1a797326a8233cf3f448298ebf3c1ba4ded474fe
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 /* If the width is much smaller than a tile, don't bother tiling. */
523 if (row_pitch < 64)
524 return true;
525
526 if (ALIGN(row_pitch, 512) >= 32768) {
527 perf_debug("row pitch %u too large to blit, falling back to untiled",
528 row_pitch);
529 return true;
530 }
531
532 return false;
533 }
534
535 static bool
536 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
537 enum isl_tiling tiling)
538 {
539 const struct gen_device_info *devinfo = &brw->screen->devinfo;
540
541 /* If the BO is too large to fit in the aperture, we need to use the
542 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
543 * handle Y-tiling, so we need to fall back to X.
544 */
545 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
546 tiling == ISL_TILING_Y0)
547 return true;
548
549 return false;
550 }
551
552 static struct intel_mipmap_tree *
553 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
554 unsigned first_level, unsigned last_level,
555 unsigned width0, unsigned height0, unsigned depth0,
556 unsigned num_samples, isl_tiling_flags_t tiling_flags,
557 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
558 unsigned row_pitch, struct brw_bo *bo)
559 {
560 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
561 if (!mt)
562 return NULL;
563
564 if (!create_mapping_table(target, first_level, last_level, depth0,
565 mt->level)) {
566 free(mt);
567 return NULL;
568 }
569
570 mt->refcount = 1;
571
572 if (target == GL_TEXTURE_CUBE_MAP ||
573 target == GL_TEXTURE_CUBE_MAP_ARRAY)
574 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
575
576 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
577 __func__,
578 _mesa_enum_to_string(target),
579 _mesa_get_format_name(format),
580 num_samples, width0, height0, depth0,
581 first_level, last_level, mt);
582
583 struct isl_surf_init_info init_info = {
584 .dim = get_isl_surf_dim(target),
585 .format = translate_tex_format(brw, format, false),
586 .width = width0,
587 .height = height0,
588 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
589 .levels = last_level - first_level + 1,
590 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
591 .samples = num_samples,
592 .row_pitch = row_pitch,
593 .usage = isl_usage_flags,
594 .tiling_flags = tiling_flags,
595 };
596
597 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
598 goto fail;
599
600 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
601 * on gen7 platforms we also need to create Y-tiled copies of stencil for
602 * texturing since the hardware can't sample from W-tiled surfaces. For
603 * everything else, check for corner cases needing special treatment.
604 */
605 bool is_depth_stencil =
606 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
607 if (!is_depth_stencil) {
608 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
609 mt->surf.tiling, mt->surf.samples)) {
610 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
614 init_info.tiling_flags = 1u << ISL_TILING_X;
615 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
616 goto fail;
617 }
618 }
619
620 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
621 * the size may not be multiple of row_pitch.
622 * See isl_apply_surface_padding().
623 */
624 if (mt->surf.tiling != ISL_TILING_LINEAR)
625 assert(mt->surf.size % mt->surf.row_pitch == 0);
626
627 if (!bo) {
628 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
629 mt->surf.size,
630 isl_tiling_to_i915_tiling(
631 mt->surf.tiling),
632 mt->surf.row_pitch, alloc_flags);
633 if (!mt->bo)
634 goto fail;
635 } else {
636 mt->bo = bo;
637 }
638
639 mt->first_level = first_level;
640 mt->last_level = last_level;
641 mt->target = target;
642 mt->format = format;
643 mt->aux_state = NULL;
644 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
645 mt->compressed = _mesa_is_format_compressed(format);
646 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
647
648 return mt;
649
650 fail:
651 intel_miptree_release(&mt);
652 return NULL;
653 }
654
655 static bool
656 make_separate_stencil_surface(struct brw_context *brw,
657 struct intel_mipmap_tree *mt)
658 {
659 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
660 0, mt->surf.levels - 1,
661 mt->surf.logical_level0_px.width,
662 mt->surf.logical_level0_px.height,
663 mt->surf.dim == ISL_SURF_DIM_3D ?
664 mt->surf.logical_level0_px.depth :
665 mt->surf.logical_level0_px.array_len,
666 mt->surf.samples, ISL_TILING_W_BIT,
667 ISL_SURF_USAGE_STENCIL_BIT |
668 ISL_SURF_USAGE_TEXTURE_BIT,
669 BO_ALLOC_BUSY, 0, NULL);
670
671 if (!mt->stencil_mt)
672 return false;
673
674 mt->stencil_mt->r8stencil_needs_update = true;
675
676 return true;
677 }
678
679 static struct intel_mipmap_tree *
680 miptree_create(struct brw_context *brw,
681 GLenum target,
682 mesa_format format,
683 GLuint first_level,
684 GLuint last_level,
685 GLuint width0,
686 GLuint height0,
687 GLuint depth0,
688 GLuint num_samples,
689 enum intel_miptree_create_flags flags)
690 {
691 const struct gen_device_info *devinfo = &brw->screen->devinfo;
692
693 if (format == MESA_FORMAT_S_UINT8)
694 return make_surface(brw, target, format, first_level, last_level,
695 width0, height0, depth0, num_samples,
696 ISL_TILING_W_BIT,
697 ISL_SURF_USAGE_STENCIL_BIT |
698 ISL_SURF_USAGE_TEXTURE_BIT,
699 BO_ALLOC_BUSY,
700 0,
701 NULL);
702
703 const GLenum base_format = _mesa_get_format_base_format(format);
704 if ((base_format == GL_DEPTH_COMPONENT ||
705 base_format == GL_DEPTH_STENCIL) &&
706 !(flags & MIPTREE_CREATE_LINEAR)) {
707 /* Fix up the Z miptree format for how we're splitting out separate
708 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
709 */
710 const mesa_format depth_only_format =
711 intel_depth_format_for_depthstencil_format(format);
712 struct intel_mipmap_tree *mt = make_surface(
713 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
714 first_level, last_level,
715 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
716 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
717 BO_ALLOC_BUSY, 0, NULL);
718
719 if (needs_separate_stencil(brw, mt, format) &&
720 !make_separate_stencil_surface(brw, mt)) {
721 intel_miptree_release(&mt);
722 return NULL;
723 }
724
725 if (!(flags & MIPTREE_CREATE_NO_AUX))
726 intel_miptree_choose_aux_usage(brw, mt);
727
728 return mt;
729 }
730
731 mesa_format tex_format = format;
732 mesa_format etc_format = MESA_FORMAT_NONE;
733 uint32_t alloc_flags = 0;
734
735 format = intel_lower_compressed_format(brw, format);
736
737 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
738
739 if (flags & MIPTREE_CREATE_BUSY)
740 alloc_flags |= BO_ALLOC_BUSY;
741
742 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
743 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
744
745 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
746 if (devinfo->gen < 6)
747 tiling_flags &= ~ISL_TILING_Y0_BIT;
748
749 struct intel_mipmap_tree *mt = make_surface(
750 brw, target, format,
751 first_level, last_level,
752 width0, height0, depth0,
753 num_samples, tiling_flags,
754 ISL_SURF_USAGE_RENDER_TARGET_BIT |
755 ISL_SURF_USAGE_TEXTURE_BIT,
756 alloc_flags, 0, NULL);
757 if (!mt)
758 return NULL;
759
760 mt->etc_format = etc_format;
761
762 if (!(flags & MIPTREE_CREATE_NO_AUX))
763 intel_miptree_choose_aux_usage(brw, mt);
764
765 return mt;
766 }
767
768 struct intel_mipmap_tree *
769 intel_miptree_create(struct brw_context *brw,
770 GLenum target,
771 mesa_format format,
772 GLuint first_level,
773 GLuint last_level,
774 GLuint width0,
775 GLuint height0,
776 GLuint depth0,
777 GLuint num_samples,
778 enum intel_miptree_create_flags flags)
779 {
780 assert(num_samples > 0);
781
782 struct intel_mipmap_tree *mt = miptree_create(
783 brw, target, format,
784 first_level, last_level,
785 width0, height0, depth0, num_samples,
786 flags);
787 if (!mt)
788 return NULL;
789
790 mt->offset = 0;
791
792 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
793 * compress clear color so we wait until an actual fast-clear to allocate
794 * it.
795 */
796 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
797 !intel_miptree_alloc_aux(brw, mt)) {
798 intel_miptree_release(&mt);
799 return NULL;
800 }
801
802 return mt;
803 }
804
805 struct intel_mipmap_tree *
806 intel_miptree_create_for_bo(struct brw_context *brw,
807 struct brw_bo *bo,
808 mesa_format format,
809 uint32_t offset,
810 uint32_t width,
811 uint32_t height,
812 uint32_t depth,
813 int pitch,
814 enum isl_tiling tiling,
815 enum intel_miptree_create_flags flags)
816 {
817 const struct gen_device_info *devinfo = &brw->screen->devinfo;
818 struct intel_mipmap_tree *mt;
819 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
820 const GLenum base_format = _mesa_get_format_base_format(format);
821
822 if ((base_format == GL_DEPTH_COMPONENT ||
823 base_format == GL_DEPTH_STENCIL)) {
824 const mesa_format depth_only_format =
825 intel_depth_format_for_depthstencil_format(format);
826 mt = make_surface(brw, target,
827 devinfo->gen >= 6 ? depth_only_format : format,
828 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
829 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
830 0, pitch, bo);
831 if (!mt)
832 return NULL;
833
834 brw_bo_reference(bo);
835
836 if (!(flags & MIPTREE_CREATE_NO_AUX))
837 intel_miptree_choose_aux_usage(brw, mt);
838
839 return mt;
840 } else if (format == MESA_FORMAT_S_UINT8) {
841 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
842 0, 0, width, height, depth, 1,
843 ISL_TILING_W_BIT,
844 ISL_SURF_USAGE_STENCIL_BIT |
845 ISL_SURF_USAGE_TEXTURE_BIT,
846 0, pitch, bo);
847 if (!mt)
848 return NULL;
849
850 assert(bo->size >= mt->surf.size);
851
852 brw_bo_reference(bo);
853 return mt;
854 }
855
856 /* Nothing will be able to use this miptree with the BO if the offset isn't
857 * aligned.
858 */
859 if (tiling != ISL_TILING_LINEAR)
860 assert(offset % 4096 == 0);
861
862 /* miptrees can't handle negative pitch. If you need flipping of images,
863 * that's outside of the scope of the mt.
864 */
865 assert(pitch >= 0);
866
867 /* The BO already has a tiling format and we shouldn't confuse the lower
868 * layers by making it try to find a tiling format again.
869 */
870 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
871
872 mt = make_surface(brw, target, format,
873 0, 0, width, height, depth, 1,
874 1lu << tiling,
875 ISL_SURF_USAGE_RENDER_TARGET_BIT |
876 ISL_SURF_USAGE_TEXTURE_BIT,
877 0, pitch, bo);
878 if (!mt)
879 return NULL;
880
881 brw_bo_reference(bo);
882 mt->bo = bo;
883 mt->offset = offset;
884
885 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
886 intel_miptree_choose_aux_usage(brw, mt);
887
888 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
889 * only compress clear color so we wait until an actual fast-clear to
890 * allocate it.
891 */
892 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
893 !intel_miptree_alloc_aux(brw, mt)) {
894 intel_miptree_release(&mt);
895 return NULL;
896 }
897 }
898
899 return mt;
900 }
901
902 static struct intel_mipmap_tree *
903 miptree_create_for_planar_image(struct brw_context *brw,
904 __DRIimage *image, GLenum target,
905 enum isl_tiling tiling)
906 {
907 const struct intel_image_format *f = image->planar_format;
908 struct intel_mipmap_tree *planar_mt = NULL;
909
910 for (int i = 0; i < f->nplanes; i++) {
911 const int index = f->planes[i].buffer_index;
912 const uint32_t dri_format = f->planes[i].dri_format;
913 const mesa_format format = driImageFormatToGLFormat(dri_format);
914 const uint32_t width = image->width >> f->planes[i].width_shift;
915 const uint32_t height = image->height >> f->planes[i].height_shift;
916
917 /* Disable creation of the texture's aux buffers because the driver
918 * exposes no EGL API to manage them. That is, there is no API for
919 * resolving the aux buffer's content to the main buffer nor for
920 * invalidating the aux buffer's content.
921 */
922 struct intel_mipmap_tree *mt =
923 intel_miptree_create_for_bo(brw, image->bo, format,
924 image->offsets[index],
925 width, height, 1,
926 image->strides[index],
927 tiling,
928 MIPTREE_CREATE_NO_AUX);
929 if (mt == NULL)
930 return NULL;
931
932 mt->target = target;
933
934 if (i == 0)
935 planar_mt = mt;
936 else
937 planar_mt->plane[i - 1] = mt;
938 }
939
940 planar_mt->drm_modifier = image->modifier;
941
942 return planar_mt;
943 }
944
945 static bool
946 create_ccs_buf_for_image(struct brw_context *brw,
947 __DRIimage *image,
948 struct intel_mipmap_tree *mt,
949 enum isl_aux_state initial_state)
950 {
951 struct isl_surf temp_ccs_surf;
952
953 /* CCS is only supported for very simple miptrees */
954 assert(image->aux_offset != 0 && image->aux_pitch != 0);
955 assert(image->tile_x == 0 && image->tile_y == 0);
956 assert(mt->surf.samples == 1);
957 assert(mt->surf.levels == 1);
958 assert(mt->surf.logical_level0_px.depth == 1);
959 assert(mt->surf.logical_level0_px.array_len == 1);
960 assert(mt->first_level == 0);
961 assert(mt->last_level == 0);
962
963 /* We shouldn't already have a CCS */
964 assert(!mt->aux_buf);
965
966 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
967 image->aux_pitch))
968 return false;
969
970 assert(image->aux_offset < image->bo->size);
971 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
972
973 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
974 if (mt->aux_buf == NULL)
975 return false;
976
977 mt->aux_state = create_aux_state_map(mt, initial_state);
978 if (!mt->aux_state) {
979 free(mt->aux_buf);
980 mt->aux_buf = NULL;
981 return false;
982 }
983
984 /* On gen10+ we start using an extra space in the aux buffer to store the
985 * indirect clear color. However, if we imported an image from the window
986 * system with CCS, we don't have the extra space at the end of the aux
987 * buffer. So create a new bo here that will store that clear color.
988 */
989 if (brw->isl_dev.ss.clear_color_state_size > 0) {
990 mt->aux_buf->clear_color_bo =
991 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
992 brw->isl_dev.ss.clear_color_state_size,
993 I915_TILING_NONE, 0, BO_ALLOC_ZEROED);
994 if (!mt->aux_buf->clear_color_bo) {
995 free(mt->aux_buf);
996 mt->aux_buf = NULL;
997 return false;
998 }
999 }
1000
1001 mt->aux_buf->bo = image->bo;
1002 brw_bo_reference(image->bo);
1003
1004 mt->aux_buf->offset = image->aux_offset;
1005 mt->aux_buf->surf = temp_ccs_surf;
1006
1007 return true;
1008 }
1009
1010 struct intel_mipmap_tree *
1011 intel_miptree_create_for_dri_image(struct brw_context *brw,
1012 __DRIimage *image, GLenum target,
1013 mesa_format format,
1014 bool is_winsys_image)
1015 {
1016 uint32_t bo_tiling, bo_swizzle;
1017 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1018
1019 const struct isl_drm_modifier_info *mod_info =
1020 isl_drm_modifier_get_info(image->modifier);
1021
1022 const enum isl_tiling tiling =
1023 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1024
1025 if (image->planar_format && image->planar_format->nplanes > 1)
1026 return miptree_create_for_planar_image(brw, image, target, tiling);
1027
1028 if (image->planar_format)
1029 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1030
1031 if (!brw->ctx.TextureFormatSupported[format]) {
1032 /* The texture storage paths in core Mesa detect if the driver does not
1033 * support the user-requested format, and then searches for a
1034 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1035 * do the fallbacks here for important formats.
1036 *
1037 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1038 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1039 * the Chrome OS compositor consumes as dma_buf EGLImages.
1040 */
1041 format = _mesa_format_fallback_rgbx_to_rgba(format);
1042 }
1043
1044 if (!brw->ctx.TextureFormatSupported[format])
1045 return NULL;
1046
1047 enum intel_miptree_create_flags mt_create_flags = 0;
1048
1049 /* If this image comes in from a window system, we have different
1050 * requirements than if it comes in via an EGL import operation. Window
1051 * system images can use any form of auxiliary compression we wish because
1052 * they get "flushed" before being handed off to the window system and we
1053 * have the opportunity to do resolves. Non window-system images, on the
1054 * other hand, have no resolve point so we can't have aux without a
1055 * modifier.
1056 */
1057 if (!is_winsys_image)
1058 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1059
1060 /* If we have a modifier which specifies aux, don't create one yet */
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1062 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1063
1064 /* Disable creation of the texture's aux buffers because the driver exposes
1065 * no EGL API to manage them. That is, there is no API for resolving the aux
1066 * buffer's content to the main buffer nor for invalidating the aux buffer's
1067 * content.
1068 */
1069 struct intel_mipmap_tree *mt =
1070 intel_miptree_create_for_bo(brw, image->bo, format,
1071 image->offset, image->width, image->height, 1,
1072 image->pitch, tiling, mt_create_flags);
1073 if (mt == NULL)
1074 return NULL;
1075
1076 mt->target = target;
1077 mt->level[0].level_x = image->tile_x;
1078 mt->level[0].level_y = image->tile_y;
1079 mt->drm_modifier = image->modifier;
1080
1081 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1082 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1083 * trouble resolving back to destination image due to alignment issues.
1084 */
1085 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1086 if (!devinfo->has_surface_tile_offset) {
1087 uint32_t draw_x, draw_y;
1088 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1089
1090 if (draw_x != 0 || draw_y != 0) {
1091 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1092 intel_miptree_release(&mt);
1093 return NULL;
1094 }
1095 }
1096
1097 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1098 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1099
1100 mt->aux_usage = mod_info->aux_usage;
1101 /* If we are a window system buffer, then we can support fast-clears
1102 * even if the modifier doesn't support them by doing a partial resolve
1103 * as part of the flush operation.
1104 */
1105 mt->supports_fast_clear =
1106 is_winsys_image || mod_info->supports_clear_color;
1107
1108 /* We don't know the actual state of the surface when we get it but we
1109 * can make a pretty good guess based on the modifier. What we do know
1110 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1111 * a worst case of compression.
1112 */
1113 enum isl_aux_state initial_state =
1114 isl_drm_modifier_get_default_aux_state(image->modifier);
1115
1116 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1117 intel_miptree_release(&mt);
1118 return NULL;
1119 }
1120 }
1121
1122 /* Don't assume coherency for imported EGLimages. We don't know what
1123 * external clients are going to do with it. They may scan it out.
1124 */
1125 image->bo->cache_coherent = false;
1126
1127 return mt;
1128 }
1129
1130 /**
1131 * For a singlesample renderbuffer, this simply wraps the given BO with a
1132 * miptree.
1133 *
1134 * For a multisample renderbuffer, this wraps the window system's
1135 * (singlesample) BO with a singlesample miptree attached to the
1136 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1137 * that will contain the actual rendering (which is lazily resolved to
1138 * irb->singlesample_mt).
1139 */
1140 bool
1141 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1142 struct intel_renderbuffer *irb,
1143 struct intel_mipmap_tree *singlesample_mt,
1144 uint32_t width, uint32_t height,
1145 uint32_t pitch)
1146 {
1147 struct intel_mipmap_tree *multisample_mt = NULL;
1148 struct gl_renderbuffer *rb = &irb->Base.Base;
1149 mesa_format format = rb->Format;
1150 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1151
1152 /* Only the front and back buffers, which are color buffers, are allocated
1153 * through the image loader.
1154 */
1155 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1156 _mesa_get_format_base_format(format) == GL_RGBA);
1157
1158 assert(singlesample_mt);
1159
1160 if (num_samples == 1) {
1161 intel_miptree_release(&irb->mt);
1162 irb->mt = singlesample_mt;
1163
1164 assert(!irb->singlesample_mt);
1165 } else {
1166 intel_miptree_release(&irb->singlesample_mt);
1167 irb->singlesample_mt = singlesample_mt;
1168
1169 if (!irb->mt ||
1170 irb->mt->surf.logical_level0_px.width != width ||
1171 irb->mt->surf.logical_level0_px.height != height) {
1172 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1173 format,
1174 width,
1175 height,
1176 num_samples);
1177 if (!multisample_mt)
1178 goto fail;
1179
1180 irb->need_downsample = false;
1181 intel_miptree_release(&irb->mt);
1182 irb->mt = multisample_mt;
1183 }
1184 }
1185 return true;
1186
1187 fail:
1188 intel_miptree_release(&irb->mt);
1189 return false;
1190 }
1191
1192 struct intel_mipmap_tree*
1193 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1194 mesa_format format,
1195 uint32_t width,
1196 uint32_t height,
1197 uint32_t num_samples)
1198 {
1199 struct intel_mipmap_tree *mt;
1200 uint32_t depth = 1;
1201 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1202
1203 mt = intel_miptree_create(brw, target, format, 0, 0,
1204 width, height, depth, num_samples,
1205 MIPTREE_CREATE_BUSY);
1206 if (!mt)
1207 goto fail;
1208
1209 return mt;
1210
1211 fail:
1212 intel_miptree_release(&mt);
1213 return NULL;
1214 }
1215
1216 void
1217 intel_miptree_reference(struct intel_mipmap_tree **dst,
1218 struct intel_mipmap_tree *src)
1219 {
1220 if (*dst == src)
1221 return;
1222
1223 intel_miptree_release(dst);
1224
1225 if (src) {
1226 src->refcount++;
1227 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1228 }
1229
1230 *dst = src;
1231 }
1232
1233 static void
1234 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1235 {
1236 if (aux_buf == NULL)
1237 return;
1238
1239 brw_bo_unreference(aux_buf->bo);
1240 brw_bo_unreference(aux_buf->clear_color_bo);
1241
1242 free(aux_buf);
1243 }
1244
1245 void
1246 intel_miptree_release(struct intel_mipmap_tree **mt)
1247 {
1248 if (!*mt)
1249 return;
1250
1251 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1252 if (--(*mt)->refcount <= 0) {
1253 GLuint i;
1254
1255 DBG("%s deleting %p\n", __func__, *mt);
1256
1257 brw_bo_unreference((*mt)->bo);
1258 intel_miptree_release(&(*mt)->stencil_mt);
1259 intel_miptree_release(&(*mt)->r8stencil_mt);
1260 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1261 free_aux_state_map((*mt)->aux_state);
1262
1263 intel_miptree_release(&(*mt)->plane[0]);
1264 intel_miptree_release(&(*mt)->plane[1]);
1265
1266 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1267 free((*mt)->level[i].slice);
1268 }
1269
1270 free(*mt);
1271 }
1272 *mt = NULL;
1273 }
1274
1275
1276 void
1277 intel_get_image_dims(struct gl_texture_image *image,
1278 int *width, int *height, int *depth)
1279 {
1280 switch (image->TexObject->Target) {
1281 case GL_TEXTURE_1D_ARRAY:
1282 /* For a 1D Array texture the OpenGL API will treat the image height as
1283 * the number of array slices. For Intel hardware, we treat the 1D array
1284 * as a 2D Array with a height of 1. So, here we want to swap image
1285 * height and depth.
1286 */
1287 assert(image->Depth == 1);
1288 *width = image->Width;
1289 *height = 1;
1290 *depth = image->Height;
1291 break;
1292 case GL_TEXTURE_CUBE_MAP:
1293 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1294 * though we really have 6 slices.
1295 */
1296 assert(image->Depth == 1);
1297 *width = image->Width;
1298 *height = image->Height;
1299 *depth = 6;
1300 break;
1301 default:
1302 *width = image->Width;
1303 *height = image->Height;
1304 *depth = image->Depth;
1305 break;
1306 }
1307 }
1308
1309 /**
1310 * Can the image be pulled into a unified mipmap tree? This mirrors
1311 * the completeness test in a lot of ways.
1312 *
1313 * Not sure whether I want to pass gl_texture_image here.
1314 */
1315 bool
1316 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1317 struct gl_texture_image *image)
1318 {
1319 struct intel_texture_image *intelImage = intel_texture_image(image);
1320 GLuint level = intelImage->base.Base.Level;
1321 int width, height, depth;
1322
1323 /* glTexImage* choose the texture object based on the target passed in, and
1324 * objects can't change targets over their lifetimes, so this should be
1325 * true.
1326 */
1327 assert(image->TexObject->Target == mt->target);
1328
1329 mesa_format mt_format = mt->format;
1330 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1331 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1332 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1333 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1334 if (mt->etc_format != MESA_FORMAT_NONE)
1335 mt_format = mt->etc_format;
1336
1337 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1338 _mesa_get_srgb_format_linear(mt_format))
1339 return false;
1340
1341 intel_get_image_dims(image, &width, &height, &depth);
1342
1343 if (mt->target == GL_TEXTURE_CUBE_MAP)
1344 depth = 6;
1345
1346 if (level >= mt->surf.levels)
1347 return false;
1348
1349 const unsigned level_depth =
1350 mt->surf.dim == ISL_SURF_DIM_3D ?
1351 minify(mt->surf.logical_level0_px.depth, level) :
1352 mt->surf.logical_level0_px.array_len;
1353
1354 return width == minify(mt->surf.logical_level0_px.width, level) &&
1355 height == minify(mt->surf.logical_level0_px.height, level) &&
1356 depth == level_depth &&
1357 MAX2(image->NumSamples, 1) == mt->surf.samples;
1358 }
1359
1360 void
1361 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1362 GLuint level, GLuint slice,
1363 GLuint *x, GLuint *y)
1364 {
1365 if (level == 0 && slice == 0) {
1366 *x = mt->level[0].level_x;
1367 *y = mt->level[0].level_y;
1368 return;
1369 }
1370
1371 uint32_t x_offset_sa, y_offset_sa;
1372
1373 /* Miptree itself can have an offset only if it represents a single
1374 * slice in an imported buffer object.
1375 * See intel_miptree_create_for_dri_image().
1376 */
1377 assert(mt->level[0].level_x == 0);
1378 assert(mt->level[0].level_y == 0);
1379
1380 /* Given level is relative to level zero while the miptree may be
1381 * represent just a subset of all levels starting from 'first_level'.
1382 */
1383 assert(level >= mt->first_level);
1384 level -= mt->first_level;
1385
1386 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1387 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1388 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1389 &x_offset_sa, &y_offset_sa);
1390
1391 *x = x_offset_sa;
1392 *y = y_offset_sa;
1393 }
1394
1395
1396 /**
1397 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1398 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1399 * and tile_h is set to 1.
1400 */
1401 void
1402 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1403 uint32_t *tile_w, uint32_t *tile_h)
1404 {
1405 switch (tiling) {
1406 case ISL_TILING_X:
1407 *tile_w = 512;
1408 *tile_h = 8;
1409 break;
1410 case ISL_TILING_Y0:
1411 *tile_w = 128;
1412 *tile_h = 32;
1413 break;
1414 case ISL_TILING_LINEAR:
1415 *tile_w = cpp;
1416 *tile_h = 1;
1417 break;
1418 default:
1419 unreachable("not reached");
1420 }
1421 }
1422
1423
1424 /**
1425 * This function computes masks that may be used to select the bits of the X
1426 * and Y coordinates that indicate the offset within a tile. If the BO is
1427 * untiled, the masks are set to 0.
1428 */
1429 void
1430 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1431 uint32_t *mask_x, uint32_t *mask_y)
1432 {
1433 uint32_t tile_w_bytes, tile_h;
1434
1435 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1436
1437 *mask_x = tile_w_bytes / cpp - 1;
1438 *mask_y = tile_h - 1;
1439 }
1440
1441 /**
1442 * Compute the offset (in bytes) from the start of the BO to the given x
1443 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1444 * multiples of the tile size.
1445 */
1446 uint32_t
1447 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1448 uint32_t x, uint32_t y)
1449 {
1450 int cpp = mt->cpp;
1451 uint32_t pitch = mt->surf.row_pitch;
1452
1453 switch (mt->surf.tiling) {
1454 default:
1455 unreachable("not reached");
1456 case ISL_TILING_LINEAR:
1457 return y * pitch + x * cpp;
1458 case ISL_TILING_X:
1459 assert((x % (512 / cpp)) == 0);
1460 assert((y % 8) == 0);
1461 return y * pitch + x / (512 / cpp) * 4096;
1462 case ISL_TILING_Y0:
1463 assert((x % (128 / cpp)) == 0);
1464 assert((y % 32) == 0);
1465 return y * pitch + x / (128 / cpp) * 4096;
1466 }
1467 }
1468
1469 /**
1470 * Rendering with tiled buffers requires that the base address of the buffer
1471 * be aligned to a page boundary. For renderbuffers, and sometimes with
1472 * textures, we may want the surface to point at a texture image level that
1473 * isn't at a page boundary.
1474 *
1475 * This function returns an appropriately-aligned base offset
1476 * according to the tiling restrictions, plus any required x/y offset
1477 * from there.
1478 */
1479 uint32_t
1480 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1481 GLuint level, GLuint slice,
1482 uint32_t *tile_x,
1483 uint32_t *tile_y)
1484 {
1485 uint32_t x, y;
1486 uint32_t mask_x, mask_y;
1487
1488 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1489 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1490
1491 *tile_x = x & mask_x;
1492 *tile_y = y & mask_y;
1493
1494 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1495 }
1496
1497 static void
1498 intel_miptree_copy_slice_sw(struct brw_context *brw,
1499 struct intel_mipmap_tree *src_mt,
1500 unsigned src_level, unsigned src_layer,
1501 struct intel_mipmap_tree *dst_mt,
1502 unsigned dst_level, unsigned dst_layer,
1503 unsigned width, unsigned height)
1504 {
1505 void *src, *dst;
1506 ptrdiff_t src_stride, dst_stride;
1507 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1508
1509 intel_miptree_map(brw, src_mt,
1510 src_level, src_layer,
1511 0, 0,
1512 width, height,
1513 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1514 &src, &src_stride);
1515
1516 intel_miptree_map(brw, dst_mt,
1517 dst_level, dst_layer,
1518 0, 0,
1519 width, height,
1520 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1521 BRW_MAP_DIRECT_BIT,
1522 &dst, &dst_stride);
1523
1524 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1525 _mesa_get_format_name(src_mt->format),
1526 src_mt, src, src_stride,
1527 _mesa_get_format_name(dst_mt->format),
1528 dst_mt, dst, dst_stride,
1529 width, height);
1530
1531 int row_size = cpp * width;
1532 if (src_stride == row_size &&
1533 dst_stride == row_size) {
1534 memcpy(dst, src, row_size * height);
1535 } else {
1536 for (int i = 0; i < height; i++) {
1537 memcpy(dst, src, row_size);
1538 dst += dst_stride;
1539 src += src_stride;
1540 }
1541 }
1542
1543 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1544 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1545
1546 /* Don't forget to copy the stencil data over, too. We could have skipped
1547 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1548 * shuffling the two data sources in/out of temporary storage instead of
1549 * the direct mapping we get this way.
1550 */
1551 if (dst_mt->stencil_mt) {
1552 assert(src_mt->stencil_mt);
1553 intel_miptree_copy_slice_sw(brw,
1554 src_mt->stencil_mt, src_level, src_layer,
1555 dst_mt->stencil_mt, dst_level, dst_layer,
1556 width, height);
1557 }
1558 }
1559
1560 void
1561 intel_miptree_copy_slice(struct brw_context *brw,
1562 struct intel_mipmap_tree *src_mt,
1563 unsigned src_level, unsigned src_layer,
1564 struct intel_mipmap_tree *dst_mt,
1565 unsigned dst_level, unsigned dst_layer)
1566
1567 {
1568 mesa_format format = src_mt->format;
1569 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1570 src_level - src_mt->first_level);
1571 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1572 src_level - src_mt->first_level);
1573
1574 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1575 src_level - src_mt->first_level));
1576
1577 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1578 _mesa_get_srgb_format_linear(dst_mt->format));
1579
1580 if (dst_mt->compressed) {
1581 unsigned int i, j;
1582 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1583 height = ALIGN_NPOT(height, j) / j;
1584 width = ALIGN_NPOT(width, i) / i;
1585 }
1586
1587 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1588 * below won't apply since we can't do the depth's Y tiling or the
1589 * stencil's W tiling in the blitter.
1590 */
1591 if (src_mt->stencil_mt) {
1592 intel_miptree_copy_slice_sw(brw,
1593 src_mt, src_level, src_layer,
1594 dst_mt, dst_level, dst_layer,
1595 width, height);
1596 return;
1597 }
1598
1599 uint32_t dst_x, dst_y, src_x, src_y;
1600 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1601 &dst_x, &dst_y);
1602 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1603 &src_x, &src_y);
1604
1605 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1606 _mesa_get_format_name(src_mt->format),
1607 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1608 _mesa_get_format_name(dst_mt->format),
1609 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1610 width, height);
1611
1612 if (!intel_miptree_blit(brw,
1613 src_mt, src_level, src_layer, 0, 0, false,
1614 dst_mt, dst_level, dst_layer, 0, 0, false,
1615 width, height, COLOR_LOGICOP_COPY)) {
1616 perf_debug("miptree validate blit for %s failed\n",
1617 _mesa_get_format_name(format));
1618
1619 intel_miptree_copy_slice_sw(brw,
1620 src_mt, src_level, src_layer,
1621 dst_mt, dst_level, dst_layer,
1622 width, height);
1623 }
1624 }
1625
1626 /**
1627 * Copies the image's current data to the given miptree, and associates that
1628 * miptree with the image.
1629 */
1630 void
1631 intel_miptree_copy_teximage(struct brw_context *brw,
1632 struct intel_texture_image *intelImage,
1633 struct intel_mipmap_tree *dst_mt)
1634 {
1635 struct intel_mipmap_tree *src_mt = intelImage->mt;
1636 struct intel_texture_object *intel_obj =
1637 intel_texture_object(intelImage->base.Base.TexObject);
1638 int level = intelImage->base.Base.Level;
1639 const unsigned face = intelImage->base.Base.Face;
1640 unsigned start_layer, end_layer;
1641
1642 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1643 assert(face == 0);
1644 assert(intelImage->base.Base.Height);
1645 start_layer = 0;
1646 end_layer = intelImage->base.Base.Height - 1;
1647 } else if (face > 0) {
1648 start_layer = face;
1649 end_layer = face;
1650 } else {
1651 assert(intelImage->base.Base.Depth);
1652 start_layer = 0;
1653 end_layer = intelImage->base.Base.Depth - 1;
1654 }
1655
1656 for (unsigned i = start_layer; i <= end_layer; i++) {
1657 intel_miptree_copy_slice(brw,
1658 src_mt, level, i,
1659 dst_mt, level, i);
1660 }
1661
1662 intel_miptree_reference(&intelImage->mt, dst_mt);
1663 intel_obj->needs_validate = true;
1664 }
1665
1666 static struct intel_miptree_aux_buffer *
1667 intel_alloc_aux_buffer(struct brw_context *brw,
1668 const struct isl_surf *aux_surf,
1669 bool wants_memset,
1670 uint8_t memset_value)
1671 {
1672 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1673 if (!buf)
1674 return false;
1675
1676 uint64_t size = aux_surf->size;
1677
1678 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1679 if (has_indirect_clear) {
1680 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1681 * will set a pointer to a dword somewhere that contains the color. So,
1682 * allocate the space for the clear color value here on the aux buffer.
1683 */
1684 buf->clear_color_offset = size;
1685 size += brw->isl_dev.ss.clear_color_state_size;
1686 }
1687
1688 /* If the buffer needs to be initialised (requiring the buffer to be
1689 * immediately mapped to cpu space for writing), do not use the gpu access
1690 * flag which can cause an unnecessary delay if the backing pages happened
1691 * to be just used by the GPU.
1692 */
1693 const bool alloc_zeroed = wants_memset && memset_value == 0;
1694 const bool needs_memset =
1695 !alloc_zeroed && (wants_memset || has_indirect_clear);
1696 const uint32_t alloc_flags =
1697 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1698
1699 /* ISL has stricter set of alignment rules then the drm allocator.
1700 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1701 * trying to recalculate based on different format block sizes.
1702 */
1703 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1704 I915_TILING_Y, aux_surf->row_pitch,
1705 alloc_flags);
1706 if (!buf->bo) {
1707 free(buf);
1708 return NULL;
1709 }
1710
1711 /* Initialize the bo to the desired value */
1712 if (needs_memset) {
1713 assert(!(alloc_flags & BO_ALLOC_BUSY));
1714
1715 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1716 if (map == NULL) {
1717 intel_miptree_aux_buffer_free(buf);
1718 return NULL;
1719 }
1720
1721 /* Memset the aux_surf portion of the BO. */
1722 if (wants_memset)
1723 memset(map, memset_value, aux_surf->size);
1724
1725 /* Zero the indirect clear color to match ::fast_clear_color. */
1726 if (has_indirect_clear) {
1727 memset((char *)map + buf->clear_color_offset, 0,
1728 brw->isl_dev.ss.clear_color_state_size);
1729 }
1730
1731 brw_bo_unmap(buf->bo);
1732 }
1733
1734 if (has_indirect_clear) {
1735 buf->clear_color_bo = buf->bo;
1736 brw_bo_reference(buf->clear_color_bo);
1737 }
1738
1739 buf->surf = *aux_surf;
1740
1741 return buf;
1742 }
1743
1744
1745 /**
1746 * Helper for intel_miptree_alloc_aux() that sets
1747 * \c mt->level[level].has_hiz. Return true if and only if
1748 * \c has_hiz was set.
1749 */
1750 static bool
1751 intel_miptree_level_enable_hiz(struct brw_context *brw,
1752 struct intel_mipmap_tree *mt,
1753 uint32_t level)
1754 {
1755 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1756
1757 assert(mt->aux_buf);
1758 assert(mt->surf.size > 0);
1759
1760 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1761 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1762 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1763
1764 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1765 * and the height is 4 aligned. This allows our HiZ support
1766 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1767 * we can grow the width & height to allow the HiZ op to
1768 * force the proper size alignments.
1769 */
1770 if (level > 0 && ((width & 7) || (height & 3))) {
1771 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1772 return false;
1773 }
1774 }
1775
1776 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1777 mt->level[level].has_hiz = true;
1778 return true;
1779 }
1780
1781
1782 /**
1783 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1784 *
1785 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1786 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1787 * compress clear color so we wait until an actual fast-clear to allocate it.
1788 */
1789 bool
1790 intel_miptree_alloc_aux(struct brw_context *brw,
1791 struct intel_mipmap_tree *mt)
1792 {
1793 assert(mt->aux_buf == NULL);
1794
1795 /* Get the aux buf allocation parameters for this miptree. */
1796 enum isl_aux_state initial_state;
1797 uint8_t memset_value;
1798 struct isl_surf aux_surf;
1799 MAYBE_UNUSED bool aux_surf_ok;
1800
1801 switch (mt->aux_usage) {
1802 case ISL_AUX_USAGE_NONE:
1803 aux_surf.size = 0;
1804 aux_surf_ok = true;
1805 break;
1806 case ISL_AUX_USAGE_HIZ:
1807 assert(!_mesa_is_format_color_format(mt->format));
1808
1809 initial_state = ISL_AUX_STATE_AUX_INVALID;
1810 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1811 break;
1812 case ISL_AUX_USAGE_MCS:
1813 assert(_mesa_is_format_color_format(mt->format));
1814 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1815
1816 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1817 *
1818 * When MCS buffer is enabled and bound to MSRT, it is required that
1819 * it is cleared prior to any rendering.
1820 *
1821 * Since we don't use the MCS buffer for any purpose other than
1822 * rendering, it makes sense to just clear it immediately upon
1823 * allocation.
1824 *
1825 * Note: the clear value for MCS buffers is all 1's, so we memset to
1826 * 0xff.
1827 */
1828 initial_state = ISL_AUX_STATE_CLEAR;
1829 memset_value = 0xFF;
1830 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1831 break;
1832 case ISL_AUX_USAGE_CCS_D:
1833 case ISL_AUX_USAGE_CCS_E:
1834 assert(_mesa_is_format_color_format(mt->format));
1835
1836 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1837 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1838 * Target(s)":
1839 *
1840 * "If Software wants to enable Color Compression without Fast
1841 * clear, Software needs to initialize MCS with zeros."
1842 *
1843 * A CCS value of 0 indicates that the corresponding block is in the
1844 * pass-through state which is what we want.
1845 *
1846 * For CCS_D, do the same thing. On gen9+, this avoids having any
1847 * undefined bits in the aux buffer.
1848 */
1849 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1850 memset_value = 0;
1851 aux_surf_ok =
1852 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1853 break;
1854 }
1855
1856 /* We should have a valid aux_surf. */
1857 assert(aux_surf_ok);
1858
1859 /* No work is needed for a zero-sized auxiliary buffer. */
1860 if (aux_surf.size == 0)
1861 return true;
1862
1863 /* Create the aux_state for the auxiliary buffer. */
1864 mt->aux_state = create_aux_state_map(mt, initial_state);
1865 if (mt->aux_state == NULL)
1866 return false;
1867
1868 /* Allocate the auxiliary buffer. */
1869 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1870 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1871 memset_value);
1872 if (mt->aux_buf == NULL) {
1873 free_aux_state_map(mt->aux_state);
1874 mt->aux_state = NULL;
1875 return false;
1876 }
1877
1878 /* Perform aux_usage-specific initialization. */
1879 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1880 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1881 intel_miptree_level_enable_hiz(brw, mt, level);
1882 }
1883
1884 return true;
1885 }
1886
1887
1888 /**
1889 * Can the miptree sample using the hiz buffer?
1890 */
1891 bool
1892 intel_miptree_sample_with_hiz(struct brw_context *brw,
1893 struct intel_mipmap_tree *mt)
1894 {
1895 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1896
1897 if (!devinfo->has_sample_with_hiz) {
1898 return false;
1899 }
1900
1901 if (!mt->aux_buf) {
1902 return false;
1903 }
1904
1905 /* It seems the hardware won't fallback to the depth buffer if some of the
1906 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1907 * of the texture to be HiZ enabled.
1908 */
1909 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1910 if (!intel_miptree_level_has_hiz(mt, level))
1911 return false;
1912 }
1913
1914 /* If compressed multisampling is enabled, then we use it for the auxiliary
1915 * buffer instead.
1916 *
1917 * From the BDW PRM (Volume 2d: Command Reference: Structures
1918 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1919 *
1920 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1921 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1922 *
1923 * There is no such blurb for 1D textures, but there is sufficient evidence
1924 * that this is broken on SKL+.
1925 */
1926 return (mt->surf.samples == 1 &&
1927 mt->target != GL_TEXTURE_3D &&
1928 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1929 }
1930
1931 /**
1932 * Does the miptree slice have hiz enabled?
1933 */
1934 bool
1935 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1936 {
1937 intel_miptree_check_level_layer(mt, level, 0);
1938 return mt->level[level].has_hiz;
1939 }
1940
1941 static inline uint32_t
1942 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1943 uint32_t start_level, uint32_t num_levels)
1944 {
1945 assert(start_level >= mt->first_level);
1946 assert(start_level <= mt->last_level);
1947
1948 if (num_levels == INTEL_REMAINING_LAYERS)
1949 num_levels = mt->last_level - start_level + 1;
1950 /* Check for overflow */
1951 assert(start_level + num_levels >= start_level);
1952 assert(start_level + num_levels <= mt->last_level + 1);
1953
1954 return num_levels;
1955 }
1956
1957 static inline uint32_t
1958 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1959 uint32_t start_layer, uint32_t num_layers)
1960 {
1961 assert(level <= mt->last_level);
1962
1963 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1964 assert(start_layer < total_num_layers);
1965 if (num_layers == INTEL_REMAINING_LAYERS)
1966 num_layers = total_num_layers - start_layer;
1967 /* Check for overflow */
1968 assert(start_layer + num_layers >= start_layer);
1969 assert(start_layer + num_layers <= total_num_layers);
1970
1971 return num_layers;
1972 }
1973
1974 bool
1975 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1976 unsigned start_level, unsigned num_levels,
1977 unsigned start_layer, unsigned num_layers)
1978 {
1979 assert(_mesa_is_format_color_format(mt->format));
1980
1981 if (!mt->aux_buf)
1982 return false;
1983
1984 /* Clamp the level range to fit the miptree */
1985 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1986
1987 for (uint32_t l = 0; l < num_levels; l++) {
1988 const uint32_t level = start_level + l;
1989 const uint32_t level_layers =
1990 miptree_layer_range_length(mt, level, start_layer, num_layers);
1991 for (unsigned a = 0; a < level_layers; a++) {
1992 enum isl_aux_state aux_state =
1993 intel_miptree_get_aux_state(mt, level, start_layer + a);
1994 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1995 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1996 return true;
1997 }
1998 }
1999
2000 return false;
2001 }
2002
2003 static void
2004 intel_miptree_check_color_resolve(const struct brw_context *brw,
2005 const struct intel_mipmap_tree *mt,
2006 unsigned level, unsigned layer)
2007 {
2008 if (!mt->aux_buf)
2009 return;
2010
2011 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2012 assert(brw->screen->devinfo.gen >= 8 ||
2013 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2014
2015 /* Compression of arrayed msaa surfaces is supported. */
2016 if (mt->surf.samples > 1)
2017 return;
2018
2019 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2020 assert(brw->screen->devinfo.gen >= 8 ||
2021 (layer == 0 &&
2022 mt->surf.logical_level0_px.depth == 1 &&
2023 mt->surf.logical_level0_px.array_len == 1));
2024
2025 (void)level;
2026 (void)layer;
2027 }
2028
2029 static enum isl_aux_op
2030 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2031 enum isl_aux_usage aux_usage,
2032 bool fast_clear_supported)
2033 {
2034 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2035
2036 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2037
2038 assert(ccs_supported == fast_clear_supported);
2039
2040 switch (aux_state) {
2041 case ISL_AUX_STATE_CLEAR:
2042 case ISL_AUX_STATE_PARTIAL_CLEAR:
2043 if (!ccs_supported)
2044 return ISL_AUX_OP_FULL_RESOLVE;
2045 else
2046 return ISL_AUX_OP_NONE;
2047
2048 case ISL_AUX_STATE_PASS_THROUGH:
2049 return ISL_AUX_OP_NONE;
2050
2051 case ISL_AUX_STATE_RESOLVED:
2052 case ISL_AUX_STATE_AUX_INVALID:
2053 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2054 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2055 break;
2056 }
2057
2058 unreachable("Invalid aux state for CCS_D");
2059 }
2060
2061 static enum isl_aux_op
2062 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2063 enum isl_aux_usage aux_usage,
2064 bool fast_clear_supported)
2065 {
2066 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2067 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2068 aux_usage == ISL_AUX_USAGE_CCS_D ||
2069 aux_usage == ISL_AUX_USAGE_CCS_E);
2070
2071 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2072 assert(fast_clear_supported);
2073
2074 switch (aux_state) {
2075 case ISL_AUX_STATE_CLEAR:
2076 case ISL_AUX_STATE_PARTIAL_CLEAR:
2077 if (fast_clear_supported)
2078 return ISL_AUX_OP_NONE;
2079 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2080 return ISL_AUX_OP_PARTIAL_RESOLVE;
2081 else
2082 return ISL_AUX_OP_FULL_RESOLVE;
2083
2084 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2085 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2086 return ISL_AUX_OP_FULL_RESOLVE;
2087 else if (!fast_clear_supported)
2088 return ISL_AUX_OP_PARTIAL_RESOLVE;
2089 else
2090 return ISL_AUX_OP_NONE;
2091
2092 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2093 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2094 return ISL_AUX_OP_FULL_RESOLVE;
2095 else
2096 return ISL_AUX_OP_NONE;
2097
2098 case ISL_AUX_STATE_PASS_THROUGH:
2099 return ISL_AUX_OP_NONE;
2100
2101 case ISL_AUX_STATE_RESOLVED:
2102 case ISL_AUX_STATE_AUX_INVALID:
2103 break;
2104 }
2105
2106 unreachable("Invalid aux state for CCS_E");
2107 }
2108
2109 static void
2110 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2111 struct intel_mipmap_tree *mt,
2112 uint32_t level, uint32_t layer,
2113 enum isl_aux_usage aux_usage,
2114 bool fast_clear_supported)
2115 {
2116 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2117
2118 enum isl_aux_op resolve_op;
2119 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2120 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2121 fast_clear_supported);
2122 } else {
2123 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2124 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2125 fast_clear_supported);
2126 }
2127
2128 if (resolve_op != ISL_AUX_OP_NONE) {
2129 intel_miptree_check_color_resolve(brw, mt, level, layer);
2130 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2131
2132 switch (resolve_op) {
2133 case ISL_AUX_OP_FULL_RESOLVE:
2134 /* The CCS full resolve operation destroys the CCS and sets it to the
2135 * pass-through state. (You can also think of this as being both a
2136 * resolve and an ambiguate in one operation.)
2137 */
2138 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2139 ISL_AUX_STATE_PASS_THROUGH);
2140 break;
2141
2142 case ISL_AUX_OP_PARTIAL_RESOLVE:
2143 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2144 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2145 break;
2146
2147 default:
2148 unreachable("Invalid resolve op");
2149 }
2150 }
2151 }
2152
2153 static void
2154 intel_miptree_finish_ccs_write(struct brw_context *brw,
2155 struct intel_mipmap_tree *mt,
2156 uint32_t level, uint32_t layer,
2157 enum isl_aux_usage aux_usage)
2158 {
2159 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2160 aux_usage == ISL_AUX_USAGE_CCS_D ||
2161 aux_usage == ISL_AUX_USAGE_CCS_E);
2162
2163 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2164
2165 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2166 switch (aux_state) {
2167 case ISL_AUX_STATE_CLEAR:
2168 case ISL_AUX_STATE_PARTIAL_CLEAR:
2169 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2170 aux_usage == ISL_AUX_USAGE_CCS_D);
2171
2172 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2173 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2174 ISL_AUX_STATE_COMPRESSED_CLEAR);
2175 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2176 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2177 ISL_AUX_STATE_PARTIAL_CLEAR);
2178 }
2179 break;
2180
2181 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2182 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2183 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2184 break; /* Nothing to do */
2185
2186 case ISL_AUX_STATE_PASS_THROUGH:
2187 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2188 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2189 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2190 } else {
2191 /* Nothing to do */
2192 }
2193 break;
2194
2195 case ISL_AUX_STATE_RESOLVED:
2196 case ISL_AUX_STATE_AUX_INVALID:
2197 unreachable("Invalid aux state for CCS_E");
2198 }
2199 } else {
2200 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2201 /* CCS_D is a bit simpler */
2202 switch (aux_state) {
2203 case ISL_AUX_STATE_CLEAR:
2204 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2205 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2206 ISL_AUX_STATE_PARTIAL_CLEAR);
2207 break;
2208
2209 case ISL_AUX_STATE_PARTIAL_CLEAR:
2210 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2211 break; /* Nothing to do */
2212
2213 case ISL_AUX_STATE_PASS_THROUGH:
2214 /* Nothing to do */
2215 break;
2216
2217 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2218 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2219 case ISL_AUX_STATE_RESOLVED:
2220 case ISL_AUX_STATE_AUX_INVALID:
2221 unreachable("Invalid aux state for CCS_D");
2222 }
2223 }
2224 }
2225
2226 static void
2227 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2228 struct intel_mipmap_tree *mt,
2229 uint32_t layer,
2230 enum isl_aux_usage aux_usage,
2231 bool fast_clear_supported)
2232 {
2233 assert(aux_usage == ISL_AUX_USAGE_MCS);
2234
2235 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2236 case ISL_AUX_STATE_CLEAR:
2237 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2238 if (!fast_clear_supported) {
2239 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2240 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2241 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2242 }
2243 break;
2244
2245 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2246 break; /* Nothing to do */
2247
2248 case ISL_AUX_STATE_RESOLVED:
2249 case ISL_AUX_STATE_PASS_THROUGH:
2250 case ISL_AUX_STATE_AUX_INVALID:
2251 case ISL_AUX_STATE_PARTIAL_CLEAR:
2252 unreachable("Invalid aux state for MCS");
2253 }
2254 }
2255
2256 static void
2257 intel_miptree_finish_mcs_write(struct brw_context *brw,
2258 struct intel_mipmap_tree *mt,
2259 uint32_t layer,
2260 enum isl_aux_usage aux_usage)
2261 {
2262 assert(aux_usage == ISL_AUX_USAGE_MCS);
2263
2264 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2265 case ISL_AUX_STATE_CLEAR:
2266 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2267 ISL_AUX_STATE_COMPRESSED_CLEAR);
2268 break;
2269
2270 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2271 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2272 break; /* Nothing to do */
2273
2274 case ISL_AUX_STATE_RESOLVED:
2275 case ISL_AUX_STATE_PASS_THROUGH:
2276 case ISL_AUX_STATE_AUX_INVALID:
2277 case ISL_AUX_STATE_PARTIAL_CLEAR:
2278 unreachable("Invalid aux state for MCS");
2279 }
2280 }
2281
2282 static void
2283 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2284 struct intel_mipmap_tree *mt,
2285 uint32_t level, uint32_t layer,
2286 enum isl_aux_usage aux_usage,
2287 bool fast_clear_supported)
2288 {
2289 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2290
2291 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2292 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2293 case ISL_AUX_STATE_CLEAR:
2294 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2295 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2296 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2297 break;
2298
2299 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2300 if (aux_usage != ISL_AUX_USAGE_HIZ)
2301 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2302 break;
2303
2304 case ISL_AUX_STATE_PASS_THROUGH:
2305 case ISL_AUX_STATE_RESOLVED:
2306 break;
2307
2308 case ISL_AUX_STATE_AUX_INVALID:
2309 if (aux_usage == ISL_AUX_USAGE_HIZ)
2310 hiz_op = ISL_AUX_OP_AMBIGUATE;
2311 break;
2312
2313 case ISL_AUX_STATE_PARTIAL_CLEAR:
2314 unreachable("Invalid HiZ state");
2315 }
2316
2317 if (hiz_op != ISL_AUX_OP_NONE) {
2318 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2319
2320 switch (hiz_op) {
2321 case ISL_AUX_OP_FULL_RESOLVE:
2322 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2323 ISL_AUX_STATE_RESOLVED);
2324 break;
2325
2326 case ISL_AUX_OP_AMBIGUATE:
2327 /* The HiZ resolve operation is actually an ambiguate */
2328 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2329 ISL_AUX_STATE_PASS_THROUGH);
2330 break;
2331
2332 default:
2333 unreachable("Invalid HiZ op");
2334 }
2335 }
2336 }
2337
2338 static void
2339 intel_miptree_finish_hiz_write(struct brw_context *brw,
2340 struct intel_mipmap_tree *mt,
2341 uint32_t level, uint32_t layer,
2342 enum isl_aux_usage aux_usage)
2343 {
2344 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2345
2346 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2347 case ISL_AUX_STATE_CLEAR:
2348 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2349 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2350 ISL_AUX_STATE_COMPRESSED_CLEAR);
2351 break;
2352
2353 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2354 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2355 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2356 break; /* Nothing to do */
2357
2358 case ISL_AUX_STATE_RESOLVED:
2359 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2360 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2361 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2362 } else {
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_AUX_INVALID);
2365 }
2366 break;
2367
2368 case ISL_AUX_STATE_PASS_THROUGH:
2369 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2370 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2371 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2372 }
2373 break;
2374
2375 case ISL_AUX_STATE_AUX_INVALID:
2376 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2377 break;
2378
2379 case ISL_AUX_STATE_PARTIAL_CLEAR:
2380 unreachable("Invalid HiZ state");
2381 }
2382 }
2383
2384 void
2385 intel_miptree_prepare_access(struct brw_context *brw,
2386 struct intel_mipmap_tree *mt,
2387 uint32_t start_level, uint32_t num_levels,
2388 uint32_t start_layer, uint32_t num_layers,
2389 enum isl_aux_usage aux_usage,
2390 bool fast_clear_supported)
2391 {
2392 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2393
2394 switch (mt->aux_usage) {
2395 case ISL_AUX_USAGE_NONE:
2396 /* Nothing to do */
2397 break;
2398
2399 case ISL_AUX_USAGE_MCS:
2400 assert(mt->aux_buf);
2401 assert(start_level == 0 && num_levels == 1);
2402 const uint32_t level_layers =
2403 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2404 for (uint32_t a = 0; a < level_layers; a++) {
2405 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2406 aux_usage, fast_clear_supported);
2407 }
2408 break;
2409
2410 case ISL_AUX_USAGE_CCS_D:
2411 case ISL_AUX_USAGE_CCS_E:
2412 if (!mt->aux_buf)
2413 return;
2414
2415 for (uint32_t l = 0; l < num_levels; l++) {
2416 const uint32_t level = start_level + l;
2417 const uint32_t level_layers =
2418 miptree_layer_range_length(mt, level, start_layer, num_layers);
2419 for (uint32_t a = 0; a < level_layers; a++) {
2420 intel_miptree_prepare_ccs_access(brw, mt, level,
2421 start_layer + a,
2422 aux_usage, fast_clear_supported);
2423 }
2424 }
2425 break;
2426
2427 case ISL_AUX_USAGE_HIZ:
2428 assert(mt->aux_buf);
2429 for (uint32_t l = 0; l < num_levels; l++) {
2430 const uint32_t level = start_level + l;
2431 if (!intel_miptree_level_has_hiz(mt, level))
2432 continue;
2433
2434 const uint32_t level_layers =
2435 miptree_layer_range_length(mt, level, start_layer, num_layers);
2436 for (uint32_t a = 0; a < level_layers; a++) {
2437 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2438 aux_usage, fast_clear_supported);
2439 }
2440 }
2441 break;
2442
2443 default:
2444 unreachable("Invalid aux usage");
2445 }
2446 }
2447
2448 void
2449 intel_miptree_finish_write(struct brw_context *brw,
2450 struct intel_mipmap_tree *mt, uint32_t level,
2451 uint32_t start_layer, uint32_t num_layers,
2452 enum isl_aux_usage aux_usage)
2453 {
2454 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2455
2456 switch (mt->aux_usage) {
2457 case ISL_AUX_USAGE_NONE:
2458 /* Nothing to do */
2459 break;
2460
2461 case ISL_AUX_USAGE_MCS:
2462 assert(mt->aux_buf);
2463 for (uint32_t a = 0; a < num_layers; a++) {
2464 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2465 aux_usage);
2466 }
2467 break;
2468
2469 case ISL_AUX_USAGE_CCS_D:
2470 case ISL_AUX_USAGE_CCS_E:
2471 if (!mt->aux_buf)
2472 return;
2473
2474 for (uint32_t a = 0; a < num_layers; a++) {
2475 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2476 aux_usage);
2477 }
2478 break;
2479
2480 case ISL_AUX_USAGE_HIZ:
2481 if (!intel_miptree_level_has_hiz(mt, level))
2482 return;
2483
2484 for (uint32_t a = 0; a < num_layers; a++) {
2485 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2486 aux_usage);
2487 }
2488 break;
2489
2490 default:
2491 unreachable("Invavlid aux usage");
2492 }
2493 }
2494
2495 enum isl_aux_state
2496 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2497 uint32_t level, uint32_t layer)
2498 {
2499 intel_miptree_check_level_layer(mt, level, layer);
2500
2501 if (_mesa_is_format_color_format(mt->format)) {
2502 assert(mt->aux_buf != NULL);
2503 assert(mt->surf.samples == 1 ||
2504 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2505 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2506 unreachable("Cannot get aux state for stencil");
2507 } else {
2508 assert(intel_miptree_level_has_hiz(mt, level));
2509 }
2510
2511 return mt->aux_state[level][layer];
2512 }
2513
2514 void
2515 intel_miptree_set_aux_state(struct brw_context *brw,
2516 struct intel_mipmap_tree *mt, uint32_t level,
2517 uint32_t start_layer, uint32_t num_layers,
2518 enum isl_aux_state aux_state)
2519 {
2520 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2521
2522 if (_mesa_is_format_color_format(mt->format)) {
2523 assert(mt->aux_buf != NULL);
2524 assert(mt->surf.samples == 1 ||
2525 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2526 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2527 unreachable("Cannot get aux state for stencil");
2528 } else {
2529 assert(intel_miptree_level_has_hiz(mt, level));
2530 }
2531
2532 for (unsigned a = 0; a < num_layers; a++) {
2533 if (mt->aux_state[level][start_layer + a] != aux_state) {
2534 mt->aux_state[level][start_layer + a] = aux_state;
2535 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2536 }
2537 }
2538 }
2539
2540 /* On Gen9 color buffers may be compressed by the hardware (lossless
2541 * compression). There are, however, format restrictions and care needs to be
2542 * taken that the sampler engine is capable for re-interpreting a buffer with
2543 * format different the buffer was originally written with.
2544 *
2545 * For example, SRGB formats are not compressible and the sampler engine isn't
2546 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2547 * color buffer needs to be resolved so that the sampling surface can be
2548 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2549 * set).
2550 */
2551 static bool
2552 can_texture_with_ccs(struct brw_context *brw,
2553 struct intel_mipmap_tree *mt,
2554 enum isl_format view_format)
2555 {
2556 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2557 return false;
2558
2559 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2560 mt, view_format)) {
2561 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2562 isl_format_get_layout(view_format)->name,
2563 _mesa_get_format_name(mt->format));
2564 return false;
2565 }
2566
2567 return true;
2568 }
2569
2570 enum isl_aux_usage
2571 intel_miptree_texture_aux_usage(struct brw_context *brw,
2572 struct intel_mipmap_tree *mt,
2573 enum isl_format view_format)
2574 {
2575 switch (mt->aux_usage) {
2576 case ISL_AUX_USAGE_HIZ:
2577 if (intel_miptree_sample_with_hiz(brw, mt))
2578 return ISL_AUX_USAGE_HIZ;
2579 break;
2580
2581 case ISL_AUX_USAGE_MCS:
2582 return ISL_AUX_USAGE_MCS;
2583
2584 case ISL_AUX_USAGE_CCS_D:
2585 case ISL_AUX_USAGE_CCS_E:
2586 if (!mt->aux_buf) {
2587 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2588 return ISL_AUX_USAGE_NONE;
2589 }
2590
2591 /* If we don't have any unresolved color, report an aux usage of
2592 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2593 * aux surface and we can save some bandwidth.
2594 */
2595 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2596 0, INTEL_REMAINING_LAYERS))
2597 return ISL_AUX_USAGE_NONE;
2598
2599 if (can_texture_with_ccs(brw, mt, view_format))
2600 return ISL_AUX_USAGE_CCS_E;
2601 break;
2602
2603 default:
2604 break;
2605 }
2606
2607 return ISL_AUX_USAGE_NONE;
2608 }
2609
2610 static bool
2611 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2612 {
2613 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2614 * values so sRGB curve application was a no-op for all fast-clearable
2615 * formats.
2616 *
2617 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2618 * values, the hardware interprets the floats, not as what would be
2619 * returned from the sampler (or written by the shader), but as being
2620 * between format conversion and sRGB curve application. This means that
2621 * we can switch between sRGB and UNORM without having to whack the clear
2622 * color.
2623 */
2624 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2625 }
2626
2627 void
2628 intel_miptree_prepare_texture(struct brw_context *brw,
2629 struct intel_mipmap_tree *mt,
2630 enum isl_format view_format,
2631 uint32_t start_level, uint32_t num_levels,
2632 uint32_t start_layer, uint32_t num_layers)
2633 {
2634 enum isl_aux_usage aux_usage =
2635 intel_miptree_texture_aux_usage(brw, mt, view_format);
2636 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2637
2638 /* Clear color is specified as ints or floats and the conversion is done by
2639 * the sampler. If we have a texture view, we would have to perform the
2640 * clear color conversion manually. Just disable clear color.
2641 */
2642 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2643 clear_supported = false;
2644
2645 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2646 start_layer, num_layers,
2647 aux_usage, clear_supported);
2648 }
2649
2650 void
2651 intel_miptree_prepare_image(struct brw_context *brw,
2652 struct intel_mipmap_tree *mt)
2653 {
2654 /* The data port doesn't understand any compression */
2655 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2656 0, INTEL_REMAINING_LAYERS,
2657 ISL_AUX_USAGE_NONE, false);
2658 }
2659
2660 enum isl_aux_usage
2661 intel_miptree_render_aux_usage(struct brw_context *brw,
2662 struct intel_mipmap_tree *mt,
2663 enum isl_format render_format,
2664 bool blend_enabled,
2665 bool draw_aux_disabled)
2666 {
2667 struct gen_device_info *devinfo = &brw->screen->devinfo;
2668
2669 if (draw_aux_disabled)
2670 return ISL_AUX_USAGE_NONE;
2671
2672 switch (mt->aux_usage) {
2673 case ISL_AUX_USAGE_MCS:
2674 assert(mt->aux_buf);
2675 return ISL_AUX_USAGE_MCS;
2676
2677 case ISL_AUX_USAGE_CCS_D:
2678 case ISL_AUX_USAGE_CCS_E:
2679 if (!mt->aux_buf) {
2680 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2681 return ISL_AUX_USAGE_NONE;
2682 }
2683
2684 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2685 * formats. However, there are issues with blending where it doesn't
2686 * properly apply the sRGB curve to the clear color when blending.
2687 */
2688 if (devinfo->gen >= 9 && blend_enabled &&
2689 isl_format_is_srgb(render_format) &&
2690 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2691 return ISL_AUX_USAGE_NONE;
2692
2693 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2694 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2695 mt, render_format))
2696 return ISL_AUX_USAGE_CCS_E;
2697
2698 /* Otherwise, we have to fall back to CCS_D */
2699 return ISL_AUX_USAGE_CCS_D;
2700
2701 default:
2702 return ISL_AUX_USAGE_NONE;
2703 }
2704 }
2705
2706 void
2707 intel_miptree_prepare_render(struct brw_context *brw,
2708 struct intel_mipmap_tree *mt, uint32_t level,
2709 uint32_t start_layer, uint32_t layer_count,
2710 enum isl_aux_usage aux_usage)
2711 {
2712 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2713 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2714 }
2715
2716 void
2717 intel_miptree_finish_render(struct brw_context *brw,
2718 struct intel_mipmap_tree *mt, uint32_t level,
2719 uint32_t start_layer, uint32_t layer_count,
2720 enum isl_aux_usage aux_usage)
2721 {
2722 assert(_mesa_is_format_color_format(mt->format));
2723
2724 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2725 aux_usage);
2726 }
2727
2728 void
2729 intel_miptree_prepare_depth(struct brw_context *brw,
2730 struct intel_mipmap_tree *mt, uint32_t level,
2731 uint32_t start_layer, uint32_t layer_count)
2732 {
2733 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2734 mt->aux_usage, mt->aux_buf != NULL);
2735 }
2736
2737 void
2738 intel_miptree_finish_depth(struct brw_context *brw,
2739 struct intel_mipmap_tree *mt, uint32_t level,
2740 uint32_t start_layer, uint32_t layer_count,
2741 bool depth_written)
2742 {
2743 if (depth_written) {
2744 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2745 mt->aux_buf != NULL);
2746 }
2747 }
2748
2749 void
2750 intel_miptree_prepare_external(struct brw_context *brw,
2751 struct intel_mipmap_tree *mt)
2752 {
2753 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2754 bool supports_fast_clear = false;
2755
2756 const struct isl_drm_modifier_info *mod_info =
2757 isl_drm_modifier_get_info(mt->drm_modifier);
2758
2759 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2760 /* CCS_E is the only supported aux for external images and it's only
2761 * supported on very simple images.
2762 */
2763 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2764 assert(_mesa_is_format_color_format(mt->format));
2765 assert(mt->first_level == 0 && mt->last_level == 0);
2766 assert(mt->surf.logical_level0_px.depth == 1);
2767 assert(mt->surf.logical_level0_px.array_len == 1);
2768 assert(mt->surf.samples == 1);
2769 assert(mt->aux_buf != NULL);
2770
2771 aux_usage = mod_info->aux_usage;
2772 supports_fast_clear = mod_info->supports_clear_color;
2773 }
2774
2775 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2776 0, INTEL_REMAINING_LAYERS,
2777 aux_usage, supports_fast_clear);
2778 }
2779
2780 void
2781 intel_miptree_finish_external(struct brw_context *brw,
2782 struct intel_mipmap_tree *mt)
2783 {
2784 if (!mt->aux_buf)
2785 return;
2786
2787 /* We don't know the actual aux state of the aux surface. The previous
2788 * owner could have given it to us in a number of different states.
2789 * Because we don't know the aux state, we reset the aux state to the
2790 * least common denominator of possible valid states.
2791 */
2792 enum isl_aux_state default_aux_state =
2793 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2794 assert(mt->last_level == mt->first_level);
2795 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2796 default_aux_state);
2797 }
2798
2799 /**
2800 * Make it possible to share the BO backing the given miptree with another
2801 * process or another miptree.
2802 *
2803 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2804 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2805 * ensure that no MCS buffer gets allocated in the future.
2806 *
2807 * HiZ is similarly unsafe with shared buffers.
2808 */
2809 void
2810 intel_miptree_make_shareable(struct brw_context *brw,
2811 struct intel_mipmap_tree *mt)
2812 {
2813 /* MCS buffers are also used for multisample buffers, but we can't resolve
2814 * away a multisample MCS buffer because it's an integral part of how the
2815 * pixel data is stored. Fortunately this code path should never be
2816 * reached for multisample buffers.
2817 */
2818 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2819 mt->surf.samples == 1);
2820
2821 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2822 0, INTEL_REMAINING_LAYERS,
2823 ISL_AUX_USAGE_NONE, false);
2824
2825 if (mt->aux_buf) {
2826 intel_miptree_aux_buffer_free(mt->aux_buf);
2827 mt->aux_buf = NULL;
2828
2829 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2830 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2831 mt->level[l].has_hiz = false;
2832 }
2833
2834 free(mt->aux_state);
2835 mt->aux_state = NULL;
2836 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2837 }
2838
2839 mt->aux_usage = ISL_AUX_USAGE_NONE;
2840 mt->supports_fast_clear = false;
2841 }
2842
2843
2844 /**
2845 * \brief Get pointer offset into stencil buffer.
2846 *
2847 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2848 * must decode the tile's layout in software.
2849 *
2850 * See
2851 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2852 * Format.
2853 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2854 *
2855 * Even though the returned offset is always positive, the return type is
2856 * signed due to
2857 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2858 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2859 */
2860 static intptr_t
2861 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2862 {
2863 uint32_t tile_size = 4096;
2864 uint32_t tile_width = 64;
2865 uint32_t tile_height = 64;
2866 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2867
2868 uint32_t tile_x = x / tile_width;
2869 uint32_t tile_y = y / tile_height;
2870
2871 /* The byte's address relative to the tile's base addres. */
2872 uint32_t byte_x = x % tile_width;
2873 uint32_t byte_y = y % tile_height;
2874
2875 uintptr_t u = tile_y * row_size
2876 + tile_x * tile_size
2877 + 512 * (byte_x / 8)
2878 + 64 * (byte_y / 8)
2879 + 32 * ((byte_y / 4) % 2)
2880 + 16 * ((byte_x / 4) % 2)
2881 + 8 * ((byte_y / 2) % 2)
2882 + 4 * ((byte_x / 2) % 2)
2883 + 2 * (byte_y % 2)
2884 + 1 * (byte_x % 2);
2885
2886 if (swizzled) {
2887 /* adjust for bit6 swizzling */
2888 if (((byte_x / 8) % 2) == 1) {
2889 if (((byte_y / 8) % 2) == 0) {
2890 u += 64;
2891 } else {
2892 u -= 64;
2893 }
2894 }
2895 }
2896
2897 return u;
2898 }
2899
2900 void
2901 intel_miptree_updownsample(struct brw_context *brw,
2902 struct intel_mipmap_tree *src,
2903 struct intel_mipmap_tree *dst)
2904 {
2905 unsigned src_w = src->surf.logical_level0_px.width;
2906 unsigned src_h = src->surf.logical_level0_px.height;
2907 unsigned dst_w = dst->surf.logical_level0_px.width;
2908 unsigned dst_h = dst->surf.logical_level0_px.height;
2909
2910 brw_blorp_blit_miptrees(brw,
2911 src, 0 /* level */, 0 /* layer */,
2912 src->format, SWIZZLE_XYZW,
2913 dst, 0 /* level */, 0 /* layer */, dst->format,
2914 0, 0, src_w, src_h,
2915 0, 0, dst_w, dst_h,
2916 GL_NEAREST, false, false /*mirror x, y*/,
2917 false, false);
2918
2919 if (src->stencil_mt) {
2920 src_w = src->stencil_mt->surf.logical_level0_px.width;
2921 src_h = src->stencil_mt->surf.logical_level0_px.height;
2922 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2923 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2924
2925 brw_blorp_blit_miptrees(brw,
2926 src->stencil_mt, 0 /* level */, 0 /* layer */,
2927 src->stencil_mt->format, SWIZZLE_XYZW,
2928 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2929 dst->stencil_mt->format,
2930 0, 0, src_w, src_h,
2931 0, 0, dst_w, dst_h,
2932 GL_NEAREST, false, false /*mirror x, y*/,
2933 false, false /* decode/encode srgb */);
2934 }
2935 }
2936
2937 void
2938 intel_update_r8stencil(struct brw_context *brw,
2939 struct intel_mipmap_tree *mt)
2940 {
2941 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2942
2943 assert(devinfo->gen >= 7);
2944 struct intel_mipmap_tree *src =
2945 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2946 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2947 return;
2948
2949 assert(src->surf.size > 0);
2950
2951 if (!mt->r8stencil_mt) {
2952 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2953 mt->r8stencil_mt = make_surface(
2954 brw,
2955 src->target,
2956 MESA_FORMAT_R_UINT8,
2957 src->first_level, src->last_level,
2958 src->surf.logical_level0_px.width,
2959 src->surf.logical_level0_px.height,
2960 src->surf.dim == ISL_SURF_DIM_3D ?
2961 src->surf.logical_level0_px.depth :
2962 src->surf.logical_level0_px.array_len,
2963 src->surf.samples,
2964 ISL_TILING_Y0_BIT,
2965 ISL_SURF_USAGE_TEXTURE_BIT,
2966 BO_ALLOC_BUSY, 0, NULL);
2967 assert(mt->r8stencil_mt);
2968 }
2969
2970 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2971
2972 for (int level = src->first_level; level <= src->last_level; level++) {
2973 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2974 minify(src->surf.phys_level0_sa.depth, level) :
2975 src->surf.phys_level0_sa.array_len;
2976
2977 for (unsigned layer = 0; layer < depth; layer++) {
2978 brw_blorp_copy_miptrees(brw,
2979 src, level, layer,
2980 dst, level, layer,
2981 0, 0, 0, 0,
2982 minify(src->surf.logical_level0_px.width,
2983 level),
2984 minify(src->surf.logical_level0_px.height,
2985 level));
2986 }
2987 }
2988
2989 brw_cache_flush_for_read(brw, dst->bo);
2990 src->r8stencil_needs_update = false;
2991 }
2992
2993 static void *
2994 intel_miptree_map_raw(struct brw_context *brw,
2995 struct intel_mipmap_tree *mt,
2996 GLbitfield mode)
2997 {
2998 struct brw_bo *bo = mt->bo;
2999
3000 if (brw_batch_references(&brw->batch, bo))
3001 intel_batchbuffer_flush(brw);
3002
3003 return brw_bo_map(brw, bo, mode);
3004 }
3005
3006 static void
3007 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3008 {
3009 brw_bo_unmap(mt->bo);
3010 }
3011
3012 static void
3013 intel_miptree_unmap_gtt(struct brw_context *brw,
3014 struct intel_mipmap_tree *mt,
3015 struct intel_miptree_map *map,
3016 unsigned int level, unsigned int slice)
3017 {
3018 intel_miptree_unmap_raw(mt);
3019 }
3020
3021 static void
3022 intel_miptree_map_gtt(struct brw_context *brw,
3023 struct intel_mipmap_tree *mt,
3024 struct intel_miptree_map *map,
3025 unsigned int level, unsigned int slice)
3026 {
3027 unsigned int bw, bh;
3028 void *base;
3029 unsigned int image_x, image_y;
3030 intptr_t x = map->x;
3031 intptr_t y = map->y;
3032
3033 /* For compressed formats, the stride is the number of bytes per
3034 * row of blocks. intel_miptree_get_image_offset() already does
3035 * the divide.
3036 */
3037 _mesa_get_format_block_size(mt->format, &bw, &bh);
3038 assert(y % bh == 0);
3039 assert(x % bw == 0);
3040 y /= bh;
3041 x /= bw;
3042
3043 base = intel_miptree_map_raw(brw, mt, map->mode);
3044
3045 if (base == NULL)
3046 map->ptr = NULL;
3047 else {
3048 base += mt->offset;
3049
3050 /* Note that in the case of cube maps, the caller must have passed the
3051 * slice number referencing the face.
3052 */
3053 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3054 x += image_x;
3055 y += image_y;
3056
3057 map->stride = mt->surf.row_pitch;
3058 map->ptr = base + y * map->stride + x * mt->cpp;
3059 }
3060
3061 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3062 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3063 map->x, map->y, map->w, map->h,
3064 mt, _mesa_get_format_name(mt->format),
3065 x, y, map->ptr, map->stride);
3066
3067 map->unmap = intel_miptree_unmap_gtt;
3068 }
3069
3070 static void
3071 intel_miptree_unmap_blit(struct brw_context *brw,
3072 struct intel_mipmap_tree *mt,
3073 struct intel_miptree_map *map,
3074 unsigned int level,
3075 unsigned int slice)
3076 {
3077 struct gl_context *ctx = &brw->ctx;
3078
3079 intel_miptree_unmap_raw(map->linear_mt);
3080
3081 if (map->mode & GL_MAP_WRITE_BIT) {
3082 bool ok = intel_miptree_copy(brw,
3083 map->linear_mt, 0, 0, 0, 0,
3084 mt, level, slice, map->x, map->y,
3085 map->w, map->h);
3086 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3087 }
3088
3089 intel_miptree_release(&map->linear_mt);
3090 }
3091
3092 static void
3093 intel_miptree_map_blit(struct brw_context *brw,
3094 struct intel_mipmap_tree *mt,
3095 struct intel_miptree_map *map,
3096 unsigned int level, unsigned int slice)
3097 {
3098 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3099 /* first_level */ 0,
3100 /* last_level */ 0,
3101 map->w, map->h, 1,
3102 /* samples */ 1,
3103 MIPTREE_CREATE_LINEAR);
3104
3105 if (!map->linear_mt) {
3106 fprintf(stderr, "Failed to allocate blit temporary\n");
3107 goto fail;
3108 }
3109 map->stride = map->linear_mt->surf.row_pitch;
3110
3111 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3112 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3113 * invalidate is set, since we'll be writing the whole rectangle from our
3114 * temporary buffer back out.
3115 */
3116 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3117 if (!intel_miptree_copy(brw,
3118 mt, level, slice, map->x, map->y,
3119 map->linear_mt, 0, 0, 0, 0,
3120 map->w, map->h)) {
3121 fprintf(stderr, "Failed to blit\n");
3122 goto fail;
3123 }
3124 }
3125
3126 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3127
3128 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3129 map->x, map->y, map->w, map->h,
3130 mt, _mesa_get_format_name(mt->format),
3131 level, slice, map->ptr, map->stride);
3132
3133 map->unmap = intel_miptree_unmap_blit;
3134 return;
3135
3136 fail:
3137 intel_miptree_release(&map->linear_mt);
3138 map->ptr = NULL;
3139 map->stride = 0;
3140 }
3141
3142 /**
3143 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3144 */
3145 #if defined(USE_SSE41)
3146 static void
3147 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3148 struct intel_mipmap_tree *mt,
3149 struct intel_miptree_map *map,
3150 unsigned int level,
3151 unsigned int slice)
3152 {
3153 _mesa_align_free(map->buffer);
3154 map->buffer = NULL;
3155 map->ptr = NULL;
3156 }
3157
3158 static void
3159 intel_miptree_map_movntdqa(struct brw_context *brw,
3160 struct intel_mipmap_tree *mt,
3161 struct intel_miptree_map *map,
3162 unsigned int level, unsigned int slice)
3163 {
3164 assert(map->mode & GL_MAP_READ_BIT);
3165 assert(!(map->mode & GL_MAP_WRITE_BIT));
3166
3167 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3168 map->x, map->y, map->w, map->h,
3169 mt, _mesa_get_format_name(mt->format),
3170 level, slice, map->ptr, map->stride);
3171
3172 /* Map the original image */
3173 uint32_t image_x;
3174 uint32_t image_y;
3175 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3176 image_x += map->x;
3177 image_y += map->y;
3178
3179 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3180 if (!src)
3181 return;
3182
3183 src += mt->offset;
3184
3185 src += image_y * mt->surf.row_pitch;
3186 src += image_x * mt->cpp;
3187
3188 /* Due to the pixel offsets for the particular image being mapped, our
3189 * src pointer may not be 16-byte aligned. However, if the pitch is
3190 * divisible by 16, then the amount by which it's misaligned will remain
3191 * consistent from row to row.
3192 */
3193 assert((mt->surf.row_pitch % 16) == 0);
3194 const int misalignment = ((uintptr_t) src) & 15;
3195
3196 /* Create an untiled temporary buffer for the mapping. */
3197 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3198
3199 map->stride = ALIGN(misalignment + width_bytes, 16);
3200
3201 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3202 /* Offset the destination so it has the same misalignment as src. */
3203 map->ptr = map->buffer + misalignment;
3204
3205 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3206
3207 for (uint32_t y = 0; y < map->h; y++) {
3208 void *dst_ptr = map->ptr + y * map->stride;
3209 void *src_ptr = src + y * mt->surf.row_pitch;
3210
3211 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3212 }
3213
3214 intel_miptree_unmap_raw(mt);
3215
3216 map->unmap = intel_miptree_unmap_movntdqa;
3217 }
3218 #endif
3219
3220 static void
3221 intel_miptree_unmap_s8(struct brw_context *brw,
3222 struct intel_mipmap_tree *mt,
3223 struct intel_miptree_map *map,
3224 unsigned int level,
3225 unsigned int slice)
3226 {
3227 if (map->mode & GL_MAP_WRITE_BIT) {
3228 unsigned int image_x, image_y;
3229 uint8_t *untiled_s8_map = map->ptr;
3230 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3231
3232 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3233
3234 for (uint32_t y = 0; y < map->h; y++) {
3235 for (uint32_t x = 0; x < map->w; x++) {
3236 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3237 image_x + x + map->x,
3238 image_y + y + map->y,
3239 brw->has_swizzling);
3240 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3241 }
3242 }
3243
3244 intel_miptree_unmap_raw(mt);
3245 }
3246
3247 free(map->buffer);
3248 }
3249
3250 static void
3251 intel_miptree_map_s8(struct brw_context *brw,
3252 struct intel_mipmap_tree *mt,
3253 struct intel_miptree_map *map,
3254 unsigned int level, unsigned int slice)
3255 {
3256 map->stride = map->w;
3257 map->buffer = map->ptr = malloc(map->stride * map->h);
3258 if (!map->buffer)
3259 return;
3260
3261 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3262 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3263 * invalidate is set, since we'll be writing the whole rectangle from our
3264 * temporary buffer back out.
3265 */
3266 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3267 uint8_t *untiled_s8_map = map->ptr;
3268 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3269 unsigned int image_x, image_y;
3270
3271 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3272
3273 for (uint32_t y = 0; y < map->h; y++) {
3274 for (uint32_t x = 0; x < map->w; x++) {
3275 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3276 x + image_x + map->x,
3277 y + image_y + map->y,
3278 brw->has_swizzling);
3279 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3280 }
3281 }
3282
3283 intel_miptree_unmap_raw(mt);
3284
3285 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3286 map->x, map->y, map->w, map->h,
3287 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3288 } else {
3289 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3290 map->x, map->y, map->w, map->h,
3291 mt, map->ptr, map->stride);
3292 }
3293
3294 map->unmap = intel_miptree_unmap_s8;
3295 }
3296
3297 static void
3298 intel_miptree_unmap_etc(struct brw_context *brw,
3299 struct intel_mipmap_tree *mt,
3300 struct intel_miptree_map *map,
3301 unsigned int level,
3302 unsigned int slice)
3303 {
3304 uint32_t image_x;
3305 uint32_t image_y;
3306 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3307
3308 image_x += map->x;
3309 image_y += map->y;
3310
3311 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3312 + image_y * mt->surf.row_pitch
3313 + image_x * mt->cpp;
3314
3315 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3316 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3317 map->ptr, map->stride,
3318 map->w, map->h);
3319 else
3320 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3321 map->ptr, map->stride,
3322 map->w, map->h, mt->etc_format);
3323
3324 intel_miptree_unmap_raw(mt);
3325 free(map->buffer);
3326 }
3327
3328 static void
3329 intel_miptree_map_etc(struct brw_context *brw,
3330 struct intel_mipmap_tree *mt,
3331 struct intel_miptree_map *map,
3332 unsigned int level,
3333 unsigned int slice)
3334 {
3335 assert(mt->etc_format != MESA_FORMAT_NONE);
3336 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3337 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3338 }
3339
3340 assert(map->mode & GL_MAP_WRITE_BIT);
3341 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3342
3343 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3344 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3345 map->w, map->h, 1));
3346 map->ptr = map->buffer;
3347 map->unmap = intel_miptree_unmap_etc;
3348 }
3349
3350 /**
3351 * Mapping functions for packed depth/stencil miptrees backed by real separate
3352 * miptrees for depth and stencil.
3353 *
3354 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3355 * separate from the depth buffer. Yet at the GL API level, we have to expose
3356 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3357 * be able to map that memory for texture storage and glReadPixels-type
3358 * operations. We give Mesa core that access by mallocing a temporary and
3359 * copying the data between the actual backing store and the temporary.
3360 */
3361 static void
3362 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3363 struct intel_mipmap_tree *mt,
3364 struct intel_miptree_map *map,
3365 unsigned int level,
3366 unsigned int slice)
3367 {
3368 struct intel_mipmap_tree *z_mt = mt;
3369 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3370 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3371
3372 if (map->mode & GL_MAP_WRITE_BIT) {
3373 uint32_t *packed_map = map->ptr;
3374 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3375 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3376 unsigned int s_image_x, s_image_y;
3377 unsigned int z_image_x, z_image_y;
3378
3379 intel_miptree_get_image_offset(s_mt, level, slice,
3380 &s_image_x, &s_image_y);
3381 intel_miptree_get_image_offset(z_mt, level, slice,
3382 &z_image_x, &z_image_y);
3383
3384 for (uint32_t y = 0; y < map->h; y++) {
3385 for (uint32_t x = 0; x < map->w; x++) {
3386 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3387 x + s_image_x + map->x,
3388 y + s_image_y + map->y,
3389 brw->has_swizzling);
3390 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3391 (z_mt->surf.row_pitch / 4) +
3392 (x + z_image_x + map->x));
3393
3394 if (map_z32f_x24s8) {
3395 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3396 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3397 } else {
3398 uint32_t packed = packed_map[y * map->w + x];
3399 s_map[s_offset] = packed >> 24;
3400 z_map[z_offset] = packed;
3401 }
3402 }
3403 }
3404
3405 intel_miptree_unmap_raw(s_mt);
3406 intel_miptree_unmap_raw(z_mt);
3407
3408 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3409 __func__,
3410 map->x, map->y, map->w, map->h,
3411 z_mt, _mesa_get_format_name(z_mt->format),
3412 map->x + z_image_x, map->y + z_image_y,
3413 s_mt, map->x + s_image_x, map->y + s_image_y,
3414 map->ptr, map->stride);
3415 }
3416
3417 free(map->buffer);
3418 }
3419
3420 static void
3421 intel_miptree_map_depthstencil(struct brw_context *brw,
3422 struct intel_mipmap_tree *mt,
3423 struct intel_miptree_map *map,
3424 unsigned int level, unsigned int slice)
3425 {
3426 struct intel_mipmap_tree *z_mt = mt;
3427 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3428 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3429 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3430
3431 map->stride = map->w * packed_bpp;
3432 map->buffer = map->ptr = malloc(map->stride * map->h);
3433 if (!map->buffer)
3434 return;
3435
3436 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3437 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3438 * invalidate is set, since we'll be writing the whole rectangle from our
3439 * temporary buffer back out.
3440 */
3441 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3442 uint32_t *packed_map = map->ptr;
3443 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3444 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3445 unsigned int s_image_x, s_image_y;
3446 unsigned int z_image_x, z_image_y;
3447
3448 intel_miptree_get_image_offset(s_mt, level, slice,
3449 &s_image_x, &s_image_y);
3450 intel_miptree_get_image_offset(z_mt, level, slice,
3451 &z_image_x, &z_image_y);
3452
3453 for (uint32_t y = 0; y < map->h; y++) {
3454 for (uint32_t x = 0; x < map->w; x++) {
3455 int map_x = map->x + x, map_y = map->y + y;
3456 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3457 map_x + s_image_x,
3458 map_y + s_image_y,
3459 brw->has_swizzling);
3460 ptrdiff_t z_offset = ((map_y + z_image_y) *
3461 (z_mt->surf.row_pitch / 4) +
3462 (map_x + z_image_x));
3463 uint8_t s = s_map[s_offset];
3464 uint32_t z = z_map[z_offset];
3465
3466 if (map_z32f_x24s8) {
3467 packed_map[(y * map->w + x) * 2 + 0] = z;
3468 packed_map[(y * map->w + x) * 2 + 1] = s;
3469 } else {
3470 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3471 }
3472 }
3473 }
3474
3475 intel_miptree_unmap_raw(s_mt);
3476 intel_miptree_unmap_raw(z_mt);
3477
3478 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3479 __func__,
3480 map->x, map->y, map->w, map->h,
3481 z_mt, map->x + z_image_x, map->y + z_image_y,
3482 s_mt, map->x + s_image_x, map->y + s_image_y,
3483 map->ptr, map->stride);
3484 } else {
3485 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3486 map->x, map->y, map->w, map->h,
3487 mt, map->ptr, map->stride);
3488 }
3489
3490 map->unmap = intel_miptree_unmap_depthstencil;
3491 }
3492
3493 /**
3494 * Create and attach a map to the miptree at (level, slice). Return the
3495 * attached map.
3496 */
3497 static struct intel_miptree_map*
3498 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3499 unsigned int level,
3500 unsigned int slice,
3501 unsigned int x,
3502 unsigned int y,
3503 unsigned int w,
3504 unsigned int h,
3505 GLbitfield mode)
3506 {
3507 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3508
3509 if (!map)
3510 return NULL;
3511
3512 assert(mt->level[level].slice[slice].map == NULL);
3513 mt->level[level].slice[slice].map = map;
3514
3515 map->mode = mode;
3516 map->x = x;
3517 map->y = y;
3518 map->w = w;
3519 map->h = h;
3520
3521 return map;
3522 }
3523
3524 /**
3525 * Release the map at (level, slice).
3526 */
3527 static void
3528 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3529 unsigned int level,
3530 unsigned int slice)
3531 {
3532 struct intel_miptree_map **map;
3533
3534 map = &mt->level[level].slice[slice].map;
3535 free(*map);
3536 *map = NULL;
3537 }
3538
3539 static bool
3540 can_blit_slice(struct intel_mipmap_tree *mt,
3541 unsigned int level, unsigned int slice)
3542 {
3543 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3544 if (mt->surf.row_pitch >= 32768)
3545 return false;
3546
3547 return true;
3548 }
3549
3550 static bool
3551 use_intel_mipree_map_blit(struct brw_context *brw,
3552 struct intel_mipmap_tree *mt,
3553 GLbitfield mode,
3554 unsigned int level,
3555 unsigned int slice)
3556 {
3557 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3558
3559 if (devinfo->has_llc &&
3560 /* It's probably not worth swapping to the blit ring because of
3561 * all the overhead involved.
3562 */
3563 !(mode & GL_MAP_WRITE_BIT) &&
3564 !mt->compressed &&
3565 (mt->surf.tiling == ISL_TILING_X ||
3566 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3567 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3568 /* Fast copy blit on skl+ supports all tiling formats. */
3569 devinfo->gen >= 9) &&
3570 can_blit_slice(mt, level, slice))
3571 return true;
3572
3573 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3574 mt->bo->size >= brw->max_gtt_map_object_size) {
3575 assert(can_blit_slice(mt, level, slice));
3576 return true;
3577 }
3578
3579 return false;
3580 }
3581
3582 /**
3583 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3584 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3585 * arithmetic overflow.
3586 *
3587 * If you call this function and use \a out_stride, then you're doing pointer
3588 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3589 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3590 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3591 * which usually have type uint32_t or GLuint.
3592 */
3593 void
3594 intel_miptree_map(struct brw_context *brw,
3595 struct intel_mipmap_tree *mt,
3596 unsigned int level,
3597 unsigned int slice,
3598 unsigned int x,
3599 unsigned int y,
3600 unsigned int w,
3601 unsigned int h,
3602 GLbitfield mode,
3603 void **out_ptr,
3604 ptrdiff_t *out_stride)
3605 {
3606 struct intel_miptree_map *map;
3607
3608 assert(mt->surf.samples == 1);
3609
3610 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3611 if (!map){
3612 *out_ptr = NULL;
3613 *out_stride = 0;
3614 return;
3615 }
3616
3617 intel_miptree_access_raw(brw, mt, level, slice,
3618 map->mode & GL_MAP_WRITE_BIT);
3619
3620 if (mt->format == MESA_FORMAT_S_UINT8) {
3621 intel_miptree_map_s8(brw, mt, map, level, slice);
3622 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3623 !(mode & BRW_MAP_DIRECT_BIT)) {
3624 intel_miptree_map_etc(brw, mt, map, level, slice);
3625 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3626 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3627 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3628 intel_miptree_map_blit(brw, mt, map, level, slice);
3629 #if defined(USE_SSE41)
3630 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3631 !mt->compressed && cpu_has_sse4_1 &&
3632 (mt->surf.row_pitch % 16 == 0)) {
3633 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3634 #endif
3635 } else {
3636 intel_miptree_map_gtt(brw, mt, map, level, slice);
3637 }
3638
3639 *out_ptr = map->ptr;
3640 *out_stride = map->stride;
3641
3642 if (map->ptr == NULL)
3643 intel_miptree_release_map(mt, level, slice);
3644 }
3645
3646 void
3647 intel_miptree_unmap(struct brw_context *brw,
3648 struct intel_mipmap_tree *mt,
3649 unsigned int level,
3650 unsigned int slice)
3651 {
3652 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3653
3654 assert(mt->surf.samples == 1);
3655
3656 if (!map)
3657 return;
3658
3659 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3660 mt, _mesa_get_format_name(mt->format), level, slice);
3661
3662 if (map->unmap)
3663 map->unmap(brw, mt, map, level, slice);
3664
3665 intel_miptree_release_map(mt, level, slice);
3666 }
3667
3668 enum isl_surf_dim
3669 get_isl_surf_dim(GLenum target)
3670 {
3671 switch (target) {
3672 case GL_TEXTURE_1D:
3673 case GL_TEXTURE_1D_ARRAY:
3674 return ISL_SURF_DIM_1D;
3675
3676 case GL_TEXTURE_2D:
3677 case GL_TEXTURE_2D_ARRAY:
3678 case GL_TEXTURE_RECTANGLE:
3679 case GL_TEXTURE_CUBE_MAP:
3680 case GL_TEXTURE_CUBE_MAP_ARRAY:
3681 case GL_TEXTURE_2D_MULTISAMPLE:
3682 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3683 case GL_TEXTURE_EXTERNAL_OES:
3684 return ISL_SURF_DIM_2D;
3685
3686 case GL_TEXTURE_3D:
3687 return ISL_SURF_DIM_3D;
3688 }
3689
3690 unreachable("Invalid texture target");
3691 }
3692
3693 enum isl_dim_layout
3694 get_isl_dim_layout(const struct gen_device_info *devinfo,
3695 enum isl_tiling tiling, GLenum target)
3696 {
3697 switch (target) {
3698 case GL_TEXTURE_1D:
3699 case GL_TEXTURE_1D_ARRAY:
3700 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3701 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3702
3703 case GL_TEXTURE_2D:
3704 case GL_TEXTURE_2D_ARRAY:
3705 case GL_TEXTURE_RECTANGLE:
3706 case GL_TEXTURE_2D_MULTISAMPLE:
3707 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3708 case GL_TEXTURE_EXTERNAL_OES:
3709 return ISL_DIM_LAYOUT_GEN4_2D;
3710
3711 case GL_TEXTURE_CUBE_MAP:
3712 case GL_TEXTURE_CUBE_MAP_ARRAY:
3713 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3714 ISL_DIM_LAYOUT_GEN4_2D);
3715
3716 case GL_TEXTURE_3D:
3717 return (devinfo->gen >= 9 ?
3718 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3719 }
3720
3721 unreachable("Invalid texture target");
3722 }
3723
3724 bool
3725 intel_miptree_set_clear_color(struct brw_context *brw,
3726 struct intel_mipmap_tree *mt,
3727 union isl_color_value clear_color)
3728 {
3729 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3730 mt->fast_clear_color = clear_color;
3731 if (mt->aux_buf->clear_color_bo) {
3732 /* We can't update the clear color while the hardware is still using
3733 * the previous one for a resolve or sampling from it. Make sure that
3734 * there are no pending commands at this point.
3735 */
3736 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3737 for (int i = 0; i < 4; i++) {
3738 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3739 mt->aux_buf->clear_color_offset + i * 4,
3740 mt->fast_clear_color.u32[i]);
3741 }
3742 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3743 }
3744 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3745 return true;
3746 }
3747 return false;
3748 }
3749
3750 union isl_color_value
3751 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3752 const struct intel_mipmap_tree *mt,
3753 enum isl_format view_format, bool sampling,
3754 struct brw_bo **clear_color_bo,
3755 uint32_t *clear_color_offset)
3756 {
3757 assert(mt->aux_buf);
3758
3759 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3760 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3761 * we switch to using the inline clear color and do the sRGB color
3762 * conversion process defined in the OpenGL spec. The red, green, and
3763 * blue channels take part in gamma correction, while the alpha channel
3764 * is unchanged.
3765 */
3766 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3767 for (unsigned i = 0; i < 3; i++) {
3768 srgb_decoded_value.f32[i] =
3769 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3770 }
3771 *clear_color_bo = 0;
3772 *clear_color_offset = 0;
3773 return srgb_decoded_value;
3774 } else {
3775 *clear_color_bo = mt->aux_buf->clear_color_bo;
3776 *clear_color_offset = mt->aux_buf->clear_color_offset;
3777 return mt->fast_clear_color;
3778 }
3779 }