-op rather than reporting the error.
1682 */
1683 return 0;
1684 }
1685
1686 if (bo_gem->mapped_cpu_write) {
1687 struct drm_i915_gem_sw_finish sw_finish;
1688
1689 /* Cause a flush to happen if the buffer's pinned for
1690 * scanout, so the results show up in a timely manner.
1691 * Unlike GTT set domains, this only does work if the
1692 * buffer should be scanout-related.
1693 */
1694 memclear(sw_finish);
1695 sw_finish.handle = bo_gem->gem_handle;
1696 ret = drmIoctl(bufmgr_gem->fd,
1697 DRM_IOCTL_I915_GEM_SW_FINISH,
1698 &sw_finish);
1699 ret = ret == -1 ? -errno : 0;
1700
1701 bo_gem->mapped_cpu_write = false;
1702 }
1703
1704 /* We need to unmap after every innovation as we cannot track
1705 * an open vma for every bo as that will exhaust the system
1706 * limits and cause later failures.
1707 */
1708 if (--bo_gem->map_count == 0) {
1709 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1710 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1711 bo->virtual = NULL;
1712 }
1713 pthread_mutex_unlock(&bufmgr_gem->lock);
1714
1715 return ret;
1716 }
1717
1718 int
1719 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1720 {
1721 return drm_intel_gem_bo_unmap(bo);
1722 }
1723
1724 static int
1725 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1726 unsigned long size, const void *data)
1727 {
1728 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1729 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1730 struct drm_i915_gem_pwrite pwrite;
1731 int ret;
1732
1733 if (bo_gem->is_userptr)
1734 return -EINVAL;
1735
1736 memclear(pwrite);
1737 pwrite.handle = bo_gem->gem_handle;
1738 pwrite.offset = offset;
1739 pwrite.size = size;
1740 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1741 ret = drmIoctl(bufmgr_gem->fd,
1742 DRM_IOCTL_I915_GEM_PWRITE,
1743 &pwrite);
1744 if (ret != 0) {
1745 ret = -errno;
1746 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1747 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1748 (int)size, strerror(errno));
1749 }
1750
1751 return ret;
1752 }
1753
1754 static int
1755 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1756 {
1757 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1758 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1759 int ret;
1760
1761 memclear(get_pipe_from_crtc_id);
1762 get_pipe_from_crtc_id.crtc_id = crtc_id;
1763 ret = drmIoctl(bufmgr_gem->fd,
1764 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1765 &get_pipe_from_crtc_id);
1766 if (ret != 0) {
1767 /* We return -1 here to signal that we don't
1768 * know which pipe is associated with this crtc.
1769 * This lets the caller know that this information
1770 * isn't available; using the wrong pipe for
1771 * vblank waiting can cause the chipset to lock up
1772 */
1773 return -1;
1774 }
1775
1776 return get_pipe_from_crtc_id.pipe;
1777 }
1778
1779 static int
1780 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1781 unsigned long size, void *data)
1782 {
1783 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1784 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1785 struct drm_i915_gem_pread pread;
1786 int ret;
1787
1788 if (bo_gem->is_userptr)
1789 return -EINVAL;
1790
1791 memclear(pread);
1792 pread.handle = bo_gem->gem_handle;
1793 pread.offset = offset;
1794 pread.size = size;
1795 pread.data_ptr = (uint64_t) (uintptr_t) data;
1796 ret = drmIoctl(bufmgr_gem->fd,
1797 DRM_IOCTL_I915_GEM_PREAD,
1798 &pread);
1799 if (ret != 0) {
1800 ret = -errno;
1801 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1802 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1803 (int)size, strerror(errno));
1804 }
1805
1806 return ret;
1807 }
1808
1809 /** Waits for all GPU rendering with the object to have completed. */
1810 static void
1811 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1812 {
1813 drm_intel_gem_bo_start_gtt_access(bo, 1);
1814 }
1815
1816 /**
1817 * Waits on a BO for the given amount of time.
1818 *
1819 * @bo: buffer object to wait for
1820 * @timeout_ns: amount of time to wait in nanoseconds.
1821 * If value is less than 0, an infinite wait will occur.
1822 *
1823 * Returns 0 if the wait was successful ie. the last batch referencing the
1824 * object has completed within the allotted time. Otherwise some negative return
1825 * value describes the error. Of particular interest is -ETIME when the wait has
1826 * failed to yield the desired result.
1827 *
1828 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1829 * the operation to give up after a certain amount of time. Another subtle
1830 * difference is the internal locking semantics are different (this variant does
1831 * not hold the lock for the duration of the wait). This makes the wait subject
1832 * to a larger userspace race window.
1833 *
1834 * The implementation shall wait until the object is no longer actively
1835 * referenced within a batch buffer at the time of the call. The wait will
1836 * not guarantee that the buffer is re-issued via another thread, or an flinked
1837 * handle. Userspace must make sure this race does not occur if such precision
1838 * is important.
1839 *
1840 * Note that some kernels have broken the inifite wait for negative values
1841 * promise, upgrade to latest stable kernels if this is the case.
1842 */
1843 int
1844 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1845 {
1846 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1847 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1848 struct drm_i915_gem_wait wait;
1849 int ret;
1850
1851 if (!bufmgr_gem->has_wait_timeout) {
1852 DBG("%s:%d: Timed wait is not supported. Falling back to "
1853 "infinite wait\n", __FILE__, __LINE__);
1854 if (timeout_ns) {
1855 drm_intel_gem_bo_wait_rendering(bo);
1856 return 0;
1857 } else {
1858 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1859 }
1860 }
1861
1862 memclear(wait);
1863 wait.bo_handle = bo_gem->gem_handle;
1864 wait.timeout_ns = timeout_ns;
1865 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1866 if (ret == -1)
1867 return -errno;
1868
1869 return ret;
1870 }
1871
1872 /**
1873 * Sets the object to the GTT read and possibly write domain, used by the X
1874 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1875 *
1876 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1877 * can do tiled pixmaps this way.
1878 */
1879 void
1880 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1881 {
1882 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1883 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1884 struct drm_i915_gem_set_domain set_domain;
1885 int ret;
1886
1887 memclear(set_domain);
1888 set_domain.handle = bo_gem->gem_handle;
1889 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1890 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1891 ret = drmIoctl(bufmgr_gem->fd,
1892 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1893 &set_domain);
1894 if (ret != 0) {
1895 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1896 __FILE__, __LINE__, bo_gem->gem_handle,
1897 set_domain.read_domains, set_domain.write_domain,
1898 strerror(errno));
1899 }
1900 }
1901
1902 static void
1903 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1904 {
1905 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1906 struct drm_gem_close close_bo;
1907 int i, ret;
1908
1909 free(bufmgr_gem->exec2_objects);
1910 free(bufmgr_gem->exec_objects);
1911 free(bufmgr_gem->exec_bos);
1912
1913 pthread_mutex_destroy(&bufmgr_gem->lock);
1914
1915 /* Free any cached buffer objects we were going to reuse */
1916 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1917 struct drm_intel_gem_bo_bucket *bucket =
1918 &bufmgr_gem->cache_bucket[i];
1919 drm_intel_bo_gem *bo_gem;
1920
1921 while (!DRMLISTEMPTY(&bucket->head)) {
1922 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1923 bucket->head.next, head);
1924 DRMLISTDEL(&bo_gem->head);
1925
1926 drm_intel_gem_bo_free(&bo_gem->bo);
1927 }
1928 }
1929
1930 /* Release userptr bo kept hanging around for optimisation. */
1931 if (bufmgr_gem->userptr_active.ptr) {
1932 memclear(close_bo);
1933 close_bo.handle = bufmgr_gem->userptr_active.handle;
1934 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1935 free(bufmgr_gem->userptr_active.ptr);
1936 if (ret)
1937 fprintf(stderr,
1938 "Failed to release test userptr object! (%d) "
1939 "i915 kernel driver may not be sane!\n", errno);
1940 }
1941
1942 free(bufmgr);
1943 }
1944
1945 /**
1946 * Adds the target buffer to the validation list and adds the relocation
1947 * to the reloc_buffer's relocation list.
1948 *
1949 * The relocation entry at the given offset must already contain the
1950 * precomputed relocation value, because the kernel will optimize out
1951 * the relocation entry write when the buffer hasn't moved from the
1952 * last known offset in target_bo.
1953 */
1954 static int
1955 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1956 drm_intel_bo *target_bo, uint32_t target_offset,
1957 uint32_t read_domains, uint32_t write_domain,
1958 bool need_fence)
1959 {
1960 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1961 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1962 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1963 bool fenced_command;
1964
1965 if (bo_gem->has_error)
1966 return -ENOMEM;
1967
1968 if (target_bo_gem->has_error) {
1969 bo_gem->has_error = true;
1970 return -ENOMEM;
1971 }
1972
1973 /* We never use HW fences for rendering on 965+ */
1974 if (bufmgr_gem->gen >= 4)
1975 need_fence = false;
1976
1977 fenced_command = need_fence;
1978 if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1979 need_fence = false;
1980
1981 /* Create a new relocation list if needed */
1982 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1983 return -ENOMEM;
1984
1985 /* Check overflow */
1986 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1987
1988 /* Check args */
1989 assert(offset <= bo->size - 4);
1990 assert((write_domain & (write_domain - 1)) == 0);
1991
1992 /* An object needing a fence is a tiled buffer, so it won't have
1993 * relocs to other buffers.
1994 */
1995 if (need_fence) {
1996 assert(target_bo_gem->reloc_count == 0);
1997 target_bo_gem->reloc_tree_fences = 1;
1998 }
1999
2000 /* Make sure that we're not adding a reloc to something whose size has
2001 * already been accounted for.
2002 */
2003 assert(!bo_gem->used_as_reloc_target);
2004 if (target_bo_gem != bo_gem) {
2005 target_bo_gem->used_as_reloc_target = true;
2006 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
2007 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
2008 }
2009
2010 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
2011 if (target_bo != bo)
2012 drm_intel_gem_bo_reference(target_bo);
2013 if (fenced_command)
2014 bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
2015 DRM_INTEL_RELOC_FENCE;
2016 else
2017 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
2018
2019 bo_gem->relocs[bo_gem->reloc_count].offset = offset;
2020 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2021 bo_gem->relocs[bo_gem->reloc_count].target_handle =
2022 target_bo_gem->gem_handle;
2023 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2024 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2025 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2026 bo_gem->reloc_count++;
2027
2028 return 0;
2029 }
2030
2031 static void
2032 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2033 {
2034 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2035
2036 if (enable)
2037 bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2038 else
2039 bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2040 }
2041
2042 static int
2043 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2044 {
2045 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2046 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2047 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2048 if (bo_gem->has_error)
2049 return -ENOMEM;
2050
2051 if (target_bo_gem->has_error) {
2052 bo_gem->has_error = true;
2053 return -ENOMEM;
2054 }
2055
2056 if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED))
2057 return -EINVAL;
2058 if (target_bo_gem == bo_gem)
2059 return -EINVAL;
2060
2061 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2062 int new_size = bo_gem->softpin_target_size * 2;
2063 if (new_size == 0)
2064 new_size = bufmgr_gem->max_relocs;
2065
2066 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2067 sizeof(drm_intel_bo *));
2068 if (!bo_gem->softpin_target)
2069 return -ENOMEM;
2070
2071 bo_gem->softpin_target_size = new_size;
2072 }
2073 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2074 drm_intel_gem_bo_reference(target_bo);
2075 bo_gem->softpin_target_count++;
2076
2077 return 0;
2078 }
2079
2080 static int
2081 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2082 drm_intel_bo *target_bo, uint32_t target_offset,
2083 uint32_t read_domains, uint32_t write_domain)
2084 {
2085 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2086 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2087
2088 if (target_bo_gem->kflags & EXEC_OBJECT_PINNED)
2089 return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2090 else
2091 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2092 read_domains, write_domain,
2093 !bufmgr_gem->fenced_relocs);
2094 }
2095
2096 static int
2097 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2098 drm_intel_bo *target_bo,
2099 uint32_t target_offset,
2100 uint32_t read_domains, uint32_t write_domain)
2101 {
2102 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2103 read_domains, write_domain, true);
2104 }
2105
2106 int
2107 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2108 {
2109 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2110
2111 return bo_gem->reloc_count;
2112 }
2113
2114 /**
2115 * Removes existing relocation entries in the BO after "start".
2116 *
2117 * This allows a user to avoid a two-step process for state setup with
2118 * counting up all the buffer objects and doing a
2119 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2120 * relocations for the state setup. Instead, save the state of the
2121 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2122 * state, and then check if it still fits in the aperture.
2123 *
2124 * Any further drm_intel_bufmgr_check_aperture_space() queries
2125 * involving this buffer in the tree are undefined after this call.
2126 *
2127 * This also removes all softpinned targets being referenced by the BO.
2128 */
2129 void
2130 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2131 {
2132 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2133 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2134 int i;
2135 struct timespec time;
2136
2137 clock_gettime(CLOCK_MONOTONIC, &time);
2138
2139 assert(bo_gem->reloc_count >= start);
2140
2141 /* Unreference the cleared target buffers */
2142 pthread_mutex_lock(&bufmgr_gem->lock);
2143
2144 for (i = start; i < bo_gem->reloc_count; i++) {
2145 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2146 if (&target_bo_gem->bo != bo) {
2147 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2148 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2149 time.tv_sec);
2150 }
2151 }
2152 bo_gem->reloc_count = start;
2153
2154 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2155 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2156 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2157 }
2158 bo_gem->softpin_target_count = 0;
2159
2160 pthread_mutex_unlock(&bufmgr_gem->lock);
2161
2162 }
2163
2164 /**
2165 * Walk the tree of relocations rooted at BO and accumulate the list of
2166 * validations to be performed and update the relocation buffers with
2167 * index values into the validation list.
2168 */
2169 static void
2170 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2171 {
2172 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2173 int i;
2174
2175 if (bo_gem->relocs == NULL)
2176 return;
2177
2178 for (i = 0; i < bo_gem->reloc_count; i++) {
2179 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2180
2181 if (target_bo == bo)
2182 continue;
2183
2184 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2185
2186 /* Continue walking the tree depth-first. */
2187 drm_intel_gem_bo_process_reloc(target_bo);
2188
2189 /* Add the target to the validate list */
2190 drm_intel_add_validate_buffer(target_bo);
2191 }
2192 }
2193
2194 static void
2195 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2196 {
2197 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2198 int i;
2199
2200 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2201 return;
2202
2203 for (i = 0; i < bo_gem->reloc_count; i++) {
2204 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2205 int need_fence;
2206
2207 if (target_bo == bo)
2208 continue;
2209
2210 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2211
2212 /* Continue walking the tree depth-first. */
2213 drm_intel_gem_bo_process_reloc2(target_bo);
2214
2215 need_fence = (bo_gem->reloc_target_info[i].flags &
2216 DRM_INTEL_RELOC_FENCE);
2217
2218 /* Add the target to the validate list */
2219 drm_intel_add_validate_buffer2(target_bo, need_fence);
2220 }
2221
2222 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2223 drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2224
2225 if (target_bo == bo)
2226 continue;
2227
2228 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2229 drm_intel_gem_bo_process_reloc2(target_bo);
2230 drm_intel_add_validate_buffer2(target_bo, false);
2231 }
2232 }
2233
2234
2235 static void
2236 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2237 {
2238 int i;
2239
2240 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2241 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2242 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2243
2244 /* Update the buffer offset */
2245 if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2246 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2247 bo_gem->gem_handle, bo_gem->name,
2248 upper_32_bits(bo->offset64),
2249 lower_32_bits(bo->offset64),
2250 upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2251 lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2252 bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2253 bo->offset = bufmgr_gem->exec_objects[i].offset;
2254 }
2255 }
2256 }
2257
2258 static void
2259 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2260 {
2261 int i;
2262
2263 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2264 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2265 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2266
2267 /* Update the buffer offset */
2268 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2269 /* If we're seeing softpinned object here it means that the kernel
2270 * has relocated our object... Indicating a programming error
2271 */
2272 assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED));
2273 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2274 bo_gem->gem_handle, bo_gem->name,
2275 upper_32_bits(bo->offset64),
2276 lower_32_bits(bo->offset64),
2277 upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2278 lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2279 bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2280 bo->offset = bufmgr_gem->exec2_objects[i].offset;
2281 }
2282 }
2283 }
2284
2285 void
2286 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2287 int x1, int y1, int width, int height,
2288 enum aub_dump_bmp_format format,
2289 int pitch, int offset)
2290 {
2291 }
2292
2293 static int
2294 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2295 drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2296 {
2297 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2298 struct drm_i915_gem_execbuffer execbuf;
2299 int ret, i;
2300
2301 if (to_bo_gem(bo)->has_error)
2302 return -ENOMEM;
2303
2304 pthread_mutex_lock(&bufmgr_gem->lock);
2305 /* Update indices and set up the validate list. */
2306 drm_intel_gem_bo_process_reloc(bo);
2307
2308 /* Add the batch buffer to the validation list. There are no
2309 * relocations pointing to it.
2310 */
2311 drm_intel_add_validate_buffer(bo);
2312
2313 memclear(execbuf);
2314 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2315 execbuf.buffer_count = bufmgr_gem->exec_count;
2316 execbuf.batch_start_offset = 0;
2317 execbuf.batch_len = used;
2318 execbuf.cliprects_ptr = (uintptr_t) cliprects;
2319 execbuf.num_cliprects = num_cliprects;
2320 execbuf.DR1 = 0;
2321 execbuf.DR4 = DR4;
2322
2323 ret = drmIoctl(bufmgr_gem->fd,
2324 DRM_IOCTL_I915_GEM_EXECBUFFER,
2325 &execbuf);
2326 if (ret != 0) {
2327 ret = -errno;
2328 if (errno == ENOSPC) {
2329 DBG("Execbuffer fails to pin. "
2330 "Estimate: %u. Actual: %u. Available: %u\n",
2331 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2332 bufmgr_gem->
2333 exec_count),
2334 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2335 bufmgr_gem->
2336 exec_count),
2337 (unsigned int)bufmgr_gem->gtt_size);
2338 }
2339 }
2340 drm_intel_update_buffer_offsets(bufmgr_gem);
2341
2342 if (bufmgr_gem->bufmgr.debug)
2343 drm_intel_gem_dump_validation_list(bufmgr_gem);
2344
2345 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2346 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2347
2348 bo_gem->idle = false;
2349
2350 /* Disconnect the buffer from the validate list */
2351 bo_gem->validate_index = -1;
2352 bufmgr_gem->exec_bos[i] = NULL;
2353 }
2354 bufmgr_gem->exec_count = 0;
2355 pthread_mutex_unlock(&bufmgr_gem->lock);
2356
2357 return ret;
2358 }
2359
2360 static int
2361 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2362 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2363 int in_fence, int *out_fence,
2364 unsigned int flags)
2365 {
2366 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2367 struct drm_i915_gem_execbuffer2 execbuf;
2368 int ret = 0;
2369 int i;
2370
2371 if (to_bo_gem(bo)->has_error)
2372 return -ENOMEM;
2373
2374 switch (flags & 0x7) {
2375 default:
2376 return -EINVAL;
2377 case I915_EXEC_BLT:
2378 if (!bufmgr_gem->has_blt)
2379 return -EINVAL;
2380 break;
2381 case I915_EXEC_BSD:
2382 if (!bufmgr_gem->has_bsd)
2383 return -EINVAL;
2384 break;
2385 case I915_EXEC_VEBOX:
2386 if (!bufmgr_gem->has_vebox)
2387 return -EINVAL;
2388 break;
2389 case I915_EXEC_RENDER:
2390 case I915_EXEC_DEFAULT:
2391 break;
2392 }
2393
2394 pthread_mutex_lock(&bufmgr_gem->lock);
2395 /* Update indices and set up the validate list. */
2396 drm_intel_gem_bo_process_reloc2(bo);
2397
2398 /* Add the batch buffer to the validation list. There are no relocations
2399 * pointing to it.
2400 */
2401 drm_intel_add_validate_buffer2(bo, 0);
2402
2403 memclear(execbuf);
2404 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2405 execbuf.buffer_count = bufmgr_gem->exec_count;
2406 execbuf.batch_start_offset = 0;
2407 execbuf.batch_len = used;
2408 execbuf.cliprects_ptr = (uintptr_t)cliprects;
2409 execbuf.num_cliprects = num_cliprects;
2410 execbuf.DR1 = 0;
2411 execbuf.DR4 = DR4;
2412 execbuf.flags = flags;
2413 if (ctx == NULL)
2414 i915_execbuffer2_set_context_id(execbuf, 0);
2415 else
2416 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2417 execbuf.rsvd2 = 0;
2418 if (in_fence != -1) {
2419 execbuf.rsvd2 = in_fence;
2420 execbuf.flags |= I915_EXEC_FENCE_IN;
2421 }
2422 if (out_fence != NULL) {
2423 *out_fence = -1;
2424 execbuf.flags |= I915_EXEC_FENCE_OUT;
2425 }
2426
2427 if (bufmgr_gem->no_exec)
2428 goto skip_execution;
2429
2430 ret = drmIoctl(bufmgr_gem->fd,
2431 DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
2432 &execbuf);
2433 if (ret != 0) {
2434 ret = -errno;
2435 if (ret == -ENOSPC) {
2436 DBG("Execbuffer fails to pin. "
2437 "Estimate: %u. Actual: %u. Available: %u\n",
2438 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2439 bufmgr_gem->exec_count),
2440 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2441 bufmgr_gem->exec_count),
2442 (unsigned int) bufmgr_gem->gtt_size);
2443 }
2444 }
2445 drm_intel_update_buffer_offsets2(bufmgr_gem);
2446
2447 if (ret == 0 && out_fence != NULL)
2448 *out_fence = execbuf.rsvd2 >> 32;
2449
2450 skip_execution:
2451 if (bufmgr_gem->bufmgr.debug)
2452 drm_intel_gem_dump_validation_list(bufmgr_gem);
2453
2454 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2455 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2456
2457 bo_gem->idle = false;
2458
2459 /* Disconnect the buffer from the validate list */
2460 bo_gem->validate_index = -1;
2461 bufmgr_gem->exec_bos[i] = NULL;
2462 }
2463 bufmgr_gem->exec_count = 0;
2464 pthread_mutex_unlock(&bufmgr_gem->lock);
2465
2466 return ret;
2467 }
2468
2469 static int
2470 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2471 drm_clip_rect_t *cliprects, int num_cliprects,
2472 int DR4)
2473 {
2474 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2475 -1, NULL, I915_EXEC_RENDER);
2476 }
2477
2478 static int
2479 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2480 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2481 unsigned int flags)
2482 {
2483 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2484 -1, NULL, flags);
2485 }
2486
2487 int
2488 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2489 int used, unsigned int flags)
2490 {
2491 return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags);
2492 }
2493
2494 int
2495 drm_intel_gem_bo_fence_exec(drm_intel_bo *bo,
2496 drm_intel_context *ctx,
2497 int used,
2498 int in_fence,
2499 int *out_fence,
2500 unsigned int flags)
2501 {
2502 return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags);
2503 }
2504
2505 static int
2506 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2507 {
2508 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2509 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2510 struct drm_i915_gem_pin pin;
2511 int ret;
2512
2513 memclear(pin);
2514 pin.handle = bo_gem->gem_handle;
2515 pin.alignment = alignment;
2516
2517 ret = drmIoctl(bufmgr_gem->fd,
2518 DRM_IOCTL_I915_GEM_PIN,
2519 &pin);
2520 if (ret != 0)
2521 return -errno;
2522
2523 bo->offset64 = pin.offset;
2524 bo->offset = pin.offset;
2525 return 0;
2526 }
2527
2528 static int
2529 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2530 {
2531 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2532 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2533 struct drm_i915_gem_unpin unpin;
2534 int ret;
2535
2536 memclear(unpin);
2537 unpin.handle = bo_gem->gem_handle;
2538
2539 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2540 if (ret != 0)
2541 return -errno;
2542
2543 return 0;
2544 }
2545
2546 static int
2547 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2548 uint32_t tiling_mode,
2549 uint32_t stride)
2550 {
2551 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2552 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2553 struct drm_i915_gem_set_tiling set_tiling;
2554 int ret;
2555
2556 if (bo_gem->global_name == 0 &&
2557 tiling_mode == bo_gem->tiling_mode &&
2558 stride == bo_gem->stride)
2559 return 0;
2560
2561 memset(&set_tiling, 0, sizeof(set_tiling));
2562 do {
2563 /* set_tiling is slightly broken and overwrites the
2564 * input on the error path, so we have to open code
2565 * rmIoctl.
2566 */
2567 set_tiling.handle = bo_gem->gem_handle;
2568 set_tiling.tiling_mode = tiling_mode;
2569 set_tiling.stride = stride;
2570
2571 ret = ioctl(bufmgr_gem->fd,
2572 DRM_IOCTL_I915_GEM_SET_TILING,
2573 &set_tiling);
2574 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2575 if (ret == -1)
2576 return -errno;
2577
2578 bo_gem->tiling_mode = set_tiling.tiling_mode;
2579 bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2580 bo_gem->stride = set_tiling.stride;
2581 return 0;
2582 }
2583
2584 static int
2585 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2586 uint32_t stride)
2587 {
2588 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2589 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2590 int ret;
2591
2592 /* Tiling with userptr surfaces is not supported
2593 * on all hardware so refuse it for time being.
2594 */
2595 if (bo_gem->is_userptr)
2596 return -EINVAL;
2597
2598 /* Linear buffers have no stride. By ensuring that we only ever use
2599 * stride 0 with linear buffers, we simplify our code.
2600 */
2601 if (*tiling_mode == I915_TILING_NONE)
2602 stride = 0;
2603
2604 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2605 if (ret == 0)
2606 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2607
2608 *tiling_mode = bo_gem->tiling_mode;
2609 return ret;
2610 }
2611
2612 static int
2613 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2614 uint32_t * swizzle_mode)
2615 {
2616 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2617
2618 *tiling_mode = bo_gem->tiling_mode;
2619 *swizzle_mode = bo_gem->swizzle_mode;
2620 return 0;
2621 }
2622
2623 static int
2624 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2625 {
2626 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2627
2628 bo->offset64 = offset;
2629 bo->offset = offset;
2630 bo_gem->kflags |= EXEC_OBJECT_PINNED;
2631
2632 return 0;
2633 }
2634
2635 drm_intel_bo *
2636 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2637 {
2638 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2639 int ret;
2640 uint32_t handle;
2641 drm_intel_bo_gem *bo_gem;
2642 struct drm_i915_gem_get_tiling get_tiling;
2643
2644 pthread_mutex_lock(&bufmgr_gem->lock);
2645 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2646 if (ret) {
2647 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2648 pthread_mutex_unlock(&bufmgr_gem->lock);
2649 return NULL;
2650 }
2651
2652 /*
2653 * See if the kernel has already returned this buffer to us. Just as
2654 * for named buffers, we must not create two bo's pointing at the same
2655 * kernel object
2656 */
2657 HASH_FIND(handle_hh, bufmgr_gem->handle_table,
2658 &handle, sizeof(handle), bo_gem);
2659 if (bo_gem) {
2660 drm_intel_gem_bo_reference(&bo_gem->bo);
2661 goto out;
2662 }
2663
2664 bo_gem = calloc(1, sizeof(*bo_gem));
2665 if (!bo_gem)
2666 goto out;
2667
2668 atomic_set(&bo_gem->refcount, 1);
2669 DRMINITLISTHEAD(&bo_gem->vma_list);
2670
2671 /* Determine size of bo. The fd-to-handle ioctl really should
2672 * return the size, but it doesn't. If we have kernel 3.12 or
2673 * later, we can lseek on the prime fd to get the size. Older
2674 * kernels will just fail, in which case we fall back to the
2675 * provided (estimated or guess size). */
2676 ret = lseek(prime_fd, 0, SEEK_END);
2677 if (ret != -1)
2678 bo_gem->bo.size = ret;
2679 else
2680 bo_gem->bo.size = size;
2681
2682 bo_gem->bo.handle = handle;
2683 bo_gem->bo.bufmgr = bufmgr;
2684
2685 bo_gem->gem_handle = handle;
2686 HASH_ADD(handle_hh, bufmgr_gem->handle_table,
2687 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
2688
2689 bo_gem->name = "prime";
2690 bo_gem->validate_index = -1;
2691 bo_gem->reloc_tree_fences = 0;
2692 bo_gem->used_as_reloc_target = false;
2693 bo_gem->has_error = false;
2694 bo_gem->reusable = false;
2695
2696 memclear(get_tiling);
2697 get_tiling.handle = bo_gem->gem_handle;
2698 if (drmIoctl(bufmgr_gem->fd,
2699 DRM_IOCTL_I915_GEM_GET_TILING,
2700 &get_tiling))
2701 goto err;
2702
2703 bo_gem->tiling_mode = get_tiling.tiling_mode;
2704 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2705 /* XXX stride is unknown */
2706 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2707
2708 out:
2709 pthread_mutex_unlock(&bufmgr_gem->lock);
2710 return &bo_gem->bo;
2711
2712 err:
2713 drm_intel_gem_bo_free(&bo_gem->bo);
2714 pthread_mutex_unlock(&bufmgr_gem->lock);
2715 return NULL;
2716 }
2717
2718 int
2719 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2720 {
2721 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2722 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2723
2724 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2725 DRM_CLOEXEC, prime_fd) != 0)
2726 return -errno;
2727
2728 bo_gem->reusable = false;
2729
2730 return 0;
2731 }
2732
2733 static int
2734 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2735 {
2736 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2737 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2738
2739 if (!bo_gem->global_name) {
2740 struct drm_gem_flink flink;
2741
2742 memclear(flink);
2743 flink.handle = bo_gem->gem_handle;
2744 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink))
2745 return -errno;
2746
2747 pthread_mutex_lock(&bufmgr_gem->lock);
2748 if (!bo_gem->global_name) {
2749 bo_gem->global_name = flink.name;
2750 bo_gem->reusable = false;
2751
2752 HASH_ADD(name_hh, bufmgr_gem->name_table,
2753 global_name, sizeof(bo_gem->global_name),
2754 bo_gem);
2755 }
2756 pthread_mutex_unlock(&bufmgr_gem->lock);
2757 }
2758
2759 *name = bo_gem->global_name;
2760 return 0;
2761 }
2762
2763 /**
2764 * Enables unlimited caching of buffer objects for reuse.
2765 *
2766 * This is potentially very memory expensive, as the cache at each bucket
2767 * size is only bounded by how many buffers of that size we've managed to have
2768 * in flight at once.
2769 */
2770 void
2771 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2772 {
2773 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2774
2775 bufmgr_gem->bo_reuse = true;
2776 }
2777
2778 /**
2779 * Disables implicit synchronisation before executing the bo
2780 *
2781 * This will cause rendering corruption unless you correctly manage explicit
2782 * fences for all rendering involving this buffer - including use by others.
2783 * Disabling the implicit serialisation is only required if that serialisation
2784 * is too coarse (for example, you have split the buffer into many
2785 * non-overlapping regions and are sharing the whole buffer between concurrent
2786 * independent command streams).
2787 *
2788 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC,
2789 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync,
2790 * or subsequent execbufs involving the bo will generate EINVAL.
2791 */
2792 void
2793 drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo)
2794 {
2795 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2796
2797 bo_gem->kflags |= EXEC_OBJECT_ASYNC;
2798 }
2799
2800 /**
2801 * Enables implicit synchronisation before executing the bo
2802 *
2803 * This is the default behaviour of the kernel, to wait upon prior writes
2804 * completing on the object before rendering with it, or to wait for prior
2805 * reads to complete before writing into the object.
2806 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling
2807 * the kernel never to insert a stall before using the object. Then this
2808 * function can be used to restore the implicit sync before subsequent
2809 * rendering.
2810 */
2811 void
2812 drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo)
2813 {
2814 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2815
2816 bo_gem->kflags &= ~EXEC_OBJECT_ASYNC;
2817 }
2818
2819 /**
2820 * Query whether the kernel supports disabling of its implicit synchronisation
2821 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync()
2822 */
2823 int
2824 drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr)
2825 {
2826 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2827
2828 return bufmgr_gem->has_exec_async;
2829 }
2830
2831 /**
2832 * Enable use of fenced reloc type.
2833 *
2834 * New code should enable this to avoid unnecessary fence register
2835 * allocation. If this option is not enabled, all relocs will have fence
2836 * register allocated.
2837 */
2838 void
2839 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2840 {
2841 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2842
2843 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2844 bufmgr_gem->fenced_relocs = true;
2845 }
2846
2847 /**
2848 * Return the additional aperture space required by the tree of buffer objects
2849 * rooted at bo.
2850 */
2851 static int
2852 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2853 {
2854 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2855 int i;
2856 int total = 0;
2857
2858 if (bo == NULL || bo_gem->included_in_check_aperture)
2859 return 0;
2860
2861 total += bo->size;
2862 bo_gem->included_in_check_aperture = true;
2863
2864 for (i = 0; i < bo_gem->reloc_count; i++)
2865 total +=
2866 drm_intel_gem_bo_get_aperture_space(bo_gem->
2867 reloc_target_info[i].bo);
2868
2869 return total;
2870 }
2871
2872 /**
2873 * Count the number of buffers in this list that need a fence reg
2874 *
2875 * If the count is greater than the number of available regs, we'll have
2876 * to ask the caller to resubmit a batch with fewer tiled buffers.
2877 *
2878 * This function over-counts if the same buffer is used multiple times.
2879 */
2880 static unsigned int
2881 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2882 {
2883 int i;
2884 unsigned int total = 0;
2885
2886 for (i = 0; i < count; i++) {
2887 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2888
2889 if (bo_gem == NULL)
2890 continue;
2891
2892 total += bo_gem->reloc_tree_fences;
2893 }
2894 return total;
2895 }
2896
2897 /**
2898 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2899 * for the next drm_intel_bufmgr_check_aperture_space() call.
2900 */
2901 static void
2902 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2903 {
2904 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2905 int i;
2906
2907 if (bo == NULL || !bo_gem->included_in_check_aperture)
2908 return;
2909
2910 bo_gem->included_in_check_aperture = false;
2911
2912 for (i = 0; i < bo_gem->reloc_count; i++)
2913 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2914 reloc_target_info[i].bo);
2915 }
2916
2917 /**
2918 * Return a conservative estimate for the amount of aperture required
2919 * for a collection of buffers. This may double-count some buffers.
2920 */
2921 static unsigned int
2922 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2923 {
2924 int i;
2925 unsigned int total = 0;
2926
2927 for (i = 0; i < count; i++) {
2928 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2929 if (bo_gem != NULL)
2930 total += bo_gem->reloc_tree_size;
2931 }
2932 return total;
2933 }
2934
2935 /**
2936 * Return the amount of aperture needed for a collection of buffers.
2937 * This avoids double counting any buffers, at the cost of looking
2938 * at every buffer in the set.
2939 */
2940 static unsigned int
2941 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2942 {
2943 int i;
2944 unsigned int total = 0;
2945
2946 for (i = 0; i < count; i++) {
2947 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2948 /* For the first buffer object in the array, we get an
2949 * accurate count back for its reloc_tree size (since nothing
2950 * had been flagged as being counted yet). We can save that
2951 * value out as a more conservative reloc_tree_size that
2952 * avoids double-counting target buffers. Since the first
2953 * buffer happens to usually be the batch buffer in our
2954 * callers, this can pull us back from doing the tree
2955 * walk on every new batch emit.
2956 */
2957 if (i == 0) {
2958 drm_intel_bo_gem *bo_gem =
2959 (drm_intel_bo_gem *) bo_array[i];
2960 bo_gem->reloc_tree_size = total;
2961 }
2962 }
2963
2964 for (i = 0; i < count; i++)
2965 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2966 return total;
2967 }
2968
2969 /**
2970 * Return -1 if the batchbuffer should be flushed before attempting to
2971 * emit rendering referencing the buffers pointed to by bo_array.
2972 *
2973 * This is required because if we try to emit a batchbuffer with relocations
2974 * to a tree of buffers that won't simultaneously fit in the aperture,
2975 * the rendering will return an error at a point where the software is not
2976 * prepared to recover from it.
2977 *
2978 * However, we also want to emit the batchbuffer significantly before we reach
2979 * the limit, as a series of batchbuffers each of which references buffers
2980 * covering almost all of the aperture means that at each emit we end up
2981 * waiting to evict a buffer from the last rendering, and we get synchronous
2982 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to
2983 * get better parallelism.
2984 */
2985 static int
2986 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2987 {
2988 drm_intel_bufmgr_gem *bufmgr_gem =
2989 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2990 unsigned int total = 0;
2991 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2992 int total_fences;
2993
2994 /* Check for fence reg constraints if necessary */
2995 if (bufmgr_gem->available_fences) {
2996 total_fences = drm_intel_gem_total_fences(bo_array, count);
2997 if (total_fences > bufmgr_gem->available_fences)
2998 return -ENOSPC;
2999 }
3000
3001 total = drm_intel_gem_estimate_batch_space(bo_array, count);
3002
3003 if (total > threshold)
3004 total = drm_intel_gem_compute_batch_space(bo_array, count);
3005
3006 if (total > threshold) {
3007 DBG("check_space: overflowed available aperture, "
3008 "%dkb vs %dkb\n",
3009 total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3010 return -ENOSPC;
3011 } else {
3012 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3013 (int)bufmgr_gem->gtt_size / 1024);
3014 return 0;
3015 }
3016 }
3017
3018 /*
3019 * Disable buffer reuse for objects which are shared with the kernel
3020 * as scanout buffers
3021 */
3022 static int
3023 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3024 {
3025 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3026
3027 bo_gem->reusable = false;
3028 return 0;
3029 }
3030
3031 static int
3032 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3033 {
3034 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3035
3036 return bo_gem->reusable;
3037 }
3038
3039 static int
3040 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3041 {
3042 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3043 int i;
3044
3045 for (i = 0; i < bo_gem->reloc_count; i++) {
3046 if (bo_gem->reloc_target_info[i].bo == target_bo)
3047 return 1;
3048 if (bo == bo_gem->reloc_target_info[i].bo)
3049 continue;
3050 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3051 target_bo))
3052 return 1;
3053 }
3054
3055 for (i = 0; i< bo_gem->softpin_target_count; i++) {
3056 if (bo_gem->softpin_target[i] == target_bo)
3057 return 1;
3058 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
3059 return 1;
3060 }
3061
3062 return 0;
3063 }
3064
3065 /** Return true if target_bo is referenced by bo's relocation tree. */
3066 static int
3067 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3068 {
3069 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3070
3071 if (bo == NULL || target_bo == NULL)
3072 return 0;
3073 if (target_bo_gem->used_as_reloc_target)
3074 return _drm_intel_gem_bo_references(bo, target_bo);
3075 return 0;
3076 }
3077
3078 static void
3079 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3080 {
3081 unsigned int i = bufmgr_gem->num_buckets;
3082
3083 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3084
3085 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3086 bufmgr_gem->cache_bucket[i].size = size;
3087 bufmgr_gem->num_buckets++;
3088 }
3089
3090 static void
3091 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3092 {
3093 unsigned long size, cache_max_size = 64 * 1024 * 1024;
3094
3095 /* OK, so power of two buckets was too wasteful of memory.
3096 * Give 3 other sizes between each power of two, to hopefully
3097 * cover things accurately enough. (The alternative is
3098 * probably to just go for exact matching of sizes, and assume
3099 * that for things like composited window resize the tiled
3100 * width/height alignment and rounding of sizes to pages will
3101 * get us useful cache hit rates anyway)
3102 */
3103 add_bucket(bufmgr_gem, 4096);
3104 add_bucket(bufmgr_gem, 4096 * 2);
3105 add_bucket(bufmgr_gem, 4096 * 3);
3106
3107 /* Initialize the linked lists for BO reuse cache. */
3108 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3109 add_bucket(bufmgr_gem, size);
3110
3111 add_bucket(bufmgr_gem, size + size * 1 / 4);
3112 add_bucket(bufmgr_gem, size + size * 2 / 4);
3113 add_bucket(bufmgr_gem, size + size * 3 / 4);
3114 }
3115 }
3116
3117 void
3118 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3119 {
3120 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3121
3122 bufmgr_gem->vma_max = limit;
3123
3124 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3125 }
3126
3127 static int
3128 parse_devid_override(const char *devid_override)
3129 {
3130 static const struct {
3131 const char *name;
3132 int pci_id;
3133 } name_map[] = {
3134 { "brw", PCI_CHIP_I965_GM },
3135 { "g4x", PCI_CHIP_GM45_GM },
3136 { "ilk", PCI_CHIP_ILD_G },
3137 { "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS },
3138 { "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 },
3139 { "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 },
3140 { "byt", PCI_CHIP_VALLEYVIEW_3 },
3141 { "bdw", 0x1620 | BDW_ULX },
3142 { "skl", PCI_CHIP_SKYLAKE_DT_GT2 },
3143 { "kbl", PCI_CHIP_KABYLAKE_DT_GT2 },
3144 };
3145 unsigned int i;
3146
3147 for (i = 0; i < ARRAY_SIZE(name_map); i++) {
3148 if (!strcmp(name_map[i].name, devid_override))
3149 return name_map[i].pci_id;
3150 }
3151
3152 return strtod(devid_override, NULL);
3153 }
3154
3155 /**
3156 * Get the PCI ID for the device. This can be overridden by setting the
3157 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3158 */
3159 static int
3160 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3161 {
3162 char *devid_override;
3163 int devid = 0;
3164 int ret;
3165 drm_i915_getparam_t gp;
3166
3167 if (geteuid() == getuid()) {
3168 devid_override = getenv("INTEL_DEVID_OVERRIDE");
3169 if (devid_override) {
3170 bufmgr_gem->no_exec = true;
3171 return parse_devid_override(devid_override);
3172 }
3173 }
3174
3175 memclear(gp);
3176 gp.param = I915_PARAM_CHIPSET_ID;
3177 gp.value = &devid;
3178 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3179 if (ret) {
3180 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3181 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3182 }
3183 return devid;
3184 }
3185
3186 int
3187 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3188 {
3189 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3190
3191 return bufmgr_gem->pci_device;
3192 }
3193
3194 /**
3195 * Sets the AUB filename.
3196 *
3197 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3198 * for it to have any effect.
3199 */
3200 void
3201 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3202 const char *filename)
3203 {
3204 }
3205
3206 /**
3207 * Sets up AUB dumping.
3208 *
3209 * This is a trace file format that can be used with the simulator.
3210 * Packets are emitted in a format somewhat like GPU command packets.
3211 * You can set up a GTT and upload your objects into the referenced
3212 * space, then send off batchbuffers and get BMPs out the other end.
3213 */
3214 void
3215 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3216 {
3217 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3218 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n"
3219 "then run (for example)\n\n"
3220 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3221 "See the intel_aubdump man page for more details.\n");
3222 }
3223
3224 drm_intel_context *
3225 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3226 {
3227 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3228 struct drm_i915_gem_context_create create;
3229 drm_intel_context *context = NULL;
3230 int ret;
3231
3232 context = calloc(1, sizeof(*context));
3233 if (!context)
3234 return NULL;
3235
3236 memclear(create);
3237 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3238 if (ret != 0) {
3239 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3240 strerror(errno));
3241 free(context);
3242 return NULL;
3243 }
3244
3245 context->ctx_id = create.ctx_id;
3246 context->bufmgr = bufmgr;
3247
3248 return context;
3249 }
3250
3251 int
3252 drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id)
3253 {
3254 if (ctx == NULL)
3255 return -EINVAL;
3256
3257 *ctx_id = ctx->ctx_id;
3258
3259 return 0;
3260 }
3261
3262 void
3263 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3264 {
3265 drm_intel_bufmgr_gem *bufmgr_gem;
3266 struct drm_i915_gem_context_destroy destroy;
3267 int ret;
3268
3269 if (ctx == NULL)
3270 return;
3271
3272 memclear(destroy);
3273
3274 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3275 destroy.ctx_id = ctx->ctx_id;
3276 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3277 &destroy);
3278 if (ret != 0)
3279 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3280 strerror(errno));
3281
3282 free(ctx);
3283 }
3284
3285 int
3286 drm_intel_get_reset_stats(drm_intel_context *ctx,
3287 uint32_t *reset_count,
3288 uint32_t *active,
3289 uint32_t *pending)
3290 {
3291 drm_intel_bufmgr_gem *bufmgr_gem;
3292 struct drm_i915_reset_stats stats;
3293 int ret;
3294
3295 if (ctx == NULL)
3296 return -EINVAL;
3297
3298 memclear(stats);
3299
3300 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3301 stats.ctx_id = ctx->ctx_id;
3302 ret = drmIoctl(bufmgr_gem->fd,
3303 DRM_IOCTL_I915_GET_RESET_STATS,
3304 &stats);
3305 if (ret == 0) {
3306 if (reset_count != NULL)
3307 *reset_count = stats.reset_count;
3308
3309 if (active != NULL)
3310 *active = stats.batch_active;
3311
3312 if (pending != NULL)
3313 *pending = stats.batch_pending;
3314 }
3315
3316 return ret;
3317 }
3318
3319 int
3320 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3321 uint32_t offset,
3322 uint64_t *result)
3323 {
3324 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3325 struct drm_i915_reg_read reg_read;
3326 int ret;
3327
3328 memclear(reg_read);
3329 reg_read.offset = offset;
3330
3331 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3332
3333 *result = reg_read.val;
3334 return ret;
3335 }
3336
3337 int
3338 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3339 {
3340 drm_i915_getparam_t gp;
3341 int ret;
3342
3343 memclear(gp);
3344 gp.value = (int*)subslice_total;
3345 gp.param = I915_PARAM_SUBSLICE_TOTAL;
3346 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3347 if (ret)
3348 return -errno;
3349
3350 return 0;
3351 }
3352
3353 int
3354 drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3355 {
3356 drm_i915_getparam_t gp;
3357 int ret;
3358
3359 memclear(gp);
3360 gp.value = (int*)eu_total;
3361 gp.param = I915_PARAM_EU_TOTAL;
3362 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3363 if (ret)
3364 return -errno;
3365
3366 return 0;
3367 }
3368
3369 int
3370 drm_intel_get_pooled_eu(int fd)
3371 {
3372 drm_i915_getparam_t gp;
3373 int ret = -1;
3374
3375 memclear(gp);
3376 gp.param = I915_PARAM_HAS_POOLED_EU;
3377 gp.value = &ret;
3378 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3379 return -errno;
3380
3381 return ret;
3382 }
3383
3384 int
3385 drm_intel_get_min_eu_in_pool(int fd)
3386 {
3387 drm_i915_getparam_t gp;
3388 int ret = -1;
3389
3390 memclear(gp);
3391 gp.param = I915_PARAM_MIN_EU_IN_POOL;
3392 gp.value = &ret;
3393 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3394 return -errno;
3395
3396 return ret;
3397 }
3398
3399 /**
3400 * Annotate the given bo for use in aub dumping.
3401 *
3402 * \param annotations is an array of drm_intel_aub_annotation objects
3403 * describing the type of data in various sections of the bo. Each
3404 * element of the array specifies the type and subtype of a section of
3405 * the bo, and the past-the-end offset of that section. The elements
3406 * of \c annotations must be sorted so that ending_offset is
3407 * increasing.
3408 *
3409 * \param count is the number of elements in the \c annotations array.
3410 * If \c count is zero, then \c annotations will not be dereferenced.
3411 *
3412 * Annotations are copied into a private data structure, so caller may
3413 * re-use the memory pointed to by \c annotations after the call
3414 * returns.
3415 *
3416 * Annotations are stored for the lifetime of the bo; to reset to the
3417 * default state (no annotations), call this function with a \c count
3418 * of zero.
3419 */
3420 void
3421 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3422 drm_intel_aub_annotation *annotations,
3423 unsigned count)
3424 {
3425 }
3426
3427 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3428 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3429
3430 static drm_intel_bufmgr_gem *
3431 drm_intel_bufmgr_gem_find(int fd)
3432 {
3433 drm_intel_bufmgr_gem *bufmgr_gem;
3434
3435 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3436 if (bufmgr_gem->fd == fd) {
3437 atomic_inc(&bufmgr_gem->refcount);
3438 return bufmgr_gem;
3439 }
3440 }
3441
3442 return NULL;
3443 }
3444
3445 static void
3446 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3447 {
3448 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3449
3450 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3451 pthread_mutex_lock(&bufmgr_list_mutex);
3452
3453 if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3454 DRMLISTDEL(&bufmgr_gem->managers);
3455 drm_intel_bufmgr_gem_destroy(bufmgr);
3456 }
3457
3458 pthread_mutex_unlock(&bufmgr_list_mutex);
3459 }
3460 }
3461
3462 void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo)
3463 {
3464 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3465 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3466
3467 if (bo_gem->gtt_virtual)
3468 return bo_gem->gtt_virtual;
3469
3470 if (bo_gem->is_userptr)
3471 return NULL;
3472
3473 pthread_mutex_lock(&bufmgr_gem->lock);
3474 if (bo_gem->gtt_virtual == NULL) {
3475 struct drm_i915_gem_mmap_gtt mmap_arg;
3476 void *ptr;
3477
3478 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
3479 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3480
3481 if (bo_gem->map_count++ == 0)
3482 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3483
3484 memclear(mmap_arg);
3485 mmap_arg.handle = bo_gem->gem_handle;
3486
3487 /* Get the fake offset back... */
3488 ptr = MAP_FAILED;
3489 if (drmIoctl(bufmgr_gem->fd,
3490 DRM_IOCTL_I915_GEM_MMAP_GTT,
3491 &mmap_arg) == 0) {
3492 /* and mmap it */
3493 ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
3494 MAP_SHARED, bufmgr_gem->fd,
3495 mmap_arg.offset);
3496 }
3497 if (ptr == MAP_FAILED) {
3498 if (--bo_gem->map_count == 0)
3499 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3500 ptr = NULL;
3501 }
3502
3503 bo_gem->gtt_virtual = ptr;
3504 }
3505 pthread_mutex_unlock(&bufmgr_gem->lock);
3506
3507 return bo_gem->gtt_virtual;
3508 }
3509
3510 void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo)
3511 {
3512 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3513 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3514
3515 if (bo_gem->mem_virtual)
3516 return bo_gem->mem_virtual;
3517
3518 if (bo_gem->is_userptr) {
3519 /* Return the same user ptr */
3520 return bo_gem->user_virtual;
3521 }
3522
3523 pthread_mutex_lock(&bufmgr_gem->lock);
3524 if (!bo_gem->mem_virtual) {
3525 struct drm_i915_gem_mmap mmap_arg;
3526
3527 if (bo_gem->map_count++ == 0)
3528 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3529
3530 DBG("bo_map: %d (%s), map_count=%d\n",
3531 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3532
3533 memclear(mmap_arg);
3534 mmap_arg.handle = bo_gem->gem_handle;
3535 mmap_arg.size = bo->size;
3536 if (drmIoctl(bufmgr_gem->fd,
3537 DRM_IOCTL_I915_GEM_MMAP,
3538 &mmap_arg)) {
3539 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3540 __FILE__, __LINE__, bo_gem->gem_handle,
3541 bo_gem->name, strerror(errno));
3542 if (--bo_gem->map_count == 0)
3543 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3544 } else {
3545 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3546 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3547 }
3548 }
3549 pthread_mutex_unlock(&bufmgr_gem->lock);
3550
3551 return bo_gem->mem_virtual;
3552 }
3553
3554 void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo)
3555 {
3556 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3557 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3558
3559 if (bo_gem->wc_virtual)
3560 return bo_gem->wc_virtual;
3561
3562 if (bo_gem->is_userptr)
3563 return NULL;
3564
3565 pthread_mutex_lock(&bufmgr_gem->lock);
3566 if (!bo_gem->wc_virtual) {
3567 struct drm_i915_gem_mmap mmap_arg;
3568
3569 if (bo_gem->map_count++ == 0)
3570 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3571
3572 DBG("bo_map: %d (%s), map_count=%d\n",
3573 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3574
3575 memclear(mmap_arg);
3576 mmap_arg.handle = bo_gem->gem_handle;
3577 mmap_arg.size = bo->size;
3578 mmap_arg.flags = I915_MMAP_WC;
3579 if (drmIoctl(bufmgr_gem->fd,
3580 DRM_IOCTL_I915_GEM_MMAP,
3581 &mmap_arg)) {
3582 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3583 __FILE__, __LINE__, bo_gem->gem_handle,
3584 bo_gem->name, strerror(errno));
3585 if (--bo_gem->map_count == 0)
3586 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3587 } else {
3588 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3589 bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3590 }
3591 }
3592 pthread_mutex_unlock(&bufmgr_gem->lock);
3593
3594 return bo_gem->wc_virtual;
3595 }
3596
3597 /**
3598 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3599 * and manage map buffer objections.
3600 *
3601 * \param fd File descriptor of the opened DRM device.
3602 */
3603 drm_intel_bufmgr *
3604 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3605 {
3606 drm_intel_bufmgr_gem *bufmgr_gem;
3607 struct drm_i915_gem_get_aperture aperture;
3608 drm_i915_getparam_t gp;
3609 int ret, tmp;
3610 bool exec2 = false;
3611
3612 pthread_mutex_lock(&bufmgr_list_mutex);
3613
3614 bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3615 if (bufmgr_gem)
3616 goto exit;
3617
3618 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3619 if (bufmgr_gem == NULL)
3620 goto exit;
3621
3622 bufmgr_gem->fd = fd;
3623 atomic_set(&bufmgr_gem->refcount, 1);
3624
3625 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3626 free(bufmgr_gem);
3627 bufmgr_gem = NULL;
3628 goto exit;
3629 }
3630
3631 memclear(aperture);
3632 ret = drmIoctl(bufmgr_gem->fd,
3633 DRM_IOCTL_I915_GEM_GET_APERTURE,
3634 &aperture);
3635
3636 if (ret == 0)
3637 bufmgr_gem->gtt_size = aperture.aper_available_size;
3638 else {
3639 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3640 strerror(errno));
3641 bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3642 fprintf(stderr, "Assuming %dkB available aperture size.\n"
3643 "May lead to reduced performance or incorrect "
3644 "rendering.\n",
3645 (int)bufmgr_gem->gtt_size / 1024);
3646 }
3647
3648 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3649
3650 if (IS_GEN2(bufmgr_gem->pci_device))
3651 bufmgr_gem->gen = 2;
3652 else if (IS_GEN3(bufmgr_gem->pci_device))
3653 bufmgr_gem->gen = 3;
3654 else if (IS_GEN4(bufmgr_gem->pci_device))
3655 bufmgr_gem->gen = 4;
3656 else if (IS_GEN5(bufmgr_gem->pci_device))
3657 bufmgr_gem->gen = 5;
3658 else if (IS_GEN6(bufmgr_gem->pci_device))
3659 bufmgr_gem->gen = 6;
3660 else if (IS_GEN7(bufmgr_gem->pci_device))
3661 bufmgr_gem->gen = 7;
3662 else if (IS_GEN8(bufmgr_gem->pci_device))
3663 bufmgr_gem->gen = 8;
3664 else if (IS_GEN9(bufmgr_gem->pci_device))
3665 bufmgr_gem->gen = 9;
3666 else {
3667 free(bufmgr_gem);
3668 bufmgr_gem = NULL;
3669 goto exit;
3670 }
3671
3672 if (IS_GEN3(bufmgr_gem->pci_device) &&
3673 bufmgr_gem->gtt_size > 256*1024*1024) {
3674 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3675 * be used for tiled blits. To simplify the accounting, just
3676 * subtract the unmappable part (fixed to 256MB on all known
3677 * gen3 devices) if the kernel advertises it. */
3678 bufmgr_gem->gtt_size -= 256*1024*1024;
3679 }
3680
3681 memclear(gp);
3682 gp.value = &tmp;
3683
3684 gp.param = I915_PARAM_HAS_EXECBUF2;
3685 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3686 if (!ret)
3687 exec2 = true;
3688
3689 gp.param = I915_PARAM_HAS_BSD;
3690 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3691 bufmgr_gem->has_bsd = ret == 0;
3692
3693 gp.param = I915_PARAM_HAS_BLT;
3694 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3695 bufmgr_gem->has_blt = ret == 0;
3696
3697 gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3698 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3699 bufmgr_gem->has_relaxed_fencing = ret == 0;
3700
3701 gp.param = I915_PARAM_HAS_EXEC_ASYNC;
3702 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3703 bufmgr_gem->has_exec_async = ret == 0;
3704
3705 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3706
3707 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3708 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3709 bufmgr_gem->has_wait_timeout = ret == 0;
3710
3711 gp.param = I915_PARAM_HAS_LLC;
3712 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3713 if (ret != 0) {
3714 /* Kernel does not supports HAS_LLC query, fallback to GPU
3715 * generation detection and assume that we have LLC on GEN6/7
3716 */
3717 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3718 IS_GEN7(bufmgr_gem->pci_device));
3719 } else
3720 bufmgr_gem->has_llc = *gp.value;
3721
3722 gp.param = I915_PARAM_HAS_VEBOX;
3723 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3724 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3725
3726 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3727 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3728 if (ret == 0 && *gp.value > 0)
3729 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3730
3731 if (bufmgr_gem->gen < 4) {
3732 gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3733 gp.value = &bufmgr_gem->available_fences;
3734 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3735 if (ret) {
3736 fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3737 errno);
3738 fprintf(stderr, "param: %d, val: %d\n", gp.param,
3739 *gp.value);
3740 bufmgr_gem->available_fences = 0;
3741 } else {
3742 /* XXX The kernel reports the total number of fences,
3743 * including any that may be pinned.
3744 *
3745 * We presume that there will be at least one pinned
3746 * fence for the scanout buffer, but there may be more
3747 * than one scanout and the user may be manually
3748 * pinning buffers. Let's move to execbuffer2 and
3749 * thereby forget the insanity of using fences...
3750 */
3751 bufmgr_gem->available_fences -= 2;
3752 if (bufmgr_gem->available_fences < 0)
3753 bufmgr_gem->available_fences = 0;
3754 }
3755 }
3756
3757 if (bufmgr_gem->gen >= 8) {
3758 gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3759 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3760 if (ret == 0 && *gp.value == 3)
3761 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3762 }
3763
3764 /* Let's go with one relocation per every 2 dwords (but round down a bit
3765 * since a power of two will mean an extra page allocation for the reloc
3766 * buffer).
3767 *
3768 * Every 4 was too few for the blender benchmark.
3769 */
3770 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3771
3772 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3773 bufmgr_gem->bufmgr.bo_alloc_for_render =
3774 drm_intel_gem_bo_alloc_for_render;
3775 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3776 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3777 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3778 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3779 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3780 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3781 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3782 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3783 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3784 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3785 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3786 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3787 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3788 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3789 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3790 /* Use the new one if available */
3791 if (exec2) {
3792 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3793 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3794 } else
3795 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3796 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3797 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3798 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3799 bufmgr_gem->bufmgr.debug = 0;
3800 bufmgr_gem->bufmgr.check_aperture_space =
3801 drm_intel_gem_check_aperture_space;
3802 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3803 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3804 bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3805 drm_intel_gem_get_pipe_from_crtc_id;
3806 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3807
3808 init_cache_buckets(bufmgr_gem);
3809
3810 DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3811 bufmgr_gem->vma_max = -1; /* unlimited by default */
3812
3813 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3814
3815 exit:
3816 pthread_mutex_unlock(&bufmgr_list_mutex);
3817
3818 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3819 }