i965: Add and use a single miptree aux_buf field
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_meta_util.h"
40 #include "brw_state.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49 #include "x86/common_x86_asm.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 static void *intel_miptree_map_raw(struct brw_context *brw,
54 struct intel_mipmap_tree *mt,
55 GLbitfield mode);
56
57 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
58
59 static bool
60 intel_miptree_alloc_aux(struct brw_context *brw,
61 struct intel_mipmap_tree *mt);
62
63 static bool
64 intel_miptree_supports_mcs(struct brw_context *brw,
65 const struct intel_mipmap_tree *mt)
66 {
67 const struct gen_device_info *devinfo = &brw->screen->devinfo;
68
69 /* MCS compression only applies to multisampled miptrees */
70 if (mt->surf.samples <= 1)
71 return false;
72
73 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
74 if (devinfo->gen < 7)
75 return false;
76
77 /* See isl_surf_get_mcs_surf for details. */
78 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
79 return false;
80
81 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
82 switch (_mesa_get_format_base_format(mt->format)) {
83 case GL_DEPTH_COMPONENT:
84 case GL_STENCIL_INDEX:
85 case GL_DEPTH_STENCIL:
86 return false;
87 default:
88 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
89 *
90 * This field must be set to 0 for all SINT MSRTs when all RT channels
91 * are not written
92 *
93 * In practice this means that we have to disable MCS for all signed
94 * integer MSAA buffers. The alternative, to disable MCS only when one
95 * of the render target channels is disabled, is impractical because it
96 * would require converting between CMS and UMS MSAA layouts on the fly,
97 * which is expensive.
98 */
99 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
100 return false;
101 } else {
102 return true;
103 }
104 }
105 }
106
107 static bool
108 intel_tiling_supports_ccs(const struct brw_context *brw,
109 enum isl_tiling tiling)
110 {
111 const struct gen_device_info *devinfo = &brw->screen->devinfo;
112
113 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
114 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
115 *
116 * - Support is limited to tiled render targets.
117 *
118 * Gen9 changes the restriction to Y-tile only.
119 */
120 if (devinfo->gen >= 9)
121 return tiling == ISL_TILING_Y0;
122 else if (devinfo->gen >= 7)
123 return tiling != ISL_TILING_LINEAR;
124 else
125 return false;
126 }
127
128 /**
129 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
130 * can be used. This doesn't (and should not) inspect any of the properties of
131 * the miptree's BO.
132 *
133 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
134 * beneath the "Fast Color Clear" bullet (p326):
135 *
136 * - Support is for non-mip-mapped and non-array surface types only.
137 *
138 * And then later, on p327:
139 *
140 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
141 * 64bpp, and 128bpp.
142 *
143 * From the Skylake documentation, it is made clear that X-tiling is no longer
144 * supported:
145 *
146 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
147 * non-MSRTs only.
148 */
149 static bool
150 intel_miptree_supports_ccs(struct brw_context *brw,
151 const struct intel_mipmap_tree *mt)
152 {
153 const struct gen_device_info *devinfo = &brw->screen->devinfo;
154
155 /* MCS support does not exist prior to Gen7 */
156 if (devinfo->gen < 7)
157 return false;
158
159 /* This function applies only to non-multisampled render targets. */
160 if (mt->surf.samples > 1)
161 return false;
162
163 /* MCS is only supported for color buffers */
164 switch (_mesa_get_format_base_format(mt->format)) {
165 case GL_DEPTH_COMPONENT:
166 case GL_DEPTH_STENCIL:
167 case GL_STENCIL_INDEX:
168 return false;
169 }
170
171 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
172 return false;
173
174 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
175 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
176 mt->surf.logical_level0_px.depth > 1;
177
178 if (arrayed) {
179 /* Multisample surfaces with the CMS layout are not layered surfaces,
180 * yet still have physical_depth0 > 1. Assert that we don't
181 * accidentally reject a multisampled surface here. We should have
182 * rejected it earlier by explicitly checking the sample count.
183 */
184 assert(mt->surf.samples == 1);
185 }
186
187 /* Handle the hardware restrictions...
188 *
189 * All GENs have the following restriction: "MCS buffer for non-MSRT is
190 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
191 *
192 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
193 * Non-MultiSampler Render Target Restrictions) Support is for
194 * non-mip-mapped and non-array surface types only.
195 *
196 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
200 *
201 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
202 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
203 * surfaces are supported with MCS buffer layout with these alignments in
204 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
205 */
206 if (devinfo->gen < 8 && (mip_mapped || arrayed))
207 return false;
208
209 /* There's no point in using an MCS buffer if the surface isn't in a
210 * renderable format.
211 */
212 if (!brw->mesa_format_supports_render[mt->format])
213 return false;
214
215 return true;
216 }
217
218 static bool
219 intel_tiling_supports_hiz(const struct brw_context *brw,
220 enum isl_tiling tiling)
221 {
222 const struct gen_device_info *devinfo = &brw->screen->devinfo;
223
224 if (devinfo->gen < 6)
225 return false;
226
227 return tiling == ISL_TILING_Y0;
228 }
229
230 static bool
231 intel_miptree_supports_hiz(const struct brw_context *brw,
232 const struct intel_mipmap_tree *mt)
233 {
234 if (!brw->has_hiz)
235 return false;
236
237 switch (mt->format) {
238 case MESA_FORMAT_Z_FLOAT32:
239 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
240 case MESA_FORMAT_Z24_UNORM_X8_UINT:
241 case MESA_FORMAT_Z24_UNORM_S8_UINT:
242 case MESA_FORMAT_Z_UNORM16:
243 return true;
244 default:
245 return false;
246 }
247 }
248
249 /**
250 * Return true if the format that will be used to access the miptree is
251 * CCS_E-compatible with the miptree's linear/non-sRGB format.
252 *
253 * Why use the linear format? Well, although the miptree may be specified with
254 * an sRGB format, the usage of that color space/format can be toggled. Since
255 * our HW tends to support more linear formats than sRGB ones, we use this
256 * format variant for check for CCS_E compatibility.
257 */
258 static bool
259 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
260 const struct intel_mipmap_tree *mt,
261 enum isl_format access_format)
262 {
263 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
264
265 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
266 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
267 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
268 }
269
270 static bool
271 intel_miptree_supports_ccs_e(struct brw_context *brw,
272 const struct intel_mipmap_tree *mt)
273 {
274 const struct gen_device_info *devinfo = &brw->screen->devinfo;
275
276 if (devinfo->gen < 9)
277 return false;
278
279 /* For now compression is only enabled for integer formats even though
280 * there exist supported floating point formats also. This is a heuristic
281 * decision based on current public benchmarks. In none of the cases these
282 * formats provided any improvement but a few cases were seen to regress.
283 * Hence these are left to to be enabled in the future when they are known
284 * to improve things.
285 */
286 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
287 return false;
288
289 if (!intel_miptree_supports_ccs(brw, mt))
290 return false;
291
292 /* Many window system buffers are sRGB even if they are never rendered as
293 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
294 * surface is used as sRGB, we fall back to CCS_D.
295 */
296 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
297 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
298 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
299 }
300
301 /**
302 * Determine depth format corresponding to a depth+stencil format,
303 * for separate stencil.
304 */
305 mesa_format
306 intel_depth_format_for_depthstencil_format(mesa_format format) {
307 switch (format) {
308 case MESA_FORMAT_Z24_UNORM_S8_UINT:
309 return MESA_FORMAT_Z24_UNORM_X8_UINT;
310 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
311 return MESA_FORMAT_Z_FLOAT32;
312 default:
313 return format;
314 }
315 }
316
317 static bool
318 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
319 unsigned depth0, struct intel_mipmap_level *table)
320 {
321 for (unsigned level = first_level; level <= last_level; level++) {
322 const unsigned d =
323 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
324
325 table[level].slice = calloc(d, sizeof(*table[0].slice));
326 if (!table[level].slice)
327 goto unwind;
328 }
329
330 return true;
331
332 unwind:
333 for (unsigned level = first_level; level <= last_level; level++)
334 free(table[level].slice);
335
336 return false;
337 }
338
339 static bool
340 needs_separate_stencil(const struct brw_context *brw,
341 struct intel_mipmap_tree *mt,
342 mesa_format format)
343 {
344 const struct gen_device_info *devinfo = &brw->screen->devinfo;
345
346 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
347 return false;
348
349 if (devinfo->must_use_separate_stencil)
350 return true;
351
352 return brw->has_separate_stencil &&
353 intel_miptree_supports_hiz(brw, mt);
354 }
355
356 /**
357 * Choose the aux usage for this miptree. This function must be called fairly
358 * late in the miptree create process after we have a tiling.
359 */
360 static void
361 intel_miptree_choose_aux_usage(struct brw_context *brw,
362 struct intel_mipmap_tree *mt)
363 {
364 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
365
366 if (intel_miptree_supports_mcs(brw, mt)) {
367 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
368 mt->aux_usage = ISL_AUX_USAGE_MCS;
369 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
370 intel_miptree_supports_ccs(brw, mt)) {
371 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
372 intel_miptree_supports_ccs_e(brw, mt)) {
373 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
374 } else {
375 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
376 }
377 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
378 intel_miptree_supports_hiz(brw, mt)) {
379 mt->aux_usage = ISL_AUX_USAGE_HIZ;
380 }
381
382 /* We can do fast-clear on all auxiliary surface types that are
383 * allocated through the normal texture creation paths.
384 */
385 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
386 mt->supports_fast_clear = true;
387 }
388
389
390 /**
391 * Choose an appropriate uncompressed format for a requested
392 * compressed format, if unsupported.
393 */
394 mesa_format
395 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
396 {
397 const struct gen_device_info *devinfo = &brw->screen->devinfo;
398
399 /* No need to lower ETC formats on these platforms,
400 * they are supported natively.
401 */
402 if (devinfo->gen >= 8 || devinfo->is_baytrail)
403 return format;
404
405 switch (format) {
406 case MESA_FORMAT_ETC1_RGB8:
407 return MESA_FORMAT_R8G8B8X8_UNORM;
408 case MESA_FORMAT_ETC2_RGB8:
409 return MESA_FORMAT_R8G8B8X8_UNORM;
410 case MESA_FORMAT_ETC2_SRGB8:
411 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
412 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
413 return MESA_FORMAT_B8G8R8A8_SRGB;
414 case MESA_FORMAT_ETC2_RGBA8_EAC:
415 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
416 return MESA_FORMAT_R8G8B8A8_UNORM;
417 case MESA_FORMAT_ETC2_R11_EAC:
418 return MESA_FORMAT_R_UNORM16;
419 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
420 return MESA_FORMAT_R_SNORM16;
421 case MESA_FORMAT_ETC2_RG11_EAC:
422 return MESA_FORMAT_R16G16_UNORM;
423 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
424 return MESA_FORMAT_R16G16_SNORM;
425 default:
426 /* Non ETC1 / ETC2 format */
427 return format;
428 }
429 }
430
431 unsigned
432 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
433 {
434 if (mt->surf.dim == ISL_SURF_DIM_3D)
435 return minify(mt->surf.logical_level0_px.depth, level);
436 else
437 return mt->surf.logical_level0_px.array_len;
438 }
439
440 UNUSED static unsigned
441 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
442 {
443 /* In case of physical dimensions one needs to consider also the layout.
444 * See isl_calc_phys_level0_extent_sa().
445 */
446 if (surf->dim != ISL_SURF_DIM_3D)
447 return surf->phys_level0_sa.array_len;
448
449 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
450 return minify(surf->phys_level0_sa.array_len, level);
451
452 return minify(surf->phys_level0_sa.depth, level);
453 }
454
455 /** \brief Assert that the level and layer are valid for the miptree. */
456 void
457 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
458 uint32_t level,
459 uint32_t layer)
460 {
461 (void) mt;
462 (void) level;
463 (void) layer;
464
465 assert(level >= mt->first_level);
466 assert(level <= mt->last_level);
467 assert(layer < get_num_phys_layers(&mt->surf, level));
468 }
469
470 static enum isl_aux_state **
471 create_aux_state_map(struct intel_mipmap_tree *mt,
472 enum isl_aux_state initial)
473 {
474 const uint32_t levels = mt->last_level + 1;
475
476 uint32_t total_slices = 0;
477 for (uint32_t level = 0; level < levels; level++)
478 total_slices += brw_get_num_logical_layers(mt, level);
479
480 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
481
482 /* We're going to allocate a single chunk of data for both the per-level
483 * reference array and the arrays of aux_state. This makes cleanup
484 * significantly easier.
485 */
486 const size_t total_size = per_level_array_size +
487 total_slices * sizeof(enum isl_aux_state);
488 void *data = malloc(total_size);
489 if (data == NULL)
490 return NULL;
491
492 enum isl_aux_state **per_level_arr = data;
493 enum isl_aux_state *s = data + per_level_array_size;
494 for (uint32_t level = 0; level < levels; level++) {
495 per_level_arr[level] = s;
496 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
497 for (uint32_t a = 0; a < level_layers; a++)
498 *(s++) = initial;
499 }
500 assert((void *)s == data + total_size);
501
502 return per_level_arr;
503 }
504
505 static void
506 free_aux_state_map(enum isl_aux_state **state)
507 {
508 free(state);
509 }
510
511 static bool
512 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
513 enum isl_tiling tiling, unsigned samples)
514 {
515 if (samples > 1)
516 return false;
517
518 if (tiling == ISL_TILING_LINEAR)
519 return false;
520
521 /* If the width is much smaller than a tile, don't bother tiling. */
522 if (row_pitch < 64)
523 return true;
524
525 if (ALIGN(row_pitch, 512) >= 32768) {
526 perf_debug("row pitch %u too large to blit, falling back to untiled",
527 row_pitch);
528 return true;
529 }
530
531 return false;
532 }
533
534 static bool
535 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
536 enum isl_tiling tiling)
537 {
538 const struct gen_device_info *devinfo = &brw->screen->devinfo;
539
540 /* If the BO is too large to fit in the aperture, we need to use the
541 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
542 * handle Y-tiling, so we need to fall back to X.
543 */
544 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
545 tiling == ISL_TILING_Y0)
546 return true;
547
548 return false;
549 }
550
551 static struct intel_mipmap_tree *
552 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
553 unsigned first_level, unsigned last_level,
554 unsigned width0, unsigned height0, unsigned depth0,
555 unsigned num_samples, isl_tiling_flags_t tiling_flags,
556 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
557 unsigned row_pitch, struct brw_bo *bo)
558 {
559 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
560 if (!mt)
561 return NULL;
562
563 if (!create_mapping_table(target, first_level, last_level, depth0,
564 mt->level)) {
565 free(mt);
566 return NULL;
567 }
568
569 mt->refcount = 1;
570
571 if (target == GL_TEXTURE_CUBE_MAP ||
572 target == GL_TEXTURE_CUBE_MAP_ARRAY)
573 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
574
575 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
576 __func__,
577 _mesa_enum_to_string(target),
578 _mesa_get_format_name(format),
579 num_samples, width0, height0, depth0,
580 first_level, last_level, mt);
581
582 struct isl_surf_init_info init_info = {
583 .dim = get_isl_surf_dim(target),
584 .format = translate_tex_format(brw, format, false),
585 .width = width0,
586 .height = height0,
587 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
588 .levels = last_level - first_level + 1,
589 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
590 .samples = num_samples,
591 .row_pitch = row_pitch,
592 .usage = isl_usage_flags,
593 .tiling_flags = tiling_flags,
594 };
595
596 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
597 goto fail;
598
599 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
600 * on gen7 platforms we also need to create Y-tiled copies of stencil for
601 * texturing since the hardware can't sample from W-tiled surfaces. For
602 * everything else, check for corner cases needing special treatment.
603 */
604 bool is_depth_stencil =
605 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
606 if (!is_depth_stencil) {
607 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
608 mt->surf.tiling, mt->surf.samples)) {
609 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
610 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
611 goto fail;
612 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
613 init_info.tiling_flags = 1u << ISL_TILING_X;
614 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
615 goto fail;
616 }
617 }
618
619 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
620 * the size may not be multiple of row_pitch.
621 * See isl_apply_surface_padding().
622 */
623 if (mt->surf.tiling != ISL_TILING_LINEAR)
624 assert(mt->surf.size % mt->surf.row_pitch == 0);
625
626 if (!bo) {
627 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
628 mt->surf.size,
629 isl_tiling_to_i915_tiling(
630 mt->surf.tiling),
631 mt->surf.row_pitch, alloc_flags);
632 if (!mt->bo)
633 goto fail;
634 } else {
635 mt->bo = bo;
636 }
637
638 mt->first_level = first_level;
639 mt->last_level = last_level;
640 mt->target = target;
641 mt->format = format;
642 mt->aux_state = NULL;
643 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
644 mt->compressed = _mesa_is_format_compressed(format);
645 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
646
647 return mt;
648
649 fail:
650 intel_miptree_release(&mt);
651 return NULL;
652 }
653
654 static bool
655 make_separate_stencil_surface(struct brw_context *brw,
656 struct intel_mipmap_tree *mt)
657 {
658 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
659 0, mt->surf.levels - 1,
660 mt->surf.logical_level0_px.width,
661 mt->surf.logical_level0_px.height,
662 mt->surf.dim == ISL_SURF_DIM_3D ?
663 mt->surf.logical_level0_px.depth :
664 mt->surf.logical_level0_px.array_len,
665 mt->surf.samples, ISL_TILING_W_BIT,
666 ISL_SURF_USAGE_STENCIL_BIT |
667 ISL_SURF_USAGE_TEXTURE_BIT,
668 BO_ALLOC_BUSY, 0, NULL);
669
670 if (!mt->stencil_mt)
671 return false;
672
673 mt->stencil_mt->r8stencil_needs_update = true;
674
675 return true;
676 }
677
678 static struct intel_mipmap_tree *
679 miptree_create(struct brw_context *brw,
680 GLenum target,
681 mesa_format format,
682 GLuint first_level,
683 GLuint last_level,
684 GLuint width0,
685 GLuint height0,
686 GLuint depth0,
687 GLuint num_samples,
688 enum intel_miptree_create_flags flags)
689 {
690 const struct gen_device_info *devinfo = &brw->screen->devinfo;
691
692 if (format == MESA_FORMAT_S_UINT8)
693 return make_surface(brw, target, format, first_level, last_level,
694 width0, height0, depth0, num_samples,
695 ISL_TILING_W_BIT,
696 ISL_SURF_USAGE_STENCIL_BIT |
697 ISL_SURF_USAGE_TEXTURE_BIT,
698 BO_ALLOC_BUSY,
699 0,
700 NULL);
701
702 const GLenum base_format = _mesa_get_format_base_format(format);
703 if ((base_format == GL_DEPTH_COMPONENT ||
704 base_format == GL_DEPTH_STENCIL) &&
705 !(flags & MIPTREE_CREATE_LINEAR)) {
706 /* Fix up the Z miptree format for how we're splitting out separate
707 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
708 */
709 const mesa_format depth_only_format =
710 intel_depth_format_for_depthstencil_format(format);
711 struct intel_mipmap_tree *mt = make_surface(
712 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
713 first_level, last_level,
714 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
715 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
716 BO_ALLOC_BUSY, 0, NULL);
717
718 if (needs_separate_stencil(brw, mt, format) &&
719 !make_separate_stencil_surface(brw, mt)) {
720 intel_miptree_release(&mt);
721 return NULL;
722 }
723
724 if (!(flags & MIPTREE_CREATE_NO_AUX))
725 intel_miptree_choose_aux_usage(brw, mt);
726
727 return mt;
728 }
729
730 mesa_format tex_format = format;
731 mesa_format etc_format = MESA_FORMAT_NONE;
732 uint32_t alloc_flags = 0;
733
734 format = intel_lower_compressed_format(brw, format);
735
736 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
737
738 if (flags & MIPTREE_CREATE_BUSY)
739 alloc_flags |= BO_ALLOC_BUSY;
740
741 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
742 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
743
744 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
745 if (devinfo->gen < 6)
746 tiling_flags &= ~ISL_TILING_Y0_BIT;
747
748 struct intel_mipmap_tree *mt = make_surface(
749 brw, target, format,
750 first_level, last_level,
751 width0, height0, depth0,
752 num_samples, tiling_flags,
753 ISL_SURF_USAGE_RENDER_TARGET_BIT |
754 ISL_SURF_USAGE_TEXTURE_BIT,
755 alloc_flags, 0, NULL);
756 if (!mt)
757 return NULL;
758
759 mt->etc_format = etc_format;
760
761 if (!(flags & MIPTREE_CREATE_NO_AUX))
762 intel_miptree_choose_aux_usage(brw, mt);
763
764 return mt;
765 }
766
767 struct intel_mipmap_tree *
768 intel_miptree_create(struct brw_context *brw,
769 GLenum target,
770 mesa_format format,
771 GLuint first_level,
772 GLuint last_level,
773 GLuint width0,
774 GLuint height0,
775 GLuint depth0,
776 GLuint num_samples,
777 enum intel_miptree_create_flags flags)
778 {
779 assert(num_samples > 0);
780
781 struct intel_mipmap_tree *mt = miptree_create(
782 brw, target, format,
783 first_level, last_level,
784 width0, height0, depth0, num_samples,
785 flags);
786 if (!mt)
787 return NULL;
788
789 mt->offset = 0;
790
791 if (!intel_miptree_alloc_aux(brw, mt)) {
792 intel_miptree_release(&mt);
793 return NULL;
794 }
795
796 return mt;
797 }
798
799 struct intel_mipmap_tree *
800 intel_miptree_create_for_bo(struct brw_context *brw,
801 struct brw_bo *bo,
802 mesa_format format,
803 uint32_t offset,
804 uint32_t width,
805 uint32_t height,
806 uint32_t depth,
807 int pitch,
808 enum isl_tiling tiling,
809 enum intel_miptree_create_flags flags)
810 {
811 const struct gen_device_info *devinfo = &brw->screen->devinfo;
812 struct intel_mipmap_tree *mt;
813 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
814 const GLenum base_format = _mesa_get_format_base_format(format);
815
816 if ((base_format == GL_DEPTH_COMPONENT ||
817 base_format == GL_DEPTH_STENCIL)) {
818 const mesa_format depth_only_format =
819 intel_depth_format_for_depthstencil_format(format);
820 mt = make_surface(brw, target,
821 devinfo->gen >= 6 ? depth_only_format : format,
822 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
823 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
824 0, pitch, bo);
825 if (!mt)
826 return NULL;
827
828 brw_bo_reference(bo);
829
830 if (!(flags & MIPTREE_CREATE_NO_AUX))
831 intel_miptree_choose_aux_usage(brw, mt);
832
833 return mt;
834 } else if (format == MESA_FORMAT_S_UINT8) {
835 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
836 0, 0, width, height, depth, 1,
837 ISL_TILING_W_BIT,
838 ISL_SURF_USAGE_STENCIL_BIT |
839 ISL_SURF_USAGE_TEXTURE_BIT,
840 0, pitch, bo);
841 if (!mt)
842 return NULL;
843
844 assert(bo->size >= mt->surf.size);
845
846 brw_bo_reference(bo);
847 return mt;
848 }
849
850 /* Nothing will be able to use this miptree with the BO if the offset isn't
851 * aligned.
852 */
853 if (tiling != ISL_TILING_LINEAR)
854 assert(offset % 4096 == 0);
855
856 /* miptrees can't handle negative pitch. If you need flipping of images,
857 * that's outside of the scope of the mt.
858 */
859 assert(pitch >= 0);
860
861 /* The BO already has a tiling format and we shouldn't confuse the lower
862 * layers by making it try to find a tiling format again.
863 */
864 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
865
866 mt = make_surface(brw, target, format,
867 0, 0, width, height, depth, 1,
868 1lu << tiling,
869 ISL_SURF_USAGE_RENDER_TARGET_BIT |
870 ISL_SURF_USAGE_TEXTURE_BIT,
871 0, pitch, bo);
872 if (!mt)
873 return NULL;
874
875 brw_bo_reference(bo);
876 mt->bo = bo;
877 mt->offset = offset;
878
879 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
880 intel_miptree_choose_aux_usage(brw, mt);
881
882 if (!intel_miptree_alloc_aux(brw, mt)) {
883 intel_miptree_release(&mt);
884 return NULL;
885 }
886 }
887
888 return mt;
889 }
890
891 static struct intel_mipmap_tree *
892 miptree_create_for_planar_image(struct brw_context *brw,
893 __DRIimage *image, GLenum target,
894 enum isl_tiling tiling)
895 {
896 const struct intel_image_format *f = image->planar_format;
897 struct intel_mipmap_tree *planar_mt = NULL;
898
899 for (int i = 0; i < f->nplanes; i++) {
900 const int index = f->planes[i].buffer_index;
901 const uint32_t dri_format = f->planes[i].dri_format;
902 const mesa_format format = driImageFormatToGLFormat(dri_format);
903 const uint32_t width = image->width >> f->planes[i].width_shift;
904 const uint32_t height = image->height >> f->planes[i].height_shift;
905
906 /* Disable creation of the texture's aux buffers because the driver
907 * exposes no EGL API to manage them. That is, there is no API for
908 * resolving the aux buffer's content to the main buffer nor for
909 * invalidating the aux buffer's content.
910 */
911 struct intel_mipmap_tree *mt =
912 intel_miptree_create_for_bo(brw, image->bo, format,
913 image->offsets[index],
914 width, height, 1,
915 image->strides[index],
916 tiling,
917 MIPTREE_CREATE_NO_AUX);
918 if (mt == NULL)
919 return NULL;
920
921 mt->target = target;
922
923 if (i == 0)
924 planar_mt = mt;
925 else
926 planar_mt->plane[i - 1] = mt;
927 }
928
929 planar_mt->drm_modifier = image->modifier;
930
931 return planar_mt;
932 }
933
934 static bool
935 create_ccs_buf_for_image(struct brw_context *brw,
936 __DRIimage *image,
937 struct intel_mipmap_tree *mt,
938 enum isl_aux_state initial_state)
939 {
940 struct isl_surf temp_ccs_surf;
941
942 /* CCS is only supported for very simple miptrees */
943 assert(image->aux_offset != 0 && image->aux_pitch != 0);
944 assert(image->tile_x == 0 && image->tile_y == 0);
945 assert(mt->surf.samples == 1);
946 assert(mt->surf.levels == 1);
947 assert(mt->surf.logical_level0_px.depth == 1);
948 assert(mt->surf.logical_level0_px.array_len == 1);
949 assert(mt->first_level == 0);
950 assert(mt->last_level == 0);
951
952 /* We shouldn't already have a CCS */
953 assert(!mt->aux_buf);
954
955 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
956 image->aux_pitch))
957 return false;
958
959 assert(image->aux_offset < image->bo->size);
960 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
961
962 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
963 if (mt->aux_buf == NULL)
964 return false;
965
966 mt->aux_state = create_aux_state_map(mt, initial_state);
967 if (!mt->aux_state) {
968 free(mt->aux_buf);
969 mt->aux_buf = NULL;
970 return false;
971 }
972
973 /* On gen10+ we start using an extra space in the aux buffer to store the
974 * indirect clear color. However, if we imported an image from the window
975 * system with CCS, we don't have the extra space at the end of the aux
976 * buffer. So create a new bo here that will store that clear color.
977 */
978 const struct gen_device_info *devinfo = &brw->screen->devinfo;
979 if (devinfo->gen >= 10) {
980 mt->aux_buf->clear_color_bo =
981 brw_bo_alloc(brw->bufmgr, "clear_color_bo",
982 brw->isl_dev.ss.clear_color_state_size);
983 if (!mt->aux_buf->clear_color_bo) {
984 free(mt->aux_buf);
985 mt->aux_buf = NULL;
986 return false;
987 }
988 }
989
990 mt->aux_buf->bo = image->bo;
991 brw_bo_reference(image->bo);
992
993 mt->aux_buf->offset = image->aux_offset;
994 mt->aux_buf->size = image->bo->size - image->aux_offset;
995 mt->aux_buf->pitch = image->aux_pitch;
996 mt->aux_buf->qpitch = 0;
997 mt->aux_buf->surf = temp_ccs_surf;
998
999 return true;
1000 }
1001
1002 struct intel_mipmap_tree *
1003 intel_miptree_create_for_dri_image(struct brw_context *brw,
1004 __DRIimage *image, GLenum target,
1005 mesa_format format,
1006 bool is_winsys_image)
1007 {
1008 uint32_t bo_tiling, bo_swizzle;
1009 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1010
1011 const struct isl_drm_modifier_info *mod_info =
1012 isl_drm_modifier_get_info(image->modifier);
1013
1014 const enum isl_tiling tiling =
1015 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1016
1017 if (image->planar_format && image->planar_format->nplanes > 1)
1018 return miptree_create_for_planar_image(brw, image, target, tiling);
1019
1020 if (image->planar_format)
1021 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1022
1023 if (!brw->ctx.TextureFormatSupported[format]) {
1024 /* The texture storage paths in core Mesa detect if the driver does not
1025 * support the user-requested format, and then searches for a
1026 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1027 * do the fallbacks here for important formats.
1028 *
1029 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1030 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1031 * the Chrome OS compositor consumes as dma_buf EGLImages.
1032 */
1033 format = _mesa_format_fallback_rgbx_to_rgba(format);
1034 }
1035
1036 if (!brw->ctx.TextureFormatSupported[format])
1037 return NULL;
1038
1039 enum intel_miptree_create_flags mt_create_flags = 0;
1040
1041 /* If this image comes in from a window system, we have different
1042 * requirements than if it comes in via an EGL import operation. Window
1043 * system images can use any form of auxiliary compression we wish because
1044 * they get "flushed" before being handed off to the window system and we
1045 * have the opportunity to do resolves. Non window-system images, on the
1046 * other hand, have no resolve point so we can't have aux without a
1047 * modifier.
1048 */
1049 if (!is_winsys_image)
1050 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1051
1052 /* If we have a modifier which specifies aux, don't create one yet */
1053 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1054 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1055
1056 /* Disable creation of the texture's aux buffers because the driver exposes
1057 * no EGL API to manage them. That is, there is no API for resolving the aux
1058 * buffer's content to the main buffer nor for invalidating the aux buffer's
1059 * content.
1060 */
1061 struct intel_mipmap_tree *mt =
1062 intel_miptree_create_for_bo(brw, image->bo, format,
1063 image->offset, image->width, image->height, 1,
1064 image->pitch, tiling, mt_create_flags);
1065 if (mt == NULL)
1066 return NULL;
1067
1068 mt->target = target;
1069 mt->level[0].level_x = image->tile_x;
1070 mt->level[0].level_y = image->tile_y;
1071 mt->drm_modifier = image->modifier;
1072
1073 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1074 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1075 * trouble resolving back to destination image due to alignment issues.
1076 */
1077 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1078 if (!devinfo->has_surface_tile_offset) {
1079 uint32_t draw_x, draw_y;
1080 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1081
1082 if (draw_x != 0 || draw_y != 0) {
1083 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1084 intel_miptree_release(&mt);
1085 return NULL;
1086 }
1087 }
1088
1089 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1090 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1091
1092 mt->aux_usage = mod_info->aux_usage;
1093 /* If we are a window system buffer, then we can support fast-clears
1094 * even if the modifier doesn't support them by doing a partial resolve
1095 * as part of the flush operation.
1096 */
1097 mt->supports_fast_clear =
1098 is_winsys_image || mod_info->supports_clear_color;
1099
1100 /* We don't know the actual state of the surface when we get it but we
1101 * can make a pretty good guess based on the modifier. What we do know
1102 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1103 * a worst case of compression.
1104 */
1105 enum isl_aux_state initial_state =
1106 isl_drm_modifier_get_default_aux_state(image->modifier);
1107
1108 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1109 intel_miptree_release(&mt);
1110 return NULL;
1111 }
1112 }
1113
1114 /* Don't assume coherency for imported EGLimages. We don't know what
1115 * external clients are going to do with it. They may scan it out.
1116 */
1117 image->bo->cache_coherent = false;
1118
1119 return mt;
1120 }
1121
1122 /**
1123 * For a singlesample renderbuffer, this simply wraps the given BO with a
1124 * miptree.
1125 *
1126 * For a multisample renderbuffer, this wraps the window system's
1127 * (singlesample) BO with a singlesample miptree attached to the
1128 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1129 * that will contain the actual rendering (which is lazily resolved to
1130 * irb->singlesample_mt).
1131 */
1132 bool
1133 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1134 struct intel_renderbuffer *irb,
1135 struct intel_mipmap_tree *singlesample_mt,
1136 uint32_t width, uint32_t height,
1137 uint32_t pitch)
1138 {
1139 struct intel_mipmap_tree *multisample_mt = NULL;
1140 struct gl_renderbuffer *rb = &irb->Base.Base;
1141 mesa_format format = rb->Format;
1142 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1143
1144 /* Only the front and back buffers, which are color buffers, are allocated
1145 * through the image loader.
1146 */
1147 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1148 _mesa_get_format_base_format(format) == GL_RGBA);
1149
1150 assert(singlesample_mt);
1151
1152 if (num_samples == 1) {
1153 intel_miptree_release(&irb->mt);
1154 irb->mt = singlesample_mt;
1155
1156 assert(!irb->singlesample_mt);
1157 } else {
1158 intel_miptree_release(&irb->singlesample_mt);
1159 irb->singlesample_mt = singlesample_mt;
1160
1161 if (!irb->mt ||
1162 irb->mt->surf.logical_level0_px.width != width ||
1163 irb->mt->surf.logical_level0_px.height != height) {
1164 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1165 format,
1166 width,
1167 height,
1168 num_samples);
1169 if (!multisample_mt)
1170 goto fail;
1171
1172 irb->need_downsample = false;
1173 intel_miptree_release(&irb->mt);
1174 irb->mt = multisample_mt;
1175 }
1176 }
1177 return true;
1178
1179 fail:
1180 intel_miptree_release(&irb->mt);
1181 return false;
1182 }
1183
1184 struct intel_mipmap_tree*
1185 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1186 mesa_format format,
1187 uint32_t width,
1188 uint32_t height,
1189 uint32_t num_samples)
1190 {
1191 struct intel_mipmap_tree *mt;
1192 uint32_t depth = 1;
1193 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1194
1195 mt = intel_miptree_create(brw, target, format, 0, 0,
1196 width, height, depth, num_samples,
1197 MIPTREE_CREATE_BUSY);
1198 if (!mt)
1199 goto fail;
1200
1201 return mt;
1202
1203 fail:
1204 intel_miptree_release(&mt);
1205 return NULL;
1206 }
1207
1208 void
1209 intel_miptree_reference(struct intel_mipmap_tree **dst,
1210 struct intel_mipmap_tree *src)
1211 {
1212 if (*dst == src)
1213 return;
1214
1215 intel_miptree_release(dst);
1216
1217 if (src) {
1218 src->refcount++;
1219 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1220 }
1221
1222 *dst = src;
1223 }
1224
1225 static void
1226 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1227 {
1228 if (aux_buf == NULL)
1229 return;
1230
1231 brw_bo_unreference(aux_buf->bo);
1232 brw_bo_unreference(aux_buf->clear_color_bo);
1233
1234 free(aux_buf);
1235 }
1236
1237 void
1238 intel_miptree_release(struct intel_mipmap_tree **mt)
1239 {
1240 if (!*mt)
1241 return;
1242
1243 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1244 if (--(*mt)->refcount <= 0) {
1245 GLuint i;
1246
1247 DBG("%s deleting %p\n", __func__, *mt);
1248
1249 brw_bo_unreference((*mt)->bo);
1250 intel_miptree_release(&(*mt)->stencil_mt);
1251 intel_miptree_release(&(*mt)->r8stencil_mt);
1252 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1253 free_aux_state_map((*mt)->aux_state);
1254
1255 intel_miptree_release(&(*mt)->plane[0]);
1256 intel_miptree_release(&(*mt)->plane[1]);
1257
1258 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1259 free((*mt)->level[i].slice);
1260 }
1261
1262 free(*mt);
1263 }
1264 *mt = NULL;
1265 }
1266
1267
1268 void
1269 intel_get_image_dims(struct gl_texture_image *image,
1270 int *width, int *height, int *depth)
1271 {
1272 switch (image->TexObject->Target) {
1273 case GL_TEXTURE_1D_ARRAY:
1274 /* For a 1D Array texture the OpenGL API will treat the image height as
1275 * the number of array slices. For Intel hardware, we treat the 1D array
1276 * as a 2D Array with a height of 1. So, here we want to swap image
1277 * height and depth.
1278 */
1279 assert(image->Depth == 1);
1280 *width = image->Width;
1281 *height = 1;
1282 *depth = image->Height;
1283 break;
1284 case GL_TEXTURE_CUBE_MAP:
1285 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1286 * though we really have 6 slices.
1287 */
1288 assert(image->Depth == 1);
1289 *width = image->Width;
1290 *height = image->Height;
1291 *depth = 6;
1292 break;
1293 default:
1294 *width = image->Width;
1295 *height = image->Height;
1296 *depth = image->Depth;
1297 break;
1298 }
1299 }
1300
1301 /**
1302 * Can the image be pulled into a unified mipmap tree? This mirrors
1303 * the completeness test in a lot of ways.
1304 *
1305 * Not sure whether I want to pass gl_texture_image here.
1306 */
1307 bool
1308 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1309 struct gl_texture_image *image)
1310 {
1311 struct intel_texture_image *intelImage = intel_texture_image(image);
1312 GLuint level = intelImage->base.Base.Level;
1313 int width, height, depth;
1314
1315 /* glTexImage* choose the texture object based on the target passed in, and
1316 * objects can't change targets over their lifetimes, so this should be
1317 * true.
1318 */
1319 assert(image->TexObject->Target == mt->target);
1320
1321 mesa_format mt_format = mt->format;
1322 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1323 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1324 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1325 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1326 if (mt->etc_format != MESA_FORMAT_NONE)
1327 mt_format = mt->etc_format;
1328
1329 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1330 _mesa_get_srgb_format_linear(mt_format))
1331 return false;
1332
1333 intel_get_image_dims(image, &width, &height, &depth);
1334
1335 if (mt->target == GL_TEXTURE_CUBE_MAP)
1336 depth = 6;
1337
1338 if (level >= mt->surf.levels)
1339 return false;
1340
1341 const unsigned level_depth =
1342 mt->surf.dim == ISL_SURF_DIM_3D ?
1343 minify(mt->surf.logical_level0_px.depth, level) :
1344 mt->surf.logical_level0_px.array_len;
1345
1346 return width == minify(mt->surf.logical_level0_px.width, level) &&
1347 height == minify(mt->surf.logical_level0_px.height, level) &&
1348 depth == level_depth &&
1349 MAX2(image->NumSamples, 1) == mt->surf.samples;
1350 }
1351
1352 void
1353 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1354 GLuint level, GLuint slice,
1355 GLuint *x, GLuint *y)
1356 {
1357 if (level == 0 && slice == 0) {
1358 *x = mt->level[0].level_x;
1359 *y = mt->level[0].level_y;
1360 return;
1361 }
1362
1363 uint32_t x_offset_sa, y_offset_sa;
1364
1365 /* Miptree itself can have an offset only if it represents a single
1366 * slice in an imported buffer object.
1367 * See intel_miptree_create_for_dri_image().
1368 */
1369 assert(mt->level[0].level_x == 0);
1370 assert(mt->level[0].level_y == 0);
1371
1372 /* Given level is relative to level zero while the miptree may be
1373 * represent just a subset of all levels starting from 'first_level'.
1374 */
1375 assert(level >= mt->first_level);
1376 level -= mt->first_level;
1377
1378 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1379 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1380 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1381 &x_offset_sa, &y_offset_sa);
1382
1383 *x = x_offset_sa;
1384 *y = y_offset_sa;
1385 }
1386
1387
1388 /**
1389 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1390 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1391 * and tile_h is set to 1.
1392 */
1393 void
1394 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1395 uint32_t *tile_w, uint32_t *tile_h)
1396 {
1397 switch (tiling) {
1398 case ISL_TILING_X:
1399 *tile_w = 512;
1400 *tile_h = 8;
1401 break;
1402 case ISL_TILING_Y0:
1403 *tile_w = 128;
1404 *tile_h = 32;
1405 break;
1406 case ISL_TILING_LINEAR:
1407 *tile_w = cpp;
1408 *tile_h = 1;
1409 break;
1410 default:
1411 unreachable("not reached");
1412 }
1413 }
1414
1415
1416 /**
1417 * This function computes masks that may be used to select the bits of the X
1418 * and Y coordinates that indicate the offset within a tile. If the BO is
1419 * untiled, the masks are set to 0.
1420 */
1421 void
1422 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1423 uint32_t *mask_x, uint32_t *mask_y)
1424 {
1425 uint32_t tile_w_bytes, tile_h;
1426
1427 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1428
1429 *mask_x = tile_w_bytes / cpp - 1;
1430 *mask_y = tile_h - 1;
1431 }
1432
1433 /**
1434 * Compute the offset (in bytes) from the start of the BO to the given x
1435 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1436 * multiples of the tile size.
1437 */
1438 uint32_t
1439 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1440 uint32_t x, uint32_t y)
1441 {
1442 int cpp = mt->cpp;
1443 uint32_t pitch = mt->surf.row_pitch;
1444
1445 switch (mt->surf.tiling) {
1446 default:
1447 unreachable("not reached");
1448 case ISL_TILING_LINEAR:
1449 return y * pitch + x * cpp;
1450 case ISL_TILING_X:
1451 assert((x % (512 / cpp)) == 0);
1452 assert((y % 8) == 0);
1453 return y * pitch + x / (512 / cpp) * 4096;
1454 case ISL_TILING_Y0:
1455 assert((x % (128 / cpp)) == 0);
1456 assert((y % 32) == 0);
1457 return y * pitch + x / (128 / cpp) * 4096;
1458 }
1459 }
1460
1461 /**
1462 * Rendering with tiled buffers requires that the base address of the buffer
1463 * be aligned to a page boundary. For renderbuffers, and sometimes with
1464 * textures, we may want the surface to point at a texture image level that
1465 * isn't at a page boundary.
1466 *
1467 * This function returns an appropriately-aligned base offset
1468 * according to the tiling restrictions, plus any required x/y offset
1469 * from there.
1470 */
1471 uint32_t
1472 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1473 GLuint level, GLuint slice,
1474 uint32_t *tile_x,
1475 uint32_t *tile_y)
1476 {
1477 uint32_t x, y;
1478 uint32_t mask_x, mask_y;
1479
1480 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1481 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1482
1483 *tile_x = x & mask_x;
1484 *tile_y = y & mask_y;
1485
1486 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1487 }
1488
1489 static void
1490 intel_miptree_copy_slice_sw(struct brw_context *brw,
1491 struct intel_mipmap_tree *src_mt,
1492 unsigned src_level, unsigned src_layer,
1493 struct intel_mipmap_tree *dst_mt,
1494 unsigned dst_level, unsigned dst_layer,
1495 unsigned width, unsigned height)
1496 {
1497 void *src, *dst;
1498 ptrdiff_t src_stride, dst_stride;
1499 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1500
1501 intel_miptree_map(brw, src_mt,
1502 src_level, src_layer,
1503 0, 0,
1504 width, height,
1505 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1506 &src, &src_stride);
1507
1508 intel_miptree_map(brw, dst_mt,
1509 dst_level, dst_layer,
1510 0, 0,
1511 width, height,
1512 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1513 BRW_MAP_DIRECT_BIT,
1514 &dst, &dst_stride);
1515
1516 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1517 _mesa_get_format_name(src_mt->format),
1518 src_mt, src, src_stride,
1519 _mesa_get_format_name(dst_mt->format),
1520 dst_mt, dst, dst_stride,
1521 width, height);
1522
1523 int row_size = cpp * width;
1524 if (src_stride == row_size &&
1525 dst_stride == row_size) {
1526 memcpy(dst, src, row_size * height);
1527 } else {
1528 for (int i = 0; i < height; i++) {
1529 memcpy(dst, src, row_size);
1530 dst += dst_stride;
1531 src += src_stride;
1532 }
1533 }
1534
1535 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1536 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1537
1538 /* Don't forget to copy the stencil data over, too. We could have skipped
1539 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1540 * shuffling the two data sources in/out of temporary storage instead of
1541 * the direct mapping we get this way.
1542 */
1543 if (dst_mt->stencil_mt) {
1544 assert(src_mt->stencil_mt);
1545 intel_miptree_copy_slice_sw(brw,
1546 src_mt->stencil_mt, src_level, src_layer,
1547 dst_mt->stencil_mt, dst_level, dst_layer,
1548 width, height);
1549 }
1550 }
1551
1552 void
1553 intel_miptree_copy_slice(struct brw_context *brw,
1554 struct intel_mipmap_tree *src_mt,
1555 unsigned src_level, unsigned src_layer,
1556 struct intel_mipmap_tree *dst_mt,
1557 unsigned dst_level, unsigned dst_layer)
1558
1559 {
1560 mesa_format format = src_mt->format;
1561 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1562 src_level - src_mt->first_level);
1563 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1564 src_level - src_mt->first_level);
1565
1566 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1567 src_level - src_mt->first_level));
1568
1569 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1570 _mesa_get_srgb_format_linear(dst_mt->format));
1571
1572 if (dst_mt->compressed) {
1573 unsigned int i, j;
1574 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1575 height = ALIGN_NPOT(height, j) / j;
1576 width = ALIGN_NPOT(width, i) / i;
1577 }
1578
1579 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1580 * below won't apply since we can't do the depth's Y tiling or the
1581 * stencil's W tiling in the blitter.
1582 */
1583 if (src_mt->stencil_mt) {
1584 intel_miptree_copy_slice_sw(brw,
1585 src_mt, src_level, src_layer,
1586 dst_mt, dst_level, dst_layer,
1587 width, height);
1588 return;
1589 }
1590
1591 uint32_t dst_x, dst_y, src_x, src_y;
1592 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1593 &dst_x, &dst_y);
1594 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1595 &src_x, &src_y);
1596
1597 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1598 _mesa_get_format_name(src_mt->format),
1599 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1600 _mesa_get_format_name(dst_mt->format),
1601 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1602 width, height);
1603
1604 if (!intel_miptree_blit(brw,
1605 src_mt, src_level, src_layer, 0, 0, false,
1606 dst_mt, dst_level, dst_layer, 0, 0, false,
1607 width, height, COLOR_LOGICOP_COPY)) {
1608 perf_debug("miptree validate blit for %s failed\n",
1609 _mesa_get_format_name(format));
1610
1611 intel_miptree_copy_slice_sw(brw,
1612 src_mt, src_level, src_layer,
1613 dst_mt, dst_level, dst_layer,
1614 width, height);
1615 }
1616 }
1617
1618 /**
1619 * Copies the image's current data to the given miptree, and associates that
1620 * miptree with the image.
1621 */
1622 void
1623 intel_miptree_copy_teximage(struct brw_context *brw,
1624 struct intel_texture_image *intelImage,
1625 struct intel_mipmap_tree *dst_mt)
1626 {
1627 struct intel_mipmap_tree *src_mt = intelImage->mt;
1628 struct intel_texture_object *intel_obj =
1629 intel_texture_object(intelImage->base.Base.TexObject);
1630 int level = intelImage->base.Base.Level;
1631 const unsigned face = intelImage->base.Base.Face;
1632 unsigned start_layer, end_layer;
1633
1634 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1635 assert(face == 0);
1636 assert(intelImage->base.Base.Height);
1637 start_layer = 0;
1638 end_layer = intelImage->base.Base.Height - 1;
1639 } else if (face > 0) {
1640 start_layer = face;
1641 end_layer = face;
1642 } else {
1643 assert(intelImage->base.Base.Depth);
1644 start_layer = 0;
1645 end_layer = intelImage->base.Base.Depth - 1;
1646 }
1647
1648 for (unsigned i = start_layer; i <= end_layer; i++) {
1649 intel_miptree_copy_slice(brw,
1650 src_mt, level, i,
1651 dst_mt, level, i);
1652 }
1653
1654 intel_miptree_reference(&intelImage->mt, dst_mt);
1655 intel_obj->needs_validate = true;
1656 }
1657
1658 static void
1659 intel_miptree_init_mcs(struct brw_context *brw,
1660 struct intel_mipmap_tree *mt,
1661 int init_value)
1662 {
1663 assert(mt->aux_buf != NULL);
1664
1665 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1666 *
1667 * When MCS buffer is enabled and bound to MSRT, it is required that it
1668 * is cleared prior to any rendering.
1669 *
1670 * Since we don't use the MCS buffer for any purpose other than rendering,
1671 * it makes sense to just clear it immediately upon allocation.
1672 *
1673 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1674 */
1675 void *map = brw_bo_map(brw, mt->aux_buf->bo, MAP_WRITE | MAP_RAW);
1676 if (unlikely(map == NULL)) {
1677 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1678 brw_bo_unreference(mt->aux_buf->bo);
1679 free(mt->aux_buf);
1680 return;
1681 }
1682 void *data = map;
1683 memset(data, init_value, mt->aux_buf->size);
1684 brw_bo_unmap(mt->aux_buf->bo);
1685 }
1686
1687 static struct intel_miptree_aux_buffer *
1688 intel_alloc_aux_buffer(struct brw_context *brw,
1689 const char *name,
1690 const struct isl_surf *aux_surf,
1691 uint32_t alloc_flags,
1692 struct intel_mipmap_tree *mt)
1693 {
1694 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1695 if (!buf)
1696 return false;
1697
1698 buf->size = aux_surf->size;
1699
1700 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1701 if (devinfo->gen >= 10) {
1702 /* On CNL, instead of setting the clear color in the SURFACE_STATE, we
1703 * will set a pointer to a dword somewhere that contains the color. So,
1704 * allocate the space for the clear color value here on the aux buffer.
1705 */
1706 buf->clear_color_offset = buf->size;
1707 buf->size += brw->isl_dev.ss.clear_color_state_size;
1708 }
1709
1710 buf->pitch = aux_surf->row_pitch;
1711 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1712
1713 /* ISL has stricter set of alignment rules then the drm allocator.
1714 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1715 * trying to recalculate based on different format block sizes.
1716 */
1717 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1718 I915_TILING_Y, buf->pitch, alloc_flags);
1719 if (!buf->bo) {
1720 free(buf);
1721 return NULL;
1722 }
1723
1724 if (devinfo->gen >= 10) {
1725 buf->clear_color_bo = buf->bo;
1726 brw_bo_reference(buf->clear_color_bo);
1727 }
1728
1729 buf->surf = *aux_surf;
1730
1731 return buf;
1732 }
1733
1734 static bool
1735 intel_miptree_alloc_mcs(struct brw_context *brw,
1736 struct intel_mipmap_tree *mt,
1737 GLuint num_samples)
1738 {
1739 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1740 assert(mt->aux_buf == NULL);
1741 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1742
1743 /* Multisampled miptrees are only supported for single level. */
1744 assert(mt->first_level == 0);
1745 enum isl_aux_state **aux_state =
1746 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1747 if (!aux_state)
1748 return false;
1749
1750 struct isl_surf temp_mcs_surf;
1751
1752 MAYBE_UNUSED bool ok =
1753 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1754 assert(ok);
1755
1756 /* Buffer needs to be initialised requiring the buffer to be immediately
1757 * mapped to cpu space for writing. Therefore do not use the gpu access
1758 * flag which can cause an unnecessary delay if the backing pages happened
1759 * to be just used by the GPU.
1760 */
1761 const uint32_t alloc_flags = 0;
1762 mt->aux_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1763 &temp_mcs_surf, alloc_flags, mt);
1764 if (!mt->aux_buf) {
1765 free(aux_state);
1766 return false;
1767 }
1768
1769 mt->aux_state = aux_state;
1770
1771 intel_miptree_init_mcs(brw, mt, 0xFF);
1772
1773 return true;
1774 }
1775
1776 bool
1777 intel_miptree_alloc_ccs(struct brw_context *brw,
1778 struct intel_mipmap_tree *mt)
1779 {
1780 assert(mt->aux_buf == NULL);
1781 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1782 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1783
1784 struct isl_surf temp_ccs_surf;
1785
1786 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1787 return false;
1788
1789 assert(temp_ccs_surf.size &&
1790 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1791
1792 enum isl_aux_state **aux_state =
1793 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1794 if (!aux_state)
1795 return false;
1796
1797 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1798 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1799 *
1800 * "If Software wants to enable Color Compression without Fast clear,
1801 * Software needs to initialize MCS with zeros."
1802 *
1803 * A CCS value of 0 indicates that the corresponding block is in the
1804 * pass-through state which is what we want.
1805 *
1806 * For CCS_D, on the other hand, we don't care as we're about to perform a
1807 * fast-clear operation. In that case, being hot in caches more useful.
1808 */
1809 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1810 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1811 mt->aux_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1812 &temp_ccs_surf, alloc_flags, mt);
1813 if (!mt->aux_buf) {
1814 free(aux_state);
1815 return false;
1816 }
1817
1818 mt->aux_state = aux_state;
1819
1820 return true;
1821 }
1822
1823 /**
1824 * Helper for intel_miptree_alloc_hiz() that sets
1825 * \c mt->level[level].has_hiz. Return true if and only if
1826 * \c has_hiz was set.
1827 */
1828 static bool
1829 intel_miptree_level_enable_hiz(struct brw_context *brw,
1830 struct intel_mipmap_tree *mt,
1831 uint32_t level)
1832 {
1833 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1834
1835 assert(mt->aux_buf);
1836 assert(mt->surf.size > 0);
1837
1838 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1839 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1840 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1841
1842 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1843 * and the height is 4 aligned. This allows our HiZ support
1844 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1845 * we can grow the width & height to allow the HiZ op to
1846 * force the proper size alignments.
1847 */
1848 if (level > 0 && ((width & 7) || (height & 3))) {
1849 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1850 return false;
1851 }
1852 }
1853
1854 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1855 mt->level[level].has_hiz = true;
1856 return true;
1857 }
1858
1859 bool
1860 intel_miptree_alloc_hiz(struct brw_context *brw,
1861 struct intel_mipmap_tree *mt)
1862 {
1863 assert(mt->aux_buf == NULL);
1864 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1865
1866 enum isl_aux_state **aux_state =
1867 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1868 if (!aux_state)
1869 return false;
1870
1871 struct isl_surf temp_hiz_surf;
1872
1873 MAYBE_UNUSED bool ok =
1874 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1875 assert(ok);
1876
1877 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1878 mt->aux_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1879 &temp_hiz_surf, alloc_flags, mt);
1880
1881 if (!mt->aux_buf) {
1882 free(aux_state);
1883 return false;
1884 }
1885
1886 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1887 intel_miptree_level_enable_hiz(brw, mt, level);
1888
1889 mt->aux_state = aux_state;
1890
1891 return true;
1892 }
1893
1894
1895 /**
1896 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1897 *
1898 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1899 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1900 * compress clear color so we wait until an actual fast-clear to allocate it.
1901 */
1902 static bool
1903 intel_miptree_alloc_aux(struct brw_context *brw,
1904 struct intel_mipmap_tree *mt)
1905 {
1906 switch (mt->aux_usage) {
1907 case ISL_AUX_USAGE_NONE:
1908 return true;
1909
1910 case ISL_AUX_USAGE_HIZ:
1911 assert(!_mesa_is_format_color_format(mt->format));
1912 if (!intel_miptree_alloc_hiz(brw, mt))
1913 return false;
1914 return true;
1915
1916 case ISL_AUX_USAGE_MCS:
1917 assert(_mesa_is_format_color_format(mt->format));
1918 assert(mt->surf.samples > 1);
1919 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1920 return false;
1921 return true;
1922
1923 case ISL_AUX_USAGE_CCS_D:
1924 /* Since CCS_D can only compress clear color so we wait until an actual
1925 * fast-clear to allocate it.
1926 */
1927 return true;
1928
1929 case ISL_AUX_USAGE_CCS_E:
1930 assert(_mesa_is_format_color_format(mt->format));
1931 assert(mt->surf.samples == 1);
1932 if (!intel_miptree_alloc_ccs(brw, mt))
1933 return false;
1934 return true;
1935 }
1936
1937 unreachable("Invalid aux usage");
1938 }
1939
1940
1941 /**
1942 * Can the miptree sample using the hiz buffer?
1943 */
1944 bool
1945 intel_miptree_sample_with_hiz(struct brw_context *brw,
1946 struct intel_mipmap_tree *mt)
1947 {
1948 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1949
1950 if (!devinfo->has_sample_with_hiz) {
1951 return false;
1952 }
1953
1954 if (!mt->aux_buf) {
1955 return false;
1956 }
1957
1958 /* It seems the hardware won't fallback to the depth buffer if some of the
1959 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1960 * of the texture to be HiZ enabled.
1961 */
1962 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1963 if (!intel_miptree_level_has_hiz(mt, level))
1964 return false;
1965 }
1966
1967 /* If compressed multisampling is enabled, then we use it for the auxiliary
1968 * buffer instead.
1969 *
1970 * From the BDW PRM (Volume 2d: Command Reference: Structures
1971 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1972 *
1973 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1974 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1975 *
1976 * There is no such blurb for 1D textures, but there is sufficient evidence
1977 * that this is broken on SKL+.
1978 */
1979 return (mt->surf.samples == 1 &&
1980 mt->target != GL_TEXTURE_3D &&
1981 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1982 }
1983
1984 /**
1985 * Does the miptree slice have hiz enabled?
1986 */
1987 bool
1988 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1989 {
1990 intel_miptree_check_level_layer(mt, level, 0);
1991 return mt->level[level].has_hiz;
1992 }
1993
1994 static inline uint32_t
1995 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1996 uint32_t start_level, uint32_t num_levels)
1997 {
1998 assert(start_level >= mt->first_level);
1999 assert(start_level <= mt->last_level);
2000
2001 if (num_levels == INTEL_REMAINING_LAYERS)
2002 num_levels = mt->last_level - start_level + 1;
2003 /* Check for overflow */
2004 assert(start_level + num_levels >= start_level);
2005 assert(start_level + num_levels <= mt->last_level + 1);
2006
2007 return num_levels;
2008 }
2009
2010 static inline uint32_t
2011 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2012 uint32_t start_layer, uint32_t num_layers)
2013 {
2014 assert(level <= mt->last_level);
2015
2016 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2017 assert(start_layer < total_num_layers);
2018 if (num_layers == INTEL_REMAINING_LAYERS)
2019 num_layers = total_num_layers - start_layer;
2020 /* Check for overflow */
2021 assert(start_layer + num_layers >= start_layer);
2022 assert(start_layer + num_layers <= total_num_layers);
2023
2024 return num_layers;
2025 }
2026
2027 bool
2028 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2029 unsigned start_level, unsigned num_levels,
2030 unsigned start_layer, unsigned num_layers)
2031 {
2032 assert(_mesa_is_format_color_format(mt->format));
2033
2034 if (!mt->aux_buf)
2035 return false;
2036
2037 /* Clamp the level range to fit the miptree */
2038 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2039
2040 for (uint32_t l = 0; l < num_levels; l++) {
2041 const uint32_t level = start_level + l;
2042 const uint32_t level_layers =
2043 miptree_layer_range_length(mt, level, start_layer, num_layers);
2044 for (unsigned a = 0; a < level_layers; a++) {
2045 enum isl_aux_state aux_state =
2046 intel_miptree_get_aux_state(mt, level, start_layer + a);
2047 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2048 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2049 return true;
2050 }
2051 }
2052
2053 return false;
2054 }
2055
2056 static void
2057 intel_miptree_check_color_resolve(const struct brw_context *brw,
2058 const struct intel_mipmap_tree *mt,
2059 unsigned level, unsigned layer)
2060 {
2061 if (!mt->aux_buf)
2062 return;
2063
2064 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2065 assert(brw->screen->devinfo.gen >= 8 ||
2066 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2067
2068 /* Compression of arrayed msaa surfaces is supported. */
2069 if (mt->surf.samples > 1)
2070 return;
2071
2072 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2073 assert(brw->screen->devinfo.gen >= 8 ||
2074 (layer == 0 &&
2075 mt->surf.logical_level0_px.depth == 1 &&
2076 mt->surf.logical_level0_px.array_len == 1));
2077
2078 (void)level;
2079 (void)layer;
2080 }
2081
2082 static enum isl_aux_op
2083 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2084 enum isl_aux_usage aux_usage,
2085 bool fast_clear_supported)
2086 {
2087 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2088
2089 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2090
2091 assert(ccs_supported == fast_clear_supported);
2092
2093 switch (aux_state) {
2094 case ISL_AUX_STATE_CLEAR:
2095 case ISL_AUX_STATE_PARTIAL_CLEAR:
2096 if (!ccs_supported)
2097 return ISL_AUX_OP_FULL_RESOLVE;
2098 else
2099 return ISL_AUX_OP_NONE;
2100
2101 case ISL_AUX_STATE_PASS_THROUGH:
2102 return ISL_AUX_OP_NONE;
2103
2104 case ISL_AUX_STATE_RESOLVED:
2105 case ISL_AUX_STATE_AUX_INVALID:
2106 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2107 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2108 break;
2109 }
2110
2111 unreachable("Invalid aux state for CCS_D");
2112 }
2113
2114 static enum isl_aux_op
2115 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2116 enum isl_aux_usage aux_usage,
2117 bool fast_clear_supported)
2118 {
2119 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2120 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2121 aux_usage == ISL_AUX_USAGE_CCS_D ||
2122 aux_usage == ISL_AUX_USAGE_CCS_E);
2123
2124 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2125 assert(fast_clear_supported);
2126
2127 switch (aux_state) {
2128 case ISL_AUX_STATE_CLEAR:
2129 case ISL_AUX_STATE_PARTIAL_CLEAR:
2130 if (fast_clear_supported)
2131 return ISL_AUX_OP_NONE;
2132 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2133 return ISL_AUX_OP_PARTIAL_RESOLVE;
2134 else
2135 return ISL_AUX_OP_FULL_RESOLVE;
2136
2137 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2138 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2139 return ISL_AUX_OP_FULL_RESOLVE;
2140 else if (!fast_clear_supported)
2141 return ISL_AUX_OP_PARTIAL_RESOLVE;
2142 else
2143 return ISL_AUX_OP_NONE;
2144
2145 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2146 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2147 return ISL_AUX_OP_FULL_RESOLVE;
2148 else
2149 return ISL_AUX_OP_NONE;
2150
2151 case ISL_AUX_STATE_PASS_THROUGH:
2152 return ISL_AUX_OP_NONE;
2153
2154 case ISL_AUX_STATE_RESOLVED:
2155 case ISL_AUX_STATE_AUX_INVALID:
2156 break;
2157 }
2158
2159 unreachable("Invalid aux state for CCS_E");
2160 }
2161
2162 static void
2163 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2164 struct intel_mipmap_tree *mt,
2165 uint32_t level, uint32_t layer,
2166 enum isl_aux_usage aux_usage,
2167 bool fast_clear_supported)
2168 {
2169 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2170
2171 enum isl_aux_op resolve_op;
2172 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2173 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2174 fast_clear_supported);
2175 } else {
2176 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2177 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2178 fast_clear_supported);
2179 }
2180
2181 if (resolve_op != ISL_AUX_OP_NONE) {
2182 intel_miptree_check_color_resolve(brw, mt, level, layer);
2183 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2184
2185 switch (resolve_op) {
2186 case ISL_AUX_OP_FULL_RESOLVE:
2187 /* The CCS full resolve operation destroys the CCS and sets it to the
2188 * pass-through state. (You can also think of this as being both a
2189 * resolve and an ambiguate in one operation.)
2190 */
2191 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2192 ISL_AUX_STATE_PASS_THROUGH);
2193 break;
2194
2195 case ISL_AUX_OP_PARTIAL_RESOLVE:
2196 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2197 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2198 break;
2199
2200 default:
2201 unreachable("Invalid resolve op");
2202 }
2203 }
2204 }
2205
2206 static void
2207 intel_miptree_finish_ccs_write(struct brw_context *brw,
2208 struct intel_mipmap_tree *mt,
2209 uint32_t level, uint32_t layer,
2210 enum isl_aux_usage aux_usage)
2211 {
2212 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2213 aux_usage == ISL_AUX_USAGE_CCS_D ||
2214 aux_usage == ISL_AUX_USAGE_CCS_E);
2215
2216 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2217
2218 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2219 switch (aux_state) {
2220 case ISL_AUX_STATE_CLEAR:
2221 case ISL_AUX_STATE_PARTIAL_CLEAR:
2222 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2223 aux_usage == ISL_AUX_USAGE_CCS_D);
2224
2225 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2226 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2227 ISL_AUX_STATE_COMPRESSED_CLEAR);
2228 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2229 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2230 ISL_AUX_STATE_PARTIAL_CLEAR);
2231 }
2232 break;
2233
2234 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2235 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2236 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2237 break; /* Nothing to do */
2238
2239 case ISL_AUX_STATE_PASS_THROUGH:
2240 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2241 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2242 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2243 } else {
2244 /* Nothing to do */
2245 }
2246 break;
2247
2248 case ISL_AUX_STATE_RESOLVED:
2249 case ISL_AUX_STATE_AUX_INVALID:
2250 unreachable("Invalid aux state for CCS_E");
2251 }
2252 } else {
2253 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2254 /* CCS_D is a bit simpler */
2255 switch (aux_state) {
2256 case ISL_AUX_STATE_CLEAR:
2257 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2258 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2259 ISL_AUX_STATE_PARTIAL_CLEAR);
2260 break;
2261
2262 case ISL_AUX_STATE_PARTIAL_CLEAR:
2263 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2264 break; /* Nothing to do */
2265
2266 case ISL_AUX_STATE_PASS_THROUGH:
2267 /* Nothing to do */
2268 break;
2269
2270 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2271 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2272 case ISL_AUX_STATE_RESOLVED:
2273 case ISL_AUX_STATE_AUX_INVALID:
2274 unreachable("Invalid aux state for CCS_D");
2275 }
2276 }
2277 }
2278
2279 static void
2280 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2281 struct intel_mipmap_tree *mt,
2282 uint32_t layer,
2283 enum isl_aux_usage aux_usage,
2284 bool fast_clear_supported)
2285 {
2286 assert(aux_usage == ISL_AUX_USAGE_MCS);
2287
2288 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2289 case ISL_AUX_STATE_CLEAR:
2290 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2291 if (!fast_clear_supported) {
2292 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2293 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2294 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2295 }
2296 break;
2297
2298 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2299 break; /* Nothing to do */
2300
2301 case ISL_AUX_STATE_RESOLVED:
2302 case ISL_AUX_STATE_PASS_THROUGH:
2303 case ISL_AUX_STATE_AUX_INVALID:
2304 case ISL_AUX_STATE_PARTIAL_CLEAR:
2305 unreachable("Invalid aux state for MCS");
2306 }
2307 }
2308
2309 static void
2310 intel_miptree_finish_mcs_write(struct brw_context *brw,
2311 struct intel_mipmap_tree *mt,
2312 uint32_t layer,
2313 enum isl_aux_usage aux_usage)
2314 {
2315 assert(aux_usage == ISL_AUX_USAGE_MCS);
2316
2317 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2318 case ISL_AUX_STATE_CLEAR:
2319 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2320 ISL_AUX_STATE_COMPRESSED_CLEAR);
2321 break;
2322
2323 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2324 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2325 break; /* Nothing to do */
2326
2327 case ISL_AUX_STATE_RESOLVED:
2328 case ISL_AUX_STATE_PASS_THROUGH:
2329 case ISL_AUX_STATE_AUX_INVALID:
2330 case ISL_AUX_STATE_PARTIAL_CLEAR:
2331 unreachable("Invalid aux state for MCS");
2332 }
2333 }
2334
2335 static void
2336 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2337 struct intel_mipmap_tree *mt,
2338 uint32_t level, uint32_t layer,
2339 enum isl_aux_usage aux_usage,
2340 bool fast_clear_supported)
2341 {
2342 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2343
2344 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2345 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2346 case ISL_AUX_STATE_CLEAR:
2347 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2348 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2349 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2350 break;
2351
2352 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2353 if (aux_usage != ISL_AUX_USAGE_HIZ)
2354 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2355 break;
2356
2357 case ISL_AUX_STATE_PASS_THROUGH:
2358 case ISL_AUX_STATE_RESOLVED:
2359 break;
2360
2361 case ISL_AUX_STATE_AUX_INVALID:
2362 if (aux_usage == ISL_AUX_USAGE_HIZ)
2363 hiz_op = ISL_AUX_OP_AMBIGUATE;
2364 break;
2365
2366 case ISL_AUX_STATE_PARTIAL_CLEAR:
2367 unreachable("Invalid HiZ state");
2368 }
2369
2370 if (hiz_op != ISL_AUX_OP_NONE) {
2371 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2372
2373 switch (hiz_op) {
2374 case ISL_AUX_OP_FULL_RESOLVE:
2375 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2376 ISL_AUX_STATE_RESOLVED);
2377 break;
2378
2379 case ISL_AUX_OP_AMBIGUATE:
2380 /* The HiZ resolve operation is actually an ambiguate */
2381 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2382 ISL_AUX_STATE_PASS_THROUGH);
2383 break;
2384
2385 default:
2386 unreachable("Invalid HiZ op");
2387 }
2388 }
2389 }
2390
2391 static void
2392 intel_miptree_finish_hiz_write(struct brw_context *brw,
2393 struct intel_mipmap_tree *mt,
2394 uint32_t level, uint32_t layer,
2395 enum isl_aux_usage aux_usage)
2396 {
2397 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2398
2399 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2400 case ISL_AUX_STATE_CLEAR:
2401 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2402 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2403 ISL_AUX_STATE_COMPRESSED_CLEAR);
2404 break;
2405
2406 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2407 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2408 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2409 break; /* Nothing to do */
2410
2411 case ISL_AUX_STATE_RESOLVED:
2412 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2413 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2414 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2415 } else {
2416 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2417 ISL_AUX_STATE_AUX_INVALID);
2418 }
2419 break;
2420
2421 case ISL_AUX_STATE_PASS_THROUGH:
2422 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2423 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2424 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2425 }
2426 break;
2427
2428 case ISL_AUX_STATE_AUX_INVALID:
2429 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2430 break;
2431
2432 case ISL_AUX_STATE_PARTIAL_CLEAR:
2433 unreachable("Invalid HiZ state");
2434 }
2435 }
2436
2437 void
2438 intel_miptree_prepare_access(struct brw_context *brw,
2439 struct intel_mipmap_tree *mt,
2440 uint32_t start_level, uint32_t num_levels,
2441 uint32_t start_layer, uint32_t num_layers,
2442 enum isl_aux_usage aux_usage,
2443 bool fast_clear_supported)
2444 {
2445 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2446
2447 switch (mt->aux_usage) {
2448 case ISL_AUX_USAGE_NONE:
2449 /* Nothing to do */
2450 break;
2451
2452 case ISL_AUX_USAGE_MCS:
2453 assert(mt->aux_buf);
2454 assert(start_level == 0 && num_levels == 1);
2455 const uint32_t level_layers =
2456 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2457 for (uint32_t a = 0; a < level_layers; a++) {
2458 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2459 aux_usage, fast_clear_supported);
2460 }
2461 break;
2462
2463 case ISL_AUX_USAGE_CCS_D:
2464 case ISL_AUX_USAGE_CCS_E:
2465 if (!mt->aux_buf)
2466 return;
2467
2468 for (uint32_t l = 0; l < num_levels; l++) {
2469 const uint32_t level = start_level + l;
2470 const uint32_t level_layers =
2471 miptree_layer_range_length(mt, level, start_layer, num_layers);
2472 for (uint32_t a = 0; a < level_layers; a++) {
2473 intel_miptree_prepare_ccs_access(brw, mt, level,
2474 start_layer + a,
2475 aux_usage, fast_clear_supported);
2476 }
2477 }
2478 break;
2479
2480 case ISL_AUX_USAGE_HIZ:
2481 assert(mt->aux_buf);
2482 for (uint32_t l = 0; l < num_levels; l++) {
2483 const uint32_t level = start_level + l;
2484 if (!intel_miptree_level_has_hiz(mt, level))
2485 continue;
2486
2487 const uint32_t level_layers =
2488 miptree_layer_range_length(mt, level, start_layer, num_layers);
2489 for (uint32_t a = 0; a < level_layers; a++) {
2490 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2491 aux_usage, fast_clear_supported);
2492 }
2493 }
2494 break;
2495
2496 default:
2497 unreachable("Invalid aux usage");
2498 }
2499 }
2500
2501 void
2502 intel_miptree_finish_write(struct brw_context *brw,
2503 struct intel_mipmap_tree *mt, uint32_t level,
2504 uint32_t start_layer, uint32_t num_layers,
2505 enum isl_aux_usage aux_usage)
2506 {
2507 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2508
2509 switch (mt->aux_usage) {
2510 case ISL_AUX_USAGE_NONE:
2511 /* Nothing to do */
2512 break;
2513
2514 case ISL_AUX_USAGE_MCS:
2515 assert(mt->aux_buf);
2516 for (uint32_t a = 0; a < num_layers; a++) {
2517 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2518 aux_usage);
2519 }
2520 break;
2521
2522 case ISL_AUX_USAGE_CCS_D:
2523 case ISL_AUX_USAGE_CCS_E:
2524 if (!mt->aux_buf)
2525 return;
2526
2527 for (uint32_t a = 0; a < num_layers; a++) {
2528 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2529 aux_usage);
2530 }
2531 break;
2532
2533 case ISL_AUX_USAGE_HIZ:
2534 if (!intel_miptree_level_has_hiz(mt, level))
2535 return;
2536
2537 for (uint32_t a = 0; a < num_layers; a++) {
2538 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2539 aux_usage);
2540 }
2541 break;
2542
2543 default:
2544 unreachable("Invavlid aux usage");
2545 }
2546 }
2547
2548 enum isl_aux_state
2549 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2550 uint32_t level, uint32_t layer)
2551 {
2552 intel_miptree_check_level_layer(mt, level, layer);
2553
2554 if (_mesa_is_format_color_format(mt->format)) {
2555 assert(mt->aux_buf != NULL);
2556 assert(mt->surf.samples == 1 ||
2557 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2558 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2559 unreachable("Cannot get aux state for stencil");
2560 } else {
2561 assert(intel_miptree_level_has_hiz(mt, level));
2562 }
2563
2564 return mt->aux_state[level][layer];
2565 }
2566
2567 void
2568 intel_miptree_set_aux_state(struct brw_context *brw,
2569 struct intel_mipmap_tree *mt, uint32_t level,
2570 uint32_t start_layer, uint32_t num_layers,
2571 enum isl_aux_state aux_state)
2572 {
2573 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2574
2575 if (_mesa_is_format_color_format(mt->format)) {
2576 assert(mt->aux_buf != NULL);
2577 assert(mt->surf.samples == 1 ||
2578 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2579 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2580 unreachable("Cannot get aux state for stencil");
2581 } else {
2582 assert(intel_miptree_level_has_hiz(mt, level));
2583 }
2584
2585 for (unsigned a = 0; a < num_layers; a++) {
2586 if (mt->aux_state[level][start_layer + a] != aux_state) {
2587 mt->aux_state[level][start_layer + a] = aux_state;
2588 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2589 }
2590 }
2591 }
2592
2593 /* On Gen9 color buffers may be compressed by the hardware (lossless
2594 * compression). There are, however, format restrictions and care needs to be
2595 * taken that the sampler engine is capable for re-interpreting a buffer with
2596 * format different the buffer was originally written with.
2597 *
2598 * For example, SRGB formats are not compressible and the sampler engine isn't
2599 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2600 * color buffer needs to be resolved so that the sampling surface can be
2601 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2602 * set).
2603 */
2604 static bool
2605 can_texture_with_ccs(struct brw_context *brw,
2606 struct intel_mipmap_tree *mt,
2607 enum isl_format view_format)
2608 {
2609 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2610 return false;
2611
2612 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2613 mt, view_format)) {
2614 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2615 isl_format_get_layout(view_format)->name,
2616 _mesa_get_format_name(mt->format));
2617 return false;
2618 }
2619
2620 return true;
2621 }
2622
2623 enum isl_aux_usage
2624 intel_miptree_texture_aux_usage(struct brw_context *brw,
2625 struct intel_mipmap_tree *mt,
2626 enum isl_format view_format)
2627 {
2628 switch (mt->aux_usage) {
2629 case ISL_AUX_USAGE_HIZ:
2630 if (intel_miptree_sample_with_hiz(brw, mt))
2631 return ISL_AUX_USAGE_HIZ;
2632 break;
2633
2634 case ISL_AUX_USAGE_MCS:
2635 return ISL_AUX_USAGE_MCS;
2636
2637 case ISL_AUX_USAGE_CCS_D:
2638 case ISL_AUX_USAGE_CCS_E:
2639 if (!mt->aux_buf) {
2640 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2641 return ISL_AUX_USAGE_NONE;
2642 }
2643
2644 /* If we don't have any unresolved color, report an aux usage of
2645 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2646 * aux surface and we can save some bandwidth.
2647 */
2648 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2649 0, INTEL_REMAINING_LAYERS))
2650 return ISL_AUX_USAGE_NONE;
2651
2652 if (can_texture_with_ccs(brw, mt, view_format))
2653 return ISL_AUX_USAGE_CCS_E;
2654 break;
2655
2656 default:
2657 break;
2658 }
2659
2660 return ISL_AUX_USAGE_NONE;
2661 }
2662
2663 static bool
2664 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2665 {
2666 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2667 * values so sRGB curve application was a no-op for all fast-clearable
2668 * formats.
2669 *
2670 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2671 * values, the hardware interprets the floats, not as what would be
2672 * returned from the sampler (or written by the shader), but as being
2673 * between format conversion and sRGB curve application. This means that
2674 * we can switch between sRGB and UNORM without having to whack the clear
2675 * color.
2676 */
2677 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2678 }
2679
2680 void
2681 intel_miptree_prepare_texture(struct brw_context *brw,
2682 struct intel_mipmap_tree *mt,
2683 enum isl_format view_format,
2684 uint32_t start_level, uint32_t num_levels,
2685 uint32_t start_layer, uint32_t num_layers)
2686 {
2687 enum isl_aux_usage aux_usage =
2688 intel_miptree_texture_aux_usage(brw, mt, view_format);
2689 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2690
2691 /* Clear color is specified as ints or floats and the conversion is done by
2692 * the sampler. If we have a texture view, we would have to perform the
2693 * clear color conversion manually. Just disable clear color.
2694 */
2695 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2696 clear_supported = false;
2697
2698 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2699 start_layer, num_layers,
2700 aux_usage, clear_supported);
2701 }
2702
2703 void
2704 intel_miptree_prepare_image(struct brw_context *brw,
2705 struct intel_mipmap_tree *mt)
2706 {
2707 /* The data port doesn't understand any compression */
2708 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2709 0, INTEL_REMAINING_LAYERS,
2710 ISL_AUX_USAGE_NONE, false);
2711 }
2712
2713 enum isl_aux_usage
2714 intel_miptree_render_aux_usage(struct brw_context *brw,
2715 struct intel_mipmap_tree *mt,
2716 enum isl_format render_format,
2717 bool blend_enabled,
2718 bool draw_aux_disabled)
2719 {
2720 struct gen_device_info *devinfo = &brw->screen->devinfo;
2721
2722 if (draw_aux_disabled)
2723 return ISL_AUX_USAGE_NONE;
2724
2725 switch (mt->aux_usage) {
2726 case ISL_AUX_USAGE_MCS:
2727 assert(mt->aux_buf);
2728 return ISL_AUX_USAGE_MCS;
2729
2730 case ISL_AUX_USAGE_CCS_D:
2731 case ISL_AUX_USAGE_CCS_E:
2732 if (!mt->aux_buf) {
2733 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2734 return ISL_AUX_USAGE_NONE;
2735 }
2736
2737 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2738 * formats. However, there are issues with blending where it doesn't
2739 * properly apply the sRGB curve to the clear color when blending.
2740 */
2741 if (devinfo->gen == 9 && blend_enabled &&
2742 isl_format_is_srgb(render_format) &&
2743 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2744 return ISL_AUX_USAGE_NONE;
2745
2746 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2747 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2748 mt, render_format))
2749 return ISL_AUX_USAGE_CCS_E;
2750
2751 /* Otherwise, we have to fall back to CCS_D */
2752 return ISL_AUX_USAGE_CCS_D;
2753
2754 default:
2755 return ISL_AUX_USAGE_NONE;
2756 }
2757 }
2758
2759 void
2760 intel_miptree_prepare_render(struct brw_context *brw,
2761 struct intel_mipmap_tree *mt, uint32_t level,
2762 uint32_t start_layer, uint32_t layer_count,
2763 enum isl_aux_usage aux_usage)
2764 {
2765 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2766 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2767 }
2768
2769 void
2770 intel_miptree_finish_render(struct brw_context *brw,
2771 struct intel_mipmap_tree *mt, uint32_t level,
2772 uint32_t start_layer, uint32_t layer_count,
2773 enum isl_aux_usage aux_usage)
2774 {
2775 assert(_mesa_is_format_color_format(mt->format));
2776
2777 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2778 aux_usage);
2779 }
2780
2781 void
2782 intel_miptree_prepare_depth(struct brw_context *brw,
2783 struct intel_mipmap_tree *mt, uint32_t level,
2784 uint32_t start_layer, uint32_t layer_count)
2785 {
2786 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2787 mt->aux_usage, mt->aux_buf != NULL);
2788 }
2789
2790 void
2791 intel_miptree_finish_depth(struct brw_context *brw,
2792 struct intel_mipmap_tree *mt, uint32_t level,
2793 uint32_t start_layer, uint32_t layer_count,
2794 bool depth_written)
2795 {
2796 if (depth_written) {
2797 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2798 mt->aux_buf != NULL);
2799 }
2800 }
2801
2802 void
2803 intel_miptree_prepare_external(struct brw_context *brw,
2804 struct intel_mipmap_tree *mt)
2805 {
2806 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2807 bool supports_fast_clear = false;
2808
2809 const struct isl_drm_modifier_info *mod_info =
2810 isl_drm_modifier_get_info(mt->drm_modifier);
2811
2812 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2813 /* CCS_E is the only supported aux for external images and it's only
2814 * supported on very simple images.
2815 */
2816 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2817 assert(_mesa_is_format_color_format(mt->format));
2818 assert(mt->first_level == 0 && mt->last_level == 0);
2819 assert(mt->surf.logical_level0_px.depth == 1);
2820 assert(mt->surf.logical_level0_px.array_len == 1);
2821 assert(mt->surf.samples == 1);
2822 assert(mt->aux_buf != NULL);
2823
2824 aux_usage = mod_info->aux_usage;
2825 supports_fast_clear = mod_info->supports_clear_color;
2826 }
2827
2828 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2829 0, INTEL_REMAINING_LAYERS,
2830 aux_usage, supports_fast_clear);
2831 }
2832
2833 void
2834 intel_miptree_finish_external(struct brw_context *brw,
2835 struct intel_mipmap_tree *mt)
2836 {
2837 if (!mt->aux_buf)
2838 return;
2839
2840 /* We don't know the actual aux state of the aux surface. The previous
2841 * owner could have given it to us in a number of different states.
2842 * Because we don't know the aux state, we reset the aux state to the
2843 * least common denominator of possible valid states.
2844 */
2845 enum isl_aux_state default_aux_state =
2846 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2847 assert(mt->last_level == mt->first_level);
2848 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2849 default_aux_state);
2850 }
2851
2852 /**
2853 * Make it possible to share the BO backing the given miptree with another
2854 * process or another miptree.
2855 *
2856 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2857 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2858 * ensure that no MCS buffer gets allocated in the future.
2859 *
2860 * HiZ is similarly unsafe with shared buffers.
2861 */
2862 void
2863 intel_miptree_make_shareable(struct brw_context *brw,
2864 struct intel_mipmap_tree *mt)
2865 {
2866 /* MCS buffers are also used for multisample buffers, but we can't resolve
2867 * away a multisample MCS buffer because it's an integral part of how the
2868 * pixel data is stored. Fortunately this code path should never be
2869 * reached for multisample buffers.
2870 */
2871 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2872 mt->surf.samples == 1);
2873
2874 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2875 0, INTEL_REMAINING_LAYERS,
2876 ISL_AUX_USAGE_NONE, false);
2877
2878 if (mt->aux_buf) {
2879 intel_miptree_aux_buffer_free(mt->aux_buf);
2880 mt->aux_buf = NULL;
2881
2882 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2883 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2884 mt->level[l].has_hiz = false;
2885 }
2886
2887 free(mt->aux_state);
2888 mt->aux_state = NULL;
2889 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2890 }
2891
2892 mt->aux_usage = ISL_AUX_USAGE_NONE;
2893 mt->supports_fast_clear = false;
2894 }
2895
2896
2897 /**
2898 * \brief Get pointer offset into stencil buffer.
2899 *
2900 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2901 * must decode the tile's layout in software.
2902 *
2903 * See
2904 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2905 * Format.
2906 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2907 *
2908 * Even though the returned offset is always positive, the return type is
2909 * signed due to
2910 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2911 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2912 */
2913 static intptr_t
2914 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2915 {
2916 uint32_t tile_size = 4096;
2917 uint32_t tile_width = 64;
2918 uint32_t tile_height = 64;
2919 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2920
2921 uint32_t tile_x = x / tile_width;
2922 uint32_t tile_y = y / tile_height;
2923
2924 /* The byte's address relative to the tile's base addres. */
2925 uint32_t byte_x = x % tile_width;
2926 uint32_t byte_y = y % tile_height;
2927
2928 uintptr_t u = tile_y * row_size
2929 + tile_x * tile_size
2930 + 512 * (byte_x / 8)
2931 + 64 * (byte_y / 8)
2932 + 32 * ((byte_y / 4) % 2)
2933 + 16 * ((byte_x / 4) % 2)
2934 + 8 * ((byte_y / 2) % 2)
2935 + 4 * ((byte_x / 2) % 2)
2936 + 2 * (byte_y % 2)
2937 + 1 * (byte_x % 2);
2938
2939 if (swizzled) {
2940 /* adjust for bit6 swizzling */
2941 if (((byte_x / 8) % 2) == 1) {
2942 if (((byte_y / 8) % 2) == 0) {
2943 u += 64;
2944 } else {
2945 u -= 64;
2946 }
2947 }
2948 }
2949
2950 return u;
2951 }
2952
2953 void
2954 intel_miptree_updownsample(struct brw_context *brw,
2955 struct intel_mipmap_tree *src,
2956 struct intel_mipmap_tree *dst)
2957 {
2958 unsigned src_w = src->surf.logical_level0_px.width;
2959 unsigned src_h = src->surf.logical_level0_px.height;
2960 unsigned dst_w = dst->surf.logical_level0_px.width;
2961 unsigned dst_h = dst->surf.logical_level0_px.height;
2962
2963 brw_blorp_blit_miptrees(brw,
2964 src, 0 /* level */, 0 /* layer */,
2965 src->format, SWIZZLE_XYZW,
2966 dst, 0 /* level */, 0 /* layer */, dst->format,
2967 0, 0, src_w, src_h,
2968 0, 0, dst_w, dst_h,
2969 GL_NEAREST, false, false /*mirror x, y*/,
2970 false, false);
2971
2972 if (src->stencil_mt) {
2973 src_w = src->stencil_mt->surf.logical_level0_px.width;
2974 src_h = src->stencil_mt->surf.logical_level0_px.height;
2975 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2976 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2977
2978 brw_blorp_blit_miptrees(brw,
2979 src->stencil_mt, 0 /* level */, 0 /* layer */,
2980 src->stencil_mt->format, SWIZZLE_XYZW,
2981 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2982 dst->stencil_mt->format,
2983 0, 0, src_w, src_h,
2984 0, 0, dst_w, dst_h,
2985 GL_NEAREST, false, false /*mirror x, y*/,
2986 false, false /* decode/encode srgb */);
2987 }
2988 }
2989
2990 void
2991 intel_update_r8stencil(struct brw_context *brw,
2992 struct intel_mipmap_tree *mt)
2993 {
2994 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2995
2996 assert(devinfo->gen >= 7);
2997 struct intel_mipmap_tree *src =
2998 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2999 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3000 return;
3001
3002 assert(src->surf.size > 0);
3003
3004 if (!mt->r8stencil_mt) {
3005 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3006 mt->r8stencil_mt = make_surface(
3007 brw,
3008 src->target,
3009 MESA_FORMAT_R_UINT8,
3010 src->first_level, src->last_level,
3011 src->surf.logical_level0_px.width,
3012 src->surf.logical_level0_px.height,
3013 src->surf.dim == ISL_SURF_DIM_3D ?
3014 src->surf.logical_level0_px.depth :
3015 src->surf.logical_level0_px.array_len,
3016 src->surf.samples,
3017 ISL_TILING_Y0_BIT,
3018 ISL_SURF_USAGE_TEXTURE_BIT,
3019 BO_ALLOC_BUSY, 0, NULL);
3020 assert(mt->r8stencil_mt);
3021 }
3022
3023 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3024
3025 for (int level = src->first_level; level <= src->last_level; level++) {
3026 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3027 minify(src->surf.phys_level0_sa.depth, level) :
3028 src->surf.phys_level0_sa.array_len;
3029
3030 for (unsigned layer = 0; layer < depth; layer++) {
3031 brw_blorp_copy_miptrees(brw,
3032 src, level, layer,
3033 dst, level, layer,
3034 0, 0, 0, 0,
3035 minify(src->surf.logical_level0_px.width,
3036 level),
3037 minify(src->surf.logical_level0_px.height,
3038 level));
3039 }
3040 }
3041
3042 brw_cache_flush_for_read(brw, dst->bo);
3043 src->r8stencil_needs_update = false;
3044 }
3045
3046 static void *
3047 intel_miptree_map_raw(struct brw_context *brw,
3048 struct intel_mipmap_tree *mt,
3049 GLbitfield mode)
3050 {
3051 struct brw_bo *bo = mt->bo;
3052
3053 if (brw_batch_references(&brw->batch, bo))
3054 intel_batchbuffer_flush(brw);
3055
3056 return brw_bo_map(brw, bo, mode);
3057 }
3058
3059 static void
3060 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3061 {
3062 brw_bo_unmap(mt->bo);
3063 }
3064
3065 static void
3066 intel_miptree_map_gtt(struct brw_context *brw,
3067 struct intel_mipmap_tree *mt,
3068 struct intel_miptree_map *map,
3069 unsigned int level, unsigned int slice)
3070 {
3071 unsigned int bw, bh;
3072 void *base;
3073 unsigned int image_x, image_y;
3074 intptr_t x = map->x;
3075 intptr_t y = map->y;
3076
3077 /* For compressed formats, the stride is the number of bytes per
3078 * row of blocks. intel_miptree_get_image_offset() already does
3079 * the divide.
3080 */
3081 _mesa_get_format_block_size(mt->format, &bw, &bh);
3082 assert(y % bh == 0);
3083 assert(x % bw == 0);
3084 y /= bh;
3085 x /= bw;
3086
3087 base = intel_miptree_map_raw(brw, mt, map->mode);
3088
3089 if (base == NULL)
3090 map->ptr = NULL;
3091 else {
3092 base += mt->offset;
3093
3094 /* Note that in the case of cube maps, the caller must have passed the
3095 * slice number referencing the face.
3096 */
3097 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3098 x += image_x;
3099 y += image_y;
3100
3101 map->stride = mt->surf.row_pitch;
3102 map->ptr = base + y * map->stride + x * mt->cpp;
3103 }
3104
3105 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3106 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3107 map->x, map->y, map->w, map->h,
3108 mt, _mesa_get_format_name(mt->format),
3109 x, y, map->ptr, map->stride);
3110 }
3111
3112 static void
3113 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3114 {
3115 intel_miptree_unmap_raw(mt);
3116 }
3117
3118 static void
3119 intel_miptree_map_blit(struct brw_context *brw,
3120 struct intel_mipmap_tree *mt,
3121 struct intel_miptree_map *map,
3122 unsigned int level, unsigned int slice)
3123 {
3124 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3125 /* first_level */ 0,
3126 /* last_level */ 0,
3127 map->w, map->h, 1,
3128 /* samples */ 1,
3129 MIPTREE_CREATE_LINEAR);
3130
3131 if (!map->linear_mt) {
3132 fprintf(stderr, "Failed to allocate blit temporary\n");
3133 goto fail;
3134 }
3135 map->stride = map->linear_mt->surf.row_pitch;
3136
3137 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3138 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3139 * invalidate is set, since we'll be writing the whole rectangle from our
3140 * temporary buffer back out.
3141 */
3142 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3143 if (!intel_miptree_copy(brw,
3144 mt, level, slice, map->x, map->y,
3145 map->linear_mt, 0, 0, 0, 0,
3146 map->w, map->h)) {
3147 fprintf(stderr, "Failed to blit\n");
3148 goto fail;
3149 }
3150 }
3151
3152 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3153
3154 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3155 map->x, map->y, map->w, map->h,
3156 mt, _mesa_get_format_name(mt->format),
3157 level, slice, map->ptr, map->stride);
3158
3159 return;
3160
3161 fail:
3162 intel_miptree_release(&map->linear_mt);
3163 map->ptr = NULL;
3164 map->stride = 0;
3165 }
3166
3167 static void
3168 intel_miptree_unmap_blit(struct brw_context *brw,
3169 struct intel_mipmap_tree *mt,
3170 struct intel_miptree_map *map,
3171 unsigned int level,
3172 unsigned int slice)
3173 {
3174 struct gl_context *ctx = &brw->ctx;
3175
3176 intel_miptree_unmap_raw(map->linear_mt);
3177
3178 if (map->mode & GL_MAP_WRITE_BIT) {
3179 bool ok = intel_miptree_copy(brw,
3180 map->linear_mt, 0, 0, 0, 0,
3181 mt, level, slice, map->x, map->y,
3182 map->w, map->h);
3183 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3184 }
3185
3186 intel_miptree_release(&map->linear_mt);
3187 }
3188
3189 /**
3190 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3191 */
3192 #if defined(USE_SSE41)
3193 static void
3194 intel_miptree_map_movntdqa(struct brw_context *brw,
3195 struct intel_mipmap_tree *mt,
3196 struct intel_miptree_map *map,
3197 unsigned int level, unsigned int slice)
3198 {
3199 assert(map->mode & GL_MAP_READ_BIT);
3200 assert(!(map->mode & GL_MAP_WRITE_BIT));
3201
3202 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3203 map->x, map->y, map->w, map->h,
3204 mt, _mesa_get_format_name(mt->format),
3205 level, slice, map->ptr, map->stride);
3206
3207 /* Map the original image */
3208 uint32_t image_x;
3209 uint32_t image_y;
3210 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3211 image_x += map->x;
3212 image_y += map->y;
3213
3214 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3215 if (!src)
3216 return;
3217
3218 src += mt->offset;
3219
3220 src += image_y * mt->surf.row_pitch;
3221 src += image_x * mt->cpp;
3222
3223 /* Due to the pixel offsets for the particular image being mapped, our
3224 * src pointer may not be 16-byte aligned. However, if the pitch is
3225 * divisible by 16, then the amount by which it's misaligned will remain
3226 * consistent from row to row.
3227 */
3228 assert((mt->surf.row_pitch % 16) == 0);
3229 const int misalignment = ((uintptr_t) src) & 15;
3230
3231 /* Create an untiled temporary buffer for the mapping. */
3232 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3233
3234 map->stride = ALIGN(misalignment + width_bytes, 16);
3235
3236 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3237 /* Offset the destination so it has the same misalignment as src. */
3238 map->ptr = map->buffer + misalignment;
3239
3240 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3241
3242 for (uint32_t y = 0; y < map->h; y++) {
3243 void *dst_ptr = map->ptr + y * map->stride;
3244 void *src_ptr = src + y * mt->surf.row_pitch;
3245
3246 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3247 }
3248
3249 intel_miptree_unmap_raw(mt);
3250 }
3251
3252 static void
3253 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3254 struct intel_mipmap_tree *mt,
3255 struct intel_miptree_map *map,
3256 unsigned int level,
3257 unsigned int slice)
3258 {
3259 _mesa_align_free(map->buffer);
3260 map->buffer = NULL;
3261 map->ptr = NULL;
3262 }
3263 #endif
3264
3265 static void
3266 intel_miptree_map_s8(struct brw_context *brw,
3267 struct intel_mipmap_tree *mt,
3268 struct intel_miptree_map *map,
3269 unsigned int level, unsigned int slice)
3270 {
3271 map->stride = map->w;
3272 map->buffer = map->ptr = malloc(map->stride * map->h);
3273 if (!map->buffer)
3274 return;
3275
3276 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3277 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3278 * invalidate is set, since we'll be writing the whole rectangle from our
3279 * temporary buffer back out.
3280 */
3281 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3282 uint8_t *untiled_s8_map = map->ptr;
3283 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3284 unsigned int image_x, image_y;
3285
3286 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3287
3288 for (uint32_t y = 0; y < map->h; y++) {
3289 for (uint32_t x = 0; x < map->w; x++) {
3290 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3291 x + image_x + map->x,
3292 y + image_y + map->y,
3293 brw->has_swizzling);
3294 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3295 }
3296 }
3297
3298 intel_miptree_unmap_raw(mt);
3299
3300 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3301 map->x, map->y, map->w, map->h,
3302 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3303 } else {
3304 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3305 map->x, map->y, map->w, map->h,
3306 mt, map->ptr, map->stride);
3307 }
3308 }
3309
3310 static void
3311 intel_miptree_unmap_s8(struct brw_context *brw,
3312 struct intel_mipmap_tree *mt,
3313 struct intel_miptree_map *map,
3314 unsigned int level,
3315 unsigned int slice)
3316 {
3317 if (map->mode & GL_MAP_WRITE_BIT) {
3318 unsigned int image_x, image_y;
3319 uint8_t *untiled_s8_map = map->ptr;
3320 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3321
3322 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3323
3324 for (uint32_t y = 0; y < map->h; y++) {
3325 for (uint32_t x = 0; x < map->w; x++) {
3326 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3327 image_x + x + map->x,
3328 image_y + y + map->y,
3329 brw->has_swizzling);
3330 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3331 }
3332 }
3333
3334 intel_miptree_unmap_raw(mt);
3335 }
3336
3337 free(map->buffer);
3338 }
3339
3340 static void
3341 intel_miptree_map_etc(struct brw_context *brw,
3342 struct intel_mipmap_tree *mt,
3343 struct intel_miptree_map *map,
3344 unsigned int level,
3345 unsigned int slice)
3346 {
3347 assert(mt->etc_format != MESA_FORMAT_NONE);
3348 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3349 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3350 }
3351
3352 assert(map->mode & GL_MAP_WRITE_BIT);
3353 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3354
3355 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3356 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3357 map->w, map->h, 1));
3358 map->ptr = map->buffer;
3359 }
3360
3361 static void
3362 intel_miptree_unmap_etc(struct brw_context *brw,
3363 struct intel_mipmap_tree *mt,
3364 struct intel_miptree_map *map,
3365 unsigned int level,
3366 unsigned int slice)
3367 {
3368 uint32_t image_x;
3369 uint32_t image_y;
3370 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3371
3372 image_x += map->x;
3373 image_y += map->y;
3374
3375 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3376 + image_y * mt->surf.row_pitch
3377 + image_x * mt->cpp;
3378
3379 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3380 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3381 map->ptr, map->stride,
3382 map->w, map->h);
3383 else
3384 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3385 map->ptr, map->stride,
3386 map->w, map->h, mt->etc_format);
3387
3388 intel_miptree_unmap_raw(mt);
3389 free(map->buffer);
3390 }
3391
3392 /**
3393 * Mapping function for packed depth/stencil miptrees backed by real separate
3394 * miptrees for depth and stencil.
3395 *
3396 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3397 * separate from the depth buffer. Yet at the GL API level, we have to expose
3398 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3399 * be able to map that memory for texture storage and glReadPixels-type
3400 * operations. We give Mesa core that access by mallocing a temporary and
3401 * copying the data between the actual backing store and the temporary.
3402 */
3403 static void
3404 intel_miptree_map_depthstencil(struct brw_context *brw,
3405 struct intel_mipmap_tree *mt,
3406 struct intel_miptree_map *map,
3407 unsigned int level, unsigned int slice)
3408 {
3409 struct intel_mipmap_tree *z_mt = mt;
3410 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3411 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3412 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3413
3414 map->stride = map->w * packed_bpp;
3415 map->buffer = map->ptr = malloc(map->stride * map->h);
3416 if (!map->buffer)
3417 return;
3418
3419 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3420 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3421 * invalidate is set, since we'll be writing the whole rectangle from our
3422 * temporary buffer back out.
3423 */
3424 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3425 uint32_t *packed_map = map->ptr;
3426 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3427 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3428 unsigned int s_image_x, s_image_y;
3429 unsigned int z_image_x, z_image_y;
3430
3431 intel_miptree_get_image_offset(s_mt, level, slice,
3432 &s_image_x, &s_image_y);
3433 intel_miptree_get_image_offset(z_mt, level, slice,
3434 &z_image_x, &z_image_y);
3435
3436 for (uint32_t y = 0; y < map->h; y++) {
3437 for (uint32_t x = 0; x < map->w; x++) {
3438 int map_x = map->x + x, map_y = map->y + y;
3439 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3440 map_x + s_image_x,
3441 map_y + s_image_y,
3442 brw->has_swizzling);
3443 ptrdiff_t z_offset = ((map_y + z_image_y) *
3444 (z_mt->surf.row_pitch / 4) +
3445 (map_x + z_image_x));
3446 uint8_t s = s_map[s_offset];
3447 uint32_t z = z_map[z_offset];
3448
3449 if (map_z32f_x24s8) {
3450 packed_map[(y * map->w + x) * 2 + 0] = z;
3451 packed_map[(y * map->w + x) * 2 + 1] = s;
3452 } else {
3453 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3454 }
3455 }
3456 }
3457
3458 intel_miptree_unmap_raw(s_mt);
3459 intel_miptree_unmap_raw(z_mt);
3460
3461 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3462 __func__,
3463 map->x, map->y, map->w, map->h,
3464 z_mt, map->x + z_image_x, map->y + z_image_y,
3465 s_mt, map->x + s_image_x, map->y + s_image_y,
3466 map->ptr, map->stride);
3467 } else {
3468 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3469 map->x, map->y, map->w, map->h,
3470 mt, map->ptr, map->stride);
3471 }
3472 }
3473
3474 static void
3475 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3476 struct intel_mipmap_tree *mt,
3477 struct intel_miptree_map *map,
3478 unsigned int level,
3479 unsigned int slice)
3480 {
3481 struct intel_mipmap_tree *z_mt = mt;
3482 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3483 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3484
3485 if (map->mode & GL_MAP_WRITE_BIT) {
3486 uint32_t *packed_map = map->ptr;
3487 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3488 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3489 unsigned int s_image_x, s_image_y;
3490 unsigned int z_image_x, z_image_y;
3491
3492 intel_miptree_get_image_offset(s_mt, level, slice,
3493 &s_image_x, &s_image_y);
3494 intel_miptree_get_image_offset(z_mt, level, slice,
3495 &z_image_x, &z_image_y);
3496
3497 for (uint32_t y = 0; y < map->h; y++) {
3498 for (uint32_t x = 0; x < map->w; x++) {
3499 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3500 x + s_image_x + map->x,
3501 y + s_image_y + map->y,
3502 brw->has_swizzling);
3503 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3504 (z_mt->surf.row_pitch / 4) +
3505 (x + z_image_x + map->x));
3506
3507 if (map_z32f_x24s8) {
3508 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3509 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3510 } else {
3511 uint32_t packed = packed_map[y * map->w + x];
3512 s_map[s_offset] = packed >> 24;
3513 z_map[z_offset] = packed;
3514 }
3515 }
3516 }
3517
3518 intel_miptree_unmap_raw(s_mt);
3519 intel_miptree_unmap_raw(z_mt);
3520
3521 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3522 __func__,
3523 map->x, map->y, map->w, map->h,
3524 z_mt, _mesa_get_format_name(z_mt->format),
3525 map->x + z_image_x, map->y + z_image_y,
3526 s_mt, map->x + s_image_x, map->y + s_image_y,
3527 map->ptr, map->stride);
3528 }
3529
3530 free(map->buffer);
3531 }
3532
3533 /**
3534 * Create and attach a map to the miptree at (level, slice). Return the
3535 * attached map.
3536 */
3537 static struct intel_miptree_map*
3538 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3539 unsigned int level,
3540 unsigned int slice,
3541 unsigned int x,
3542 unsigned int y,
3543 unsigned int w,
3544 unsigned int h,
3545 GLbitfield mode)
3546 {
3547 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3548
3549 if (!map)
3550 return NULL;
3551
3552 assert(mt->level[level].slice[slice].map == NULL);
3553 mt->level[level].slice[slice].map = map;
3554
3555 map->mode = mode;
3556 map->x = x;
3557 map->y = y;
3558 map->w = w;
3559 map->h = h;
3560
3561 return map;
3562 }
3563
3564 /**
3565 * Release the map at (level, slice).
3566 */
3567 static void
3568 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3569 unsigned int level,
3570 unsigned int slice)
3571 {
3572 struct intel_miptree_map **map;
3573
3574 map = &mt->level[level].slice[slice].map;
3575 free(*map);
3576 *map = NULL;
3577 }
3578
3579 static bool
3580 can_blit_slice(struct intel_mipmap_tree *mt,
3581 unsigned int level, unsigned int slice)
3582 {
3583 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3584 if (mt->surf.row_pitch >= 32768)
3585 return false;
3586
3587 return true;
3588 }
3589
3590 static bool
3591 use_intel_mipree_map_blit(struct brw_context *brw,
3592 struct intel_mipmap_tree *mt,
3593 GLbitfield mode,
3594 unsigned int level,
3595 unsigned int slice)
3596 {
3597 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3598
3599 if (devinfo->has_llc &&
3600 /* It's probably not worth swapping to the blit ring because of
3601 * all the overhead involved.
3602 */
3603 !(mode & GL_MAP_WRITE_BIT) &&
3604 !mt->compressed &&
3605 (mt->surf.tiling == ISL_TILING_X ||
3606 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3607 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3608 /* Fast copy blit on skl+ supports all tiling formats. */
3609 devinfo->gen >= 9) &&
3610 can_blit_slice(mt, level, slice))
3611 return true;
3612
3613 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3614 mt->bo->size >= brw->max_gtt_map_object_size) {
3615 assert(can_blit_slice(mt, level, slice));
3616 return true;
3617 }
3618
3619 return false;
3620 }
3621
3622 /**
3623 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3624 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3625 * arithmetic overflow.
3626 *
3627 * If you call this function and use \a out_stride, then you're doing pointer
3628 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3629 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3630 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3631 * which usually have type uint32_t or GLuint.
3632 */
3633 void
3634 intel_miptree_map(struct brw_context *brw,
3635 struct intel_mipmap_tree *mt,
3636 unsigned int level,
3637 unsigned int slice,
3638 unsigned int x,
3639 unsigned int y,
3640 unsigned int w,
3641 unsigned int h,
3642 GLbitfield mode,
3643 void **out_ptr,
3644 ptrdiff_t *out_stride)
3645 {
3646 struct intel_miptree_map *map;
3647
3648 assert(mt->surf.samples == 1);
3649
3650 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3651 if (!map){
3652 *out_ptr = NULL;
3653 *out_stride = 0;
3654 return;
3655 }
3656
3657 intel_miptree_access_raw(brw, mt, level, slice,
3658 map->mode & GL_MAP_WRITE_BIT);
3659
3660 if (mt->format == MESA_FORMAT_S_UINT8) {
3661 intel_miptree_map_s8(brw, mt, map, level, slice);
3662 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3663 !(mode & BRW_MAP_DIRECT_BIT)) {
3664 intel_miptree_map_etc(brw, mt, map, level, slice);
3665 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3666 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3667 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3668 intel_miptree_map_blit(brw, mt, map, level, slice);
3669 #if defined(USE_SSE41)
3670 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3671 !mt->compressed && cpu_has_sse4_1 &&
3672 (mt->surf.row_pitch % 16 == 0)) {
3673 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3674 #endif
3675 } else {
3676 intel_miptree_map_gtt(brw, mt, map, level, slice);
3677 }
3678
3679 *out_ptr = map->ptr;
3680 *out_stride = map->stride;
3681
3682 if (map->ptr == NULL)
3683 intel_miptree_release_map(mt, level, slice);
3684 }
3685
3686 void
3687 intel_miptree_unmap(struct brw_context *brw,
3688 struct intel_mipmap_tree *mt,
3689 unsigned int level,
3690 unsigned int slice)
3691 {
3692 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3693
3694 assert(mt->surf.samples == 1);
3695
3696 if (!map)
3697 return;
3698
3699 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3700 mt, _mesa_get_format_name(mt->format), level, slice);
3701
3702 if (mt->format == MESA_FORMAT_S_UINT8) {
3703 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3704 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3705 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3706 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3707 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3708 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3709 } else if (map->linear_mt) {
3710 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3711 #if defined(USE_SSE41)
3712 } else if (map->buffer && cpu_has_sse4_1) {
3713 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3714 #endif
3715 } else {
3716 intel_miptree_unmap_gtt(mt);
3717 }
3718
3719 intel_miptree_release_map(mt, level, slice);
3720 }
3721
3722 enum isl_surf_dim
3723 get_isl_surf_dim(GLenum target)
3724 {
3725 switch (target) {
3726 case GL_TEXTURE_1D:
3727 case GL_TEXTURE_1D_ARRAY:
3728 return ISL_SURF_DIM_1D;
3729
3730 case GL_TEXTURE_2D:
3731 case GL_TEXTURE_2D_ARRAY:
3732 case GL_TEXTURE_RECTANGLE:
3733 case GL_TEXTURE_CUBE_MAP:
3734 case GL_TEXTURE_CUBE_MAP_ARRAY:
3735 case GL_TEXTURE_2D_MULTISAMPLE:
3736 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3737 case GL_TEXTURE_EXTERNAL_OES:
3738 return ISL_SURF_DIM_2D;
3739
3740 case GL_TEXTURE_3D:
3741 return ISL_SURF_DIM_3D;
3742 }
3743
3744 unreachable("Invalid texture target");
3745 }
3746
3747 enum isl_dim_layout
3748 get_isl_dim_layout(const struct gen_device_info *devinfo,
3749 enum isl_tiling tiling, GLenum target)
3750 {
3751 switch (target) {
3752 case GL_TEXTURE_1D:
3753 case GL_TEXTURE_1D_ARRAY:
3754 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3755 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3756
3757 case GL_TEXTURE_2D:
3758 case GL_TEXTURE_2D_ARRAY:
3759 case GL_TEXTURE_RECTANGLE:
3760 case GL_TEXTURE_2D_MULTISAMPLE:
3761 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3762 case GL_TEXTURE_EXTERNAL_OES:
3763 return ISL_DIM_LAYOUT_GEN4_2D;
3764
3765 case GL_TEXTURE_CUBE_MAP:
3766 case GL_TEXTURE_CUBE_MAP_ARRAY:
3767 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3768 ISL_DIM_LAYOUT_GEN4_2D);
3769
3770 case GL_TEXTURE_3D:
3771 return (devinfo->gen >= 9 ?
3772 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3773 }
3774
3775 unreachable("Invalid texture target");
3776 }
3777
3778 bool
3779 intel_miptree_set_clear_color(struct brw_context *brw,
3780 struct intel_mipmap_tree *mt,
3781 const union gl_color_union *color)
3782 {
3783 const union isl_color_value clear_color =
3784 brw_meta_convert_fast_clear_color(brw, mt, color);
3785
3786 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3787 mt->fast_clear_color = clear_color;
3788 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3789 return true;
3790 }
3791 return false;
3792 }
3793
3794 bool
3795 intel_miptree_set_depth_clear_value(struct brw_context *brw,
3796 struct intel_mipmap_tree *mt,
3797 float clear_value)
3798 {
3799 if (mt->fast_clear_color.f32[0] != clear_value) {
3800 mt->fast_clear_color.f32[0] = clear_value;
3801 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3802 return true;
3803 }
3804 return false;
3805 }