2aaad44c9015ab0d09031831593e563b046c825b
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_aux(struct brw_context *brw,
59 struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 /* MCS compression only applies to multisampled miptrees */
66 if (mt->surf.samples <= 1)
67 return false;
68
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return false;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(mt->format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return false;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
92 return false;
93 } else {
94 return true;
95 }
96 }
97 }
98
99 static bool
100 intel_tiling_supports_ccs(const struct brw_context *brw,
101 enum isl_tiling tiling)
102 {
103 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
104 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
105 *
106 * - Support is limited to tiled render targets.
107 *
108 * Gen9 changes the restriction to Y-tile only.
109 */
110 if (brw->gen >= 9)
111 return tiling == ISL_TILING_Y0;
112 else if (brw->gen >= 7)
113 return tiling != ISL_TILING_LINEAR;
114 else
115 return false;
116 }
117
118 /**
119 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
120 * can be used. This doesn't (and should not) inspect any of the properties of
121 * the miptree's BO.
122 *
123 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
124 * beneath the "Fast Color Clear" bullet (p326):
125 *
126 * - Support is for non-mip-mapped and non-array surface types only.
127 *
128 * And then later, on p327:
129 *
130 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
131 * 64bpp, and 128bpp.
132 *
133 * From the Skylake documentation, it is made clear that X-tiling is no longer
134 * supported:
135 *
136 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
137 * non-MSRTs only.
138 */
139 static bool
140 intel_miptree_supports_ccs(struct brw_context *brw,
141 const struct intel_mipmap_tree *mt)
142 {
143 /* MCS support does not exist prior to Gen7 */
144 if (brw->gen < 7)
145 return false;
146
147 /* This function applies only to non-multisampled render targets. */
148 if (mt->surf.samples > 1)
149 return false;
150
151 /* MCS is only supported for color buffers */
152 switch (_mesa_get_format_base_format(mt->format)) {
153 case GL_DEPTH_COMPONENT:
154 case GL_DEPTH_STENCIL:
155 case GL_STENCIL_INDEX:
156 return false;
157 }
158
159 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
160 return false;
161
162 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
163 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
164 mt->surf.logical_level0_px.depth > 1;
165
166 if (arrayed) {
167 /* Multisample surfaces with the CMS layout are not layered surfaces,
168 * yet still have physical_depth0 > 1. Assert that we don't
169 * accidentally reject a multisampled surface here. We should have
170 * rejected it earlier by explicitly checking the sample count.
171 */
172 assert(mt->surf.samples == 1);
173 }
174
175 /* Handle the hardware restrictions...
176 *
177 * All GENs have the following restriction: "MCS buffer for non-MSRT is
178 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
179 *
180 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
181 * Non-MultiSampler Render Target Restrictions) Support is for
182 * non-mip-mapped and non-array surface types only.
183 *
184 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
185 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
186 * surfaces are supported with MCS buffer layout with these alignments in
187 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
188 *
189 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
190 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
191 * surfaces are supported with MCS buffer layout with these alignments in
192 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
193 */
194 if (brw->gen < 8 && (mip_mapped || arrayed))
195 return false;
196
197 /* There's no point in using an MCS buffer if the surface isn't in a
198 * renderable format.
199 */
200 if (!brw->mesa_format_supports_render[mt->format])
201 return false;
202
203 return true;
204 }
205
206 static bool
207 intel_tiling_supports_hiz(const struct brw_context *brw,
208 enum isl_tiling tiling)
209 {
210 if (brw->gen < 6)
211 return false;
212
213 return tiling == ISL_TILING_Y0;
214 }
215
216 static bool
217 intel_miptree_supports_hiz(const struct brw_context *brw,
218 const struct intel_mipmap_tree *mt)
219 {
220 if (!brw->has_hiz)
221 return false;
222
223 switch (mt->format) {
224 case MESA_FORMAT_Z_FLOAT32:
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 case MESA_FORMAT_Z24_UNORM_X8_UINT:
227 case MESA_FORMAT_Z24_UNORM_S8_UINT:
228 case MESA_FORMAT_Z_UNORM16:
229 return true;
230 default:
231 return false;
232 }
233 }
234
235 static bool
236 intel_miptree_supports_ccs_e(struct brw_context *brw,
237 const struct intel_mipmap_tree *mt)
238 {
239 if (brw->gen < 9)
240 return false;
241
242 /* For now compression is only enabled for integer formats even though
243 * there exist supported floating point formats also. This is a heuristic
244 * decision based on current public benchmarks. In none of the cases these
245 * formats provided any improvement but a few cases were seen to regress.
246 * Hence these are left to to be enabled in the future when they are known
247 * to improve things.
248 */
249 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
250 return false;
251
252 if (!intel_miptree_supports_ccs(brw, mt))
253 return false;
254
255 /* Many window system buffers are sRGB even if they are never rendered as
256 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
257 * surface is used as sRGB, we fall back to CCS_D.
258 */
259 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
260 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
261 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
262 }
263
264 /**
265 * Determine depth format corresponding to a depth+stencil format,
266 * for separate stencil.
267 */
268 mesa_format
269 intel_depth_format_for_depthstencil_format(mesa_format format) {
270 switch (format) {
271 case MESA_FORMAT_Z24_UNORM_S8_UINT:
272 return MESA_FORMAT_Z24_UNORM_X8_UINT;
273 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
274 return MESA_FORMAT_Z_FLOAT32;
275 default:
276 return format;
277 }
278 }
279
280 static bool
281 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
282 unsigned depth0, struct intel_mipmap_level *table)
283 {
284 for (unsigned level = first_level; level <= last_level; level++) {
285 const unsigned d =
286 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
287
288 table[level].slice = calloc(d, sizeof(*table[0].slice));
289 if (!table[level].slice)
290 goto unwind;
291 }
292
293 return true;
294
295 unwind:
296 for (unsigned level = first_level; level <= last_level; level++)
297 free(table[level].slice);
298
299 return false;
300 }
301
302 static bool
303 needs_separate_stencil(const struct brw_context *brw,
304 struct intel_mipmap_tree *mt,
305 mesa_format format)
306 {
307 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
308 return false;
309
310 if (brw->must_use_separate_stencil)
311 return true;
312
313 return brw->has_separate_stencil &&
314 intel_miptree_supports_hiz(brw, mt);
315 }
316
317 /**
318 * Choose the aux usage for this miptree. This function must be called fairly
319 * late in the miptree create process after we have a tiling.
320 */
321 static void
322 intel_miptree_choose_aux_usage(struct brw_context *brw,
323 struct intel_mipmap_tree *mt)
324 {
325 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
326
327 if (intel_miptree_supports_mcs(brw, mt)) {
328 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
329 mt->aux_usage = ISL_AUX_USAGE_MCS;
330 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
331 intel_miptree_supports_ccs(brw, mt)) {
332 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
333 intel_miptree_supports_ccs_e(brw, mt)) {
334 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
335 } else {
336 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
337 }
338 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
339 intel_miptree_supports_hiz(brw, mt)) {
340 mt->aux_usage = ISL_AUX_USAGE_HIZ;
341 }
342
343 /* We can do fast-clear on all auxiliary surface types that are
344 * allocated through the normal texture creation paths.
345 */
346 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
347 mt->supports_fast_clear = true;
348 }
349
350
351 /**
352 * Choose an appropriate uncompressed format for a requested
353 * compressed format, if unsupported.
354 */
355 mesa_format
356 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
357 {
358 /* No need to lower ETC formats on these platforms,
359 * they are supported natively.
360 */
361 if (brw->gen >= 8 || brw->is_baytrail)
362 return format;
363
364 switch (format) {
365 case MESA_FORMAT_ETC1_RGB8:
366 return MESA_FORMAT_R8G8B8X8_UNORM;
367 case MESA_FORMAT_ETC2_RGB8:
368 return MESA_FORMAT_R8G8B8X8_UNORM;
369 case MESA_FORMAT_ETC2_SRGB8:
370 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
371 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
372 return MESA_FORMAT_B8G8R8A8_SRGB;
373 case MESA_FORMAT_ETC2_RGBA8_EAC:
374 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
375 return MESA_FORMAT_R8G8B8A8_UNORM;
376 case MESA_FORMAT_ETC2_R11_EAC:
377 return MESA_FORMAT_R_UNORM16;
378 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
379 return MESA_FORMAT_R_SNORM16;
380 case MESA_FORMAT_ETC2_RG11_EAC:
381 return MESA_FORMAT_R16G16_UNORM;
382 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
383 return MESA_FORMAT_R16G16_SNORM;
384 default:
385 /* Non ETC1 / ETC2 format */
386 return format;
387 }
388 }
389
390 unsigned
391 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
392 {
393 if (mt->surf.dim == ISL_SURF_DIM_3D)
394 return minify(mt->surf.logical_level0_px.depth, level);
395 else
396 return mt->surf.logical_level0_px.array_len;
397 }
398
399 static unsigned
400 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
401 {
402 /* In case of physical dimensions one needs to consider also the layout.
403 * See isl_calc_phys_level0_extent_sa().
404 */
405 if (surf->dim != ISL_SURF_DIM_3D)
406 return surf->phys_level0_sa.array_len;
407
408 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
409 return minify(surf->phys_level0_sa.array_len, level);
410
411 return minify(surf->phys_level0_sa.depth, level);
412 }
413
414 /** \brief Assert that the level and layer are valid for the miptree. */
415 void
416 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
417 uint32_t level,
418 uint32_t layer)
419 {
420 (void) mt;
421 (void) level;
422 (void) layer;
423
424 assert(level >= mt->first_level);
425 assert(level <= mt->last_level);
426 assert(layer < get_num_phys_layers(&mt->surf, level));
427 }
428
429 static enum isl_aux_state **
430 create_aux_state_map(struct intel_mipmap_tree *mt,
431 enum isl_aux_state initial)
432 {
433 const uint32_t levels = mt->last_level + 1;
434
435 uint32_t total_slices = 0;
436 for (uint32_t level = 0; level < levels; level++)
437 total_slices += brw_get_num_logical_layers(mt, level);
438
439 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
440
441 /* We're going to allocate a single chunk of data for both the per-level
442 * reference array and the arrays of aux_state. This makes cleanup
443 * significantly easier.
444 */
445 const size_t total_size = per_level_array_size +
446 total_slices * sizeof(enum isl_aux_state);
447 void *data = malloc(total_size);
448 if (data == NULL)
449 return NULL;
450
451 enum isl_aux_state **per_level_arr = data;
452 enum isl_aux_state *s = data + per_level_array_size;
453 for (uint32_t level = 0; level < levels; level++) {
454 per_level_arr[level] = s;
455 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
456 for (uint32_t a = 0; a < level_layers; a++)
457 *(s++) = initial;
458 }
459 assert((void *)s == data + total_size);
460
461 return per_level_arr;
462 }
463
464 static void
465 free_aux_state_map(enum isl_aux_state **state)
466 {
467 free(state);
468 }
469
470 static bool
471 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
472 enum isl_tiling tiling, unsigned samples)
473 {
474 if (samples > 1)
475 return false;
476
477 if (tiling == ISL_TILING_LINEAR)
478 return false;
479
480 /* If the width is much smaller than a tile, don't bother tiling. */
481 if (row_pitch < 64)
482 return true;
483
484 if (ALIGN(row_pitch, 512) >= 32768) {
485 perf_debug("row pitch %u too large to blit, falling back to untiled",
486 row_pitch);
487 return true;
488 }
489
490 return false;
491 }
492
493 static bool
494 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
495 enum isl_tiling tiling)
496 {
497 /* If the BO is too large to fit in the aperture, we need to use the
498 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
499 * handle Y-tiling, so we need to fall back to X.
500 */
501 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
502 tiling == ISL_TILING_Y0)
503 return true;
504
505 return false;
506 }
507
508 static struct intel_mipmap_tree *
509 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
510 unsigned first_level, unsigned last_level,
511 unsigned width0, unsigned height0, unsigned depth0,
512 unsigned num_samples, isl_tiling_flags_t tiling_flags,
513 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
514 unsigned row_pitch, struct brw_bo *bo)
515 {
516 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
517 if (!mt)
518 return NULL;
519
520 if (!create_mapping_table(target, first_level, last_level, depth0,
521 mt->level)) {
522 free(mt);
523 return NULL;
524 }
525
526 mt->refcount = 1;
527
528 if (target == GL_TEXTURE_CUBE_MAP ||
529 target == GL_TEXTURE_CUBE_MAP_ARRAY)
530 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
531
532 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
533 __func__,
534 _mesa_enum_to_string(target),
535 _mesa_get_format_name(format),
536 num_samples, width0, height0, depth0,
537 first_level, last_level, mt);
538
539 struct isl_surf_init_info init_info = {
540 .dim = get_isl_surf_dim(target),
541 .format = translate_tex_format(brw, format, false),
542 .width = width0,
543 .height = height0,
544 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
545 .levels = last_level - first_level + 1,
546 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
547 .samples = num_samples,
548 .row_pitch = row_pitch,
549 .usage = isl_usage_flags,
550 .tiling_flags = tiling_flags,
551 };
552
553 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
554 goto fail;
555
556 /* In case caller doesn't specifically request Y-tiling (needed
557 * unconditionally for depth), check for corner cases needing special
558 * treatment.
559 */
560 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
561 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
562 mt->surf.tiling, mt->surf.samples)) {
563 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
564 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
565 goto fail;
566 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
567 init_info.tiling_flags = 1u << ISL_TILING_X;
568 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
569 goto fail;
570 }
571 }
572
573 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
574 * the size may not be multiple of row_pitch.
575 * See isl_apply_surface_padding().
576 */
577 if (mt->surf.tiling != ISL_TILING_LINEAR)
578 assert(mt->surf.size % mt->surf.row_pitch == 0);
579
580 if (!bo) {
581 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
582 mt->surf.size,
583 isl_tiling_to_i915_tiling(
584 mt->surf.tiling),
585 mt->surf.row_pitch, alloc_flags);
586 if (!mt->bo)
587 goto fail;
588 } else {
589 mt->bo = bo;
590 }
591
592 mt->first_level = first_level;
593 mt->last_level = last_level;
594 mt->target = target;
595 mt->format = format;
596 mt->aux_state = NULL;
597 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
598 mt->compressed = _mesa_is_format_compressed(format);
599
600 return mt;
601
602 fail:
603 intel_miptree_release(&mt);
604 return NULL;
605 }
606
607 static bool
608 make_separate_stencil_surface(struct brw_context *brw,
609 struct intel_mipmap_tree *mt)
610 {
611 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
612 0, mt->surf.levels - 1,
613 mt->surf.logical_level0_px.width,
614 mt->surf.logical_level0_px.height,
615 mt->surf.dim == ISL_SURF_DIM_3D ?
616 mt->surf.logical_level0_px.depth :
617 mt->surf.logical_level0_px.array_len,
618 mt->surf.samples, ISL_TILING_W_BIT,
619 ISL_SURF_USAGE_STENCIL_BIT |
620 ISL_SURF_USAGE_TEXTURE_BIT,
621 BO_ALLOC_FOR_RENDER, 0, NULL);
622
623 if (!mt->stencil_mt)
624 return false;
625
626 mt->stencil_mt->r8stencil_needs_update = true;
627
628 return true;
629 }
630
631 static struct intel_mipmap_tree *
632 miptree_create(struct brw_context *brw,
633 GLenum target,
634 mesa_format format,
635 GLuint first_level,
636 GLuint last_level,
637 GLuint width0,
638 GLuint height0,
639 GLuint depth0,
640 GLuint num_samples,
641 uint32_t layout_flags)
642 {
643 if (format == MESA_FORMAT_S_UINT8)
644 return make_surface(brw, target, format, first_level, last_level,
645 width0, height0, depth0, num_samples,
646 ISL_TILING_W_BIT,
647 ISL_SURF_USAGE_STENCIL_BIT |
648 ISL_SURF_USAGE_TEXTURE_BIT,
649 BO_ALLOC_FOR_RENDER,
650 0,
651 NULL);
652
653 const GLenum base_format = _mesa_get_format_base_format(format);
654 if ((base_format == GL_DEPTH_COMPONENT ||
655 base_format == GL_DEPTH_STENCIL) &&
656 !(layout_flags & MIPTREE_LAYOUT_TILING_NONE)) {
657 /* Fix up the Z miptree format for how we're splitting out separate
658 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
659 */
660 const mesa_format depth_only_format =
661 intel_depth_format_for_depthstencil_format(format);
662 struct intel_mipmap_tree *mt = make_surface(
663 brw, target, brw->gen >= 6 ? depth_only_format : format,
664 first_level, last_level,
665 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
666 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_FOR_RENDER, 0, NULL);
668
669 if (needs_separate_stencil(brw, mt, format) &&
670 !make_separate_stencil_surface(brw, mt)) {
671 intel_miptree_release(&mt);
672 return NULL;
673 }
674
675 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
676 intel_miptree_choose_aux_usage(brw, mt);
677
678 return mt;
679 }
680
681 mesa_format tex_format = format;
682 mesa_format etc_format = MESA_FORMAT_NONE;
683 uint32_t alloc_flags = 0;
684
685 format = intel_lower_compressed_format(brw, format);
686
687 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
688
689 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
690 alloc_flags |= BO_ALLOC_FOR_RENDER;
691
692 isl_tiling_flags_t tiling_flags =
693 (layout_flags & MIPTREE_LAYOUT_TILING_NONE) ?
694 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
695
696 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
697 if (brw->gen < 6)
698 tiling_flags &= ~ISL_TILING_Y0_BIT;
699
700 struct intel_mipmap_tree *mt = make_surface(
701 brw, target, format,
702 first_level, last_level,
703 width0, height0, depth0,
704 num_samples, tiling_flags,
705 ISL_SURF_USAGE_RENDER_TARGET_BIT |
706 ISL_SURF_USAGE_TEXTURE_BIT,
707 alloc_flags, 0, NULL);
708 if (!mt)
709 return NULL;
710
711 mt->etc_format = etc_format;
712
713 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
714 intel_miptree_choose_aux_usage(brw, mt);
715
716 return mt;
717 }
718
719 struct intel_mipmap_tree *
720 intel_miptree_create(struct brw_context *brw,
721 GLenum target,
722 mesa_format format,
723 GLuint first_level,
724 GLuint last_level,
725 GLuint width0,
726 GLuint height0,
727 GLuint depth0,
728 GLuint num_samples,
729 uint32_t layout_flags)
730 {
731 assert(num_samples > 0);
732
733 struct intel_mipmap_tree *mt = miptree_create(
734 brw, target, format,
735 first_level, last_level,
736 width0, height0, depth0, num_samples,
737 layout_flags);
738 if (!mt)
739 return NULL;
740
741 mt->offset = 0;
742
743 if (!intel_miptree_alloc_aux(brw, mt)) {
744 intel_miptree_release(&mt);
745 return NULL;
746 }
747
748 return mt;
749 }
750
751 struct intel_mipmap_tree *
752 intel_miptree_create_for_bo(struct brw_context *brw,
753 struct brw_bo *bo,
754 mesa_format format,
755 uint32_t offset,
756 uint32_t width,
757 uint32_t height,
758 uint32_t depth,
759 int pitch,
760 uint32_t layout_flags)
761 {
762 struct intel_mipmap_tree *mt;
763 uint32_t tiling, swizzle;
764 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
765 const GLenum base_format = _mesa_get_format_base_format(format);
766
767 if ((base_format == GL_DEPTH_COMPONENT ||
768 base_format == GL_DEPTH_STENCIL)) {
769 const mesa_format depth_only_format =
770 intel_depth_format_for_depthstencil_format(format);
771 mt = make_surface(brw, target,
772 brw->gen >= 6 ? depth_only_format : format,
773 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
774 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
775 BO_ALLOC_FOR_RENDER, pitch, bo);
776 if (!mt)
777 return NULL;
778
779 brw_bo_reference(bo);
780
781 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
782 intel_miptree_choose_aux_usage(brw, mt);
783
784 return mt;
785 } else if (format == MESA_FORMAT_S_UINT8) {
786 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
787 0, 0, width, height, depth, 1,
788 ISL_TILING_W_BIT,
789 ISL_SURF_USAGE_STENCIL_BIT |
790 ISL_SURF_USAGE_TEXTURE_BIT,
791 BO_ALLOC_FOR_RENDER, pitch, bo);
792 if (!mt)
793 return NULL;
794
795 assert(bo->size >= mt->surf.size);
796
797 brw_bo_reference(bo);
798 return mt;
799 }
800
801 brw_bo_get_tiling(bo, &tiling, &swizzle);
802
803 /* Nothing will be able to use this miptree with the BO if the offset isn't
804 * aligned.
805 */
806 if (tiling != I915_TILING_NONE)
807 assert(offset % 4096 == 0);
808
809 /* miptrees can't handle negative pitch. If you need flipping of images,
810 * that's outside of the scope of the mt.
811 */
812 assert(pitch >= 0);
813
814 /* The BO already has a tiling format and we shouldn't confuse the lower
815 * layers by making it try to find a tiling format again.
816 */
817 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
818
819 mt = make_surface(brw, target, format,
820 0, 0, width, height, depth, 1,
821 1lu << isl_tiling_from_i915_tiling(tiling),
822 ISL_SURF_USAGE_RENDER_TARGET_BIT |
823 ISL_SURF_USAGE_TEXTURE_BIT,
824 0, pitch, bo);
825 if (!mt)
826 return NULL;
827
828 brw_bo_reference(bo);
829 mt->bo = bo;
830 mt->offset = offset;
831
832 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX)) {
833 intel_miptree_choose_aux_usage(brw, mt);
834
835 if (!intel_miptree_alloc_aux(brw, mt)) {
836 intel_miptree_release(&mt);
837 return NULL;
838 }
839 }
840
841 return mt;
842 }
843
844 static struct intel_mipmap_tree *
845 miptree_create_for_planar_image(struct brw_context *brw,
846 __DRIimage *image, GLenum target)
847 {
848 const struct intel_image_format *f = image->planar_format;
849 struct intel_mipmap_tree *planar_mt = NULL;
850
851 for (int i = 0; i < f->nplanes; i++) {
852 const int index = f->planes[i].buffer_index;
853 const uint32_t dri_format = f->planes[i].dri_format;
854 const mesa_format format = driImageFormatToGLFormat(dri_format);
855 const uint32_t width = image->width >> f->planes[i].width_shift;
856 const uint32_t height = image->height >> f->planes[i].height_shift;
857
858 /* Disable creation of the texture's aux buffers because the driver
859 * exposes no EGL API to manage them. That is, there is no API for
860 * resolving the aux buffer's content to the main buffer nor for
861 * invalidating the aux buffer's content.
862 */
863 struct intel_mipmap_tree *mt =
864 intel_miptree_create_for_bo(brw, image->bo, format,
865 image->offsets[index],
866 width, height, 1,
867 image->strides[index],
868 MIPTREE_LAYOUT_DISABLE_AUX);
869 if (mt == NULL)
870 return NULL;
871
872 mt->target = target;
873
874 if (i == 0)
875 planar_mt = mt;
876 else
877 planar_mt->plane[i - 1] = mt;
878 }
879
880 return planar_mt;
881 }
882
883 struct intel_mipmap_tree *
884 intel_miptree_create_for_dri_image(struct brw_context *brw,
885 __DRIimage *image, GLenum target,
886 enum isl_colorspace colorspace,
887 bool is_winsys_image)
888 {
889 if (image->planar_format && image->planar_format->nplanes > 0) {
890 assert(colorspace == ISL_COLORSPACE_NONE ||
891 colorspace == ISL_COLORSPACE_YUV);
892 return miptree_create_for_planar_image(brw, image, target);
893 }
894
895 mesa_format format = image->format;
896 switch (colorspace) {
897 case ISL_COLORSPACE_NONE:
898 /* Keep the image format unmodified */
899 break;
900
901 case ISL_COLORSPACE_LINEAR:
902 format =_mesa_get_srgb_format_linear(format);
903 break;
904
905 case ISL_COLORSPACE_SRGB:
906 format =_mesa_get_linear_format_srgb(format);
907 break;
908
909 default:
910 unreachable("Inalid colorspace for non-planar image");
911 }
912
913 if (!brw->ctx.TextureFormatSupported[format]) {
914 /* The texture storage paths in core Mesa detect if the driver does not
915 * support the user-requested format, and then searches for a
916 * fallback format. The DRIimage code bypasses core Mesa, though. So we
917 * do the fallbacks here for important formats.
918 *
919 * We must support DRM_FOURCC_XBGR8888 textures because the Android
920 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
921 * the Chrome OS compositor consumes as dma_buf EGLImages.
922 */
923 format = _mesa_format_fallback_rgbx_to_rgba(format);
924 }
925
926 if (!brw->ctx.TextureFormatSupported[format])
927 return NULL;
928
929 /* If this image comes in from a window system, we have different
930 * requirements than if it comes in via an EGL import operation. Window
931 * system images can use any form of auxiliary compression we wish because
932 * they get "flushed" before being handed off to the window system and we
933 * have the opportunity to do resolves. Window system buffers also may be
934 * used for scanout so we need to flag that appropriately.
935 */
936 const uint32_t mt_layout_flags =
937 is_winsys_image ? 0 : MIPTREE_LAYOUT_DISABLE_AUX;
938
939 /* Disable creation of the texture's aux buffers because the driver exposes
940 * no EGL API to manage them. That is, there is no API for resolving the aux
941 * buffer's content to the main buffer nor for invalidating the aux buffer's
942 * content.
943 */
944 struct intel_mipmap_tree *mt =
945 intel_miptree_create_for_bo(brw, image->bo, format,
946 image->offset, image->width, image->height, 1,
947 image->pitch, mt_layout_flags);
948 if (mt == NULL)
949 return NULL;
950
951 mt->target = target;
952 mt->level[0].level_x = image->tile_x;
953 mt->level[0].level_y = image->tile_y;
954
955 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
956 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
957 * trouble resolving back to destination image due to alignment issues.
958 */
959 if (!brw->has_surface_tile_offset) {
960 uint32_t draw_x, draw_y;
961 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
962
963 if (draw_x != 0 || draw_y != 0) {
964 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
965 intel_miptree_release(&mt);
966 return NULL;
967 }
968 }
969
970 /* If this is a window-system image, then we can no longer assume it's
971 * cache-coherent because it may suddenly get scanned out which destroys
972 * coherency.
973 */
974 if (is_winsys_image)
975 image->bo->cache_coherent = false;
976
977 return mt;
978 }
979
980 /**
981 * For a singlesample renderbuffer, this simply wraps the given BO with a
982 * miptree.
983 *
984 * For a multisample renderbuffer, this wraps the window system's
985 * (singlesample) BO with a singlesample miptree attached to the
986 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
987 * that will contain the actual rendering (which is lazily resolved to
988 * irb->singlesample_mt).
989 */
990 bool
991 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
992 struct intel_renderbuffer *irb,
993 struct intel_mipmap_tree *singlesample_mt,
994 uint32_t width, uint32_t height,
995 uint32_t pitch)
996 {
997 struct intel_mipmap_tree *multisample_mt = NULL;
998 struct gl_renderbuffer *rb = &irb->Base.Base;
999 mesa_format format = rb->Format;
1000 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1001
1002 /* Only the front and back buffers, which are color buffers, are allocated
1003 * through the image loader.
1004 */
1005 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1006 _mesa_get_format_base_format(format) == GL_RGBA);
1007
1008 assert(singlesample_mt);
1009
1010 if (num_samples == 1) {
1011 intel_miptree_release(&irb->mt);
1012 irb->mt = singlesample_mt;
1013
1014 assert(!irb->singlesample_mt);
1015 } else {
1016 intel_miptree_release(&irb->singlesample_mt);
1017 irb->singlesample_mt = singlesample_mt;
1018
1019 if (!irb->mt ||
1020 irb->mt->surf.logical_level0_px.width != width ||
1021 irb->mt->surf.logical_level0_px.height != height) {
1022 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1023 format,
1024 width,
1025 height,
1026 num_samples);
1027 if (!multisample_mt)
1028 goto fail;
1029
1030 irb->need_downsample = false;
1031 intel_miptree_release(&irb->mt);
1032 irb->mt = multisample_mt;
1033 }
1034 }
1035 return true;
1036
1037 fail:
1038 intel_miptree_release(&irb->mt);
1039 return false;
1040 }
1041
1042 struct intel_mipmap_tree*
1043 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1044 mesa_format format,
1045 uint32_t width,
1046 uint32_t height,
1047 uint32_t num_samples)
1048 {
1049 struct intel_mipmap_tree *mt;
1050 uint32_t depth = 1;
1051 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1052 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1053
1054 mt = intel_miptree_create(brw, target, format, 0, 0,
1055 width, height, depth, num_samples,
1056 layout_flags);
1057 if (!mt)
1058 goto fail;
1059
1060 return mt;
1061
1062 fail:
1063 intel_miptree_release(&mt);
1064 return NULL;
1065 }
1066
1067 void
1068 intel_miptree_reference(struct intel_mipmap_tree **dst,
1069 struct intel_mipmap_tree *src)
1070 {
1071 if (*dst == src)
1072 return;
1073
1074 intel_miptree_release(dst);
1075
1076 if (src) {
1077 src->refcount++;
1078 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1079 }
1080
1081 *dst = src;
1082 }
1083
1084 static void
1085 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1086 {
1087 if (aux_buf == NULL)
1088 return;
1089
1090 brw_bo_unreference(aux_buf->bo);
1091
1092 free(aux_buf);
1093 }
1094
1095 void
1096 intel_miptree_release(struct intel_mipmap_tree **mt)
1097 {
1098 if (!*mt)
1099 return;
1100
1101 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1102 if (--(*mt)->refcount <= 0) {
1103 GLuint i;
1104
1105 DBG("%s deleting %p\n", __func__, *mt);
1106
1107 brw_bo_unreference((*mt)->bo);
1108 intel_miptree_release(&(*mt)->stencil_mt);
1109 intel_miptree_release(&(*mt)->r8stencil_mt);
1110 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1111 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1112 free_aux_state_map((*mt)->aux_state);
1113
1114 intel_miptree_release(&(*mt)->plane[0]);
1115 intel_miptree_release(&(*mt)->plane[1]);
1116
1117 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1118 free((*mt)->level[i].slice);
1119 }
1120
1121 free(*mt);
1122 }
1123 *mt = NULL;
1124 }
1125
1126
1127 void
1128 intel_get_image_dims(struct gl_texture_image *image,
1129 int *width, int *height, int *depth)
1130 {
1131 switch (image->TexObject->Target) {
1132 case GL_TEXTURE_1D_ARRAY:
1133 /* For a 1D Array texture the OpenGL API will treat the image height as
1134 * the number of array slices. For Intel hardware, we treat the 1D array
1135 * as a 2D Array with a height of 1. So, here we want to swap image
1136 * height and depth.
1137 */
1138 assert(image->Depth == 1);
1139 *width = image->Width;
1140 *height = 1;
1141 *depth = image->Height;
1142 break;
1143 case GL_TEXTURE_CUBE_MAP:
1144 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1145 * though we really have 6 slices.
1146 */
1147 assert(image->Depth == 1);
1148 *width = image->Width;
1149 *height = image->Height;
1150 *depth = 6;
1151 break;
1152 default:
1153 *width = image->Width;
1154 *height = image->Height;
1155 *depth = image->Depth;
1156 break;
1157 }
1158 }
1159
1160 /**
1161 * Can the image be pulled into a unified mipmap tree? This mirrors
1162 * the completeness test in a lot of ways.
1163 *
1164 * Not sure whether I want to pass gl_texture_image here.
1165 */
1166 bool
1167 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1168 struct gl_texture_image *image)
1169 {
1170 struct intel_texture_image *intelImage = intel_texture_image(image);
1171 GLuint level = intelImage->base.Base.Level;
1172 int width, height, depth;
1173
1174 /* glTexImage* choose the texture object based on the target passed in, and
1175 * objects can't change targets over their lifetimes, so this should be
1176 * true.
1177 */
1178 assert(image->TexObject->Target == mt->target);
1179
1180 mesa_format mt_format = mt->format;
1181 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1182 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1183 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1184 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1185 if (mt->etc_format != MESA_FORMAT_NONE)
1186 mt_format = mt->etc_format;
1187
1188 if (image->TexFormat != mt_format)
1189 return false;
1190
1191 intel_get_image_dims(image, &width, &height, &depth);
1192
1193 if (mt->target == GL_TEXTURE_CUBE_MAP)
1194 depth = 6;
1195
1196 if (level >= mt->surf.levels)
1197 return false;
1198
1199 const unsigned level_depth =
1200 mt->surf.dim == ISL_SURF_DIM_3D ?
1201 minify(mt->surf.logical_level0_px.depth, level) :
1202 mt->surf.logical_level0_px.array_len;
1203
1204 return width == minify(mt->surf.logical_level0_px.width, level) &&
1205 height == minify(mt->surf.logical_level0_px.height, level) &&
1206 depth == level_depth &&
1207 MAX2(image->NumSamples, 1) == mt->surf.samples;
1208 }
1209
1210 void
1211 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1212 GLuint level, GLuint slice,
1213 GLuint *x, GLuint *y)
1214 {
1215 if (level == 0 && slice == 0) {
1216 *x = mt->level[0].level_x;
1217 *y = mt->level[0].level_y;
1218 return;
1219 }
1220
1221 uint32_t x_offset_sa, y_offset_sa;
1222
1223 /* Miptree itself can have an offset only if it represents a single
1224 * slice in an imported buffer object.
1225 * See intel_miptree_create_for_dri_image().
1226 */
1227 assert(mt->level[0].level_x == 0);
1228 assert(mt->level[0].level_y == 0);
1229
1230 /* Given level is relative to level zero while the miptree may be
1231 * represent just a subset of all levels starting from 'first_level'.
1232 */
1233 assert(level >= mt->first_level);
1234 level -= mt->first_level;
1235
1236 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1237 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1238 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1239 &x_offset_sa, &y_offset_sa);
1240
1241 *x = x_offset_sa;
1242 *y = y_offset_sa;
1243 }
1244
1245
1246 /**
1247 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1248 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1249 * and tile_h is set to 1.
1250 */
1251 void
1252 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1253 uint32_t *tile_w, uint32_t *tile_h)
1254 {
1255 switch (tiling) {
1256 case ISL_TILING_X:
1257 *tile_w = 512;
1258 *tile_h = 8;
1259 break;
1260 case ISL_TILING_Y0:
1261 *tile_w = 128;
1262 *tile_h = 32;
1263 break;
1264 case ISL_TILING_LINEAR:
1265 *tile_w = cpp;
1266 *tile_h = 1;
1267 break;
1268 default:
1269 unreachable("not reached");
1270 }
1271 }
1272
1273
1274 /**
1275 * This function computes masks that may be used to select the bits of the X
1276 * and Y coordinates that indicate the offset within a tile. If the BO is
1277 * untiled, the masks are set to 0.
1278 */
1279 void
1280 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1281 uint32_t *mask_x, uint32_t *mask_y)
1282 {
1283 uint32_t tile_w_bytes, tile_h;
1284
1285 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1286
1287 *mask_x = tile_w_bytes / cpp - 1;
1288 *mask_y = tile_h - 1;
1289 }
1290
1291 /**
1292 * Compute the offset (in bytes) from the start of the BO to the given x
1293 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1294 * multiples of the tile size.
1295 */
1296 uint32_t
1297 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1298 uint32_t x, uint32_t y)
1299 {
1300 int cpp = mt->cpp;
1301 uint32_t pitch = mt->surf.row_pitch;
1302
1303 switch (mt->surf.tiling) {
1304 default:
1305 unreachable("not reached");
1306 case ISL_TILING_LINEAR:
1307 return y * pitch + x * cpp;
1308 case ISL_TILING_X:
1309 assert((x % (512 / cpp)) == 0);
1310 assert((y % 8) == 0);
1311 return y * pitch + x / (512 / cpp) * 4096;
1312 case ISL_TILING_Y0:
1313 assert((x % (128 / cpp)) == 0);
1314 assert((y % 32) == 0);
1315 return y * pitch + x / (128 / cpp) * 4096;
1316 }
1317 }
1318
1319 /**
1320 * Rendering with tiled buffers requires that the base address of the buffer
1321 * be aligned to a page boundary. For renderbuffers, and sometimes with
1322 * textures, we may want the surface to point at a texture image level that
1323 * isn't at a page boundary.
1324 *
1325 * This function returns an appropriately-aligned base offset
1326 * according to the tiling restrictions, plus any required x/y offset
1327 * from there.
1328 */
1329 uint32_t
1330 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1331 GLuint level, GLuint slice,
1332 uint32_t *tile_x,
1333 uint32_t *tile_y)
1334 {
1335 uint32_t x, y;
1336 uint32_t mask_x, mask_y;
1337
1338 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1339 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1340
1341 *tile_x = x & mask_x;
1342 *tile_y = y & mask_y;
1343
1344 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1345 }
1346
1347 static void
1348 intel_miptree_copy_slice_sw(struct brw_context *brw,
1349 struct intel_mipmap_tree *src_mt,
1350 unsigned src_level, unsigned src_layer,
1351 struct intel_mipmap_tree *dst_mt,
1352 unsigned dst_level, unsigned dst_layer,
1353 unsigned width, unsigned height)
1354 {
1355 void *src, *dst;
1356 ptrdiff_t src_stride, dst_stride;
1357 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1358
1359 intel_miptree_map(brw, src_mt,
1360 src_level, src_layer,
1361 0, 0,
1362 width, height,
1363 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1364 &src, &src_stride);
1365
1366 intel_miptree_map(brw, dst_mt,
1367 dst_level, dst_layer,
1368 0, 0,
1369 width, height,
1370 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1371 BRW_MAP_DIRECT_BIT,
1372 &dst, &dst_stride);
1373
1374 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1375 _mesa_get_format_name(src_mt->format),
1376 src_mt, src, src_stride,
1377 _mesa_get_format_name(dst_mt->format),
1378 dst_mt, dst, dst_stride,
1379 width, height);
1380
1381 int row_size = cpp * width;
1382 if (src_stride == row_size &&
1383 dst_stride == row_size) {
1384 memcpy(dst, src, row_size * height);
1385 } else {
1386 for (int i = 0; i < height; i++) {
1387 memcpy(dst, src, row_size);
1388 dst += dst_stride;
1389 src += src_stride;
1390 }
1391 }
1392
1393 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1394 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1395
1396 /* Don't forget to copy the stencil data over, too. We could have skipped
1397 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1398 * shuffling the two data sources in/out of temporary storage instead of
1399 * the direct mapping we get this way.
1400 */
1401 if (dst_mt->stencil_mt) {
1402 assert(src_mt->stencil_mt);
1403 intel_miptree_copy_slice_sw(brw,
1404 src_mt->stencil_mt, src_level, src_layer,
1405 dst_mt->stencil_mt, dst_level, dst_layer,
1406 width, height);
1407 }
1408 }
1409
1410 void
1411 intel_miptree_copy_slice(struct brw_context *brw,
1412 struct intel_mipmap_tree *src_mt,
1413 unsigned src_level, unsigned src_layer,
1414 struct intel_mipmap_tree *dst_mt,
1415 unsigned dst_level, unsigned dst_layer)
1416
1417 {
1418 mesa_format format = src_mt->format;
1419 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1420 src_level - src_mt->first_level);
1421 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1422 src_level - src_mt->first_level);
1423
1424 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1425 src_level - src_mt->first_level));
1426
1427 assert(src_mt->format == dst_mt->format);
1428
1429 if (dst_mt->compressed) {
1430 unsigned int i, j;
1431 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1432 height = ALIGN_NPOT(height, j) / j;
1433 width = ALIGN_NPOT(width, i) / i;
1434 }
1435
1436 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1437 * below won't apply since we can't do the depth's Y tiling or the
1438 * stencil's W tiling in the blitter.
1439 */
1440 if (src_mt->stencil_mt) {
1441 intel_miptree_copy_slice_sw(brw,
1442 src_mt, src_level, src_layer,
1443 dst_mt, dst_level, dst_layer,
1444 width, height);
1445 return;
1446 }
1447
1448 uint32_t dst_x, dst_y, src_x, src_y;
1449 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1450 &dst_x, &dst_y);
1451 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1452 &src_x, &src_y);
1453
1454 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1455 _mesa_get_format_name(src_mt->format),
1456 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1457 _mesa_get_format_name(dst_mt->format),
1458 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1459 width, height);
1460
1461 if (!intel_miptree_blit(brw,
1462 src_mt, src_level, src_layer, 0, 0, false,
1463 dst_mt, dst_level, dst_layer, 0, 0, false,
1464 width, height, GL_COPY)) {
1465 perf_debug("miptree validate blit for %s failed\n",
1466 _mesa_get_format_name(format));
1467
1468 intel_miptree_copy_slice_sw(brw,
1469 src_mt, src_level, src_layer,
1470 dst_mt, dst_level, dst_layer,
1471 width, height);
1472 }
1473 }
1474
1475 /**
1476 * Copies the image's current data to the given miptree, and associates that
1477 * miptree with the image.
1478 *
1479 * If \c invalidate is true, then the actual image data does not need to be
1480 * copied, but the image still needs to be associated to the new miptree (this
1481 * is set to true if we're about to clear the image).
1482 */
1483 void
1484 intel_miptree_copy_teximage(struct brw_context *brw,
1485 struct intel_texture_image *intelImage,
1486 struct intel_mipmap_tree *dst_mt,
1487 bool invalidate)
1488 {
1489 struct intel_mipmap_tree *src_mt = intelImage->mt;
1490 struct intel_texture_object *intel_obj =
1491 intel_texture_object(intelImage->base.Base.TexObject);
1492 int level = intelImage->base.Base.Level;
1493 const unsigned face = intelImage->base.Base.Face;
1494 unsigned start_layer, end_layer;
1495
1496 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1497 assert(face == 0);
1498 assert(intelImage->base.Base.Height);
1499 start_layer = 0;
1500 end_layer = intelImage->base.Base.Height - 1;
1501 } else if (face > 0) {
1502 start_layer = face;
1503 end_layer = face;
1504 } else {
1505 assert(intelImage->base.Base.Depth);
1506 start_layer = 0;
1507 end_layer = intelImage->base.Base.Depth - 1;
1508 }
1509
1510 if (!invalidate) {
1511 for (unsigned i = start_layer; i <= end_layer; i++) {
1512 intel_miptree_copy_slice(brw,
1513 src_mt, level, i,
1514 dst_mt, level, i);
1515 }
1516 }
1517
1518 intel_miptree_reference(&intelImage->mt, dst_mt);
1519 intel_obj->needs_validate = true;
1520 }
1521
1522 static void
1523 intel_miptree_init_mcs(struct brw_context *brw,
1524 struct intel_mipmap_tree *mt,
1525 int init_value)
1526 {
1527 assert(mt->mcs_buf != NULL);
1528
1529 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1530 *
1531 * When MCS buffer is enabled and bound to MSRT, it is required that it
1532 * is cleared prior to any rendering.
1533 *
1534 * Since we don't use the MCS buffer for any purpose other than rendering,
1535 * it makes sense to just clear it immediately upon allocation.
1536 *
1537 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1538 */
1539 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1540 if (unlikely(map == NULL)) {
1541 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1542 brw_bo_unreference(mt->mcs_buf->bo);
1543 free(mt->mcs_buf);
1544 return;
1545 }
1546 void *data = map;
1547 memset(data, init_value, mt->mcs_buf->size);
1548 brw_bo_unmap(mt->mcs_buf->bo);
1549 }
1550
1551 static struct intel_miptree_aux_buffer *
1552 intel_alloc_aux_buffer(struct brw_context *brw,
1553 const char *name,
1554 const struct isl_surf *aux_surf,
1555 uint32_t alloc_flags,
1556 struct intel_mipmap_tree *mt)
1557 {
1558 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1559 if (!buf)
1560 return false;
1561
1562 buf->size = aux_surf->size;
1563 buf->pitch = aux_surf->row_pitch;
1564 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1565
1566 /* ISL has stricter set of alignment rules then the drm allocator.
1567 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1568 * trying to recalculate based on different format block sizes.
1569 */
1570 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1571 I915_TILING_Y, buf->pitch, alloc_flags);
1572 if (!buf->bo) {
1573 free(buf);
1574 return NULL;
1575 }
1576
1577 buf->surf = *aux_surf;
1578
1579 return buf;
1580 }
1581
1582 static bool
1583 intel_miptree_alloc_mcs(struct brw_context *brw,
1584 struct intel_mipmap_tree *mt,
1585 GLuint num_samples)
1586 {
1587 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1588 assert(mt->mcs_buf == NULL);
1589 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1590
1591 /* Multisampled miptrees are only supported for single level. */
1592 assert(mt->first_level == 0);
1593 enum isl_aux_state **aux_state =
1594 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1595 if (!aux_state)
1596 return false;
1597
1598 struct isl_surf temp_mcs_surf;
1599
1600 MAYBE_UNUSED bool ok =
1601 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1602 assert(ok);
1603
1604 /* Buffer needs to be initialised requiring the buffer to be immediately
1605 * mapped to cpu space for writing. Therefore do not use the gpu access
1606 * flag which can cause an unnecessary delay if the backing pages happened
1607 * to be just used by the GPU.
1608 */
1609 const uint32_t alloc_flags = 0;
1610 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1611 &temp_mcs_surf, alloc_flags, mt);
1612 if (!mt->mcs_buf) {
1613 free(aux_state);
1614 return false;
1615 }
1616
1617 mt->aux_state = aux_state;
1618
1619 intel_miptree_init_mcs(brw, mt, 0xFF);
1620
1621 return true;
1622 }
1623
1624 bool
1625 intel_miptree_alloc_ccs(struct brw_context *brw,
1626 struct intel_mipmap_tree *mt)
1627 {
1628 assert(mt->mcs_buf == NULL);
1629 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1630 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1631
1632 struct isl_surf temp_ccs_surf;
1633
1634 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1635 return false;
1636
1637 assert(temp_ccs_surf.size &&
1638 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1639
1640 enum isl_aux_state **aux_state =
1641 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1642 if (!aux_state)
1643 return false;
1644
1645 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1646 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1647 *
1648 * "If Software wants to enable Color Compression without Fast clear,
1649 * Software needs to initialize MCS with zeros."
1650 *
1651 * A CCS value of 0 indicates that the corresponding block is in the
1652 * pass-through state which is what we want.
1653 *
1654 * For CCS_D, on the other hand, we don't care as we're about to perform a
1655 * fast-clear operation. In that case, being hot in caches more useful.
1656 */
1657 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1658 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1659 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1660 &temp_ccs_surf, alloc_flags, mt);
1661 if (!mt->mcs_buf) {
1662 free(aux_state);
1663 return false;
1664 }
1665
1666 mt->aux_state = aux_state;
1667
1668 return true;
1669 }
1670
1671 /**
1672 * Helper for intel_miptree_alloc_hiz() that sets
1673 * \c mt->level[level].has_hiz. Return true if and only if
1674 * \c has_hiz was set.
1675 */
1676 static bool
1677 intel_miptree_level_enable_hiz(struct brw_context *brw,
1678 struct intel_mipmap_tree *mt,
1679 uint32_t level)
1680 {
1681 assert(mt->hiz_buf);
1682 assert(mt->surf.size > 0);
1683
1684 if (brw->gen >= 8 || brw->is_haswell) {
1685 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1686 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1687
1688 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1689 * and the height is 4 aligned. This allows our HiZ support
1690 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1691 * we can grow the width & height to allow the HiZ op to
1692 * force the proper size alignments.
1693 */
1694 if (level > 0 && ((width & 7) || (height & 3))) {
1695 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1696 return false;
1697 }
1698 }
1699
1700 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1701 mt->level[level].has_hiz = true;
1702 return true;
1703 }
1704
1705 bool
1706 intel_miptree_alloc_hiz(struct brw_context *brw,
1707 struct intel_mipmap_tree *mt)
1708 {
1709 assert(mt->hiz_buf == NULL);
1710 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1711
1712 enum isl_aux_state **aux_state =
1713 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1714 if (!aux_state)
1715 return false;
1716
1717 struct isl_surf temp_hiz_surf;
1718
1719 MAYBE_UNUSED bool ok =
1720 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1721 assert(ok);
1722
1723 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1724 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1725 &temp_hiz_surf, alloc_flags, mt);
1726
1727 if (!mt->hiz_buf) {
1728 free(aux_state);
1729 return false;
1730 }
1731
1732 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1733 intel_miptree_level_enable_hiz(brw, mt, level);
1734
1735 mt->aux_state = aux_state;
1736
1737 return true;
1738 }
1739
1740
1741 /**
1742 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1743 *
1744 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1745 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1746 * compress clear color so we wait until an actual fast-clear to allocate it.
1747 */
1748 static bool
1749 intel_miptree_alloc_aux(struct brw_context *brw,
1750 struct intel_mipmap_tree *mt)
1751 {
1752 switch (mt->aux_usage) {
1753 case ISL_AUX_USAGE_NONE:
1754 return true;
1755
1756 case ISL_AUX_USAGE_HIZ:
1757 assert(!_mesa_is_format_color_format(mt->format));
1758 if (!intel_miptree_alloc_hiz(brw, mt))
1759 return false;
1760 return true;
1761
1762 case ISL_AUX_USAGE_MCS:
1763 assert(_mesa_is_format_color_format(mt->format));
1764 assert(mt->surf.samples > 1);
1765 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1766 return false;
1767 return true;
1768
1769 case ISL_AUX_USAGE_CCS_D:
1770 /* Since CCS_D can only compress clear color so we wait until an actual
1771 * fast-clear to allocate it.
1772 */
1773 return true;
1774
1775 case ISL_AUX_USAGE_CCS_E:
1776 assert(_mesa_is_format_color_format(mt->format));
1777 assert(mt->surf.samples == 1);
1778 if (!intel_miptree_alloc_ccs(brw, mt))
1779 return false;
1780 return true;
1781 }
1782
1783 unreachable("Invalid aux usage");
1784 }
1785
1786
1787 /**
1788 * Can the miptree sample using the hiz buffer?
1789 */
1790 bool
1791 intel_miptree_sample_with_hiz(struct brw_context *brw,
1792 struct intel_mipmap_tree *mt)
1793 {
1794 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1795 * so keep things conservative for now and never enable it unless we're SKL+.
1796 */
1797 if (brw->gen < 9) {
1798 return false;
1799 }
1800
1801 if (!mt->hiz_buf) {
1802 return false;
1803 }
1804
1805 /* It seems the hardware won't fallback to the depth buffer if some of the
1806 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1807 * of the texture to be HiZ enabled.
1808 */
1809 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1810 if (!intel_miptree_level_has_hiz(mt, level))
1811 return false;
1812 }
1813
1814 /* If compressed multisampling is enabled, then we use it for the auxiliary
1815 * buffer instead.
1816 *
1817 * From the BDW PRM (Volume 2d: Command Reference: Structures
1818 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1819 *
1820 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1821 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1822 *
1823 * There is no such blurb for 1D textures, but there is sufficient evidence
1824 * that this is broken on SKL+.
1825 */
1826 return (mt->surf.samples == 1 &&
1827 mt->target != GL_TEXTURE_3D &&
1828 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1829 }
1830
1831 /**
1832 * Does the miptree slice have hiz enabled?
1833 */
1834 bool
1835 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1836 {
1837 intel_miptree_check_level_layer(mt, level, 0);
1838 return mt->level[level].has_hiz;
1839 }
1840
1841 static inline uint32_t
1842 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1843 uint32_t start_level, uint32_t num_levels)
1844 {
1845 assert(start_level >= mt->first_level);
1846 assert(start_level <= mt->last_level);
1847
1848 if (num_levels == INTEL_REMAINING_LAYERS)
1849 num_levels = mt->last_level - start_level + 1;
1850 /* Check for overflow */
1851 assert(start_level + num_levels >= start_level);
1852 assert(start_level + num_levels <= mt->last_level + 1);
1853
1854 return num_levels;
1855 }
1856
1857 static inline uint32_t
1858 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1859 uint32_t start_layer, uint32_t num_layers)
1860 {
1861 assert(level <= mt->last_level);
1862
1863 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1864 assert(start_layer < total_num_layers);
1865 if (num_layers == INTEL_REMAINING_LAYERS)
1866 num_layers = total_num_layers - start_layer;
1867 /* Check for overflow */
1868 assert(start_layer + num_layers >= start_layer);
1869 assert(start_layer + num_layers <= total_num_layers);
1870
1871 return num_layers;
1872 }
1873
1874 bool
1875 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1876 unsigned start_level, unsigned num_levels,
1877 unsigned start_layer, unsigned num_layers)
1878 {
1879 assert(_mesa_is_format_color_format(mt->format));
1880
1881 if (!mt->mcs_buf)
1882 return false;
1883
1884 /* Clamp the level range to fit the miptree */
1885 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1886
1887 for (uint32_t l = 0; l < num_levels; l++) {
1888 const uint32_t level = start_level + l;
1889 const uint32_t level_layers =
1890 miptree_layer_range_length(mt, level, start_layer, num_layers);
1891 for (unsigned a = 0; a < level_layers; a++) {
1892 enum isl_aux_state aux_state =
1893 intel_miptree_get_aux_state(mt, level, start_layer + a);
1894 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1895 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1896 return true;
1897 }
1898 }
1899
1900 return false;
1901 }
1902
1903 static void
1904 intel_miptree_check_color_resolve(const struct brw_context *brw,
1905 const struct intel_mipmap_tree *mt,
1906 unsigned level, unsigned layer)
1907 {
1908
1909 if (!mt->mcs_buf)
1910 return;
1911
1912 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1913 assert(brw->gen >= 8 ||
1914 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1915
1916 /* Compression of arrayed msaa surfaces is supported. */
1917 if (mt->surf.samples > 1)
1918 return;
1919
1920 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1921 assert(brw->gen >= 8 ||
1922 (layer == 0 &&
1923 mt->surf.logical_level0_px.depth == 1 &&
1924 mt->surf.logical_level0_px.array_len == 1));
1925
1926 (void)level;
1927 (void)layer;
1928 }
1929
1930 static enum blorp_fast_clear_op
1931 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1932 enum isl_aux_usage aux_usage,
1933 bool fast_clear_supported)
1934 {
1935 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
1936
1937 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
1938
1939 assert(ccs_supported == fast_clear_supported);
1940
1941 switch (aux_state) {
1942 case ISL_AUX_STATE_CLEAR:
1943 case ISL_AUX_STATE_PARTIAL_CLEAR:
1944 if (!ccs_supported)
1945 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1946 else
1947 return BLORP_FAST_CLEAR_OP_NONE;
1948
1949 case ISL_AUX_STATE_PASS_THROUGH:
1950 return BLORP_FAST_CLEAR_OP_NONE;
1951
1952 case ISL_AUX_STATE_RESOLVED:
1953 case ISL_AUX_STATE_AUX_INVALID:
1954 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1955 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1956 break;
1957 }
1958
1959 unreachable("Invalid aux state for CCS_D");
1960 }
1961
1962 static enum blorp_fast_clear_op
1963 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
1964 enum isl_aux_usage aux_usage,
1965 bool fast_clear_supported)
1966 {
1967 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
1968 assert(aux_usage == ISL_AUX_USAGE_NONE ||
1969 aux_usage == ISL_AUX_USAGE_CCS_D ||
1970 aux_usage == ISL_AUX_USAGE_CCS_E);
1971
1972 if (aux_usage == ISL_AUX_USAGE_CCS_D)
1973 assert(fast_clear_supported);
1974
1975 switch (aux_state) {
1976 case ISL_AUX_STATE_CLEAR:
1977 case ISL_AUX_STATE_PARTIAL_CLEAR:
1978 if (fast_clear_supported)
1979 return BLORP_FAST_CLEAR_OP_NONE;
1980 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
1981 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1982 else
1983 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1984
1985 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1986 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1987 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1988 else if (!fast_clear_supported)
1989 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1990 else
1991 return BLORP_FAST_CLEAR_OP_NONE;
1992
1993 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1994 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1995 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1996 else
1997 return BLORP_FAST_CLEAR_OP_NONE;
1998
1999 case ISL_AUX_STATE_PASS_THROUGH:
2000 return BLORP_FAST_CLEAR_OP_NONE;
2001
2002 case ISL_AUX_STATE_RESOLVED:
2003 case ISL_AUX_STATE_AUX_INVALID:
2004 break;
2005 }
2006
2007 unreachable("Invalid aux state for CCS_E");
2008 }
2009
2010 static void
2011 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2012 struct intel_mipmap_tree *mt,
2013 uint32_t level, uint32_t layer,
2014 enum isl_aux_usage aux_usage,
2015 bool fast_clear_supported)
2016 {
2017 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2018
2019 enum blorp_fast_clear_op resolve_op;
2020 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2021 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2022 fast_clear_supported);
2023 } else {
2024 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2025 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2026 fast_clear_supported);
2027 }
2028
2029 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2030 intel_miptree_check_color_resolve(brw, mt, level, layer);
2031 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2032
2033 switch (resolve_op) {
2034 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2035 /* The CCS full resolve operation destroys the CCS and sets it to the
2036 * pass-through state. (You can also think of this as being both a
2037 * resolve and an ambiguate in one operation.)
2038 */
2039 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2040 ISL_AUX_STATE_PASS_THROUGH);
2041 break;
2042
2043 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2044 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2045 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2046 break;
2047
2048 default:
2049 unreachable("Invalid resolve op");
2050 }
2051 }
2052 }
2053
2054 static void
2055 intel_miptree_finish_ccs_write(struct brw_context *brw,
2056 struct intel_mipmap_tree *mt,
2057 uint32_t level, uint32_t layer,
2058 enum isl_aux_usage aux_usage)
2059 {
2060 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2061 aux_usage == ISL_AUX_USAGE_CCS_D ||
2062 aux_usage == ISL_AUX_USAGE_CCS_E);
2063
2064 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2065
2066 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2067 switch (aux_state) {
2068 case ISL_AUX_STATE_CLEAR:
2069 case ISL_AUX_STATE_PARTIAL_CLEAR:
2070 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2071 aux_usage == ISL_AUX_USAGE_CCS_D);
2072
2073 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2074 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2075 ISL_AUX_STATE_COMPRESSED_CLEAR);
2076 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2077 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2078 ISL_AUX_STATE_PARTIAL_CLEAR);
2079 }
2080 break;
2081
2082 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2083 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2084 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2085 break; /* Nothing to do */
2086
2087 case ISL_AUX_STATE_PASS_THROUGH:
2088 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2089 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2090 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2091 } else {
2092 /* Nothing to do */
2093 }
2094 break;
2095
2096 case ISL_AUX_STATE_RESOLVED:
2097 case ISL_AUX_STATE_AUX_INVALID:
2098 unreachable("Invalid aux state for CCS_E");
2099 }
2100 } else {
2101 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2102 /* CCS_D is a bit simpler */
2103 switch (aux_state) {
2104 case ISL_AUX_STATE_CLEAR:
2105 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2106 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2107 ISL_AUX_STATE_PARTIAL_CLEAR);
2108 break;
2109
2110 case ISL_AUX_STATE_PARTIAL_CLEAR:
2111 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2112 break; /* Nothing to do */
2113
2114 case ISL_AUX_STATE_PASS_THROUGH:
2115 /* Nothing to do */
2116 break;
2117
2118 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2119 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2120 case ISL_AUX_STATE_RESOLVED:
2121 case ISL_AUX_STATE_AUX_INVALID:
2122 unreachable("Invalid aux state for CCS_D");
2123 }
2124 }
2125 }
2126
2127 static void
2128 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2129 struct intel_mipmap_tree *mt,
2130 uint32_t layer,
2131 enum isl_aux_usage aux_usage,
2132 bool fast_clear_supported)
2133 {
2134 assert(aux_usage == ISL_AUX_USAGE_MCS);
2135
2136 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2137 case ISL_AUX_STATE_CLEAR:
2138 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2139 if (!fast_clear_supported) {
2140 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2141 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2142 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2143 }
2144 break;
2145
2146 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2147 break; /* Nothing to do */
2148
2149 case ISL_AUX_STATE_RESOLVED:
2150 case ISL_AUX_STATE_PASS_THROUGH:
2151 case ISL_AUX_STATE_AUX_INVALID:
2152 case ISL_AUX_STATE_PARTIAL_CLEAR:
2153 unreachable("Invalid aux state for MCS");
2154 }
2155 }
2156
2157 static void
2158 intel_miptree_finish_mcs_write(struct brw_context *brw,
2159 struct intel_mipmap_tree *mt,
2160 uint32_t layer,
2161 enum isl_aux_usage aux_usage)
2162 {
2163 assert(aux_usage == ISL_AUX_USAGE_MCS);
2164
2165 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2166 case ISL_AUX_STATE_CLEAR:
2167 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2168 ISL_AUX_STATE_COMPRESSED_CLEAR);
2169 break;
2170
2171 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2172 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2173 break; /* Nothing to do */
2174
2175 case ISL_AUX_STATE_RESOLVED:
2176 case ISL_AUX_STATE_PASS_THROUGH:
2177 case ISL_AUX_STATE_AUX_INVALID:
2178 case ISL_AUX_STATE_PARTIAL_CLEAR:
2179 unreachable("Invalid aux state for MCS");
2180 }
2181 }
2182
2183 static void
2184 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2185 struct intel_mipmap_tree *mt,
2186 uint32_t level, uint32_t layer,
2187 enum isl_aux_usage aux_usage,
2188 bool fast_clear_supported)
2189 {
2190 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2191
2192 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2193 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2194 case ISL_AUX_STATE_CLEAR:
2195 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2196 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2197 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2198 break;
2199
2200 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2201 if (aux_usage != ISL_AUX_USAGE_HIZ)
2202 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2203 break;
2204
2205 case ISL_AUX_STATE_PASS_THROUGH:
2206 case ISL_AUX_STATE_RESOLVED:
2207 break;
2208
2209 case ISL_AUX_STATE_AUX_INVALID:
2210 if (aux_usage == ISL_AUX_USAGE_HIZ)
2211 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2212 break;
2213
2214 case ISL_AUX_STATE_PARTIAL_CLEAR:
2215 unreachable("Invalid HiZ state");
2216 }
2217
2218 if (hiz_op != BLORP_HIZ_OP_NONE) {
2219 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2220
2221 switch (hiz_op) {
2222 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2223 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2224 ISL_AUX_STATE_RESOLVED);
2225 break;
2226
2227 case BLORP_HIZ_OP_HIZ_RESOLVE:
2228 /* The HiZ resolve operation is actually an ambiguate */
2229 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2230 ISL_AUX_STATE_PASS_THROUGH);
2231 break;
2232
2233 default:
2234 unreachable("Invalid HiZ op");
2235 }
2236 }
2237 }
2238
2239 static void
2240 intel_miptree_finish_hiz_write(struct brw_context *brw,
2241 struct intel_mipmap_tree *mt,
2242 uint32_t level, uint32_t layer,
2243 enum isl_aux_usage aux_usage)
2244 {
2245 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2246
2247 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2248 case ISL_AUX_STATE_CLEAR:
2249 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2250 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2251 ISL_AUX_STATE_COMPRESSED_CLEAR);
2252 break;
2253
2254 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2255 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2256 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2257 break; /* Nothing to do */
2258
2259 case ISL_AUX_STATE_RESOLVED:
2260 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2261 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2262 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2263 } else {
2264 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2265 ISL_AUX_STATE_AUX_INVALID);
2266 }
2267 break;
2268
2269 case ISL_AUX_STATE_PASS_THROUGH:
2270 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2271 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2272 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2273 }
2274 break;
2275
2276 case ISL_AUX_STATE_AUX_INVALID:
2277 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2278 break;
2279
2280 case ISL_AUX_STATE_PARTIAL_CLEAR:
2281 unreachable("Invalid HiZ state");
2282 }
2283 }
2284
2285 void
2286 intel_miptree_prepare_access(struct brw_context *brw,
2287 struct intel_mipmap_tree *mt,
2288 uint32_t start_level, uint32_t num_levels,
2289 uint32_t start_layer, uint32_t num_layers,
2290 enum isl_aux_usage aux_usage,
2291 bool fast_clear_supported)
2292 {
2293 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2294
2295 switch (mt->aux_usage) {
2296 case ISL_AUX_USAGE_NONE:
2297 /* Nothing to do */
2298 break;
2299
2300 case ISL_AUX_USAGE_MCS:
2301 assert(mt->mcs_buf);
2302 assert(start_level == 0 && num_levels == 1);
2303 const uint32_t level_layers =
2304 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2305 for (uint32_t a = 0; a < level_layers; a++) {
2306 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2307 aux_usage, fast_clear_supported);
2308 }
2309 break;
2310
2311 case ISL_AUX_USAGE_CCS_D:
2312 case ISL_AUX_USAGE_CCS_E:
2313 if (!mt->mcs_buf)
2314 return;
2315
2316 for (uint32_t l = 0; l < num_levels; l++) {
2317 const uint32_t level = start_level + l;
2318 const uint32_t level_layers =
2319 miptree_layer_range_length(mt, level, start_layer, num_layers);
2320 for (uint32_t a = 0; a < level_layers; a++) {
2321 intel_miptree_prepare_ccs_access(brw, mt, level,
2322 start_layer + a,
2323 aux_usage, fast_clear_supported);
2324 }
2325 }
2326 break;
2327
2328 case ISL_AUX_USAGE_HIZ:
2329 assert(mt->hiz_buf);
2330 for (uint32_t l = 0; l < num_levels; l++) {
2331 const uint32_t level = start_level + l;
2332 if (!intel_miptree_level_has_hiz(mt, level))
2333 continue;
2334
2335 const uint32_t level_layers =
2336 miptree_layer_range_length(mt, level, start_layer, num_layers);
2337 for (uint32_t a = 0; a < level_layers; a++) {
2338 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2339 aux_usage, fast_clear_supported);
2340 }
2341 }
2342 break;
2343
2344 default:
2345 unreachable("Invalid aux usage");
2346 }
2347 }
2348
2349 void
2350 intel_miptree_finish_write(struct brw_context *brw,
2351 struct intel_mipmap_tree *mt, uint32_t level,
2352 uint32_t start_layer, uint32_t num_layers,
2353 enum isl_aux_usage aux_usage)
2354 {
2355 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2356
2357 switch (mt->aux_usage) {
2358 case ISL_AUX_USAGE_NONE:
2359 /* Nothing to do */
2360 break;
2361
2362 case ISL_AUX_USAGE_MCS:
2363 assert(mt->mcs_buf);
2364 for (uint32_t a = 0; a < num_layers; a++) {
2365 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2366 aux_usage);
2367 }
2368 break;
2369
2370 case ISL_AUX_USAGE_CCS_D:
2371 case ISL_AUX_USAGE_CCS_E:
2372 if (!mt->mcs_buf)
2373 return;
2374
2375 for (uint32_t a = 0; a < num_layers; a++) {
2376 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2377 aux_usage);
2378 }
2379 break;
2380
2381 case ISL_AUX_USAGE_HIZ:
2382 if (!intel_miptree_level_has_hiz(mt, level))
2383 return;
2384
2385 for (uint32_t a = 0; a < num_layers; a++) {
2386 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2387 aux_usage);
2388 }
2389 break;
2390
2391 default:
2392 unreachable("Invavlid aux usage");
2393 }
2394 }
2395
2396 enum isl_aux_state
2397 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2398 uint32_t level, uint32_t layer)
2399 {
2400 intel_miptree_check_level_layer(mt, level, layer);
2401
2402 if (_mesa_is_format_color_format(mt->format)) {
2403 assert(mt->mcs_buf != NULL);
2404 assert(mt->surf.samples == 1 ||
2405 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2406 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2407 unreachable("Cannot get aux state for stencil");
2408 } else {
2409 assert(intel_miptree_level_has_hiz(mt, level));
2410 }
2411
2412 return mt->aux_state[level][layer];
2413 }
2414
2415 void
2416 intel_miptree_set_aux_state(struct brw_context *brw,
2417 struct intel_mipmap_tree *mt, uint32_t level,
2418 uint32_t start_layer, uint32_t num_layers,
2419 enum isl_aux_state aux_state)
2420 {
2421 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2422
2423 if (_mesa_is_format_color_format(mt->format)) {
2424 assert(mt->mcs_buf != NULL);
2425 assert(mt->surf.samples == 1 ||
2426 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2427 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2428 unreachable("Cannot get aux state for stencil");
2429 } else {
2430 assert(intel_miptree_level_has_hiz(mt, level));
2431 }
2432
2433 for (unsigned a = 0; a < num_layers; a++)
2434 mt->aux_state[level][start_layer + a] = aux_state;
2435 }
2436
2437 /* On Gen9 color buffers may be compressed by the hardware (lossless
2438 * compression). There are, however, format restrictions and care needs to be
2439 * taken that the sampler engine is capable for re-interpreting a buffer with
2440 * format different the buffer was originally written with.
2441 *
2442 * For example, SRGB formats are not compressible and the sampler engine isn't
2443 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2444 * color buffer needs to be resolved so that the sampling surface can be
2445 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2446 * set).
2447 */
2448 static bool
2449 can_texture_with_ccs(struct brw_context *brw,
2450 struct intel_mipmap_tree *mt,
2451 enum isl_format view_format)
2452 {
2453 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2454 return false;
2455
2456 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2457 mt->surf.format, view_format)) {
2458 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2459 isl_format_get_layout(view_format)->name,
2460 _mesa_get_format_name(mt->format));
2461 return false;
2462 }
2463
2464 return true;
2465 }
2466
2467 enum isl_aux_usage
2468 intel_miptree_texture_aux_usage(struct brw_context *brw,
2469 struct intel_mipmap_tree *mt,
2470 enum isl_format view_format)
2471 {
2472 switch (mt->aux_usage) {
2473 case ISL_AUX_USAGE_HIZ:
2474 if (intel_miptree_sample_with_hiz(brw, mt))
2475 return ISL_AUX_USAGE_HIZ;
2476 break;
2477
2478 case ISL_AUX_USAGE_MCS:
2479 return ISL_AUX_USAGE_MCS;
2480
2481 case ISL_AUX_USAGE_CCS_D:
2482 case ISL_AUX_USAGE_CCS_E:
2483 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2484 return ISL_AUX_USAGE_CCS_E;
2485 break;
2486
2487 default:
2488 break;
2489 }
2490
2491 return ISL_AUX_USAGE_NONE;
2492 }
2493
2494 static bool
2495 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2496 {
2497 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2498 * values so sRGB curve application was a no-op for all fast-clearable
2499 * formats.
2500 *
2501 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2502 * values, the hardware interprets the floats, not as what would be
2503 * returned from the sampler (or written by the shader), but as being
2504 * between format conversion and sRGB curve application. This means that
2505 * we can switch between sRGB and UNORM without having to whack the clear
2506 * color.
2507 */
2508 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2509 }
2510
2511 static void
2512 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2513 struct intel_mipmap_tree *mt,
2514 enum isl_format view_format,
2515 uint32_t start_level, uint32_t num_levels,
2516 uint32_t start_layer, uint32_t num_layers,
2517 bool *aux_supported_out)
2518 {
2519 enum isl_aux_usage aux_usage =
2520 intel_miptree_texture_aux_usage(brw, mt, view_format);
2521 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2522
2523 /* Clear color is specified as ints or floats and the conversion is done by
2524 * the sampler. If we have a texture view, we would have to perform the
2525 * clear color conversion manually. Just disable clear color.
2526 */
2527 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2528 clear_supported = false;
2529
2530 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2531 start_layer, num_layers,
2532 aux_usage, clear_supported);
2533 if (aux_supported_out)
2534 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2535 }
2536
2537 void
2538 intel_miptree_prepare_texture(struct brw_context *brw,
2539 struct intel_mipmap_tree *mt,
2540 enum isl_format view_format,
2541 bool *aux_supported_out)
2542 {
2543 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2544 0, INTEL_REMAINING_LEVELS,
2545 0, INTEL_REMAINING_LAYERS,
2546 aux_supported_out);
2547 }
2548
2549 void
2550 intel_miptree_prepare_image(struct brw_context *brw,
2551 struct intel_mipmap_tree *mt)
2552 {
2553 /* The data port doesn't understand any compression */
2554 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2555 0, INTEL_REMAINING_LAYERS,
2556 ISL_AUX_USAGE_NONE, false);
2557 }
2558
2559 void
2560 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2561 struct intel_mipmap_tree *mt, uint32_t level,
2562 uint32_t start_layer, uint32_t num_layers)
2563 {
2564 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2565 start_layer, num_layers, NULL);
2566 }
2567
2568 enum isl_aux_usage
2569 intel_miptree_render_aux_usage(struct brw_context *brw,
2570 struct intel_mipmap_tree *mt,
2571 bool srgb_enabled, bool blend_enabled)
2572 {
2573 switch (mt->aux_usage) {
2574 case ISL_AUX_USAGE_MCS:
2575 assert(mt->mcs_buf);
2576 return ISL_AUX_USAGE_MCS;
2577
2578 case ISL_AUX_USAGE_CCS_D:
2579 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2580
2581 case ISL_AUX_USAGE_CCS_E: {
2582 mesa_format mesa_format =
2583 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2584 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2585
2586 /* If the format supports CCS_E, then we can just use it */
2587 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2588 return ISL_AUX_USAGE_CCS_E;
2589
2590 /* Otherwise, we have to fall back to CCS_D */
2591
2592 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2593 * formats. However, there are issues with blending where it doesn't
2594 * properly apply the sRGB curve to the clear color when blending.
2595 */
2596 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2597 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2598 return ISL_AUX_USAGE_NONE;
2599
2600 return ISL_AUX_USAGE_CCS_D;
2601 }
2602
2603 default:
2604 return ISL_AUX_USAGE_NONE;
2605 }
2606 }
2607
2608 void
2609 intel_miptree_prepare_render(struct brw_context *brw,
2610 struct intel_mipmap_tree *mt, uint32_t level,
2611 uint32_t start_layer, uint32_t layer_count,
2612 bool srgb_enabled, bool blend_enabled)
2613 {
2614 enum isl_aux_usage aux_usage =
2615 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2616 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2617 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2618 }
2619
2620 void
2621 intel_miptree_finish_render(struct brw_context *brw,
2622 struct intel_mipmap_tree *mt, uint32_t level,
2623 uint32_t start_layer, uint32_t layer_count,
2624 bool srgb_enabled, bool blend_enabled)
2625 {
2626 assert(_mesa_is_format_color_format(mt->format));
2627
2628 enum isl_aux_usage aux_usage =
2629 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2630 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2631 aux_usage);
2632 }
2633
2634 void
2635 intel_miptree_prepare_depth(struct brw_context *brw,
2636 struct intel_mipmap_tree *mt, uint32_t level,
2637 uint32_t start_layer, uint32_t layer_count)
2638 {
2639 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2640 mt->aux_usage, mt->hiz_buf != NULL);
2641 }
2642
2643 void
2644 intel_miptree_finish_depth(struct brw_context *brw,
2645 struct intel_mipmap_tree *mt, uint32_t level,
2646 uint32_t start_layer, uint32_t layer_count,
2647 bool depth_written)
2648 {
2649 if (depth_written) {
2650 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2651 mt->hiz_buf != NULL);
2652 }
2653 }
2654
2655 /**
2656 * Make it possible to share the BO backing the given miptree with another
2657 * process or another miptree.
2658 *
2659 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2660 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2661 * ensure that no MCS buffer gets allocated in the future.
2662 *
2663 * HiZ is similarly unsafe with shared buffers.
2664 */
2665 void
2666 intel_miptree_make_shareable(struct brw_context *brw,
2667 struct intel_mipmap_tree *mt)
2668 {
2669 /* MCS buffers are also used for multisample buffers, but we can't resolve
2670 * away a multisample MCS buffer because it's an integral part of how the
2671 * pixel data is stored. Fortunately this code path should never be
2672 * reached for multisample buffers.
2673 */
2674 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2675 mt->surf.samples == 1);
2676
2677 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2678 0, INTEL_REMAINING_LAYERS,
2679 ISL_AUX_USAGE_NONE, false);
2680
2681 if (mt->mcs_buf) {
2682 brw_bo_unreference(mt->mcs_buf->bo);
2683 free(mt->mcs_buf);
2684 mt->mcs_buf = NULL;
2685
2686 /* Any pending MCS/CCS operations are no longer needed. Trying to
2687 * execute any will likely crash due to the missing aux buffer. So let's
2688 * delete all pending ops.
2689 */
2690 free(mt->aux_state);
2691 mt->aux_state = NULL;
2692 }
2693
2694 if (mt->hiz_buf) {
2695 intel_miptree_aux_buffer_free(mt->hiz_buf);
2696 mt->hiz_buf = NULL;
2697
2698 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2699 mt->level[l].has_hiz = false;
2700 }
2701
2702 /* Any pending HiZ operations are no longer needed. Trying to execute
2703 * any will likely crash due to the missing aux buffer. So let's delete
2704 * all pending ops.
2705 */
2706 free(mt->aux_state);
2707 mt->aux_state = NULL;
2708 }
2709
2710 mt->aux_usage = ISL_AUX_USAGE_NONE;
2711 }
2712
2713
2714 /**
2715 * \brief Get pointer offset into stencil buffer.
2716 *
2717 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2718 * must decode the tile's layout in software.
2719 *
2720 * See
2721 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2722 * Format.
2723 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2724 *
2725 * Even though the returned offset is always positive, the return type is
2726 * signed due to
2727 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2728 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2729 */
2730 static intptr_t
2731 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2732 {
2733 uint32_t tile_size = 4096;
2734 uint32_t tile_width = 64;
2735 uint32_t tile_height = 64;
2736 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2737
2738 uint32_t tile_x = x / tile_width;
2739 uint32_t tile_y = y / tile_height;
2740
2741 /* The byte's address relative to the tile's base addres. */
2742 uint32_t byte_x = x % tile_width;
2743 uint32_t byte_y = y % tile_height;
2744
2745 uintptr_t u = tile_y * row_size
2746 + tile_x * tile_size
2747 + 512 * (byte_x / 8)
2748 + 64 * (byte_y / 8)
2749 + 32 * ((byte_y / 4) % 2)
2750 + 16 * ((byte_x / 4) % 2)
2751 + 8 * ((byte_y / 2) % 2)
2752 + 4 * ((byte_x / 2) % 2)
2753 + 2 * (byte_y % 2)
2754 + 1 * (byte_x % 2);
2755
2756 if (swizzled) {
2757 /* adjust for bit6 swizzling */
2758 if (((byte_x / 8) % 2) == 1) {
2759 if (((byte_y / 8) % 2) == 0) {
2760 u += 64;
2761 } else {
2762 u -= 64;
2763 }
2764 }
2765 }
2766
2767 return u;
2768 }
2769
2770 void
2771 intel_miptree_updownsample(struct brw_context *brw,
2772 struct intel_mipmap_tree *src,
2773 struct intel_mipmap_tree *dst)
2774 {
2775 unsigned src_w = src->surf.logical_level0_px.width;
2776 unsigned src_h = src->surf.logical_level0_px.height;
2777 unsigned dst_w = dst->surf.logical_level0_px.width;
2778 unsigned dst_h = dst->surf.logical_level0_px.height;
2779
2780 brw_blorp_blit_miptrees(brw,
2781 src, 0 /* level */, 0 /* layer */,
2782 src->format, SWIZZLE_XYZW,
2783 dst, 0 /* level */, 0 /* layer */, dst->format,
2784 0, 0, src_w, src_h,
2785 0, 0, dst_w, dst_h,
2786 GL_NEAREST, false, false /*mirror x, y*/,
2787 false, false);
2788
2789 if (src->stencil_mt) {
2790 src_w = src->stencil_mt->surf.logical_level0_px.width;
2791 src_h = src->stencil_mt->surf.logical_level0_px.height;
2792 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2793 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2794
2795 brw_blorp_blit_miptrees(brw,
2796 src->stencil_mt, 0 /* level */, 0 /* layer */,
2797 src->stencil_mt->format, SWIZZLE_XYZW,
2798 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2799 dst->stencil_mt->format,
2800 0, 0, src_w, src_h,
2801 0, 0, dst_w, dst_h,
2802 GL_NEAREST, false, false /*mirror x, y*/,
2803 false, false /* decode/encode srgb */);
2804 }
2805 }
2806
2807 void
2808 intel_update_r8stencil(struct brw_context *brw,
2809 struct intel_mipmap_tree *mt)
2810 {
2811 assert(brw->gen >= 7);
2812 struct intel_mipmap_tree *src =
2813 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2814 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2815 return;
2816
2817 assert(src->surf.size > 0);
2818
2819 if (!mt->r8stencil_mt) {
2820 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2821 mt->r8stencil_mt = make_surface(
2822 brw,
2823 src->target,
2824 MESA_FORMAT_R_UINT8,
2825 src->first_level, src->last_level,
2826 src->surf.logical_level0_px.width,
2827 src->surf.logical_level0_px.height,
2828 src->surf.dim == ISL_SURF_DIM_3D ?
2829 src->surf.logical_level0_px.depth :
2830 src->surf.logical_level0_px.array_len,
2831 src->surf.samples,
2832 ISL_TILING_Y0_BIT,
2833 ISL_SURF_USAGE_TEXTURE_BIT,
2834 BO_ALLOC_FOR_RENDER, 0, NULL);
2835 assert(mt->r8stencil_mt);
2836 }
2837
2838 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2839
2840 for (int level = src->first_level; level <= src->last_level; level++) {
2841 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2842 minify(src->surf.phys_level0_sa.depth, level) :
2843 src->surf.phys_level0_sa.array_len;
2844
2845 for (unsigned layer = 0; layer < depth; layer++) {
2846 brw_blorp_copy_miptrees(brw,
2847 src, level, layer,
2848 dst, level, layer,
2849 0, 0, 0, 0,
2850 minify(src->surf.logical_level0_px.width,
2851 level),
2852 minify(src->surf.logical_level0_px.height,
2853 level));
2854 }
2855 }
2856
2857 brw_render_cache_set_check_flush(brw, dst->bo);
2858 src->r8stencil_needs_update = false;
2859 }
2860
2861 static void *
2862 intel_miptree_map_raw(struct brw_context *brw,
2863 struct intel_mipmap_tree *mt,
2864 GLbitfield mode)
2865 {
2866 struct brw_bo *bo = mt->bo;
2867
2868 if (brw_batch_references(&brw->batch, bo))
2869 intel_batchbuffer_flush(brw);
2870
2871 return brw_bo_map(brw, bo, mode);
2872 }
2873
2874 static void
2875 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2876 {
2877 brw_bo_unmap(mt->bo);
2878 }
2879
2880 static void
2881 intel_miptree_map_gtt(struct brw_context *brw,
2882 struct intel_mipmap_tree *mt,
2883 struct intel_miptree_map *map,
2884 unsigned int level, unsigned int slice)
2885 {
2886 unsigned int bw, bh;
2887 void *base;
2888 unsigned int image_x, image_y;
2889 intptr_t x = map->x;
2890 intptr_t y = map->y;
2891
2892 /* For compressed formats, the stride is the number of bytes per
2893 * row of blocks. intel_miptree_get_image_offset() already does
2894 * the divide.
2895 */
2896 _mesa_get_format_block_size(mt->format, &bw, &bh);
2897 assert(y % bh == 0);
2898 assert(x % bw == 0);
2899 y /= bh;
2900 x /= bw;
2901
2902 base = intel_miptree_map_raw(brw, mt, map->mode);
2903
2904 if (base == NULL)
2905 map->ptr = NULL;
2906 else {
2907 base += mt->offset;
2908
2909 /* Note that in the case of cube maps, the caller must have passed the
2910 * slice number referencing the face.
2911 */
2912 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2913 x += image_x;
2914 y += image_y;
2915
2916 map->stride = mt->surf.row_pitch;
2917 map->ptr = base + y * map->stride + x * mt->cpp;
2918 }
2919
2920 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2921 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2922 map->x, map->y, map->w, map->h,
2923 mt, _mesa_get_format_name(mt->format),
2924 x, y, map->ptr, map->stride);
2925 }
2926
2927 static void
2928 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2929 {
2930 intel_miptree_unmap_raw(mt);
2931 }
2932
2933 static void
2934 intel_miptree_map_blit(struct brw_context *brw,
2935 struct intel_mipmap_tree *mt,
2936 struct intel_miptree_map *map,
2937 unsigned int level, unsigned int slice)
2938 {
2939 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2940 /* first_level */ 0,
2941 /* last_level */ 0,
2942 map->w, map->h, 1,
2943 /* samples */ 1,
2944 MIPTREE_LAYOUT_TILING_NONE);
2945
2946 if (!map->linear_mt) {
2947 fprintf(stderr, "Failed to allocate blit temporary\n");
2948 goto fail;
2949 }
2950 map->stride = map->linear_mt->surf.row_pitch;
2951
2952 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2953 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2954 * invalidate is set, since we'll be writing the whole rectangle from our
2955 * temporary buffer back out.
2956 */
2957 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2958 if (!intel_miptree_copy(brw,
2959 mt, level, slice, map->x, map->y,
2960 map->linear_mt, 0, 0, 0, 0,
2961 map->w, map->h)) {
2962 fprintf(stderr, "Failed to blit\n");
2963 goto fail;
2964 }
2965 }
2966
2967 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2968
2969 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2970 map->x, map->y, map->w, map->h,
2971 mt, _mesa_get_format_name(mt->format),
2972 level, slice, map->ptr, map->stride);
2973
2974 return;
2975
2976 fail:
2977 intel_miptree_release(&map->linear_mt);
2978 map->ptr = NULL;
2979 map->stride = 0;
2980 }
2981
2982 static void
2983 intel_miptree_unmap_blit(struct brw_context *brw,
2984 struct intel_mipmap_tree *mt,
2985 struct intel_miptree_map *map,
2986 unsigned int level,
2987 unsigned int slice)
2988 {
2989 struct gl_context *ctx = &brw->ctx;
2990
2991 intel_miptree_unmap_raw(map->linear_mt);
2992
2993 if (map->mode & GL_MAP_WRITE_BIT) {
2994 bool ok = intel_miptree_copy(brw,
2995 map->linear_mt, 0, 0, 0, 0,
2996 mt, level, slice, map->x, map->y,
2997 map->w, map->h);
2998 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2999 }
3000
3001 intel_miptree_release(&map->linear_mt);
3002 }
3003
3004 /**
3005 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3006 */
3007 #if defined(USE_SSE41)
3008 static void
3009 intel_miptree_map_movntdqa(struct brw_context *brw,
3010 struct intel_mipmap_tree *mt,
3011 struct intel_miptree_map *map,
3012 unsigned int level, unsigned int slice)
3013 {
3014 assert(map->mode & GL_MAP_READ_BIT);
3015 assert(!(map->mode & GL_MAP_WRITE_BIT));
3016
3017 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3018 map->x, map->y, map->w, map->h,
3019 mt, _mesa_get_format_name(mt->format),
3020 level, slice, map->ptr, map->stride);
3021
3022 /* Map the original image */
3023 uint32_t image_x;
3024 uint32_t image_y;
3025 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3026 image_x += map->x;
3027 image_y += map->y;
3028
3029 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3030 if (!src)
3031 return;
3032
3033 src += mt->offset;
3034
3035 src += image_y * mt->surf.row_pitch;
3036 src += image_x * mt->cpp;
3037
3038 /* Due to the pixel offsets for the particular image being mapped, our
3039 * src pointer may not be 16-byte aligned. However, if the pitch is
3040 * divisible by 16, then the amount by which it's misaligned will remain
3041 * consistent from row to row.
3042 */
3043 assert((mt->surf.row_pitch % 16) == 0);
3044 const int misalignment = ((uintptr_t) src) & 15;
3045
3046 /* Create an untiled temporary buffer for the mapping. */
3047 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3048
3049 map->stride = ALIGN(misalignment + width_bytes, 16);
3050
3051 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3052 /* Offset the destination so it has the same misalignment as src. */
3053 map->ptr = map->buffer + misalignment;
3054
3055 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3056
3057 for (uint32_t y = 0; y < map->h; y++) {
3058 void *dst_ptr = map->ptr + y * map->stride;
3059 void *src_ptr = src + y * mt->surf.row_pitch;
3060
3061 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3062 }
3063
3064 intel_miptree_unmap_raw(mt);
3065 }
3066
3067 static void
3068 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3069 struct intel_mipmap_tree *mt,
3070 struct intel_miptree_map *map,
3071 unsigned int level,
3072 unsigned int slice)
3073 {
3074 _mesa_align_free(map->buffer);
3075 map->buffer = NULL;
3076 map->ptr = NULL;
3077 }
3078 #endif
3079
3080 static void
3081 intel_miptree_map_s8(struct brw_context *brw,
3082 struct intel_mipmap_tree *mt,
3083 struct intel_miptree_map *map,
3084 unsigned int level, unsigned int slice)
3085 {
3086 map->stride = map->w;
3087 map->buffer = map->ptr = malloc(map->stride * map->h);
3088 if (!map->buffer)
3089 return;
3090
3091 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3092 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3093 * invalidate is set, since we'll be writing the whole rectangle from our
3094 * temporary buffer back out.
3095 */
3096 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3097 uint8_t *untiled_s8_map = map->ptr;
3098 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3099 unsigned int image_x, image_y;
3100
3101 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3102
3103 for (uint32_t y = 0; y < map->h; y++) {
3104 for (uint32_t x = 0; x < map->w; x++) {
3105 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3106 x + image_x + map->x,
3107 y + image_y + map->y,
3108 brw->has_swizzling);
3109 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3110 }
3111 }
3112
3113 intel_miptree_unmap_raw(mt);
3114
3115 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3116 map->x, map->y, map->w, map->h,
3117 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3118 } else {
3119 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3120 map->x, map->y, map->w, map->h,
3121 mt, map->ptr, map->stride);
3122 }
3123 }
3124
3125 static void
3126 intel_miptree_unmap_s8(struct brw_context *brw,
3127 struct intel_mipmap_tree *mt,
3128 struct intel_miptree_map *map,
3129 unsigned int level,
3130 unsigned int slice)
3131 {
3132 if (map->mode & GL_MAP_WRITE_BIT) {
3133 unsigned int image_x, image_y;
3134 uint8_t *untiled_s8_map = map->ptr;
3135 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3136
3137 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3138
3139 for (uint32_t y = 0; y < map->h; y++) {
3140 for (uint32_t x = 0; x < map->w; x++) {
3141 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3142 image_x + x + map->x,
3143 image_y + y + map->y,
3144 brw->has_swizzling);
3145 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3146 }
3147 }
3148
3149 intel_miptree_unmap_raw(mt);
3150 }
3151
3152 free(map->buffer);
3153 }
3154
3155 static void
3156 intel_miptree_map_etc(struct brw_context *brw,
3157 struct intel_mipmap_tree *mt,
3158 struct intel_miptree_map *map,
3159 unsigned int level,
3160 unsigned int slice)
3161 {
3162 assert(mt->etc_format != MESA_FORMAT_NONE);
3163 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3164 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3165 }
3166
3167 assert(map->mode & GL_MAP_WRITE_BIT);
3168 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3169
3170 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3171 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3172 map->w, map->h, 1));
3173 map->ptr = map->buffer;
3174 }
3175
3176 static void
3177 intel_miptree_unmap_etc(struct brw_context *brw,
3178 struct intel_mipmap_tree *mt,
3179 struct intel_miptree_map *map,
3180 unsigned int level,
3181 unsigned int slice)
3182 {
3183 uint32_t image_x;
3184 uint32_t image_y;
3185 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3186
3187 image_x += map->x;
3188 image_y += map->y;
3189
3190 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3191 + image_y * mt->surf.row_pitch
3192 + image_x * mt->cpp;
3193
3194 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3195 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3196 map->ptr, map->stride,
3197 map->w, map->h);
3198 else
3199 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3200 map->ptr, map->stride,
3201 map->w, map->h, mt->etc_format);
3202
3203 intel_miptree_unmap_raw(mt);
3204 free(map->buffer);
3205 }
3206
3207 /**
3208 * Mapping function for packed depth/stencil miptrees backed by real separate
3209 * miptrees for depth and stencil.
3210 *
3211 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3212 * separate from the depth buffer. Yet at the GL API level, we have to expose
3213 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3214 * be able to map that memory for texture storage and glReadPixels-type
3215 * operations. We give Mesa core that access by mallocing a temporary and
3216 * copying the data between the actual backing store and the temporary.
3217 */
3218 static void
3219 intel_miptree_map_depthstencil(struct brw_context *brw,
3220 struct intel_mipmap_tree *mt,
3221 struct intel_miptree_map *map,
3222 unsigned int level, unsigned int slice)
3223 {
3224 struct intel_mipmap_tree *z_mt = mt;
3225 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3226 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3227 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3228
3229 map->stride = map->w * packed_bpp;
3230 map->buffer = map->ptr = malloc(map->stride * map->h);
3231 if (!map->buffer)
3232 return;
3233
3234 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3235 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3236 * invalidate is set, since we'll be writing the whole rectangle from our
3237 * temporary buffer back out.
3238 */
3239 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3240 uint32_t *packed_map = map->ptr;
3241 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3242 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3243 unsigned int s_image_x, s_image_y;
3244 unsigned int z_image_x, z_image_y;
3245
3246 intel_miptree_get_image_offset(s_mt, level, slice,
3247 &s_image_x, &s_image_y);
3248 intel_miptree_get_image_offset(z_mt, level, slice,
3249 &z_image_x, &z_image_y);
3250
3251 for (uint32_t y = 0; y < map->h; y++) {
3252 for (uint32_t x = 0; x < map->w; x++) {
3253 int map_x = map->x + x, map_y = map->y + y;
3254 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3255 map_x + s_image_x,
3256 map_y + s_image_y,
3257 brw->has_swizzling);
3258 ptrdiff_t z_offset = ((map_y + z_image_y) *
3259 (z_mt->surf.row_pitch / 4) +
3260 (map_x + z_image_x));
3261 uint8_t s = s_map[s_offset];
3262 uint32_t z = z_map[z_offset];
3263
3264 if (map_z32f_x24s8) {
3265 packed_map[(y * map->w + x) * 2 + 0] = z;
3266 packed_map[(y * map->w + x) * 2 + 1] = s;
3267 } else {
3268 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3269 }
3270 }
3271 }
3272
3273 intel_miptree_unmap_raw(s_mt);
3274 intel_miptree_unmap_raw(z_mt);
3275
3276 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3277 __func__,
3278 map->x, map->y, map->w, map->h,
3279 z_mt, map->x + z_image_x, map->y + z_image_y,
3280 s_mt, map->x + s_image_x, map->y + s_image_y,
3281 map->ptr, map->stride);
3282 } else {
3283 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3284 map->x, map->y, map->w, map->h,
3285 mt, map->ptr, map->stride);
3286 }
3287 }
3288
3289 static void
3290 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3291 struct intel_mipmap_tree *mt,
3292 struct intel_miptree_map *map,
3293 unsigned int level,
3294 unsigned int slice)
3295 {
3296 struct intel_mipmap_tree *z_mt = mt;
3297 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3298 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3299
3300 if (map->mode & GL_MAP_WRITE_BIT) {
3301 uint32_t *packed_map = map->ptr;
3302 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3303 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3304 unsigned int s_image_x, s_image_y;
3305 unsigned int z_image_x, z_image_y;
3306
3307 intel_miptree_get_image_offset(s_mt, level, slice,
3308 &s_image_x, &s_image_y);
3309 intel_miptree_get_image_offset(z_mt, level, slice,
3310 &z_image_x, &z_image_y);
3311
3312 for (uint32_t y = 0; y < map->h; y++) {
3313 for (uint32_t x = 0; x < map->w; x++) {
3314 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3315 x + s_image_x + map->x,
3316 y + s_image_y + map->y,
3317 brw->has_swizzling);
3318 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3319 (z_mt->surf.row_pitch / 4) +
3320 (x + z_image_x + map->x));
3321
3322 if (map_z32f_x24s8) {
3323 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3324 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3325 } else {
3326 uint32_t packed = packed_map[y * map->w + x];
3327 s_map[s_offset] = packed >> 24;
3328 z_map[z_offset] = packed;
3329 }
3330 }
3331 }
3332
3333 intel_miptree_unmap_raw(s_mt);
3334 intel_miptree_unmap_raw(z_mt);
3335
3336 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3337 __func__,
3338 map->x, map->y, map->w, map->h,
3339 z_mt, _mesa_get_format_name(z_mt->format),
3340 map->x + z_image_x, map->y + z_image_y,
3341 s_mt, map->x + s_image_x, map->y + s_image_y,
3342 map->ptr, map->stride);
3343 }
3344
3345 free(map->buffer);
3346 }
3347
3348 /**
3349 * Create and attach a map to the miptree at (level, slice). Return the
3350 * attached map.
3351 */
3352 static struct intel_miptree_map*
3353 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3354 unsigned int level,
3355 unsigned int slice,
3356 unsigned int x,
3357 unsigned int y,
3358 unsigned int w,
3359 unsigned int h,
3360 GLbitfield mode)
3361 {
3362 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3363
3364 if (!map)
3365 return NULL;
3366
3367 assert(mt->level[level].slice[slice].map == NULL);
3368 mt->level[level].slice[slice].map = map;
3369
3370 map->mode = mode;
3371 map->x = x;
3372 map->y = y;
3373 map->w = w;
3374 map->h = h;
3375
3376 return map;
3377 }
3378
3379 /**
3380 * Release the map at (level, slice).
3381 */
3382 static void
3383 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3384 unsigned int level,
3385 unsigned int slice)
3386 {
3387 struct intel_miptree_map **map;
3388
3389 map = &mt->level[level].slice[slice].map;
3390 free(*map);
3391 *map = NULL;
3392 }
3393
3394 static bool
3395 can_blit_slice(struct intel_mipmap_tree *mt,
3396 unsigned int level, unsigned int slice)
3397 {
3398 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3399 if (mt->surf.row_pitch >= 32768)
3400 return false;
3401
3402 return true;
3403 }
3404
3405 static bool
3406 use_intel_mipree_map_blit(struct brw_context *brw,
3407 struct intel_mipmap_tree *mt,
3408 GLbitfield mode,
3409 unsigned int level,
3410 unsigned int slice)
3411 {
3412 if (brw->has_llc &&
3413 /* It's probably not worth swapping to the blit ring because of
3414 * all the overhead involved.
3415 */
3416 !(mode & GL_MAP_WRITE_BIT) &&
3417 !mt->compressed &&
3418 (mt->surf.tiling == ISL_TILING_X ||
3419 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3420 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3421 /* Fast copy blit on skl+ supports all tiling formats. */
3422 brw->gen >= 9) &&
3423 can_blit_slice(mt, level, slice))
3424 return true;
3425
3426 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3427 mt->bo->size >= brw->max_gtt_map_object_size) {
3428 assert(can_blit_slice(mt, level, slice));
3429 return true;
3430 }
3431
3432 return false;
3433 }
3434
3435 /**
3436 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3437 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3438 * arithmetic overflow.
3439 *
3440 * If you call this function and use \a out_stride, then you're doing pointer
3441 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3442 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3443 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3444 * which usually have type uint32_t or GLuint.
3445 */
3446 void
3447 intel_miptree_map(struct brw_context *brw,
3448 struct intel_mipmap_tree *mt,
3449 unsigned int level,
3450 unsigned int slice,
3451 unsigned int x,
3452 unsigned int y,
3453 unsigned int w,
3454 unsigned int h,
3455 GLbitfield mode,
3456 void **out_ptr,
3457 ptrdiff_t *out_stride)
3458 {
3459 struct intel_miptree_map *map;
3460
3461 assert(mt->surf.samples == 1);
3462
3463 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3464 if (!map){
3465 *out_ptr = NULL;
3466 *out_stride = 0;
3467 return;
3468 }
3469
3470 intel_miptree_access_raw(brw, mt, level, slice,
3471 map->mode & GL_MAP_WRITE_BIT);
3472
3473 if (mt->format == MESA_FORMAT_S_UINT8) {
3474 intel_miptree_map_s8(brw, mt, map, level, slice);
3475 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3476 !(mode & BRW_MAP_DIRECT_BIT)) {
3477 intel_miptree_map_etc(brw, mt, map, level, slice);
3478 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3479 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3480 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3481 intel_miptree_map_blit(brw, mt, map, level, slice);
3482 #if defined(USE_SSE41)
3483 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3484 !mt->compressed && cpu_has_sse4_1 &&
3485 (mt->surf.row_pitch % 16 == 0)) {
3486 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3487 #endif
3488 } else {
3489 intel_miptree_map_gtt(brw, mt, map, level, slice);
3490 }
3491
3492 *out_ptr = map->ptr;
3493 *out_stride = map->stride;
3494
3495 if (map->ptr == NULL)
3496 intel_miptree_release_map(mt, level, slice);
3497 }
3498
3499 void
3500 intel_miptree_unmap(struct brw_context *brw,
3501 struct intel_mipmap_tree *mt,
3502 unsigned int level,
3503 unsigned int slice)
3504 {
3505 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3506
3507 assert(mt->surf.samples == 1);
3508
3509 if (!map)
3510 return;
3511
3512 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3513 mt, _mesa_get_format_name(mt->format), level, slice);
3514
3515 if (mt->format == MESA_FORMAT_S_UINT8) {
3516 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3517 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3518 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3519 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3520 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3521 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3522 } else if (map->linear_mt) {
3523 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3524 #if defined(USE_SSE41)
3525 } else if (map->buffer && cpu_has_sse4_1) {
3526 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3527 #endif
3528 } else {
3529 intel_miptree_unmap_gtt(mt);
3530 }
3531
3532 intel_miptree_release_map(mt, level, slice);
3533 }
3534
3535 enum isl_surf_dim
3536 get_isl_surf_dim(GLenum target)
3537 {
3538 switch (target) {
3539 case GL_TEXTURE_1D:
3540 case GL_TEXTURE_1D_ARRAY:
3541 return ISL_SURF_DIM_1D;
3542
3543 case GL_TEXTURE_2D:
3544 case GL_TEXTURE_2D_ARRAY:
3545 case GL_TEXTURE_RECTANGLE:
3546 case GL_TEXTURE_CUBE_MAP:
3547 case GL_TEXTURE_CUBE_MAP_ARRAY:
3548 case GL_TEXTURE_2D_MULTISAMPLE:
3549 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3550 case GL_TEXTURE_EXTERNAL_OES:
3551 return ISL_SURF_DIM_2D;
3552
3553 case GL_TEXTURE_3D:
3554 return ISL_SURF_DIM_3D;
3555 }
3556
3557 unreachable("Invalid texture target");
3558 }
3559
3560 enum isl_dim_layout
3561 get_isl_dim_layout(const struct gen_device_info *devinfo,
3562 enum isl_tiling tiling, GLenum target)
3563 {
3564 switch (target) {
3565 case GL_TEXTURE_1D:
3566 case GL_TEXTURE_1D_ARRAY:
3567 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3568 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3569
3570 case GL_TEXTURE_2D:
3571 case GL_TEXTURE_2D_ARRAY:
3572 case GL_TEXTURE_RECTANGLE:
3573 case GL_TEXTURE_2D_MULTISAMPLE:
3574 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3575 case GL_TEXTURE_EXTERNAL_OES:
3576 return ISL_DIM_LAYOUT_GEN4_2D;
3577
3578 case GL_TEXTURE_CUBE_MAP:
3579 case GL_TEXTURE_CUBE_MAP_ARRAY:
3580 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3581 ISL_DIM_LAYOUT_GEN4_2D);
3582
3583 case GL_TEXTURE_3D:
3584 return (devinfo->gen >= 9 ?
3585 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3586 }
3587
3588 unreachable("Invalid texture target");
3589 }
3590
3591 enum isl_aux_usage
3592 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3593 const struct intel_mipmap_tree *mt)
3594 {
3595 if (mt->hiz_buf)
3596 return ISL_AUX_USAGE_HIZ;
3597
3598 if (!mt->mcs_buf)
3599 return ISL_AUX_USAGE_NONE;
3600
3601 return mt->aux_usage;
3602 }