0b432eca7fdd3d00e7fe9c3cea6a0dcc14e597f0
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 bool disable_aux_buffers)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (disable_aux_buffers) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104
105 /**
106 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
107 * scaled-down bitfield representation of the color buffer which is capable of
108 * recording when blocks of the color buffer are equal to the clear value.
109 * This function returns the block size that will be used by the MCS buffer
110 * corresponding to a certain color miptree.
111 *
112 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
113 * beneath the "Fast Color Clear" bullet (p327):
114 *
115 * The following table describes the RT alignment
116 *
117 * Pixels Lines
118 * TiledY RT CL
119 * bpp
120 * 32 8 4
121 * 64 4 4
122 * 128 2 4
123 * TiledX RT CL
124 * bpp
125 * 32 16 2
126 * 64 8 2
127 * 128 4 2
128 *
129 * This alignment has the following uses:
130 *
131 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
132 * buffer contains 128 blocks horizontally and 256 blocks vertically.
133 *
134 * - For figuring out alignment restrictions for a fast clear operation. Fast
135 * clear operations must always clear aligned multiples of 16 blocks
136 * horizontally and 32 blocks vertically.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a fast clear. X coordinates must be scaled down by 8 times the block
140 * width, and Y coordinates by 16 times the block height.
141 *
142 * - For scaling down the coordinates sent through the render pipeline during
143 * a "Render Target Resolve" operation. X coordinates must be scaled down
144 * by half the block width, and Y coordinates by half the block height.
145 */
146 void
147 intel_get_non_msrt_mcs_alignment(const struct intel_mipmap_tree *mt,
148 unsigned *width_px, unsigned *height)
149 {
150 switch (mt->tiling) {
151 default:
152 unreachable("Non-MSRT MCS requires X or Y tiling");
153 /* In release builds, fall through */
154 case I915_TILING_Y:
155 *width_px = 32 / mt->cpp;
156 *height = 4;
157 break;
158 case I915_TILING_X:
159 *width_px = 64 / mt->cpp;
160 *height = 2;
161 }
162 }
163
164 bool
165 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
166 unsigned tiling)
167 {
168 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
169 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
170 *
171 * - Support is limited to tiled render targets.
172 *
173 * Gen9 changes the restriction to Y-tile only.
174 */
175 if (brw->gen >= 9)
176 return tiling == I915_TILING_Y;
177 else if (brw->gen >= 7)
178 return tiling != I915_TILING_NONE;
179 else
180 return false;
181 }
182
183 /**
184 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
185 * can be used. This doesn't (and should not) inspect any of the properties of
186 * the miptree's BO.
187 *
188 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
189 * beneath the "Fast Color Clear" bullet (p326):
190 *
191 * - Support is for non-mip-mapped and non-array surface types only.
192 *
193 * And then later, on p327:
194 *
195 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
196 * 64bpp, and 128bpp.
197 *
198 * From the Skylake documentation, it is made clear that X-tiling is no longer
199 * supported:
200 *
201 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
202 * non-MSRTs only.
203 */
204 bool
205 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
206 const struct intel_mipmap_tree *mt)
207 {
208 /* MCS support does not exist prior to Gen7 */
209 if (brw->gen < 7)
210 return false;
211
212 if (mt->disable_aux_buffers)
213 return false;
214
215 /* This function applies only to non-multisampled render targets. */
216 if (mt->num_samples > 1)
217 return false;
218
219 /* MCS is only supported for color buffers */
220 switch (_mesa_get_format_base_format(mt->format)) {
221 case GL_DEPTH_COMPONENT:
222 case GL_DEPTH_STENCIL:
223 case GL_STENCIL_INDEX:
224 return false;
225 }
226
227 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
228 return false;
229 if (mt->first_level != 0 || mt->last_level != 0) {
230 if (brw->gen >= 8) {
231 perf_debug("Multi-LOD fast clear - giving up (%dx%dx%d).\n",
232 mt->logical_width0, mt->logical_height0, mt->last_level);
233 }
234
235 return false;
236 }
237
238 /* Check for layered surfaces. */
239 if (mt->physical_depth0 != 1) {
240 /* Multisample surfaces with the CMS layout are not layered surfaces,
241 * yet still have physical_depth0 > 1. Assert that we don't
242 * accidentally reject a multisampled surface here. We should have
243 * rejected it earlier by explicitly checking the sample count.
244 */
245 assert(mt->num_samples <= 1);
246
247 if (brw->gen >= 8) {
248 perf_debug("Layered fast clear - giving up. (%dx%d%d)\n",
249 mt->logical_width0, mt->logical_height0,
250 mt->physical_depth0);
251 }
252
253 return false;
254 }
255
256 /* There's no point in using an MCS buffer if the surface isn't in a
257 * renderable format.
258 */
259 if (!brw->format_supported_as_render_target[mt->format])
260 return false;
261
262 if (brw->gen >= 9) {
263 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
264 const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
265 return brw_losslessly_compressible_format(brw, brw_format);
266 } else
267 return true;
268 }
269
270 /* On Gen9 support for color buffer compression was extended to single
271 * sampled surfaces. This is a helper considering both auxiliary buffer
272 * type and number of samples telling if the given miptree represents
273 * the new single sampled case - also called lossless compression.
274 */
275 bool
276 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
277 const struct intel_mipmap_tree *mt)
278 {
279 /* Only available from Gen9 onwards. */
280 if (brw->gen < 9)
281 return false;
282
283 /* Compression always requires auxiliary buffer. */
284 if (!mt->mcs_mt)
285 return false;
286
287 /* Single sample compression is represented re-using msaa compression
288 * layout type: "Compressed Multisampled Surfaces".
289 */
290 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
291 return false;
292
293 /* And finally distinguish between msaa and single sample case. */
294 return mt->num_samples <= 1;
295 }
296
297 bool
298 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
299 const struct intel_mipmap_tree *mt)
300 {
301 /* For now compression is only enabled for integer formats even though
302 * there exist supported floating point formats also. This is a heuristic
303 * decision based on current public benchmarks. In none of the cases these
304 * formats provided any improvement but a few cases were seen to regress.
305 * Hence these are left to to be enabled in the future when they are known
306 * to improve things.
307 */
308 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
309 return false;
310
311 /* Fast clear mechanism and lossless compression go hand in hand. */
312 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
313 return false;
314
315 /* Fast clear can be also used to clear srgb surfaces by using equivalent
316 * linear format. This trick, however, can't be extended to be used with
317 * lossless compression and therefore a check is needed to see if the format
318 * really is linear.
319 */
320 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
321 }
322
323 /**
324 * Determine depth format corresponding to a depth+stencil format,
325 * for separate stencil.
326 */
327 mesa_format
328 intel_depth_format_for_depthstencil_format(mesa_format format) {
329 switch (format) {
330 case MESA_FORMAT_Z24_UNORM_S8_UINT:
331 return MESA_FORMAT_Z24_UNORM_X8_UINT;
332 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
333 return MESA_FORMAT_Z_FLOAT32;
334 default:
335 return format;
336 }
337 }
338
339
340 /**
341 * @param for_bo Indicates that the caller is
342 * intel_miptree_create_for_bo(). If true, then do not create
343 * \c stencil_mt.
344 */
345 static struct intel_mipmap_tree *
346 intel_miptree_create_layout(struct brw_context *brw,
347 GLenum target,
348 mesa_format format,
349 GLuint first_level,
350 GLuint last_level,
351 GLuint width0,
352 GLuint height0,
353 GLuint depth0,
354 GLuint num_samples,
355 uint32_t layout_flags)
356 {
357 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
358 if (!mt)
359 return NULL;
360
361 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
362 _mesa_enum_to_string(target),
363 _mesa_get_format_name(format),
364 first_level, last_level, depth0, mt);
365
366 if (target == GL_TEXTURE_1D_ARRAY) {
367 /* For a 1D Array texture the OpenGL API will treat the height0
368 * parameter as the number of array slices. For Intel hardware, we treat
369 * the 1D array as a 2D Array with a height of 1.
370 *
371 * So, when we first come through this path to create a 1D Array
372 * texture, height0 stores the number of slices, and depth0 is 1. In
373 * this case, we want to swap height0 and depth0.
374 *
375 * Since some miptrees will be created based on the base miptree, we may
376 * come through this path and see height0 as 1 and depth0 being the
377 * number of slices. In this case we don't need to do the swap.
378 */
379 assert(height0 == 1 || depth0 == 1);
380 if (height0 > 1) {
381 depth0 = height0;
382 height0 = 1;
383 }
384 }
385
386 mt->target = target;
387 mt->format = format;
388 mt->first_level = first_level;
389 mt->last_level = last_level;
390 mt->logical_width0 = width0;
391 mt->logical_height0 = height0;
392 mt->logical_depth0 = depth0;
393 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
394 mt->disable_aux_buffers = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0;
395 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
396 exec_list_make_empty(&mt->hiz_map);
397 mt->cpp = _mesa_get_format_bytes(format);
398 mt->num_samples = num_samples;
399 mt->compressed = _mesa_is_format_compressed(format);
400 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
401 mt->refcount = 1;
402
403 if (num_samples > 1) {
404 /* Adjust width/height/depth for MSAA */
405 mt->msaa_layout = compute_msaa_layout(brw, format,
406 mt->disable_aux_buffers);
407 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
408 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
409 * "If the surface is multisampled and it is a depth or stencil
410 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
411 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
412 * proceeding:
413 *
414 * +----------------------------------------------------------------+
415 * | Num Multisamples | W_l = | H_l = |
416 * +----------------------------------------------------------------+
417 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
418 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
419 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
420 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
421 * +----------------------------------------------------------------+
422 * "
423 *
424 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
425 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
426 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
427 *
428 * Another more complicated explanation for these adjustments comes
429 * from the Sandybridge PRM, volume 4, part 1, page 31:
430 *
431 * "Any of the other messages (sample*, LOD, load4) used with a
432 * (4x) multisampled surface will in-effect sample a surface with
433 * double the height and width as that indicated in the surface
434 * state. Each pixel position on the original-sized surface is
435 * replaced with a 2x2 of samples with the following arrangement:
436 *
437 * sample 0 sample 2
438 * sample 1 sample 3"
439 *
440 * Thus, when sampling from a multisampled texture, it behaves as
441 * though the layout in memory for (x,y,sample) is:
442 *
443 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
444 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
445 *
446 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
447 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
448 *
449 * However, the actual layout of multisampled data in memory is:
450 *
451 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
452 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
453 *
454 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
455 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
456 *
457 * This pattern repeats for each 2x2 pixel block.
458 *
459 * As a result, when calculating the size of our 4-sample buffer for
460 * an odd width or height, we have to align before scaling up because
461 * sample 3 is in that bottom right 2x2 block.
462 */
463 switch (num_samples) {
464 case 2:
465 assert(brw->gen >= 8);
466 width0 = ALIGN(width0, 2) * 2;
467 height0 = ALIGN(height0, 2);
468 break;
469 case 4:
470 width0 = ALIGN(width0, 2) * 2;
471 height0 = ALIGN(height0, 2) * 2;
472 break;
473 case 8:
474 width0 = ALIGN(width0, 2) * 4;
475 height0 = ALIGN(height0, 2) * 2;
476 break;
477 case 16:
478 width0 = ALIGN(width0, 2) * 4;
479 height0 = ALIGN(height0, 2) * 4;
480 break;
481 default:
482 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
483 * or 16.
484 */
485 unreachable("not reached");
486 }
487 } else {
488 /* Non-interleaved */
489 depth0 *= num_samples;
490 }
491 }
492
493 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
494 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
495 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
496 * used on Gen8 to make it pick a qpitch value which doesn't include space
497 * for the mipmaps. On Gen9 this is not necessary because it will
498 * automatically pick a packed qpitch value whenever mt->first_level ==
499 * mt->last_level.
500 * TODO: can we use it elsewhere?
501 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
502 */
503 if (brw->gen >= 9) {
504 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
505 } else {
506 switch (mt->msaa_layout) {
507 case INTEL_MSAA_LAYOUT_NONE:
508 case INTEL_MSAA_LAYOUT_IMS:
509 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
510 break;
511 case INTEL_MSAA_LAYOUT_UMS:
512 case INTEL_MSAA_LAYOUT_CMS:
513 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
514 break;
515 }
516 }
517
518 if (target == GL_TEXTURE_CUBE_MAP) {
519 assert(depth0 == 1);
520 depth0 = 6;
521 }
522
523 mt->physical_width0 = width0;
524 mt->physical_height0 = height0;
525 mt->physical_depth0 = depth0;
526
527 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
528 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
529 (brw->must_use_separate_stencil ||
530 (brw->has_separate_stencil &&
531 intel_miptree_wants_hiz_buffer(brw, mt)))) {
532 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
533 if (brw->gen == 6) {
534 stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
535 MIPTREE_LAYOUT_TILING_ANY;
536 }
537
538 mt->stencil_mt = intel_miptree_create(brw,
539 mt->target,
540 MESA_FORMAT_S_UINT8,
541 mt->first_level,
542 mt->last_level,
543 mt->logical_width0,
544 mt->logical_height0,
545 mt->logical_depth0,
546 num_samples,
547 stencil_flags);
548
549 if (!mt->stencil_mt) {
550 intel_miptree_release(&mt);
551 return NULL;
552 }
553
554 /* Fix up the Z miptree format for how we're splitting out separate
555 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
556 */
557 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
558 mt->cpp = 4;
559
560 if (format == mt->format) {
561 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
562 _mesa_get_format_name(mt->format));
563 }
564 }
565
566 if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
567 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
568
569 /*
570 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
571 * multisampled or have an AUX buffer attached to it.
572 *
573 * GEN | MSRT | AUX_CCS_* or AUX_MCS
574 * -------------------------------------------
575 * 9 | HALIGN_16 | HALIGN_16
576 * 8 | HALIGN_ANY | HALIGN_16
577 * 7 | ? | ?
578 * 6 | ? | ?
579 */
580 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
581 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
582 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
583 } else if (brw->gen >= 9 && num_samples > 1) {
584 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
585 } else {
586 const bool is_lossless_compressed_aux =
587 brw->gen >= 9 && num_samples == 1 &&
588 mt->format == MESA_FORMAT_R_UINT32;
589
590 /* For now, nothing else has this requirement */
591 assert(is_lossless_compressed_aux ||
592 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
593 }
594
595 brw_miptree_layout(brw, mt, layout_flags);
596
597 if (mt->disable_aux_buffers)
598 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
599
600 return mt;
601 }
602
603
604 /**
605 * Choose an appropriate uncompressed format for a requested
606 * compressed format, if unsupported.
607 */
608 mesa_format
609 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
610 {
611 /* No need to lower ETC formats on these platforms,
612 * they are supported natively.
613 */
614 if (brw->gen >= 8 || brw->is_baytrail)
615 return format;
616
617 switch (format) {
618 case MESA_FORMAT_ETC1_RGB8:
619 return MESA_FORMAT_R8G8B8X8_UNORM;
620 case MESA_FORMAT_ETC2_RGB8:
621 return MESA_FORMAT_R8G8B8X8_UNORM;
622 case MESA_FORMAT_ETC2_SRGB8:
623 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
624 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
625 return MESA_FORMAT_B8G8R8A8_SRGB;
626 case MESA_FORMAT_ETC2_RGBA8_EAC:
627 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
628 return MESA_FORMAT_R8G8B8A8_UNORM;
629 case MESA_FORMAT_ETC2_R11_EAC:
630 return MESA_FORMAT_R_UNORM16;
631 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
632 return MESA_FORMAT_R_SNORM16;
633 case MESA_FORMAT_ETC2_RG11_EAC:
634 return MESA_FORMAT_R16G16_UNORM;
635 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
636 return MESA_FORMAT_R16G16_SNORM;
637 default:
638 /* Non ETC1 / ETC2 format */
639 return format;
640 }
641 }
642
643 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
644 static unsigned long
645 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
646 unsigned long *pitch)
647 {
648 uint32_t tile_width, tile_height;
649 unsigned long stride, size, aligned_y;
650
651 assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
652 intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
653 &tile_width, &tile_height);
654
655 aligned_y = ALIGN(mt->total_height, tile_height);
656 stride = mt->total_width * mt->cpp;
657 stride = ALIGN(stride, tile_width);
658 size = stride * aligned_y;
659
660 if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
661 assert(size % 4096 == 0);
662 *alignment = 4096;
663 } else {
664 assert(size % (64 * 1024) == 0);
665 *alignment = 64 * 1024;
666 }
667 *pitch = stride;
668 return size;
669 }
670
671 static struct intel_mipmap_tree *
672 miptree_create(struct brw_context *brw,
673 GLenum target,
674 mesa_format format,
675 GLuint first_level,
676 GLuint last_level,
677 GLuint width0,
678 GLuint height0,
679 GLuint depth0,
680 GLuint num_samples,
681 uint32_t layout_flags)
682 {
683 struct intel_mipmap_tree *mt;
684 mesa_format tex_format = format;
685 mesa_format etc_format = MESA_FORMAT_NONE;
686 uint32_t alloc_flags = 0;
687
688 format = intel_lower_compressed_format(brw, format);
689
690 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
691
692 assert((layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) == 0);
693 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
694 mt = intel_miptree_create_layout(brw, target, format,
695 first_level, last_level, width0,
696 height0, depth0, num_samples,
697 layout_flags);
698 /*
699 * pitch == 0 || height == 0 indicates the null texture
700 */
701 if (!mt || !mt->total_width || !mt->total_height) {
702 intel_miptree_release(&mt);
703 return NULL;
704 }
705
706 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
707 mt->tiling = I915_TILING_Y;
708
709 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
710 alloc_flags |= BO_ALLOC_FOR_RENDER;
711
712 unsigned long pitch;
713 mt->etc_format = etc_format;
714
715 if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
716 unsigned alignment = 0;
717 unsigned long size;
718 size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
719 assert(size);
720 mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
721 size, alignment);
722 } else {
723 if (format == MESA_FORMAT_S_UINT8) {
724 /* Align to size of W tile, 64x64. */
725 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
726 ALIGN(mt->total_width, 64),
727 ALIGN(mt->total_height, 64),
728 mt->cpp, &mt->tiling, &pitch,
729 alloc_flags);
730 } else {
731 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
732 mt->total_width, mt->total_height,
733 mt->cpp, &mt->tiling, &pitch,
734 alloc_flags);
735 }
736 }
737
738 mt->pitch = pitch;
739
740 return mt;
741 }
742
743 struct intel_mipmap_tree *
744 intel_miptree_create(struct brw_context *brw,
745 GLenum target,
746 mesa_format format,
747 GLuint first_level,
748 GLuint last_level,
749 GLuint width0,
750 GLuint height0,
751 GLuint depth0,
752 GLuint num_samples,
753 uint32_t layout_flags)
754 {
755 struct intel_mipmap_tree *mt = miptree_create(
756 brw, target, format,
757 first_level, last_level,
758 width0, height0, depth0, num_samples,
759 layout_flags);
760
761 /* If the BO is too large to fit in the aperture, we need to use the
762 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
763 * handle Y-tiling, so we need to fall back to X.
764 */
765 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
766 mt->tiling == I915_TILING_Y) {
767 unsigned long pitch = mt->pitch;
768 const uint32_t alloc_flags =
769 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
770 BO_ALLOC_FOR_RENDER : 0;
771 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
772 mt->total_width, mt->total_height);
773
774 mt->tiling = I915_TILING_X;
775 drm_intel_bo_unreference(mt->bo);
776 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
777 mt->total_width, mt->total_height, mt->cpp,
778 &mt->tiling, &pitch, alloc_flags);
779 mt->pitch = pitch;
780 }
781
782 mt->offset = 0;
783
784 if (!mt->bo) {
785 intel_miptree_release(&mt);
786 return NULL;
787 }
788
789
790 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
791 assert(mt->num_samples > 1);
792 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
793 intel_miptree_release(&mt);
794 return NULL;
795 }
796 }
797
798 /* If this miptree is capable of supporting fast color clears, set
799 * fast_clear_state appropriately to ensure that fast clears will occur.
800 * Allocation of the MCS miptree will be deferred until the first fast
801 * clear actually occurs.
802 */
803 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
804 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
805 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
806 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
807 }
808
809 return mt;
810 }
811
812 struct intel_mipmap_tree *
813 intel_miptree_create_for_bo(struct brw_context *brw,
814 drm_intel_bo *bo,
815 mesa_format format,
816 uint32_t offset,
817 uint32_t width,
818 uint32_t height,
819 uint32_t depth,
820 int pitch,
821 uint32_t layout_flags)
822 {
823 struct intel_mipmap_tree *mt;
824 uint32_t tiling, swizzle;
825 GLenum target;
826
827 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
828
829 /* Nothing will be able to use this miptree with the BO if the offset isn't
830 * aligned.
831 */
832 if (tiling != I915_TILING_NONE)
833 assert(offset % 4096 == 0);
834
835 /* miptrees can't handle negative pitch. If you need flipping of images,
836 * that's outside of the scope of the mt.
837 */
838 assert(pitch >= 0);
839
840 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
841
842 /* The BO already has a tiling format and we shouldn't confuse the lower
843 * layers by making it try to find a tiling format again.
844 */
845 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
846 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
847
848 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
849 mt = intel_miptree_create_layout(brw, target, format,
850 0, 0,
851 width, height, depth, 0,
852 layout_flags);
853 if (!mt)
854 return NULL;
855
856 drm_intel_bo_reference(bo);
857 mt->bo = bo;
858 mt->pitch = pitch;
859 mt->offset = offset;
860 mt->tiling = tiling;
861
862 return mt;
863 }
864
865 /**
866 * For a singlesample renderbuffer, this simply wraps the given BO with a
867 * miptree.
868 *
869 * For a multisample renderbuffer, this wraps the window system's
870 * (singlesample) BO with a singlesample miptree attached to the
871 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
872 * that will contain the actual rendering (which is lazily resolved to
873 * irb->singlesample_mt).
874 */
875 void
876 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
877 struct intel_renderbuffer *irb,
878 drm_intel_bo *bo,
879 uint32_t width, uint32_t height,
880 uint32_t pitch)
881 {
882 struct intel_mipmap_tree *singlesample_mt = NULL;
883 struct intel_mipmap_tree *multisample_mt = NULL;
884 struct gl_renderbuffer *rb = &irb->Base.Base;
885 mesa_format format = rb->Format;
886 int num_samples = rb->NumSamples;
887
888 /* Only the front and back buffers, which are color buffers, are allocated
889 * through the image loader.
890 */
891 assert(_mesa_get_format_base_format(format) == GL_RGB ||
892 _mesa_get_format_base_format(format) == GL_RGBA);
893
894 singlesample_mt = intel_miptree_create_for_bo(intel,
895 bo,
896 format,
897 0,
898 width,
899 height,
900 1,
901 pitch,
902 MIPTREE_LAYOUT_FOR_SCANOUT);
903 if (!singlesample_mt)
904 goto fail;
905
906 /* If this miptree is capable of supporting fast color clears, set
907 * mcs_state appropriately to ensure that fast clears will occur.
908 * Allocation of the MCS miptree will be deferred until the first fast
909 * clear actually occurs.
910 */
911 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
912 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
913 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
914 }
915
916 if (num_samples == 0) {
917 intel_miptree_release(&irb->mt);
918 irb->mt = singlesample_mt;
919
920 assert(!irb->singlesample_mt);
921 } else {
922 intel_miptree_release(&irb->singlesample_mt);
923 irb->singlesample_mt = singlesample_mt;
924
925 if (!irb->mt ||
926 irb->mt->logical_width0 != width ||
927 irb->mt->logical_height0 != height) {
928 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
929 format,
930 width,
931 height,
932 num_samples);
933 if (!multisample_mt)
934 goto fail;
935
936 irb->need_downsample = false;
937 intel_miptree_release(&irb->mt);
938 irb->mt = multisample_mt;
939 }
940 }
941 return;
942
943 fail:
944 intel_miptree_release(&irb->singlesample_mt);
945 intel_miptree_release(&irb->mt);
946 return;
947 }
948
949 struct intel_mipmap_tree*
950 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
951 mesa_format format,
952 uint32_t width,
953 uint32_t height,
954 uint32_t num_samples)
955 {
956 struct intel_mipmap_tree *mt;
957 uint32_t depth = 1;
958 bool ok;
959 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
960 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
961 MIPTREE_LAYOUT_TILING_ANY |
962 MIPTREE_LAYOUT_FOR_SCANOUT;
963
964 mt = intel_miptree_create(brw, target, format, 0, 0,
965 width, height, depth, num_samples,
966 layout_flags);
967 if (!mt)
968 goto fail;
969
970 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
971 ok = intel_miptree_alloc_hiz(brw, mt);
972 if (!ok)
973 goto fail;
974 }
975
976 return mt;
977
978 fail:
979 intel_miptree_release(&mt);
980 return NULL;
981 }
982
983 void
984 intel_miptree_reference(struct intel_mipmap_tree **dst,
985 struct intel_mipmap_tree *src)
986 {
987 if (*dst == src)
988 return;
989
990 intel_miptree_release(dst);
991
992 if (src) {
993 src->refcount++;
994 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
995 }
996
997 *dst = src;
998 }
999
1000
1001 void
1002 intel_miptree_release(struct intel_mipmap_tree **mt)
1003 {
1004 if (!*mt)
1005 return;
1006
1007 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1008 if (--(*mt)->refcount <= 0) {
1009 GLuint i;
1010
1011 DBG("%s deleting %p\n", __func__, *mt);
1012
1013 drm_intel_bo_unreference((*mt)->bo);
1014 intel_miptree_release(&(*mt)->stencil_mt);
1015 if ((*mt)->hiz_buf) {
1016 if ((*mt)->hiz_buf->mt)
1017 intel_miptree_release(&(*mt)->hiz_buf->mt);
1018 else
1019 drm_intel_bo_unreference((*mt)->hiz_buf->bo);
1020 free((*mt)->hiz_buf);
1021 }
1022 intel_miptree_release(&(*mt)->mcs_mt);
1023 intel_resolve_map_clear(&(*mt)->hiz_map);
1024
1025 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1026 free((*mt)->level[i].slice);
1027 }
1028
1029 free(*mt);
1030 }
1031 *mt = NULL;
1032 }
1033
1034
1035 void
1036 intel_get_image_dims(struct gl_texture_image *image,
1037 int *width, int *height, int *depth)
1038 {
1039 switch (image->TexObject->Target) {
1040 case GL_TEXTURE_1D_ARRAY:
1041 /* For a 1D Array texture the OpenGL API will treat the image height as
1042 * the number of array slices. For Intel hardware, we treat the 1D array
1043 * as a 2D Array with a height of 1. So, here we want to swap image
1044 * height and depth.
1045 */
1046 *width = image->Width;
1047 *height = 1;
1048 *depth = image->Height;
1049 break;
1050 default:
1051 *width = image->Width;
1052 *height = image->Height;
1053 *depth = image->Depth;
1054 break;
1055 }
1056 }
1057
1058 /**
1059 * Can the image be pulled into a unified mipmap tree? This mirrors
1060 * the completeness test in a lot of ways.
1061 *
1062 * Not sure whether I want to pass gl_texture_image here.
1063 */
1064 bool
1065 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1066 struct gl_texture_image *image)
1067 {
1068 struct intel_texture_image *intelImage = intel_texture_image(image);
1069 GLuint level = intelImage->base.Base.Level;
1070 int width, height, depth;
1071
1072 /* glTexImage* choose the texture object based on the target passed in, and
1073 * objects can't change targets over their lifetimes, so this should be
1074 * true.
1075 */
1076 assert(image->TexObject->Target == mt->target);
1077
1078 mesa_format mt_format = mt->format;
1079 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1080 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1081 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1082 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1083 if (mt->etc_format != MESA_FORMAT_NONE)
1084 mt_format = mt->etc_format;
1085
1086 if (image->TexFormat != mt_format)
1087 return false;
1088
1089 intel_get_image_dims(image, &width, &height, &depth);
1090
1091 if (mt->target == GL_TEXTURE_CUBE_MAP)
1092 depth = 6;
1093
1094 int level_depth = mt->level[level].depth;
1095 if (mt->num_samples > 1) {
1096 switch (mt->msaa_layout) {
1097 case INTEL_MSAA_LAYOUT_NONE:
1098 case INTEL_MSAA_LAYOUT_IMS:
1099 break;
1100 case INTEL_MSAA_LAYOUT_UMS:
1101 case INTEL_MSAA_LAYOUT_CMS:
1102 level_depth /= mt->num_samples;
1103 break;
1104 }
1105 }
1106
1107 /* Test image dimensions against the base level image adjusted for
1108 * minification. This will also catch images not present in the
1109 * tree, changed targets, etc.
1110 */
1111 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1112 height != minify(mt->logical_height0, level - mt->first_level) ||
1113 depth != level_depth) {
1114 return false;
1115 }
1116
1117 if (image->NumSamples != mt->num_samples)
1118 return false;
1119
1120 return true;
1121 }
1122
1123
1124 void
1125 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1126 GLuint level,
1127 GLuint x, GLuint y, GLuint d)
1128 {
1129 mt->level[level].depth = d;
1130 mt->level[level].level_x = x;
1131 mt->level[level].level_y = y;
1132
1133 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1134 level, d, x, y);
1135
1136 assert(mt->level[level].slice == NULL);
1137
1138 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1139 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1140 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1141 }
1142
1143
1144 void
1145 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1146 GLuint level, GLuint img,
1147 GLuint x, GLuint y)
1148 {
1149 if (img == 0 && level == 0)
1150 assert(x == 0 && y == 0);
1151
1152 assert(img < mt->level[level].depth);
1153
1154 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1155 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1156
1157 DBG("%s level %d img %d pos %d,%d\n",
1158 __func__, level, img,
1159 mt->level[level].slice[img].x_offset,
1160 mt->level[level].slice[img].y_offset);
1161 }
1162
1163 void
1164 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1165 GLuint level, GLuint slice,
1166 GLuint *x, GLuint *y)
1167 {
1168 assert(slice < mt->level[level].depth);
1169
1170 *x = mt->level[level].slice[slice].x_offset;
1171 *y = mt->level[level].slice[slice].y_offset;
1172 }
1173
1174
1175 /**
1176 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1177 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1178 * and tile_h is set to 1.
1179 */
1180 void
1181 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1182 uint32_t *tile_w, uint32_t *tile_h)
1183 {
1184 if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1185 switch (tiling) {
1186 case I915_TILING_X:
1187 *tile_w = 512;
1188 *tile_h = 8;
1189 break;
1190 case I915_TILING_Y:
1191 *tile_w = 128;
1192 *tile_h = 32;
1193 break;
1194 case I915_TILING_NONE:
1195 *tile_w = cpp;
1196 *tile_h = 1;
1197 break;
1198 default:
1199 unreachable("not reached");
1200 }
1201 } else {
1202 uint32_t aspect_ratio = 1;
1203 assert(_mesa_is_pow_two(cpp));
1204
1205 switch (cpp) {
1206 case 1:
1207 *tile_h = 64;
1208 break;
1209 case 2:
1210 case 4:
1211 *tile_h = 32;
1212 break;
1213 case 8:
1214 case 16:
1215 *tile_h = 16;
1216 break;
1217 default:
1218 unreachable("not reached");
1219 }
1220
1221 if (cpp == 2 || cpp == 8)
1222 aspect_ratio = 2;
1223
1224 if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1225 *tile_h *= 4;
1226
1227 *tile_w = *tile_h * aspect_ratio * cpp;
1228 }
1229 }
1230
1231
1232 /**
1233 * This function computes masks that may be used to select the bits of the X
1234 * and Y coordinates that indicate the offset within a tile. If the BO is
1235 * untiled, the masks are set to 0.
1236 */
1237 void
1238 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1239 bool map_stencil_as_y_tiled,
1240 uint32_t *mask_x, uint32_t *mask_y)
1241 {
1242 uint32_t tile_w_bytes, tile_h;
1243 if (map_stencil_as_y_tiled)
1244 tiling = I915_TILING_Y;
1245
1246 intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1247
1248 *mask_x = tile_w_bytes / cpp - 1;
1249 *mask_y = tile_h - 1;
1250 }
1251
1252 /**
1253 * Compute the offset (in bytes) from the start of the BO to the given x
1254 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1255 * multiples of the tile size.
1256 */
1257 uint32_t
1258 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1259 uint32_t x, uint32_t y,
1260 bool map_stencil_as_y_tiled)
1261 {
1262 int cpp = mt->cpp;
1263 uint32_t pitch = mt->pitch;
1264 uint32_t tiling = mt->tiling;
1265
1266 if (map_stencil_as_y_tiled) {
1267 tiling = I915_TILING_Y;
1268
1269 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1270 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1271 * the resulting surface is twice the pitch of the original miptree,
1272 * since each row in the Y-tiled view corresponds to two rows in the
1273 * actual W-tiled surface. So we need to correct the pitch before
1274 * computing the offsets.
1275 */
1276 pitch *= 2;
1277 }
1278
1279 switch (tiling) {
1280 default:
1281 unreachable("not reached");
1282 case I915_TILING_NONE:
1283 return y * pitch + x * cpp;
1284 case I915_TILING_X:
1285 assert((x % (512 / cpp)) == 0);
1286 assert((y % 8) == 0);
1287 return y * pitch + x / (512 / cpp) * 4096;
1288 case I915_TILING_Y:
1289 assert((x % (128 / cpp)) == 0);
1290 assert((y % 32) == 0);
1291 return y * pitch + x / (128 / cpp) * 4096;
1292 }
1293 }
1294
1295 /**
1296 * Rendering with tiled buffers requires that the base address of the buffer
1297 * be aligned to a page boundary. For renderbuffers, and sometimes with
1298 * textures, we may want the surface to point at a texture image level that
1299 * isn't at a page boundary.
1300 *
1301 * This function returns an appropriately-aligned base offset
1302 * according to the tiling restrictions, plus any required x/y offset
1303 * from there.
1304 */
1305 uint32_t
1306 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1307 GLuint level, GLuint slice,
1308 uint32_t *tile_x,
1309 uint32_t *tile_y)
1310 {
1311 uint32_t x, y;
1312 uint32_t mask_x, mask_y;
1313
1314 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, false, &mask_x, &mask_y);
1315 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1316
1317 *tile_x = x & mask_x;
1318 *tile_y = y & mask_y;
1319
1320 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1321 }
1322
1323 static void
1324 intel_miptree_copy_slice_sw(struct brw_context *brw,
1325 struct intel_mipmap_tree *dst_mt,
1326 struct intel_mipmap_tree *src_mt,
1327 int level,
1328 int slice,
1329 int width,
1330 int height)
1331 {
1332 void *src, *dst;
1333 ptrdiff_t src_stride, dst_stride;
1334 int cpp = dst_mt->cpp;
1335
1336 intel_miptree_map(brw, src_mt,
1337 level, slice,
1338 0, 0,
1339 width, height,
1340 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1341 &src, &src_stride);
1342
1343 intel_miptree_map(brw, dst_mt,
1344 level, slice,
1345 0, 0,
1346 width, height,
1347 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1348 BRW_MAP_DIRECT_BIT,
1349 &dst, &dst_stride);
1350
1351 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1352 _mesa_get_format_name(src_mt->format),
1353 src_mt, src, src_stride,
1354 _mesa_get_format_name(dst_mt->format),
1355 dst_mt, dst, dst_stride,
1356 width, height);
1357
1358 int row_size = cpp * width;
1359 if (src_stride == row_size &&
1360 dst_stride == row_size) {
1361 memcpy(dst, src, row_size * height);
1362 } else {
1363 for (int i = 0; i < height; i++) {
1364 memcpy(dst, src, row_size);
1365 dst += dst_stride;
1366 src += src_stride;
1367 }
1368 }
1369
1370 intel_miptree_unmap(brw, dst_mt, level, slice);
1371 intel_miptree_unmap(brw, src_mt, level, slice);
1372
1373 /* Don't forget to copy the stencil data over, too. We could have skipped
1374 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1375 * shuffling the two data sources in/out of temporary storage instead of
1376 * the direct mapping we get this way.
1377 */
1378 if (dst_mt->stencil_mt) {
1379 assert(src_mt->stencil_mt);
1380 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1381 level, slice, width, height);
1382 }
1383 }
1384
1385 static void
1386 intel_miptree_copy_slice(struct brw_context *brw,
1387 struct intel_mipmap_tree *dst_mt,
1388 struct intel_mipmap_tree *src_mt,
1389 int level,
1390 int face,
1391 int depth)
1392
1393 {
1394 mesa_format format = src_mt->format;
1395 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1396 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1397 int slice;
1398
1399 if (face > 0)
1400 slice = face;
1401 else
1402 slice = depth;
1403
1404 assert(depth < src_mt->level[level].depth);
1405 assert(src_mt->format == dst_mt->format);
1406
1407 if (dst_mt->compressed) {
1408 unsigned int i, j;
1409 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1410 height = ALIGN_NPOT(height, j) / j;
1411 width = ALIGN_NPOT(width, i) / i;
1412 }
1413
1414 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1415 * below won't apply since we can't do the depth's Y tiling or the
1416 * stencil's W tiling in the blitter.
1417 */
1418 if (src_mt->stencil_mt) {
1419 intel_miptree_copy_slice_sw(brw,
1420 dst_mt, src_mt,
1421 level, slice,
1422 width, height);
1423 return;
1424 }
1425
1426 uint32_t dst_x, dst_y, src_x, src_y;
1427 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1428 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1429
1430 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1431 _mesa_get_format_name(src_mt->format),
1432 src_mt, src_x, src_y, src_mt->pitch,
1433 _mesa_get_format_name(dst_mt->format),
1434 dst_mt, dst_x, dst_y, dst_mt->pitch,
1435 width, height);
1436
1437 if (!intel_miptree_blit(brw,
1438 src_mt, level, slice, 0, 0, false,
1439 dst_mt, level, slice, 0, 0, false,
1440 width, height, GL_COPY)) {
1441 perf_debug("miptree validate blit for %s failed\n",
1442 _mesa_get_format_name(format));
1443
1444 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1445 width, height);
1446 }
1447 }
1448
1449 /**
1450 * Copies the image's current data to the given miptree, and associates that
1451 * miptree with the image.
1452 *
1453 * If \c invalidate is true, then the actual image data does not need to be
1454 * copied, but the image still needs to be associated to the new miptree (this
1455 * is set to true if we're about to clear the image).
1456 */
1457 void
1458 intel_miptree_copy_teximage(struct brw_context *brw,
1459 struct intel_texture_image *intelImage,
1460 struct intel_mipmap_tree *dst_mt,
1461 bool invalidate)
1462 {
1463 struct intel_mipmap_tree *src_mt = intelImage->mt;
1464 struct intel_texture_object *intel_obj =
1465 intel_texture_object(intelImage->base.Base.TexObject);
1466 int level = intelImage->base.Base.Level;
1467 int face = intelImage->base.Base.Face;
1468
1469 GLuint depth;
1470 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1471 depth = intelImage->base.Base.Height;
1472 else
1473 depth = intelImage->base.Base.Depth;
1474
1475 if (!invalidate) {
1476 for (int slice = 0; slice < depth; slice++) {
1477 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1478 }
1479 }
1480
1481 intel_miptree_reference(&intelImage->mt, dst_mt);
1482 intel_obj->needs_validate = true;
1483 }
1484
1485 static void
1486 intel_miptree_init_mcs(struct brw_context *brw,
1487 struct intel_mipmap_tree *mt,
1488 int init_value)
1489 {
1490 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1491 *
1492 * When MCS buffer is enabled and bound to MSRT, it is required that it
1493 * is cleared prior to any rendering.
1494 *
1495 * Since we don't use the MCS buffer for any purpose other than rendering,
1496 * it makes sense to just clear it immediately upon allocation.
1497 *
1498 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1499 */
1500 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1501 memset(data, init_value, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1502 intel_miptree_unmap_raw(mt->mcs_mt);
1503 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1504 }
1505
1506 static bool
1507 intel_miptree_alloc_mcs(struct brw_context *brw,
1508 struct intel_mipmap_tree *mt,
1509 GLuint num_samples)
1510 {
1511 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1512 assert(mt->mcs_mt == NULL);
1513 assert(!mt->disable_aux_buffers);
1514
1515 /* Choose the correct format for the MCS buffer. All that really matters
1516 * is that we allocate the right buffer size, since we'll always be
1517 * accessing this miptree using MCS-specific hardware mechanisms, which
1518 * infer the correct format based on num_samples.
1519 */
1520 mesa_format format;
1521 switch (num_samples) {
1522 case 2:
1523 case 4:
1524 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1525 * each sample).
1526 */
1527 format = MESA_FORMAT_R_UNORM8;
1528 break;
1529 case 8:
1530 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1531 * for each sample, plus 8 padding bits).
1532 */
1533 format = MESA_FORMAT_R_UINT32;
1534 break;
1535 case 16:
1536 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1537 * for each sample).
1538 */
1539 format = MESA_FORMAT_RG_UINT32;
1540 break;
1541 default:
1542 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1543 };
1544
1545 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1546 *
1547 * "The MCS surface must be stored as Tile Y."
1548 */
1549 const uint32_t mcs_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1550 MIPTREE_LAYOUT_TILING_Y;
1551 mt->mcs_mt = miptree_create(brw,
1552 mt->target,
1553 format,
1554 mt->first_level,
1555 mt->last_level,
1556 mt->logical_width0,
1557 mt->logical_height0,
1558 mt->logical_depth0,
1559 0 /* num_samples */,
1560 mcs_flags);
1561
1562 intel_miptree_init_mcs(brw, mt, 0xFF);
1563
1564 return mt->mcs_mt;
1565 }
1566
1567
1568 bool
1569 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1570 struct intel_mipmap_tree *mt)
1571 {
1572 assert(mt->mcs_mt == NULL);
1573 assert(!mt->disable_aux_buffers);
1574
1575 /* The format of the MCS buffer is opaque to the driver; all that matters
1576 * is that we get its size and pitch right. We'll pretend that the format
1577 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1578 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1579 * the block width and then a further factor of 4. Since an MCS tile
1580 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1581 * we'll need to scale the height down by the block height and then a
1582 * further factor of 8.
1583 */
1584 const mesa_format format = MESA_FORMAT_R_UINT32;
1585 unsigned block_width_px;
1586 unsigned block_height;
1587 intel_get_non_msrt_mcs_alignment(mt, &block_width_px, &block_height);
1588 unsigned width_divisor = block_width_px * 4;
1589 unsigned height_divisor = block_height * 8;
1590
1591 /* The Skylake MCS is twice as tall as the Broadwell MCS.
1592 *
1593 * In pre-Skylake, each bit in the MCS contained the state of 2 cachelines
1594 * in the main surface. In Skylake, it's two bits. The extra bit
1595 * doubles the MCS height, not width, because in Skylake the MCS is always
1596 * Y-tiled.
1597 */
1598 if (brw->gen >= 9)
1599 height_divisor /= 2;
1600
1601 unsigned mcs_width =
1602 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1603 unsigned mcs_height =
1604 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1605 assert(mt->logical_depth0 == 1);
1606 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1607 MIPTREE_LAYOUT_TILING_Y;
1608 if (brw->gen >= 8) {
1609 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
1610 }
1611 mt->mcs_mt = miptree_create(brw,
1612 mt->target,
1613 format,
1614 mt->first_level,
1615 mt->last_level,
1616 mcs_width,
1617 mcs_height,
1618 mt->logical_depth0,
1619 0 /* num_samples */,
1620 layout_flags);
1621
1622 return mt->mcs_mt;
1623 }
1624
1625 void
1626 intel_miptree_prepare_mcs(struct brw_context *brw,
1627 struct intel_mipmap_tree *mt)
1628 {
1629 if (mt->mcs_mt)
1630 return;
1631
1632 if (brw->gen < 9)
1633 return;
1634
1635 /* Single sample compression is represented re-using msaa compression
1636 * layout type: "Compressed Multisampled Surfaces".
1637 */
1638 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS || mt->num_samples > 1)
1639 return;
1640
1641 /* Clients are not currently capable of consuming compressed
1642 * single-sampled buffers.
1643 */
1644 if (mt->is_scanout)
1645 return;
1646
1647 assert(intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) ||
1648 intel_miptree_supports_lossless_compressed(brw, mt));
1649
1650 /* Consider if lossless compression is supported but the needed
1651 * auxiliary buffer doesn't exist yet.
1652 *
1653 * Failing to allocate the auxiliary buffer means running out of
1654 * memory. The pointer to the aux miptree is left NULL which should
1655 * signal non-compressed behavior.
1656 */
1657 if (!intel_miptree_alloc_non_msrt_mcs(brw, mt)) {
1658 _mesa_warning(NULL,
1659 "Failed to allocated aux buffer for lossless"
1660 " compressed %p %u:%u %s\n",
1661 mt, mt->logical_width0, mt->logical_height0,
1662 _mesa_get_format_name(mt->format));
1663 }
1664 }
1665
1666 /**
1667 * Helper for intel_miptree_alloc_hiz() that sets
1668 * \c mt->level[level].has_hiz. Return true if and only if
1669 * \c has_hiz was set.
1670 */
1671 static bool
1672 intel_miptree_level_enable_hiz(struct brw_context *brw,
1673 struct intel_mipmap_tree *mt,
1674 uint32_t level)
1675 {
1676 assert(mt->hiz_buf);
1677
1678 if (brw->gen >= 8 || brw->is_haswell) {
1679 uint32_t width = minify(mt->physical_width0, level);
1680 uint32_t height = minify(mt->physical_height0, level);
1681
1682 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1683 * and the height is 4 aligned. This allows our HiZ support
1684 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1685 * we can grow the width & height to allow the HiZ op to
1686 * force the proper size alignments.
1687 */
1688 if (level > 0 && ((width & 7) || (height & 3))) {
1689 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1690 return false;
1691 }
1692 }
1693
1694 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1695 mt->level[level].has_hiz = true;
1696 return true;
1697 }
1698
1699
1700 /**
1701 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1702 * buffer dimensions and allocates a bo for the hiz buffer.
1703 */
1704 static struct intel_miptree_aux_buffer *
1705 intel_gen7_hiz_buf_create(struct brw_context *brw,
1706 struct intel_mipmap_tree *mt)
1707 {
1708 unsigned z_width = mt->logical_width0;
1709 unsigned z_height = mt->logical_height0;
1710 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1711 unsigned hz_width, hz_height;
1712 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1713
1714 if (!buf)
1715 return NULL;
1716
1717 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1718 * adjustments required for Z_Height and Z_Width based on multisampling.
1719 */
1720 switch (mt->num_samples) {
1721 case 0:
1722 case 1:
1723 break;
1724 case 2:
1725 case 4:
1726 z_width *= 2;
1727 z_height *= 2;
1728 break;
1729 case 8:
1730 z_width *= 4;
1731 z_height *= 2;
1732 break;
1733 default:
1734 unreachable("unsupported sample count");
1735 }
1736
1737 const unsigned vertical_align = 8; /* 'j' in the docs */
1738 const unsigned H0 = z_height;
1739 const unsigned h0 = ALIGN(H0, vertical_align);
1740 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1741 const unsigned Z0 = z_depth;
1742
1743 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1744 hz_width = ALIGN(z_width, 16);
1745
1746 if (mt->target == GL_TEXTURE_3D) {
1747 unsigned H_i = H0;
1748 unsigned Z_i = Z0;
1749 hz_height = 0;
1750 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1751 unsigned h_i = ALIGN(H_i, vertical_align);
1752 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1753 hz_height += h_i * Z_i;
1754 H_i = minify(H_i, 1);
1755 Z_i = minify(Z_i, 1);
1756 }
1757 /* HZ_Height =
1758 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1759 */
1760 hz_height = DIV_ROUND_UP(hz_height, 2);
1761 } else {
1762 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1763 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1764 mt->target == GL_TEXTURE_CUBE_MAP) {
1765 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth * 6/2) /8 ) * 8 */
1766 hz_height = DIV_ROUND_UP(hz_qpitch * Z0 * 6, 2 * 8) * 8;
1767 } else {
1768 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1769 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1770 }
1771 }
1772
1773 unsigned long pitch;
1774 uint32_t tiling = I915_TILING_Y;
1775 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1776 hz_width, hz_height, 1,
1777 &tiling, &pitch,
1778 BO_ALLOC_FOR_RENDER);
1779 if (!buf->bo) {
1780 free(buf);
1781 return NULL;
1782 } else if (tiling != I915_TILING_Y) {
1783 drm_intel_bo_unreference(buf->bo);
1784 free(buf);
1785 return NULL;
1786 }
1787
1788 buf->pitch = pitch;
1789
1790 return buf;
1791 }
1792
1793
1794 /**
1795 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1796 * buffer dimensions and allocates a bo for the hiz buffer.
1797 */
1798 static struct intel_miptree_aux_buffer *
1799 intel_gen8_hiz_buf_create(struct brw_context *brw,
1800 struct intel_mipmap_tree *mt)
1801 {
1802 unsigned z_width = mt->logical_width0;
1803 unsigned z_height = mt->logical_height0;
1804 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1805 unsigned hz_width, hz_height;
1806 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1807
1808 if (!buf)
1809 return NULL;
1810
1811 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1812 * adjustments required for Z_Height and Z_Width based on multisampling.
1813 */
1814 if (brw->gen < 9) {
1815 switch (mt->num_samples) {
1816 case 0:
1817 case 1:
1818 break;
1819 case 2:
1820 case 4:
1821 z_width *= 2;
1822 z_height *= 2;
1823 break;
1824 case 8:
1825 z_width *= 4;
1826 z_height *= 2;
1827 break;
1828 default:
1829 unreachable("unsupported sample count");
1830 }
1831 }
1832
1833 const unsigned vertical_align = 8; /* 'j' in the docs */
1834 const unsigned H0 = z_height;
1835 const unsigned h0 = ALIGN(H0, vertical_align);
1836 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1837 const unsigned Z0 = z_depth;
1838
1839 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1840 hz_width = ALIGN(z_width, 16);
1841
1842 unsigned H_i = H0;
1843 unsigned Z_i = Z0;
1844 unsigned sum_h_i = 0;
1845 unsigned hz_height_3d_sum = 0;
1846 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1847 unsigned i = level - mt->first_level;
1848 unsigned h_i = ALIGN(H_i, vertical_align);
1849 /* sum(i=2 to m; h_i) */
1850 if (i >= 2) {
1851 sum_h_i += h_i;
1852 }
1853 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1854 hz_height_3d_sum += h_i * Z_i;
1855 H_i = minify(H_i, 1);
1856 Z_i = minify(Z_i, 1);
1857 }
1858 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1859 buf->qpitch = h0 + MAX2(h1, sum_h_i);
1860
1861 if (mt->target == GL_TEXTURE_3D) {
1862 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1863 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1864 } else {
1865 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1866 hz_height = DIV_ROUND_UP(buf->qpitch, 2 * 8) * 8 * Z0;
1867 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1868 mt->target == GL_TEXTURE_CUBE_MAP) {
1869 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * 6 * Z_Depth
1870 *
1871 * We can can just take our hz_height calculation from above, and
1872 * multiply by 6 for the cube map and cube map array types.
1873 */
1874 hz_height *= 6;
1875 }
1876 }
1877
1878 unsigned long pitch;
1879 uint32_t tiling = I915_TILING_Y;
1880 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1881 hz_width, hz_height, 1,
1882 &tiling, &pitch,
1883 BO_ALLOC_FOR_RENDER);
1884 if (!buf->bo) {
1885 free(buf);
1886 return NULL;
1887 } else if (tiling != I915_TILING_Y) {
1888 drm_intel_bo_unreference(buf->bo);
1889 free(buf);
1890 return NULL;
1891 }
1892
1893 buf->pitch = pitch;
1894
1895 return buf;
1896 }
1897
1898
1899 static struct intel_miptree_aux_buffer *
1900 intel_hiz_miptree_buf_create(struct brw_context *brw,
1901 struct intel_mipmap_tree *mt)
1902 {
1903 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1904 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1905
1906 if (brw->gen == 6)
1907 layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1908
1909 if (!buf)
1910 return NULL;
1911
1912 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1913 buf->mt = intel_miptree_create(brw,
1914 mt->target,
1915 mt->format,
1916 mt->first_level,
1917 mt->last_level,
1918 mt->logical_width0,
1919 mt->logical_height0,
1920 mt->logical_depth0,
1921 mt->num_samples,
1922 layout_flags);
1923 if (!buf->mt) {
1924 free(buf);
1925 return NULL;
1926 }
1927
1928 buf->bo = buf->mt->bo;
1929 buf->pitch = buf->mt->pitch;
1930 buf->qpitch = buf->mt->qpitch;
1931
1932 return buf;
1933 }
1934
1935 bool
1936 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1937 struct intel_mipmap_tree *mt)
1938 {
1939 if (!brw->has_hiz)
1940 return false;
1941
1942 if (mt->hiz_buf != NULL)
1943 return false;
1944
1945 if (mt->disable_aux_buffers)
1946 return false;
1947
1948 switch (mt->format) {
1949 case MESA_FORMAT_Z_FLOAT32:
1950 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1951 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1952 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1953 case MESA_FORMAT_Z_UNORM16:
1954 return true;
1955 default:
1956 return false;
1957 }
1958 }
1959
1960 bool
1961 intel_miptree_alloc_hiz(struct brw_context *brw,
1962 struct intel_mipmap_tree *mt)
1963 {
1964 assert(mt->hiz_buf == NULL);
1965 assert(!mt->disable_aux_buffers);
1966
1967 if (brw->gen == 7) {
1968 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1969 } else if (brw->gen >= 8) {
1970 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1971 } else {
1972 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1973 }
1974
1975 if (!mt->hiz_buf)
1976 return false;
1977
1978 /* Mark that all slices need a HiZ resolve. */
1979 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1980 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1981 continue;
1982
1983 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1984 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1985 exec_node_init(&m->link);
1986 m->level = level;
1987 m->layer = layer;
1988 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1989
1990 exec_list_push_tail(&mt->hiz_map, &m->link);
1991 }
1992 }
1993
1994 return true;
1995 }
1996
1997 /**
1998 * Does the miptree slice have hiz enabled?
1999 */
2000 bool
2001 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2002 {
2003 intel_miptree_check_level_layer(mt, level, 0);
2004 return mt->level[level].has_hiz;
2005 }
2006
2007 void
2008 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2009 uint32_t level,
2010 uint32_t layer)
2011 {
2012 if (!intel_miptree_level_has_hiz(mt, level))
2013 return;
2014
2015 intel_resolve_map_set(&mt->hiz_map,
2016 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
2017 }
2018
2019
2020 void
2021 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2022 uint32_t level,
2023 uint32_t layer)
2024 {
2025 if (!intel_miptree_level_has_hiz(mt, level))
2026 return;
2027
2028 intel_resolve_map_set(&mt->hiz_map,
2029 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
2030 }
2031
2032 void
2033 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2034 uint32_t level)
2035 {
2036 uint32_t layer;
2037 uint32_t end_layer = mt->level[level].depth;
2038
2039 for (layer = 0; layer < end_layer; layer++) {
2040 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2041 }
2042 }
2043
2044 static bool
2045 intel_miptree_slice_resolve(struct brw_context *brw,
2046 struct intel_mipmap_tree *mt,
2047 uint32_t level,
2048 uint32_t layer,
2049 enum gen6_hiz_op need)
2050 {
2051 intel_miptree_check_level_layer(mt, level, layer);
2052
2053 struct intel_resolve_map *item =
2054 intel_resolve_map_get(&mt->hiz_map, level, layer);
2055
2056 if (!item || item->need != need)
2057 return false;
2058
2059 intel_hiz_exec(brw, mt, level, layer, need);
2060 intel_resolve_map_remove(item);
2061 return true;
2062 }
2063
2064 bool
2065 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2066 struct intel_mipmap_tree *mt,
2067 uint32_t level,
2068 uint32_t layer)
2069 {
2070 return intel_miptree_slice_resolve(brw, mt, level, layer,
2071 GEN6_HIZ_OP_HIZ_RESOLVE);
2072 }
2073
2074 bool
2075 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2076 struct intel_mipmap_tree *mt,
2077 uint32_t level,
2078 uint32_t layer)
2079 {
2080 return intel_miptree_slice_resolve(brw, mt, level, layer,
2081 GEN6_HIZ_OP_DEPTH_RESOLVE);
2082 }
2083
2084 static bool
2085 intel_miptree_all_slices_resolve(struct brw_context *brw,
2086 struct intel_mipmap_tree *mt,
2087 enum gen6_hiz_op need)
2088 {
2089 bool did_resolve = false;
2090
2091 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2092 if (map->need != need)
2093 continue;
2094
2095 intel_hiz_exec(brw, mt, map->level, map->layer, need);
2096 intel_resolve_map_remove(map);
2097 did_resolve = true;
2098 }
2099
2100 return did_resolve;
2101 }
2102
2103 bool
2104 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2105 struct intel_mipmap_tree *mt)
2106 {
2107 return intel_miptree_all_slices_resolve(brw, mt,
2108 GEN6_HIZ_OP_HIZ_RESOLVE);
2109 }
2110
2111 bool
2112 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2113 struct intel_mipmap_tree *mt)
2114 {
2115 return intel_miptree_all_slices_resolve(brw, mt,
2116 GEN6_HIZ_OP_DEPTH_RESOLVE);
2117 }
2118
2119
2120 void
2121 intel_miptree_resolve_color(struct brw_context *brw,
2122 struct intel_mipmap_tree *mt,
2123 int flags)
2124 {
2125 /* From gen9 onwards there is new compression scheme for single sampled
2126 * surfaces called "lossless compressed". These don't need to be always
2127 * resolved.
2128 */
2129 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) &&
2130 intel_miptree_is_lossless_compressed(brw, mt))
2131 return;
2132
2133 switch (mt->fast_clear_state) {
2134 case INTEL_FAST_CLEAR_STATE_NO_MCS:
2135 case INTEL_FAST_CLEAR_STATE_RESOLVED:
2136 /* No resolve needed */
2137 break;
2138 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
2139 case INTEL_FAST_CLEAR_STATE_CLEAR:
2140 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2141 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE ||
2142 intel_miptree_is_lossless_compressed(brw, mt)) {
2143 brw_blorp_resolve_color(brw, mt);
2144 }
2145 break;
2146 }
2147 }
2148
2149
2150 /**
2151 * Make it possible to share the BO backing the given miptree with another
2152 * process or another miptree.
2153 *
2154 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2155 * then discard the MCS buffer, if present. We also set the fast_clear_state
2156 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
2157 * allocated in the future.
2158 */
2159 void
2160 intel_miptree_make_shareable(struct brw_context *brw,
2161 struct intel_mipmap_tree *mt)
2162 {
2163 /* MCS buffers are also used for multisample buffers, but we can't resolve
2164 * away a multisample MCS buffer because it's an integral part of how the
2165 * pixel data is stored. Fortunately this code path should never be
2166 * reached for multisample buffers.
2167 */
2168 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
2169
2170 if (mt->mcs_mt) {
2171 intel_miptree_resolve_color(brw, mt, 0);
2172 intel_miptree_release(&mt->mcs_mt);
2173 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
2174 }
2175 }
2176
2177
2178 /**
2179 * \brief Get pointer offset into stencil buffer.
2180 *
2181 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2182 * must decode the tile's layout in software.
2183 *
2184 * See
2185 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2186 * Format.
2187 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2188 *
2189 * Even though the returned offset is always positive, the return type is
2190 * signed due to
2191 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2192 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2193 */
2194 static intptr_t
2195 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2196 {
2197 uint32_t tile_size = 4096;
2198 uint32_t tile_width = 64;
2199 uint32_t tile_height = 64;
2200 uint32_t row_size = 64 * stride;
2201
2202 uint32_t tile_x = x / tile_width;
2203 uint32_t tile_y = y / tile_height;
2204
2205 /* The byte's address relative to the tile's base addres. */
2206 uint32_t byte_x = x % tile_width;
2207 uint32_t byte_y = y % tile_height;
2208
2209 uintptr_t u = tile_y * row_size
2210 + tile_x * tile_size
2211 + 512 * (byte_x / 8)
2212 + 64 * (byte_y / 8)
2213 + 32 * ((byte_y / 4) % 2)
2214 + 16 * ((byte_x / 4) % 2)
2215 + 8 * ((byte_y / 2) % 2)
2216 + 4 * ((byte_x / 2) % 2)
2217 + 2 * (byte_y % 2)
2218 + 1 * (byte_x % 2);
2219
2220 if (swizzled) {
2221 /* adjust for bit6 swizzling */
2222 if (((byte_x / 8) % 2) == 1) {
2223 if (((byte_y / 8) % 2) == 0) {
2224 u += 64;
2225 } else {
2226 u -= 64;
2227 }
2228 }
2229 }
2230
2231 return u;
2232 }
2233
2234 void
2235 intel_miptree_updownsample(struct brw_context *brw,
2236 struct intel_mipmap_tree *src,
2237 struct intel_mipmap_tree *dst)
2238 {
2239 /* There is support for only up to eight samples. */
2240 const bool use_blorp = src->num_samples <= 8 && dst->num_samples <= 8;
2241
2242 if (use_blorp) {
2243 brw_blorp_blit_miptrees(brw,
2244 src, 0 /* level */, 0 /* layer */,
2245 src->format, SWIZZLE_XYZW,
2246 dst, 0 /* level */, 0 /* layer */, dst->format,
2247 0, 0,
2248 src->logical_width0, src->logical_height0,
2249 0, 0,
2250 dst->logical_width0, dst->logical_height0,
2251 GL_NEAREST, false, false /*mirror x, y*/,
2252 false, false);
2253 } else if (src->format == MESA_FORMAT_S_UINT8) {
2254 brw_meta_stencil_updownsample(brw, src, dst);
2255 } else {
2256 brw_meta_updownsample(brw, src, dst);
2257 }
2258
2259 if (src->stencil_mt) {
2260 if (!use_blorp) {
2261 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
2262 return;
2263 }
2264
2265 brw_blorp_blit_miptrees(brw,
2266 src->stencil_mt, 0 /* level */, 0 /* layer */,
2267 src->stencil_mt->format, SWIZZLE_XYZW,
2268 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2269 dst->stencil_mt->format,
2270 0, 0,
2271 src->logical_width0, src->logical_height0,
2272 0, 0,
2273 dst->logical_width0, dst->logical_height0,
2274 GL_NEAREST, false, false /*mirror x, y*/,
2275 false, false /* decode/encode srgb */);
2276 }
2277 }
2278
2279 static void *
2280 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2281 {
2282 /* CPU accesses to color buffers don't understand fast color clears, so
2283 * resolve any pending fast color clears before we map.
2284 */
2285 intel_miptree_resolve_color(brw, mt, 0);
2286
2287 drm_intel_bo *bo = mt->bo;
2288
2289 if (drm_intel_bo_references(brw->batch.bo, bo))
2290 intel_batchbuffer_flush(brw);
2291
2292 if (mt->tiling != I915_TILING_NONE)
2293 brw_bo_map_gtt(brw, bo, "miptree");
2294 else
2295 brw_bo_map(brw, bo, true, "miptree");
2296
2297 return bo->virtual;
2298 }
2299
2300 static void
2301 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2302 {
2303 drm_intel_bo_unmap(mt->bo);
2304 }
2305
2306 static void
2307 intel_miptree_map_gtt(struct brw_context *brw,
2308 struct intel_mipmap_tree *mt,
2309 struct intel_miptree_map *map,
2310 unsigned int level, unsigned int slice)
2311 {
2312 unsigned int bw, bh;
2313 void *base;
2314 unsigned int image_x, image_y;
2315 intptr_t x = map->x;
2316 intptr_t y = map->y;
2317
2318 /* For compressed formats, the stride is the number of bytes per
2319 * row of blocks. intel_miptree_get_image_offset() already does
2320 * the divide.
2321 */
2322 _mesa_get_format_block_size(mt->format, &bw, &bh);
2323 assert(y % bh == 0);
2324 assert(x % bw == 0);
2325 y /= bh;
2326 x /= bw;
2327
2328 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2329
2330 if (base == NULL)
2331 map->ptr = NULL;
2332 else {
2333 /* Note that in the case of cube maps, the caller must have passed the
2334 * slice number referencing the face.
2335 */
2336 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2337 x += image_x;
2338 y += image_y;
2339
2340 map->stride = mt->pitch;
2341 map->ptr = base + y * map->stride + x * mt->cpp;
2342 }
2343
2344 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2345 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2346 map->x, map->y, map->w, map->h,
2347 mt, _mesa_get_format_name(mt->format),
2348 x, y, map->ptr, map->stride);
2349 }
2350
2351 static void
2352 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2353 {
2354 intel_miptree_unmap_raw(mt);
2355 }
2356
2357 static void
2358 intel_miptree_map_blit(struct brw_context *brw,
2359 struct intel_mipmap_tree *mt,
2360 struct intel_miptree_map *map,
2361 unsigned int level, unsigned int slice)
2362 {
2363 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2364 /* first_level */ 0,
2365 /* last_level */ 0,
2366 map->w, map->h, 1,
2367 /* samples */ 0,
2368 MIPTREE_LAYOUT_TILING_NONE);
2369
2370 if (!map->linear_mt) {
2371 fprintf(stderr, "Failed to allocate blit temporary\n");
2372 goto fail;
2373 }
2374 map->stride = map->linear_mt->pitch;
2375
2376 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2377 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2378 * invalidate is set, since we'll be writing the whole rectangle from our
2379 * temporary buffer back out.
2380 */
2381 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2382 if (!intel_miptree_blit(brw,
2383 mt, level, slice,
2384 map->x, map->y, false,
2385 map->linear_mt, 0, 0,
2386 0, 0, false,
2387 map->w, map->h, GL_COPY)) {
2388 fprintf(stderr, "Failed to blit\n");
2389 goto fail;
2390 }
2391 }
2392
2393 map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2394
2395 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2396 map->x, map->y, map->w, map->h,
2397 mt, _mesa_get_format_name(mt->format),
2398 level, slice, map->ptr, map->stride);
2399
2400 return;
2401
2402 fail:
2403 intel_miptree_release(&map->linear_mt);
2404 map->ptr = NULL;
2405 map->stride = 0;
2406 }
2407
2408 static void
2409 intel_miptree_unmap_blit(struct brw_context *brw,
2410 struct intel_mipmap_tree *mt,
2411 struct intel_miptree_map *map,
2412 unsigned int level,
2413 unsigned int slice)
2414 {
2415 struct gl_context *ctx = &brw->ctx;
2416
2417 intel_miptree_unmap_raw(map->linear_mt);
2418
2419 if (map->mode & GL_MAP_WRITE_BIT) {
2420 bool ok = intel_miptree_blit(brw,
2421 map->linear_mt, 0, 0,
2422 0, 0, false,
2423 mt, level, slice,
2424 map->x, map->y, false,
2425 map->w, map->h, GL_COPY);
2426 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2427 }
2428
2429 intel_miptree_release(&map->linear_mt);
2430 }
2431
2432 /**
2433 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2434 */
2435 #if defined(USE_SSE41)
2436 static void
2437 intel_miptree_map_movntdqa(struct brw_context *brw,
2438 struct intel_mipmap_tree *mt,
2439 struct intel_miptree_map *map,
2440 unsigned int level, unsigned int slice)
2441 {
2442 assert(map->mode & GL_MAP_READ_BIT);
2443 assert(!(map->mode & GL_MAP_WRITE_BIT));
2444
2445 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2446 map->x, map->y, map->w, map->h,
2447 mt, _mesa_get_format_name(mt->format),
2448 level, slice, map->ptr, map->stride);
2449
2450 /* Map the original image */
2451 uint32_t image_x;
2452 uint32_t image_y;
2453 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2454 image_x += map->x;
2455 image_y += map->y;
2456
2457 void *src = intel_miptree_map_raw(brw, mt);
2458 if (!src)
2459 return;
2460 src += image_y * mt->pitch;
2461 src += image_x * mt->cpp;
2462
2463 /* Due to the pixel offsets for the particular image being mapped, our
2464 * src pointer may not be 16-byte aligned. However, if the pitch is
2465 * divisible by 16, then the amount by which it's misaligned will remain
2466 * consistent from row to row.
2467 */
2468 assert((mt->pitch % 16) == 0);
2469 const int misalignment = ((uintptr_t) src) & 15;
2470
2471 /* Create an untiled temporary buffer for the mapping. */
2472 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2473
2474 map->stride = ALIGN(misalignment + width_bytes, 16);
2475
2476 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2477 /* Offset the destination so it has the same misalignment as src. */
2478 map->ptr = map->buffer + misalignment;
2479
2480 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2481
2482 for (uint32_t y = 0; y < map->h; y++) {
2483 void *dst_ptr = map->ptr + y * map->stride;
2484 void *src_ptr = src + y * mt->pitch;
2485
2486 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2487 }
2488
2489 intel_miptree_unmap_raw(mt);
2490 }
2491
2492 static void
2493 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2494 struct intel_mipmap_tree *mt,
2495 struct intel_miptree_map *map,
2496 unsigned int level,
2497 unsigned int slice)
2498 {
2499 _mesa_align_free(map->buffer);
2500 map->buffer = NULL;
2501 map->ptr = NULL;
2502 }
2503 #endif
2504
2505 static void
2506 intel_miptree_map_s8(struct brw_context *brw,
2507 struct intel_mipmap_tree *mt,
2508 struct intel_miptree_map *map,
2509 unsigned int level, unsigned int slice)
2510 {
2511 map->stride = map->w;
2512 map->buffer = map->ptr = malloc(map->stride * map->h);
2513 if (!map->buffer)
2514 return;
2515
2516 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2517 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2518 * invalidate is set, since we'll be writing the whole rectangle from our
2519 * temporary buffer back out.
2520 */
2521 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2522 uint8_t *untiled_s8_map = map->ptr;
2523 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2524 unsigned int image_x, image_y;
2525
2526 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2527
2528 for (uint32_t y = 0; y < map->h; y++) {
2529 for (uint32_t x = 0; x < map->w; x++) {
2530 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2531 x + image_x + map->x,
2532 y + image_y + map->y,
2533 brw->has_swizzling);
2534 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2535 }
2536 }
2537
2538 intel_miptree_unmap_raw(mt);
2539
2540 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2541 map->x, map->y, map->w, map->h,
2542 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2543 } else {
2544 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2545 map->x, map->y, map->w, map->h,
2546 mt, map->ptr, map->stride);
2547 }
2548 }
2549
2550 static void
2551 intel_miptree_unmap_s8(struct brw_context *brw,
2552 struct intel_mipmap_tree *mt,
2553 struct intel_miptree_map *map,
2554 unsigned int level,
2555 unsigned int slice)
2556 {
2557 if (map->mode & GL_MAP_WRITE_BIT) {
2558 unsigned int image_x, image_y;
2559 uint8_t *untiled_s8_map = map->ptr;
2560 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2561
2562 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2563
2564 for (uint32_t y = 0; y < map->h; y++) {
2565 for (uint32_t x = 0; x < map->w; x++) {
2566 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2567 image_x + x + map->x,
2568 image_y + y + map->y,
2569 brw->has_swizzling);
2570 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2571 }
2572 }
2573
2574 intel_miptree_unmap_raw(mt);
2575 }
2576
2577 free(map->buffer);
2578 }
2579
2580 static void
2581 intel_miptree_map_etc(struct brw_context *brw,
2582 struct intel_mipmap_tree *mt,
2583 struct intel_miptree_map *map,
2584 unsigned int level,
2585 unsigned int slice)
2586 {
2587 assert(mt->etc_format != MESA_FORMAT_NONE);
2588 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2589 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2590 }
2591
2592 assert(map->mode & GL_MAP_WRITE_BIT);
2593 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2594
2595 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2596 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2597 map->w, map->h, 1));
2598 map->ptr = map->buffer;
2599 }
2600
2601 static void
2602 intel_miptree_unmap_etc(struct brw_context *brw,
2603 struct intel_mipmap_tree *mt,
2604 struct intel_miptree_map *map,
2605 unsigned int level,
2606 unsigned int slice)
2607 {
2608 uint32_t image_x;
2609 uint32_t image_y;
2610 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2611
2612 image_x += map->x;
2613 image_y += map->y;
2614
2615 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2616 + image_y * mt->pitch
2617 + image_x * mt->cpp;
2618
2619 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2620 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2621 map->ptr, map->stride,
2622 map->w, map->h);
2623 else
2624 _mesa_unpack_etc2_format(dst, mt->pitch,
2625 map->ptr, map->stride,
2626 map->w, map->h, mt->etc_format);
2627
2628 intel_miptree_unmap_raw(mt);
2629 free(map->buffer);
2630 }
2631
2632 /**
2633 * Mapping function for packed depth/stencil miptrees backed by real separate
2634 * miptrees for depth and stencil.
2635 *
2636 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2637 * separate from the depth buffer. Yet at the GL API level, we have to expose
2638 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2639 * be able to map that memory for texture storage and glReadPixels-type
2640 * operations. We give Mesa core that access by mallocing a temporary and
2641 * copying the data between the actual backing store and the temporary.
2642 */
2643 static void
2644 intel_miptree_map_depthstencil(struct brw_context *brw,
2645 struct intel_mipmap_tree *mt,
2646 struct intel_miptree_map *map,
2647 unsigned int level, unsigned int slice)
2648 {
2649 struct intel_mipmap_tree *z_mt = mt;
2650 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2651 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2652 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2653
2654 map->stride = map->w * packed_bpp;
2655 map->buffer = map->ptr = malloc(map->stride * map->h);
2656 if (!map->buffer)
2657 return;
2658
2659 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2660 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2661 * invalidate is set, since we'll be writing the whole rectangle from our
2662 * temporary buffer back out.
2663 */
2664 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2665 uint32_t *packed_map = map->ptr;
2666 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2667 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2668 unsigned int s_image_x, s_image_y;
2669 unsigned int z_image_x, z_image_y;
2670
2671 intel_miptree_get_image_offset(s_mt, level, slice,
2672 &s_image_x, &s_image_y);
2673 intel_miptree_get_image_offset(z_mt, level, slice,
2674 &z_image_x, &z_image_y);
2675
2676 for (uint32_t y = 0; y < map->h; y++) {
2677 for (uint32_t x = 0; x < map->w; x++) {
2678 int map_x = map->x + x, map_y = map->y + y;
2679 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2680 map_x + s_image_x,
2681 map_y + s_image_y,
2682 brw->has_swizzling);
2683 ptrdiff_t z_offset = ((map_y + z_image_y) *
2684 (z_mt->pitch / 4) +
2685 (map_x + z_image_x));
2686 uint8_t s = s_map[s_offset];
2687 uint32_t z = z_map[z_offset];
2688
2689 if (map_z32f_x24s8) {
2690 packed_map[(y * map->w + x) * 2 + 0] = z;
2691 packed_map[(y * map->w + x) * 2 + 1] = s;
2692 } else {
2693 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2694 }
2695 }
2696 }
2697
2698 intel_miptree_unmap_raw(s_mt);
2699 intel_miptree_unmap_raw(z_mt);
2700
2701 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2702 __func__,
2703 map->x, map->y, map->w, map->h,
2704 z_mt, map->x + z_image_x, map->y + z_image_y,
2705 s_mt, map->x + s_image_x, map->y + s_image_y,
2706 map->ptr, map->stride);
2707 } else {
2708 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2709 map->x, map->y, map->w, map->h,
2710 mt, map->ptr, map->stride);
2711 }
2712 }
2713
2714 static void
2715 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2716 struct intel_mipmap_tree *mt,
2717 struct intel_miptree_map *map,
2718 unsigned int level,
2719 unsigned int slice)
2720 {
2721 struct intel_mipmap_tree *z_mt = mt;
2722 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2723 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2724
2725 if (map->mode & GL_MAP_WRITE_BIT) {
2726 uint32_t *packed_map = map->ptr;
2727 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2728 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2729 unsigned int s_image_x, s_image_y;
2730 unsigned int z_image_x, z_image_y;
2731
2732 intel_miptree_get_image_offset(s_mt, level, slice,
2733 &s_image_x, &s_image_y);
2734 intel_miptree_get_image_offset(z_mt, level, slice,
2735 &z_image_x, &z_image_y);
2736
2737 for (uint32_t y = 0; y < map->h; y++) {
2738 for (uint32_t x = 0; x < map->w; x++) {
2739 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2740 x + s_image_x + map->x,
2741 y + s_image_y + map->y,
2742 brw->has_swizzling);
2743 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2744 (z_mt->pitch / 4) +
2745 (x + z_image_x + map->x));
2746
2747 if (map_z32f_x24s8) {
2748 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2749 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2750 } else {
2751 uint32_t packed = packed_map[y * map->w + x];
2752 s_map[s_offset] = packed >> 24;
2753 z_map[z_offset] = packed;
2754 }
2755 }
2756 }
2757
2758 intel_miptree_unmap_raw(s_mt);
2759 intel_miptree_unmap_raw(z_mt);
2760
2761 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2762 __func__,
2763 map->x, map->y, map->w, map->h,
2764 z_mt, _mesa_get_format_name(z_mt->format),
2765 map->x + z_image_x, map->y + z_image_y,
2766 s_mt, map->x + s_image_x, map->y + s_image_y,
2767 map->ptr, map->stride);
2768 }
2769
2770 free(map->buffer);
2771 }
2772
2773 /**
2774 * Create and attach a map to the miptree at (level, slice). Return the
2775 * attached map.
2776 */
2777 static struct intel_miptree_map*
2778 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2779 unsigned int level,
2780 unsigned int slice,
2781 unsigned int x,
2782 unsigned int y,
2783 unsigned int w,
2784 unsigned int h,
2785 GLbitfield mode)
2786 {
2787 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2788
2789 if (!map)
2790 return NULL;
2791
2792 assert(mt->level[level].slice[slice].map == NULL);
2793 mt->level[level].slice[slice].map = map;
2794
2795 map->mode = mode;
2796 map->x = x;
2797 map->y = y;
2798 map->w = w;
2799 map->h = h;
2800
2801 return map;
2802 }
2803
2804 /**
2805 * Release the map at (level, slice).
2806 */
2807 static void
2808 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2809 unsigned int level,
2810 unsigned int slice)
2811 {
2812 struct intel_miptree_map **map;
2813
2814 map = &mt->level[level].slice[slice].map;
2815 free(*map);
2816 *map = NULL;
2817 }
2818
2819 static bool
2820 can_blit_slice(struct intel_mipmap_tree *mt,
2821 unsigned int level, unsigned int slice)
2822 {
2823 uint32_t image_x;
2824 uint32_t image_y;
2825 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2826 if (image_x >= 32768 || image_y >= 32768)
2827 return false;
2828
2829 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2830 if (mt->pitch >= 32768)
2831 return false;
2832
2833 return true;
2834 }
2835
2836 static bool
2837 use_intel_mipree_map_blit(struct brw_context *brw,
2838 struct intel_mipmap_tree *mt,
2839 GLbitfield mode,
2840 unsigned int level,
2841 unsigned int slice)
2842 {
2843 if (brw->has_llc &&
2844 /* It's probably not worth swapping to the blit ring because of
2845 * all the overhead involved. But, we must use blitter for the
2846 * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
2847 */
2848 (!(mode & GL_MAP_WRITE_BIT) ||
2849 mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
2850 !mt->compressed &&
2851 (mt->tiling == I915_TILING_X ||
2852 /* Prior to Sandybridge, the blitter can't handle Y tiling */
2853 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
2854 /* Fast copy blit on skl+ supports all tiling formats. */
2855 brw->gen >= 9) &&
2856 can_blit_slice(mt, level, slice))
2857 return true;
2858
2859 if (mt->tiling != I915_TILING_NONE &&
2860 mt->bo->size >= brw->max_gtt_map_object_size) {
2861 assert(can_blit_slice(mt, level, slice));
2862 return true;
2863 }
2864
2865 return false;
2866 }
2867
2868 /**
2869 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
2870 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
2871 * arithmetic overflow.
2872 *
2873 * If you call this function and use \a out_stride, then you're doing pointer
2874 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
2875 * bugs. The caller must still take care to avoid 32-bit overflow errors in
2876 * all arithmetic expressions that contain buffer offsets and pixel sizes,
2877 * which usually have type uint32_t or GLuint.
2878 */
2879 void
2880 intel_miptree_map(struct brw_context *brw,
2881 struct intel_mipmap_tree *mt,
2882 unsigned int level,
2883 unsigned int slice,
2884 unsigned int x,
2885 unsigned int y,
2886 unsigned int w,
2887 unsigned int h,
2888 GLbitfield mode,
2889 void **out_ptr,
2890 ptrdiff_t *out_stride)
2891 {
2892 struct intel_miptree_map *map;
2893
2894 assert(mt->num_samples <= 1);
2895
2896 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2897 if (!map){
2898 *out_ptr = NULL;
2899 *out_stride = 0;
2900 return;
2901 }
2902
2903 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2904 if (map->mode & GL_MAP_WRITE_BIT) {
2905 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2906 }
2907
2908 if (mt->format == MESA_FORMAT_S_UINT8) {
2909 intel_miptree_map_s8(brw, mt, map, level, slice);
2910 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2911 !(mode & BRW_MAP_DIRECT_BIT)) {
2912 intel_miptree_map_etc(brw, mt, map, level, slice);
2913 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2914 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2915 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
2916 intel_miptree_map_blit(brw, mt, map, level, slice);
2917 #if defined(USE_SSE41)
2918 } else if (!(mode & GL_MAP_WRITE_BIT) &&
2919 !mt->compressed && cpu_has_sse4_1 &&
2920 (mt->pitch % 16 == 0)) {
2921 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2922 #endif
2923 } else {
2924 /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
2925 assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
2926 intel_miptree_map_gtt(brw, mt, map, level, slice);
2927 }
2928
2929 *out_ptr = map->ptr;
2930 *out_stride = map->stride;
2931
2932 if (map->ptr == NULL)
2933 intel_miptree_release_map(mt, level, slice);
2934 }
2935
2936 void
2937 intel_miptree_unmap(struct brw_context *brw,
2938 struct intel_mipmap_tree *mt,
2939 unsigned int level,
2940 unsigned int slice)
2941 {
2942 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2943
2944 assert(mt->num_samples <= 1);
2945
2946 if (!map)
2947 return;
2948
2949 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
2950 mt, _mesa_get_format_name(mt->format), level, slice);
2951
2952 if (mt->format == MESA_FORMAT_S_UINT8) {
2953 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2954 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2955 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2956 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2957 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2958 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2959 } else if (map->linear_mt) {
2960 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2961 #if defined(USE_SSE41)
2962 } else if (map->buffer && cpu_has_sse4_1) {
2963 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2964 #endif
2965 } else {
2966 intel_miptree_unmap_gtt(mt);
2967 }
2968
2969 intel_miptree_release_map(mt, level, slice);
2970 }