i965/blorp: Add an is_render_target parameter to surface_info::set.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38
39 #include "brw_blorp.h"
40 #include "brw_context.h"
41
42 #include "main/enums.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47
48 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
49
50 static GLenum
51 target_to_target(GLenum target)
52 {
53 switch (target) {
54 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
55 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
56 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
57 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
58 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
59 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
60 return GL_TEXTURE_CUBE_MAP_ARB;
61 default:
62 return target;
63 }
64 }
65
66
67 /**
68 * Determine which MSAA layout should be used by the MSAA surface being
69 * created, based on the chip generation and the surface type.
70 */
71 static enum intel_msaa_layout
72 compute_msaa_layout(struct brw_context *brw, gl_format format, GLenum target)
73 {
74 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
75 if (brw->gen < 7)
76 return INTEL_MSAA_LAYOUT_IMS;
77
78 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
79 switch (_mesa_get_format_base_format(format)) {
80 case GL_DEPTH_COMPONENT:
81 case GL_STENCIL_INDEX:
82 case GL_DEPTH_STENCIL:
83 return INTEL_MSAA_LAYOUT_IMS;
84 default:
85 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
86 *
87 * This field must be set to 0 for all SINT MSRTs when all RT channels
88 * are not written
89 *
90 * In practice this means that we have to disable MCS for all signed
91 * integer MSAA buffers. The alternative, to disable MCS only when one
92 * of the render target channels is disabled, is impractical because it
93 * would require converting between CMS and UMS MSAA layouts on the fly,
94 * which is expensive.
95 */
96 if (_mesa_get_format_datatype(format) == GL_INT) {
97 /* TODO: is this workaround needed for future chipsets? */
98 assert(brw->gen == 7);
99 return INTEL_MSAA_LAYOUT_UMS;
100 } else {
101 /* For now, if we're going to be texturing from this surface,
102 * force UMS, so that the shader doesn't have to do different things
103 * based on whether there's a multisample control surface needing sampled first.
104 * We can't just blindly read the MCS surface in all cases because:
105 *
106 * From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
107 *
108 * If this field is disabled and the sampling engine <ld_mcs> message
109 * is issued on this surface, the MCS surface may be accessed. Software
110 * must ensure that the surface is defined to avoid GTT errors.
111 */
112 if (target == GL_TEXTURE_2D_MULTISAMPLE ||
113 target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
114 return INTEL_MSAA_LAYOUT_UMS;
115 } else {
116 return INTEL_MSAA_LAYOUT_CMS;
117 }
118 }
119 }
120 }
121
122
123 /**
124 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
125 * scaled-down bitfield representation of the color buffer which is capable of
126 * recording when blocks of the color buffer are equal to the clear value.
127 * This function returns the block size that will be used by the MCS buffer
128 * corresponding to a certain color miptree.
129 *
130 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
131 * beneath the "Fast Color Clear" bullet (p327):
132 *
133 * The following table describes the RT alignment
134 *
135 * Pixels Lines
136 * TiledY RT CL
137 * bpp
138 * 32 8 4
139 * 64 4 4
140 * 128 2 4
141 * TiledX RT CL
142 * bpp
143 * 32 16 2
144 * 64 8 2
145 * 128 4 2
146 *
147 * This alignment has the following uses:
148 *
149 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
150 * buffer contains 128 blocks horizontally and 256 blocks vertically.
151 *
152 * - For figuring out alignment restrictions for a fast clear operation. Fast
153 * clear operations must always clear aligned multiples of 16 blocks
154 * horizontally and 32 blocks vertically.
155 *
156 * - For scaling down the coordinates sent through the render pipeline during
157 * a fast clear. X coordinates must be scaled down by 8 times the block
158 * width, and Y coordinates by 16 times the block height.
159 *
160 * - For scaling down the coordinates sent through the render pipeline during
161 * a "Render Target Resolve" operation. X coordinates must be scaled down
162 * by half the block width, and Y coordinates by half the block height.
163 */
164 void
165 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
166 struct intel_mipmap_tree *mt,
167 unsigned *width_px, unsigned *height)
168 {
169 switch (mt->region->tiling) {
170 default:
171 assert(!"Non-MSRT MCS requires X or Y tiling");
172 /* In release builds, fall through */
173 case I915_TILING_Y:
174 *width_px = 32 / mt->cpp;
175 *height = 4;
176 break;
177 case I915_TILING_X:
178 *width_px = 64 / mt->cpp;
179 *height = 2;
180 }
181 }
182
183
184 /**
185 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
186 * can be used.
187 *
188 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
189 * beneath the "Fast Color Clear" bullet (p326):
190 *
191 * - Support is limited to tiled render targets.
192 * - Support is for non-mip-mapped and non-array surface types only.
193 *
194 * And then later, on p327:
195 *
196 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
197 * 64bpp, and 128bpp.
198 */
199 bool
200 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
201 struct intel_mipmap_tree *mt)
202 {
203 /* MCS support does not exist prior to Gen7 */
204 if (brw->gen < 7)
205 return false;
206
207 /* MCS is only supported for color buffers */
208 switch (_mesa_get_format_base_format(mt->format)) {
209 case GL_DEPTH_COMPONENT:
210 case GL_DEPTH_STENCIL:
211 case GL_STENCIL_INDEX:
212 return false;
213 }
214
215 if (mt->region->tiling != I915_TILING_X &&
216 mt->region->tiling != I915_TILING_Y)
217 return false;
218 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
219 return false;
220 if (mt->first_level != 0 || mt->last_level != 0)
221 return false;
222 if (mt->physical_depth0 != 1)
223 return false;
224
225 /* There's no point in using an MCS buffer if the surface isn't in a
226 * renderable format.
227 */
228 if (!brw->format_supported_as_render_target[mt->format])
229 return false;
230
231 return true;
232 }
233
234
235 /**
236 * @param for_bo Indicates that the caller is
237 * intel_miptree_create_for_bo(). If true, then do not create
238 * \c stencil_mt.
239 */
240 struct intel_mipmap_tree *
241 intel_miptree_create_layout(struct brw_context *brw,
242 GLenum target,
243 gl_format format,
244 GLuint first_level,
245 GLuint last_level,
246 GLuint width0,
247 GLuint height0,
248 GLuint depth0,
249 bool for_bo,
250 GLuint num_samples)
251 {
252 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
253 if (!mt)
254 return NULL;
255
256 DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__,
257 _mesa_lookup_enum_by_nr(target),
258 _mesa_get_format_name(format),
259 first_level, last_level, mt);
260
261 mt->target = target_to_target(target);
262 mt->format = format;
263 mt->first_level = first_level;
264 mt->last_level = last_level;
265 mt->logical_width0 = width0;
266 mt->logical_height0 = height0;
267 mt->logical_depth0 = depth0;
268 mt->mcs_state = INTEL_MCS_STATE_NONE;
269
270 /* The cpp is bytes per (1, blockheight)-sized block for compressed
271 * textures. This is why you'll see divides by blockheight all over
272 */
273 unsigned bw, bh;
274 _mesa_get_format_block_size(format, &bw, &bh);
275 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
276 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
277
278 mt->num_samples = num_samples;
279 mt->compressed = _mesa_is_format_compressed(format);
280 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
281 mt->refcount = 1;
282
283 if (num_samples > 1) {
284 /* Adjust width/height/depth for MSAA */
285 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
286 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
287 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
288 *
289 * "Any of the other messages (sample*, LOD, load4) used with a
290 * (4x) multisampled surface will in-effect sample a surface with
291 * double the height and width as that indicated in the surface
292 * state. Each pixel position on the original-sized surface is
293 * replaced with a 2x2 of samples with the following arrangement:
294 *
295 * sample 0 sample 2
296 * sample 1 sample 3"
297 *
298 * Thus, when sampling from a multisampled texture, it behaves as
299 * though the layout in memory for (x,y,sample) is:
300 *
301 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
302 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
303 *
304 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
305 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
306 *
307 * However, the actual layout of multisampled data in memory is:
308 *
309 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
310 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
311 *
312 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
313 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
314 *
315 * This pattern repeats for each 2x2 pixel block.
316 *
317 * As a result, when calculating the size of our 4-sample buffer for
318 * an odd width or height, we have to align before scaling up because
319 * sample 3 is in that bottom right 2x2 block.
320 */
321 switch (num_samples) {
322 case 4:
323 width0 = ALIGN(width0, 2) * 2;
324 height0 = ALIGN(height0, 2) * 2;
325 break;
326 case 8:
327 width0 = ALIGN(width0, 2) * 4;
328 height0 = ALIGN(height0, 2) * 2;
329 break;
330 default:
331 /* num_samples should already have been quantized to 0, 1, 4, or
332 * 8.
333 */
334 assert(false);
335 }
336 } else {
337 /* Non-interleaved */
338 depth0 *= num_samples;
339 }
340 }
341
342 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
343 * use it elsewhere?
344 */
345 switch (mt->msaa_layout) {
346 case INTEL_MSAA_LAYOUT_NONE:
347 case INTEL_MSAA_LAYOUT_IMS:
348 mt->array_spacing_lod0 = false;
349 break;
350 case INTEL_MSAA_LAYOUT_UMS:
351 case INTEL_MSAA_LAYOUT_CMS:
352 mt->array_spacing_lod0 = true;
353 break;
354 }
355
356 if (target == GL_TEXTURE_CUBE_MAP) {
357 assert(depth0 == 1);
358 depth0 = 6;
359 }
360
361 mt->physical_width0 = width0;
362 mt->physical_height0 = height0;
363 mt->physical_depth0 = depth0;
364
365 if (!for_bo &&
366 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
367 (brw->must_use_separate_stencil ||
368 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
369 mt->stencil_mt = intel_miptree_create(brw,
370 mt->target,
371 MESA_FORMAT_S8,
372 mt->first_level,
373 mt->last_level,
374 mt->logical_width0,
375 mt->logical_height0,
376 mt->logical_depth0,
377 true,
378 num_samples,
379 INTEL_MIPTREE_TILING_ANY);
380 if (!mt->stencil_mt) {
381 intel_miptree_release(&mt);
382 return NULL;
383 }
384
385 /* Fix up the Z miptree format for how we're splitting out separate
386 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
387 */
388 if (mt->format == MESA_FORMAT_S8_Z24) {
389 mt->format = MESA_FORMAT_X8_Z24;
390 } else if (mt->format == MESA_FORMAT_Z32_FLOAT_X24S8) {
391 mt->format = MESA_FORMAT_Z32_FLOAT;
392 mt->cpp = 4;
393 } else {
394 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
395 _mesa_get_format_name(mt->format));
396 }
397 }
398
399 brw_miptree_layout(brw, mt);
400
401 return mt;
402 }
403
404 /**
405 * \brief Helper function for intel_miptree_create().
406 */
407 static uint32_t
408 intel_miptree_choose_tiling(struct brw_context *brw,
409 gl_format format,
410 uint32_t width0,
411 uint32_t num_samples,
412 enum intel_miptree_tiling_mode requested,
413 struct intel_mipmap_tree *mt)
414 {
415 if (format == MESA_FORMAT_S8) {
416 /* The stencil buffer is W tiled. However, we request from the kernel a
417 * non-tiled buffer because the GTT is incapable of W fencing.
418 */
419 return I915_TILING_NONE;
420 }
421
422 /* Some usages may want only one type of tiling, like depth miptrees (Y
423 * tiled), or temporary BOs for uploading data once (linear).
424 */
425 switch (requested) {
426 case INTEL_MIPTREE_TILING_ANY:
427 break;
428 case INTEL_MIPTREE_TILING_Y:
429 return I915_TILING_Y;
430 case INTEL_MIPTREE_TILING_NONE:
431 return I915_TILING_NONE;
432 }
433
434 if (num_samples > 1) {
435 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
436 * Surface"):
437 *
438 * [DevSNB+]: For multi-sample render targets, this field must be
439 * 1. MSRTs can only be tiled.
440 *
441 * Our usual reason for preferring X tiling (fast blits using the
442 * blitting engine) doesn't apply to MSAA, since we'll generally be
443 * downsampling or upsampling when blitting between the MSAA buffer
444 * and another buffer, and the blitting engine doesn't support that.
445 * So use Y tiling, since it makes better use of the cache.
446 */
447 return I915_TILING_Y;
448 }
449
450 GLenum base_format = _mesa_get_format_base_format(format);
451 if (base_format == GL_DEPTH_COMPONENT ||
452 base_format == GL_DEPTH_STENCIL_EXT)
453 return I915_TILING_Y;
454
455 int minimum_pitch = mt->total_width * mt->cpp;
456
457 /* If the width is much smaller than a tile, don't bother tiling. */
458 if (minimum_pitch < 64)
459 return I915_TILING_NONE;
460
461 if (ALIGN(minimum_pitch, 512) >= 32768) {
462 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
463 mt->total_width, mt->total_height);
464 return I915_TILING_NONE;
465 }
466
467 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
468 if (brw->gen < 6)
469 return I915_TILING_X;
470
471 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
472 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
473 * or Linear."
474 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
475 * all the way back to 965, but is explicitly permitted on Gen7.
476 */
477 if (brw->gen != 7 && mt->cpp >= 16)
478 return I915_TILING_X;
479
480 return I915_TILING_Y | I915_TILING_X;
481 }
482
483 struct intel_mipmap_tree *
484 intel_miptree_create(struct brw_context *brw,
485 GLenum target,
486 gl_format format,
487 GLuint first_level,
488 GLuint last_level,
489 GLuint width0,
490 GLuint height0,
491 GLuint depth0,
492 bool expect_accelerated_upload,
493 GLuint num_samples,
494 enum intel_miptree_tiling_mode requested_tiling)
495 {
496 struct intel_mipmap_tree *mt;
497 gl_format tex_format = format;
498 gl_format etc_format = MESA_FORMAT_NONE;
499 GLuint total_width, total_height;
500
501 if (!brw->is_baytrail) {
502 switch (format) {
503 case MESA_FORMAT_ETC1_RGB8:
504 format = MESA_FORMAT_RGBX8888_REV;
505 break;
506 case MESA_FORMAT_ETC2_RGB8:
507 format = MESA_FORMAT_RGBX8888_REV;
508 break;
509 case MESA_FORMAT_ETC2_SRGB8:
510 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
511 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
512 format = MESA_FORMAT_SARGB8;
513 break;
514 case MESA_FORMAT_ETC2_RGBA8_EAC:
515 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
516 format = MESA_FORMAT_RGBA8888_REV;
517 break;
518 case MESA_FORMAT_ETC2_R11_EAC:
519 format = MESA_FORMAT_R16;
520 break;
521 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
522 format = MESA_FORMAT_SIGNED_R16;
523 break;
524 case MESA_FORMAT_ETC2_RG11_EAC:
525 format = MESA_FORMAT_GR1616;
526 break;
527 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
528 format = MESA_FORMAT_SIGNED_GR1616;
529 break;
530 default:
531 /* Non ETC1 / ETC2 format */
532 break;
533 }
534 }
535
536 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
537
538 mt = intel_miptree_create_layout(brw, target, format,
539 first_level, last_level, width0,
540 height0, depth0,
541 false, num_samples);
542 /*
543 * pitch == 0 || height == 0 indicates the null texture
544 */
545 if (!mt || !mt->total_width || !mt->total_height) {
546 intel_miptree_release(&mt);
547 return NULL;
548 }
549
550 total_width = mt->total_width;
551 total_height = mt->total_height;
552
553 if (format == MESA_FORMAT_S8) {
554 /* Align to size of W tile, 64x64. */
555 total_width = ALIGN(total_width, 64);
556 total_height = ALIGN(total_height, 64);
557 }
558
559 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
560 num_samples, requested_tiling,
561 mt);
562 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
563
564 mt->etc_format = etc_format;
565 mt->region = intel_region_alloc(brw->intelScreen,
566 y_or_x ? I915_TILING_Y : tiling,
567 mt->cpp,
568 total_width,
569 total_height,
570 expect_accelerated_upload);
571
572 /* If the region is too large to fit in the aperture, we need to use the
573 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
574 * so we need to fall back to X.
575 */
576 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
577 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
578 mt->total_width, mt->total_height);
579 intel_region_release(&mt->region);
580
581 mt->region = intel_region_alloc(brw->intelScreen,
582 I915_TILING_X,
583 mt->cpp,
584 total_width,
585 total_height,
586 expect_accelerated_upload);
587 }
588
589 mt->offset = 0;
590
591 if (!mt->region) {
592 intel_miptree_release(&mt);
593 return NULL;
594 }
595
596 /* If this miptree is capable of supporting fast color clears, set
597 * mcs_state appropriately to ensure that fast clears will occur.
598 * Allocation of the MCS miptree will be deferred until the first fast
599 * clear actually occurs.
600 */
601 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
602 mt->mcs_state = INTEL_MCS_STATE_RESOLVED;
603
604 return mt;
605 }
606
607 struct intel_mipmap_tree *
608 intel_miptree_create_for_bo(struct brw_context *brw,
609 drm_intel_bo *bo,
610 gl_format format,
611 uint32_t offset,
612 uint32_t width,
613 uint32_t height,
614 int pitch,
615 uint32_t tiling)
616 {
617 struct intel_mipmap_tree *mt;
618
619 struct intel_region *region = calloc(1, sizeof(*region));
620 if (!region)
621 return NULL;
622
623 /* Nothing will be able to use this miptree with the BO if the offset isn't
624 * aligned.
625 */
626 if (tiling != I915_TILING_NONE)
627 assert(offset % 4096 == 0);
628
629 /* miptrees can't handle negative pitch. If you need flipping of images,
630 * that's outside of the scope of the mt.
631 */
632 assert(pitch >= 0);
633
634 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
635 0, 0,
636 width, height, 1,
637 true, 0 /* num_samples */);
638 if (!mt)
639 return mt;
640
641 region->cpp = mt->cpp;
642 region->width = width;
643 region->height = height;
644 region->pitch = pitch;
645 region->refcount = 1;
646 drm_intel_bo_reference(bo);
647 region->bo = bo;
648 region->tiling = tiling;
649
650 mt->region = region;
651 mt->offset = offset;
652
653 return mt;
654 }
655
656
657 /**
658 * For a singlesample DRI2 buffer, this simply wraps the given region with a miptree.
659 *
660 * For a multisample DRI2 buffer, this wraps the given region with
661 * a singlesample miptree, then creates a multisample miptree into which the
662 * singlesample miptree is embedded as a child.
663 */
664 struct intel_mipmap_tree*
665 intel_miptree_create_for_dri2_buffer(struct brw_context *brw,
666 unsigned dri_attachment,
667 gl_format format,
668 uint32_t num_samples,
669 struct intel_region *region)
670 {
671 struct intel_mipmap_tree *singlesample_mt = NULL;
672 struct intel_mipmap_tree *multisample_mt = NULL;
673
674 /* Only the front and back buffers, which are color buffers, are shared
675 * through DRI2.
676 */
677 assert(dri_attachment == __DRI_BUFFER_BACK_LEFT ||
678 dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
679 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT);
680 assert(_mesa_get_format_base_format(format) == GL_RGB ||
681 _mesa_get_format_base_format(format) == GL_RGBA);
682
683 singlesample_mt = intel_miptree_create_for_bo(brw,
684 region->bo,
685 format,
686 0,
687 region->width,
688 region->height,
689 region->pitch,
690 region->tiling);
691 if (!singlesample_mt)
692 return NULL;
693 singlesample_mt->region->name = region->name;
694
695 /* If this miptree is capable of supporting fast color clears, set
696 * mcs_state appropriately to ensure that fast clears will occur.
697 * Allocation of the MCS miptree will be deferred until the first fast
698 * clear actually occurs.
699 */
700 if (intel_is_non_msrt_mcs_buffer_supported(brw, singlesample_mt))
701 singlesample_mt->mcs_state = INTEL_MCS_STATE_RESOLVED;
702
703 if (num_samples == 0)
704 return singlesample_mt;
705
706 multisample_mt = intel_miptree_create_for_renderbuffer(brw,
707 format,
708 region->width,
709 region->height,
710 num_samples);
711 if (!multisample_mt) {
712 intel_miptree_release(&singlesample_mt);
713 return NULL;
714 }
715
716 multisample_mt->singlesample_mt = singlesample_mt;
717 multisample_mt->need_downsample = false;
718
719 if (brw->is_front_buffer_rendering &&
720 (dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
721 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT)) {
722 intel_miptree_upsample(brw, multisample_mt);
723 }
724
725 return multisample_mt;
726 }
727
728 struct intel_mipmap_tree*
729 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
730 gl_format format,
731 uint32_t width,
732 uint32_t height,
733 uint32_t num_samples)
734 {
735 struct intel_mipmap_tree *mt;
736 uint32_t depth = 1;
737 bool ok;
738
739 mt = intel_miptree_create(brw, GL_TEXTURE_2D, format, 0, 0,
740 width, height, depth, true, num_samples,
741 INTEL_MIPTREE_TILING_ANY);
742 if (!mt)
743 goto fail;
744
745 if (brw_is_hiz_depth_format(brw, format)) {
746 ok = intel_miptree_alloc_hiz(brw, mt);
747 if (!ok)
748 goto fail;
749 }
750
751 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
752 ok = intel_miptree_alloc_mcs(brw, mt, num_samples);
753 if (!ok)
754 goto fail;
755 }
756
757 return mt;
758
759 fail:
760 intel_miptree_release(&mt);
761 return NULL;
762 }
763
764 void
765 intel_miptree_reference(struct intel_mipmap_tree **dst,
766 struct intel_mipmap_tree *src)
767 {
768 if (*dst == src)
769 return;
770
771 intel_miptree_release(dst);
772
773 if (src) {
774 src->refcount++;
775 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
776 }
777
778 *dst = src;
779 }
780
781
782 void
783 intel_miptree_release(struct intel_mipmap_tree **mt)
784 {
785 if (!*mt)
786 return;
787
788 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
789 if (--(*mt)->refcount <= 0) {
790 GLuint i;
791
792 DBG("%s deleting %p\n", __FUNCTION__, *mt);
793
794 intel_region_release(&((*mt)->region));
795 intel_miptree_release(&(*mt)->stencil_mt);
796 intel_miptree_release(&(*mt)->hiz_mt);
797 intel_miptree_release(&(*mt)->mcs_mt);
798 intel_miptree_release(&(*mt)->singlesample_mt);
799 intel_resolve_map_clear(&(*mt)->hiz_map);
800
801 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
802 free((*mt)->level[i].slice);
803 }
804
805 free(*mt);
806 }
807 *mt = NULL;
808 }
809
810 void
811 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
812 int *width, int *height, int *depth)
813 {
814 switch (image->TexObject->Target) {
815 case GL_TEXTURE_1D_ARRAY:
816 *width = image->Width;
817 *height = 1;
818 *depth = image->Height;
819 break;
820 default:
821 *width = image->Width;
822 *height = image->Height;
823 *depth = image->Depth;
824 break;
825 }
826 }
827
828 /**
829 * Can the image be pulled into a unified mipmap tree? This mirrors
830 * the completeness test in a lot of ways.
831 *
832 * Not sure whether I want to pass gl_texture_image here.
833 */
834 bool
835 intel_miptree_match_image(struct intel_mipmap_tree *mt,
836 struct gl_texture_image *image)
837 {
838 struct intel_texture_image *intelImage = intel_texture_image(image);
839 GLuint level = intelImage->base.Base.Level;
840 int width, height, depth;
841
842 /* glTexImage* choose the texture object based on the target passed in, and
843 * objects can't change targets over their lifetimes, so this should be
844 * true.
845 */
846 assert(target_to_target(image->TexObject->Target) == mt->target);
847
848 gl_format mt_format = mt->format;
849 if (mt->format == MESA_FORMAT_X8_Z24 && mt->stencil_mt)
850 mt_format = MESA_FORMAT_S8_Z24;
851 if (mt->format == MESA_FORMAT_Z32_FLOAT && mt->stencil_mt)
852 mt_format = MESA_FORMAT_Z32_FLOAT_X24S8;
853 if (mt->etc_format != MESA_FORMAT_NONE)
854 mt_format = mt->etc_format;
855
856 if (image->TexFormat != mt_format)
857 return false;
858
859 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
860
861 if (mt->target == GL_TEXTURE_CUBE_MAP)
862 depth = 6;
863
864 /* Test image dimensions against the base level image adjusted for
865 * minification. This will also catch images not present in the
866 * tree, changed targets, etc.
867 */
868 if (mt->target == GL_TEXTURE_2D_MULTISAMPLE ||
869 mt->target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
870 /* nonzero level here is always bogus */
871 assert(level == 0);
872
873 if (width != mt->logical_width0 ||
874 height != mt->logical_height0 ||
875 depth != mt->logical_depth0) {
876 return false;
877 }
878 }
879 else {
880 /* all normal textures, renderbuffers, etc */
881 if (width != mt->level[level].width ||
882 height != mt->level[level].height ||
883 depth != mt->level[level].depth) {
884 return false;
885 }
886 }
887
888 if (image->NumSamples != mt->num_samples)
889 return false;
890
891 return true;
892 }
893
894
895 void
896 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
897 GLuint level,
898 GLuint x, GLuint y,
899 GLuint w, GLuint h, GLuint d)
900 {
901 mt->level[level].width = w;
902 mt->level[level].height = h;
903 mt->level[level].depth = d;
904 mt->level[level].level_x = x;
905 mt->level[level].level_y = y;
906
907 DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__,
908 level, w, h, d, x, y);
909
910 assert(mt->level[level].slice == NULL);
911
912 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
913 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
914 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
915 }
916
917
918 void
919 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
920 GLuint level, GLuint img,
921 GLuint x, GLuint y)
922 {
923 if (img == 0 && level == 0)
924 assert(x == 0 && y == 0);
925
926 assert(img < mt->level[level].depth);
927
928 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
929 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
930
931 DBG("%s level %d img %d pos %d,%d\n",
932 __FUNCTION__, level, img,
933 mt->level[level].slice[img].x_offset,
934 mt->level[level].slice[img].y_offset);
935 }
936
937 void
938 intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
939 GLuint level, GLuint slice,
940 GLuint *x, GLuint *y)
941 {
942 assert(slice < mt->level[level].depth);
943
944 *x = mt->level[level].slice[slice].x_offset;
945 *y = mt->level[level].slice[slice].y_offset;
946 }
947
948 /**
949 * Rendering with tiled buffers requires that the base address of the buffer
950 * be aligned to a page boundary. For renderbuffers, and sometimes with
951 * textures, we may want the surface to point at a texture image level that
952 * isn't at a page boundary.
953 *
954 * This function returns an appropriately-aligned base offset
955 * according to the tiling restrictions, plus any required x/y offset
956 * from there.
957 */
958 uint32_t
959 intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
960 GLuint level, GLuint slice,
961 uint32_t *tile_x,
962 uint32_t *tile_y)
963 {
964 struct intel_region *region = mt->region;
965 uint32_t x, y;
966 uint32_t mask_x, mask_y;
967
968 intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
969 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
970
971 *tile_x = x & mask_x;
972 *tile_y = y & mask_y;
973
974 return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
975 false);
976 }
977
978 static void
979 intel_miptree_copy_slice_sw(struct brw_context *brw,
980 struct intel_mipmap_tree *dst_mt,
981 struct intel_mipmap_tree *src_mt,
982 int level,
983 int slice,
984 int width,
985 int height)
986 {
987 void *src, *dst;
988 int src_stride, dst_stride;
989 int cpp = dst_mt->cpp;
990
991 intel_miptree_map(brw, src_mt,
992 level, slice,
993 0, 0,
994 width, height,
995 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
996 &src, &src_stride);
997
998 intel_miptree_map(brw, dst_mt,
999 level, slice,
1000 0, 0,
1001 width, height,
1002 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1003 BRW_MAP_DIRECT_BIT,
1004 &dst, &dst_stride);
1005
1006 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1007 _mesa_get_format_name(src_mt->format),
1008 src_mt, src, src_stride,
1009 _mesa_get_format_name(dst_mt->format),
1010 dst_mt, dst, dst_stride,
1011 width, height);
1012
1013 int row_size = cpp * width;
1014 if (src_stride == row_size &&
1015 dst_stride == row_size) {
1016 memcpy(dst, src, row_size * height);
1017 } else {
1018 for (int i = 0; i < height; i++) {
1019 memcpy(dst, src, row_size);
1020 dst += dst_stride;
1021 src += src_stride;
1022 }
1023 }
1024
1025 intel_miptree_unmap(brw, dst_mt, level, slice);
1026 intel_miptree_unmap(brw, src_mt, level, slice);
1027
1028 /* Don't forget to copy the stencil data over, too. We could have skipped
1029 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1030 * shuffling the two data sources in/out of temporary storage instead of
1031 * the direct mapping we get this way.
1032 */
1033 if (dst_mt->stencil_mt) {
1034 assert(src_mt->stencil_mt);
1035 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1036 level, slice, width, height);
1037 }
1038 }
1039
1040 static void
1041 intel_miptree_copy_slice(struct brw_context *brw,
1042 struct intel_mipmap_tree *dst_mt,
1043 struct intel_mipmap_tree *src_mt,
1044 int level,
1045 int face,
1046 int depth)
1047
1048 {
1049 gl_format format = src_mt->format;
1050 uint32_t width = src_mt->level[level].width;
1051 uint32_t height = src_mt->level[level].height;
1052 int slice;
1053
1054 if (face > 0)
1055 slice = face;
1056 else
1057 slice = depth;
1058
1059 assert(depth < src_mt->level[level].depth);
1060 assert(src_mt->format == dst_mt->format);
1061
1062 if (dst_mt->compressed) {
1063 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1064 width = ALIGN(width, dst_mt->align_w);
1065 }
1066
1067 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1068 * below won't apply since we can't do the depth's Y tiling or the
1069 * stencil's W tiling in the blitter.
1070 */
1071 if (src_mt->stencil_mt) {
1072 intel_miptree_copy_slice_sw(brw,
1073 dst_mt, src_mt,
1074 level, slice,
1075 width, height);
1076 return;
1077 }
1078
1079 uint32_t dst_x, dst_y, src_x, src_y;
1080 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1081 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1082
1083 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1084 _mesa_get_format_name(src_mt->format),
1085 src_mt, src_x, src_y, src_mt->region->pitch,
1086 _mesa_get_format_name(dst_mt->format),
1087 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1088 width, height);
1089
1090 if (!intel_miptree_blit(brw,
1091 src_mt, level, slice, 0, 0, false,
1092 dst_mt, level, slice, 0, 0, false,
1093 width, height, GL_COPY)) {
1094 perf_debug("miptree validate blit for %s failed\n",
1095 _mesa_get_format_name(format));
1096
1097 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1098 width, height);
1099 }
1100 }
1101
1102 /**
1103 * Copies the image's current data to the given miptree, and associates that
1104 * miptree with the image.
1105 *
1106 * If \c invalidate is true, then the actual image data does not need to be
1107 * copied, but the image still needs to be associated to the new miptree (this
1108 * is set to true if we're about to clear the image).
1109 */
1110 void
1111 intel_miptree_copy_teximage(struct brw_context *brw,
1112 struct intel_texture_image *intelImage,
1113 struct intel_mipmap_tree *dst_mt,
1114 bool invalidate)
1115 {
1116 struct intel_mipmap_tree *src_mt = intelImage->mt;
1117 struct intel_texture_object *intel_obj =
1118 intel_texture_object(intelImage->base.Base.TexObject);
1119 int level = intelImage->base.Base.Level;
1120 int face = intelImage->base.Base.Face;
1121 GLuint depth = intelImage->base.Base.Depth;
1122
1123 if (!invalidate) {
1124 for (int slice = 0; slice < depth; slice++) {
1125 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1126 }
1127 }
1128
1129 intel_miptree_reference(&intelImage->mt, dst_mt);
1130 intel_obj->needs_validate = true;
1131 }
1132
1133 bool
1134 intel_miptree_alloc_mcs(struct brw_context *brw,
1135 struct intel_mipmap_tree *mt,
1136 GLuint num_samples)
1137 {
1138 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1139 assert(mt->mcs_mt == NULL);
1140
1141 /* Choose the correct format for the MCS buffer. All that really matters
1142 * is that we allocate the right buffer size, since we'll always be
1143 * accessing this miptree using MCS-specific hardware mechanisms, which
1144 * infer the correct format based on num_samples.
1145 */
1146 gl_format format;
1147 switch (num_samples) {
1148 case 4:
1149 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1150 * each sample).
1151 */
1152 format = MESA_FORMAT_R8;
1153 break;
1154 case 8:
1155 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1156 * for each sample, plus 8 padding bits).
1157 */
1158 format = MESA_FORMAT_R_UINT32;
1159 break;
1160 default:
1161 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1162 return false;
1163 };
1164
1165 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1166 *
1167 * "The MCS surface must be stored as Tile Y."
1168 */
1169 mt->mcs_state = INTEL_MCS_STATE_MSAA;
1170 mt->mcs_mt = intel_miptree_create(brw,
1171 mt->target,
1172 format,
1173 mt->first_level,
1174 mt->last_level,
1175 mt->logical_width0,
1176 mt->logical_height0,
1177 mt->logical_depth0,
1178 true,
1179 0 /* num_samples */,
1180 INTEL_MIPTREE_TILING_Y);
1181
1182 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1183 *
1184 * When MCS buffer is enabled and bound to MSRT, it is required that it
1185 * is cleared prior to any rendering.
1186 *
1187 * Since we don't use the MCS buffer for any purpose other than rendering,
1188 * it makes sense to just clear it immediately upon allocation.
1189 *
1190 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1191 */
1192 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1193 memset(data, 0xff, mt->mcs_mt->region->bo->size);
1194 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1195
1196 return mt->mcs_mt;
1197 }
1198
1199
1200 bool
1201 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1202 struct intel_mipmap_tree *mt)
1203 {
1204 assert(mt->mcs_mt == NULL);
1205
1206 /* The format of the MCS buffer is opaque to the driver; all that matters
1207 * is that we get its size and pitch right. We'll pretend that the format
1208 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1209 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1210 * the block width and then a further factor of 4. Since an MCS tile
1211 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1212 * we'll need to scale the height down by the block height and then a
1213 * further factor of 8.
1214 */
1215 const gl_format format = MESA_FORMAT_R_UINT32;
1216 unsigned block_width_px;
1217 unsigned block_height;
1218 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1219 unsigned width_divisor = block_width_px * 4;
1220 unsigned height_divisor = block_height * 8;
1221 unsigned mcs_width =
1222 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1223 unsigned mcs_height =
1224 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1225 assert(mt->logical_depth0 == 1);
1226 mt->mcs_mt = intel_miptree_create(brw,
1227 mt->target,
1228 format,
1229 mt->first_level,
1230 mt->last_level,
1231 mcs_width,
1232 mcs_height,
1233 mt->logical_depth0,
1234 true,
1235 0 /* num_samples */,
1236 INTEL_MIPTREE_TILING_Y);
1237
1238 return mt->mcs_mt;
1239 }
1240
1241
1242 /**
1243 * Helper for intel_miptree_alloc_hiz() that sets
1244 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1245 * \c has_hiz was set.
1246 */
1247 static bool
1248 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1249 struct intel_mipmap_tree *mt,
1250 uint32_t level,
1251 uint32_t layer)
1252 {
1253 assert(mt->hiz_mt);
1254
1255 if (brw->is_haswell) {
1256 const struct intel_mipmap_level *l = &mt->level[level];
1257
1258 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1259 * and the height is 4 aligned. This allows our HiZ support
1260 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1261 * we can grow the width & height to allow the HiZ op to
1262 * force the proper size alignments.
1263 */
1264 if (level > 0 && ((l->width & 7) || (l->height & 3))) {
1265 return false;
1266 }
1267 }
1268
1269 mt->level[level].slice[layer].has_hiz = true;
1270 return true;
1271 }
1272
1273
1274
1275 bool
1276 intel_miptree_alloc_hiz(struct brw_context *brw,
1277 struct intel_mipmap_tree *mt)
1278 {
1279 assert(mt->hiz_mt == NULL);
1280 mt->hiz_mt = intel_miptree_create(brw,
1281 mt->target,
1282 mt->format,
1283 mt->first_level,
1284 mt->last_level,
1285 mt->logical_width0,
1286 mt->logical_height0,
1287 mt->logical_depth0,
1288 true,
1289 mt->num_samples,
1290 INTEL_MIPTREE_TILING_ANY);
1291
1292 if (!mt->hiz_mt)
1293 return false;
1294
1295 /* Mark that all slices need a HiZ resolve. */
1296 struct intel_resolve_map *head = &mt->hiz_map;
1297 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1298 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1299 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1300 continue;
1301
1302 head->next = malloc(sizeof(*head->next));
1303 head->next->prev = head;
1304 head->next->next = NULL;
1305 head = head->next;
1306
1307 head->level = level;
1308 head->layer = layer;
1309 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1310 }
1311 }
1312
1313 return true;
1314 }
1315
1316 /**
1317 * Does the miptree slice have hiz enabled?
1318 */
1319 bool
1320 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1321 uint32_t level,
1322 uint32_t layer)
1323 {
1324 intel_miptree_check_level_layer(mt, level, layer);
1325 return mt->level[level].slice[layer].has_hiz;
1326 }
1327
1328 void
1329 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1330 uint32_t level,
1331 uint32_t layer)
1332 {
1333 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1334 return;
1335
1336 intel_resolve_map_set(&mt->hiz_map,
1337 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1338 }
1339
1340
1341 void
1342 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1343 uint32_t level,
1344 uint32_t layer)
1345 {
1346 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1347 return;
1348
1349 intel_resolve_map_set(&mt->hiz_map,
1350 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1351 }
1352
1353 void
1354 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1355 uint32_t level)
1356 {
1357 uint32_t layer;
1358 uint32_t end_layer = mt->level[level].depth;
1359
1360 for (layer = 0; layer < end_layer; layer++) {
1361 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1362 }
1363 }
1364
1365 static bool
1366 intel_miptree_slice_resolve(struct brw_context *brw,
1367 struct intel_mipmap_tree *mt,
1368 uint32_t level,
1369 uint32_t layer,
1370 enum gen6_hiz_op need)
1371 {
1372 intel_miptree_check_level_layer(mt, level, layer);
1373
1374 struct intel_resolve_map *item =
1375 intel_resolve_map_get(&mt->hiz_map, level, layer);
1376
1377 if (!item || item->need != need)
1378 return false;
1379
1380 intel_hiz_exec(brw, mt, level, layer, need);
1381 intel_resolve_map_remove(item);
1382 return true;
1383 }
1384
1385 bool
1386 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1387 struct intel_mipmap_tree *mt,
1388 uint32_t level,
1389 uint32_t layer)
1390 {
1391 return intel_miptree_slice_resolve(brw, mt, level, layer,
1392 GEN6_HIZ_OP_HIZ_RESOLVE);
1393 }
1394
1395 bool
1396 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1397 struct intel_mipmap_tree *mt,
1398 uint32_t level,
1399 uint32_t layer)
1400 {
1401 return intel_miptree_slice_resolve(brw, mt, level, layer,
1402 GEN6_HIZ_OP_DEPTH_RESOLVE);
1403 }
1404
1405 static bool
1406 intel_miptree_all_slices_resolve(struct brw_context *brw,
1407 struct intel_mipmap_tree *mt,
1408 enum gen6_hiz_op need)
1409 {
1410 bool did_resolve = false;
1411 struct intel_resolve_map *i, *next;
1412
1413 for (i = mt->hiz_map.next; i; i = next) {
1414 next = i->next;
1415 if (i->need != need)
1416 continue;
1417
1418 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1419 intel_resolve_map_remove(i);
1420 did_resolve = true;
1421 }
1422
1423 return did_resolve;
1424 }
1425
1426 bool
1427 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1428 struct intel_mipmap_tree *mt)
1429 {
1430 return intel_miptree_all_slices_resolve(brw, mt,
1431 GEN6_HIZ_OP_HIZ_RESOLVE);
1432 }
1433
1434 bool
1435 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1436 struct intel_mipmap_tree *mt)
1437 {
1438 return intel_miptree_all_slices_resolve(brw, mt,
1439 GEN6_HIZ_OP_DEPTH_RESOLVE);
1440 }
1441
1442
1443 void
1444 intel_miptree_resolve_color(struct brw_context *brw,
1445 struct intel_mipmap_tree *mt)
1446 {
1447 switch (mt->mcs_state) {
1448 case INTEL_MCS_STATE_NONE:
1449 case INTEL_MCS_STATE_MSAA:
1450 case INTEL_MCS_STATE_RESOLVED:
1451 /* No resolve needed */
1452 break;
1453 case INTEL_MCS_STATE_UNRESOLVED:
1454 case INTEL_MCS_STATE_CLEAR:
1455 brw_blorp_resolve_color(brw, mt);
1456 break;
1457 }
1458 }
1459
1460
1461 /**
1462 * Make it possible to share the region backing the given miptree with another
1463 * process or another miptree.
1464 *
1465 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1466 * then discard the MCS buffer, if present. We also set the mcs_state to
1467 * INTEL_MCS_STATE_NONE to ensure that no MCS buffer gets allocated in the
1468 * future.
1469 */
1470 void
1471 intel_miptree_make_shareable(struct brw_context *brw,
1472 struct intel_mipmap_tree *mt)
1473 {
1474 /* MCS buffers are also used for multisample buffers, but we can't resolve
1475 * away a multisample MCS buffer because it's an integral part of how the
1476 * pixel data is stored. Fortunately this code path should never be
1477 * reached for multisample buffers.
1478 */
1479 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1480
1481 if (mt->mcs_mt) {
1482 intel_miptree_resolve_color(brw, mt);
1483 intel_miptree_release(&mt->mcs_mt);
1484 mt->mcs_state = INTEL_MCS_STATE_NONE;
1485 }
1486 }
1487
1488
1489 /**
1490 * \brief Get pointer offset into stencil buffer.
1491 *
1492 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1493 * must decode the tile's layout in software.
1494 *
1495 * See
1496 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1497 * Format.
1498 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1499 *
1500 * Even though the returned offset is always positive, the return type is
1501 * signed due to
1502 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1503 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1504 */
1505 static intptr_t
1506 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1507 {
1508 uint32_t tile_size = 4096;
1509 uint32_t tile_width = 64;
1510 uint32_t tile_height = 64;
1511 uint32_t row_size = 64 * stride;
1512
1513 uint32_t tile_x = x / tile_width;
1514 uint32_t tile_y = y / tile_height;
1515
1516 /* The byte's address relative to the tile's base addres. */
1517 uint32_t byte_x = x % tile_width;
1518 uint32_t byte_y = y % tile_height;
1519
1520 uintptr_t u = tile_y * row_size
1521 + tile_x * tile_size
1522 + 512 * (byte_x / 8)
1523 + 64 * (byte_y / 8)
1524 + 32 * ((byte_y / 4) % 2)
1525 + 16 * ((byte_x / 4) % 2)
1526 + 8 * ((byte_y / 2) % 2)
1527 + 4 * ((byte_x / 2) % 2)
1528 + 2 * (byte_y % 2)
1529 + 1 * (byte_x % 2);
1530
1531 if (swizzled) {
1532 /* adjust for bit6 swizzling */
1533 if (((byte_x / 8) % 2) == 1) {
1534 if (((byte_y / 8) % 2) == 0) {
1535 u += 64;
1536 } else {
1537 u -= 64;
1538 }
1539 }
1540 }
1541
1542 return u;
1543 }
1544
1545 static void
1546 intel_miptree_updownsample(struct brw_context *brw,
1547 struct intel_mipmap_tree *src,
1548 struct intel_mipmap_tree *dst,
1549 unsigned width,
1550 unsigned height)
1551 {
1552 int src_x0 = 0;
1553 int src_y0 = 0;
1554 int dst_x0 = 0;
1555 int dst_y0 = 0;
1556
1557 brw_blorp_blit_miptrees(brw,
1558 src, 0 /* level */, 0 /* layer */,
1559 dst, 0 /* level */, 0 /* layer */,
1560 src_x0, src_y0,
1561 width, height,
1562 dst_x0, dst_y0,
1563 width, height,
1564 GL_NEAREST, false, false /*mirror x, y*/);
1565
1566 if (src->stencil_mt) {
1567 brw_blorp_blit_miptrees(brw,
1568 src->stencil_mt, 0 /* level */, 0 /* layer */,
1569 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1570 src_x0, src_y0,
1571 width, height,
1572 dst_x0, dst_y0,
1573 width, height,
1574 GL_NEAREST, false, false /*mirror x, y*/);
1575 }
1576 }
1577
1578 static void
1579 assert_is_flat(struct intel_mipmap_tree *mt)
1580 {
1581 assert(mt->target == GL_TEXTURE_2D);
1582 assert(mt->first_level == 0);
1583 assert(mt->last_level == 0);
1584 }
1585
1586 /**
1587 * \brief Downsample from mt to mt->singlesample_mt.
1588 *
1589 * If the miptree needs no downsample, then skip.
1590 */
1591 void
1592 intel_miptree_downsample(struct brw_context *brw,
1593 struct intel_mipmap_tree *mt)
1594 {
1595 /* Only flat, renderbuffer-like miptrees are supported. */
1596 assert_is_flat(mt);
1597
1598 if (!mt->need_downsample)
1599 return;
1600 intel_miptree_updownsample(brw,
1601 mt, mt->singlesample_mt,
1602 mt->logical_width0,
1603 mt->logical_height0);
1604 mt->need_downsample = false;
1605 }
1606
1607 /**
1608 * \brief Upsample from mt->singlesample_mt to mt.
1609 *
1610 * The upsample is done unconditionally.
1611 */
1612 void
1613 intel_miptree_upsample(struct brw_context *brw,
1614 struct intel_mipmap_tree *mt)
1615 {
1616 /* Only flat, renderbuffer-like miptrees are supported. */
1617 assert_is_flat(mt);
1618 assert(!mt->need_downsample);
1619
1620 intel_miptree_updownsample(brw,
1621 mt->singlesample_mt, mt,
1622 mt->logical_width0,
1623 mt->logical_height0);
1624 }
1625
1626 void *
1627 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1628 {
1629 /* CPU accesses to color buffers don't understand fast color clears, so
1630 * resolve any pending fast color clears before we map.
1631 */
1632 intel_miptree_resolve_color(brw, mt);
1633
1634 drm_intel_bo *bo = mt->region->bo;
1635
1636 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1637 if (drm_intel_bo_busy(bo)) {
1638 perf_debug("Mapping a busy miptree, causing a stall on the GPU.\n");
1639 }
1640 }
1641
1642 intel_batchbuffer_flush(brw);
1643
1644 if (mt->region->tiling != I915_TILING_NONE)
1645 drm_intel_gem_bo_map_gtt(bo);
1646 else
1647 drm_intel_bo_map(bo, true);
1648
1649 return bo->virtual;
1650 }
1651
1652 void
1653 intel_miptree_unmap_raw(struct brw_context *brw,
1654 struct intel_mipmap_tree *mt)
1655 {
1656 drm_intel_bo_unmap(mt->region->bo);
1657 }
1658
1659 static void
1660 intel_miptree_map_gtt(struct brw_context *brw,
1661 struct intel_mipmap_tree *mt,
1662 struct intel_miptree_map *map,
1663 unsigned int level, unsigned int slice)
1664 {
1665 unsigned int bw, bh;
1666 void *base;
1667 unsigned int image_x, image_y;
1668 int x = map->x;
1669 int y = map->y;
1670
1671 /* For compressed formats, the stride is the number of bytes per
1672 * row of blocks. intel_miptree_get_image_offset() already does
1673 * the divide.
1674 */
1675 _mesa_get_format_block_size(mt->format, &bw, &bh);
1676 assert(y % bh == 0);
1677 y /= bh;
1678
1679 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1680
1681 if (base == NULL)
1682 map->ptr = NULL;
1683 else {
1684 /* Note that in the case of cube maps, the caller must have passed the
1685 * slice number referencing the face.
1686 */
1687 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1688 x += image_x;
1689 y += image_y;
1690
1691 map->stride = mt->region->pitch;
1692 map->ptr = base + y * map->stride + x * mt->cpp;
1693 }
1694
1695 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1696 map->x, map->y, map->w, map->h,
1697 mt, _mesa_get_format_name(mt->format),
1698 x, y, map->ptr, map->stride);
1699 }
1700
1701 static void
1702 intel_miptree_unmap_gtt(struct brw_context *brw,
1703 struct intel_mipmap_tree *mt,
1704 struct intel_miptree_map *map,
1705 unsigned int level,
1706 unsigned int slice)
1707 {
1708 intel_miptree_unmap_raw(brw, mt);
1709 }
1710
1711 static void
1712 intel_miptree_map_blit(struct brw_context *brw,
1713 struct intel_mipmap_tree *mt,
1714 struct intel_miptree_map *map,
1715 unsigned int level, unsigned int slice)
1716 {
1717 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1718 0, 0,
1719 map->w, map->h, 1,
1720 false, 0,
1721 INTEL_MIPTREE_TILING_NONE);
1722 if (!map->mt) {
1723 fprintf(stderr, "Failed to allocate blit temporary\n");
1724 goto fail;
1725 }
1726 map->stride = map->mt->region->pitch;
1727
1728 if (!intel_miptree_blit(brw,
1729 mt, level, slice,
1730 map->x, map->y, false,
1731 map->mt, 0, 0,
1732 0, 0, false,
1733 map->w, map->h, GL_COPY)) {
1734 fprintf(stderr, "Failed to blit\n");
1735 goto fail;
1736 }
1737
1738 map->ptr = intel_miptree_map_raw(brw, map->mt);
1739
1740 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1741 map->x, map->y, map->w, map->h,
1742 mt, _mesa_get_format_name(mt->format),
1743 level, slice, map->ptr, map->stride);
1744
1745 return;
1746
1747 fail:
1748 intel_miptree_release(&map->mt);
1749 map->ptr = NULL;
1750 map->stride = 0;
1751 }
1752
1753 static void
1754 intel_miptree_unmap_blit(struct brw_context *brw,
1755 struct intel_mipmap_tree *mt,
1756 struct intel_miptree_map *map,
1757 unsigned int level,
1758 unsigned int slice)
1759 {
1760 struct gl_context *ctx = &brw->ctx;
1761
1762 intel_miptree_unmap_raw(brw, map->mt);
1763
1764 if (map->mode & GL_MAP_WRITE_BIT) {
1765 bool ok = intel_miptree_blit(brw,
1766 map->mt, 0, 0,
1767 0, 0, false,
1768 mt, level, slice,
1769 map->x, map->y, false,
1770 map->w, map->h, GL_COPY);
1771 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1772 }
1773
1774 intel_miptree_release(&map->mt);
1775 }
1776
1777 static void
1778 intel_miptree_map_s8(struct brw_context *brw,
1779 struct intel_mipmap_tree *mt,
1780 struct intel_miptree_map *map,
1781 unsigned int level, unsigned int slice)
1782 {
1783 map->stride = map->w;
1784 map->buffer = map->ptr = malloc(map->stride * map->h);
1785 if (!map->buffer)
1786 return;
1787
1788 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1789 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1790 * invalidate is set, since we'll be writing the whole rectangle from our
1791 * temporary buffer back out.
1792 */
1793 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1794 uint8_t *untiled_s8_map = map->ptr;
1795 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1796 unsigned int image_x, image_y;
1797
1798 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1799
1800 for (uint32_t y = 0; y < map->h; y++) {
1801 for (uint32_t x = 0; x < map->w; x++) {
1802 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1803 x + image_x + map->x,
1804 y + image_y + map->y,
1805 brw->has_swizzling);
1806 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1807 }
1808 }
1809
1810 intel_miptree_unmap_raw(brw, mt);
1811
1812 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1813 map->x, map->y, map->w, map->h,
1814 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1815 } else {
1816 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1817 map->x, map->y, map->w, map->h,
1818 mt, map->ptr, map->stride);
1819 }
1820 }
1821
1822 static void
1823 intel_miptree_unmap_s8(struct brw_context *brw,
1824 struct intel_mipmap_tree *mt,
1825 struct intel_miptree_map *map,
1826 unsigned int level,
1827 unsigned int slice)
1828 {
1829 if (map->mode & GL_MAP_WRITE_BIT) {
1830 unsigned int image_x, image_y;
1831 uint8_t *untiled_s8_map = map->ptr;
1832 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1833
1834 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1835
1836 for (uint32_t y = 0; y < map->h; y++) {
1837 for (uint32_t x = 0; x < map->w; x++) {
1838 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1839 x + map->x,
1840 y + map->y,
1841 brw->has_swizzling);
1842 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1843 }
1844 }
1845
1846 intel_miptree_unmap_raw(brw, mt);
1847 }
1848
1849 free(map->buffer);
1850 }
1851
1852 static void
1853 intel_miptree_map_etc(struct brw_context *brw,
1854 struct intel_mipmap_tree *mt,
1855 struct intel_miptree_map *map,
1856 unsigned int level,
1857 unsigned int slice)
1858 {
1859 assert(mt->etc_format != MESA_FORMAT_NONE);
1860 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
1861 assert(mt->format == MESA_FORMAT_RGBX8888_REV);
1862 }
1863
1864 assert(map->mode & GL_MAP_WRITE_BIT);
1865 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
1866
1867 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
1868 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
1869 map->w, map->h, 1));
1870 map->ptr = map->buffer;
1871 }
1872
1873 static void
1874 intel_miptree_unmap_etc(struct brw_context *brw,
1875 struct intel_mipmap_tree *mt,
1876 struct intel_miptree_map *map,
1877 unsigned int level,
1878 unsigned int slice)
1879 {
1880 uint32_t image_x;
1881 uint32_t image_y;
1882 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1883
1884 image_x += map->x;
1885 image_y += map->y;
1886
1887 uint8_t *dst = intel_miptree_map_raw(brw, mt)
1888 + image_y * mt->region->pitch
1889 + image_x * mt->region->cpp;
1890
1891 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
1892 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
1893 map->ptr, map->stride,
1894 map->w, map->h);
1895 else
1896 _mesa_unpack_etc2_format(dst, mt->region->pitch,
1897 map->ptr, map->stride,
1898 map->w, map->h, mt->etc_format);
1899
1900 intel_miptree_unmap_raw(brw, mt);
1901 free(map->buffer);
1902 }
1903
1904 /**
1905 * Mapping function for packed depth/stencil miptrees backed by real separate
1906 * miptrees for depth and stencil.
1907 *
1908 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
1909 * separate from the depth buffer. Yet at the GL API level, we have to expose
1910 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
1911 * be able to map that memory for texture storage and glReadPixels-type
1912 * operations. We give Mesa core that access by mallocing a temporary and
1913 * copying the data between the actual backing store and the temporary.
1914 */
1915 static void
1916 intel_miptree_map_depthstencil(struct brw_context *brw,
1917 struct intel_mipmap_tree *mt,
1918 struct intel_miptree_map *map,
1919 unsigned int level, unsigned int slice)
1920 {
1921 struct intel_mipmap_tree *z_mt = mt;
1922 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
1923 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
1924 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
1925
1926 map->stride = map->w * packed_bpp;
1927 map->buffer = map->ptr = malloc(map->stride * map->h);
1928 if (!map->buffer)
1929 return;
1930
1931 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1932 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1933 * invalidate is set, since we'll be writing the whole rectangle from our
1934 * temporary buffer back out.
1935 */
1936 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1937 uint32_t *packed_map = map->ptr;
1938 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
1939 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
1940 unsigned int s_image_x, s_image_y;
1941 unsigned int z_image_x, z_image_y;
1942
1943 intel_miptree_get_image_offset(s_mt, level, slice,
1944 &s_image_x, &s_image_y);
1945 intel_miptree_get_image_offset(z_mt, level, slice,
1946 &z_image_x, &z_image_y);
1947
1948 for (uint32_t y = 0; y < map->h; y++) {
1949 for (uint32_t x = 0; x < map->w; x++) {
1950 int map_x = map->x + x, map_y = map->y + y;
1951 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
1952 map_x + s_image_x,
1953 map_y + s_image_y,
1954 brw->has_swizzling);
1955 ptrdiff_t z_offset = ((map_y + z_image_y) *
1956 (z_mt->region->pitch / 4) +
1957 (map_x + z_image_x));
1958 uint8_t s = s_map[s_offset];
1959 uint32_t z = z_map[z_offset];
1960
1961 if (map_z32f_x24s8) {
1962 packed_map[(y * map->w + x) * 2 + 0] = z;
1963 packed_map[(y * map->w + x) * 2 + 1] = s;
1964 } else {
1965 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
1966 }
1967 }
1968 }
1969
1970 intel_miptree_unmap_raw(brw, s_mt);
1971 intel_miptree_unmap_raw(brw, z_mt);
1972
1973 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
1974 __FUNCTION__,
1975 map->x, map->y, map->w, map->h,
1976 z_mt, map->x + z_image_x, map->y + z_image_y,
1977 s_mt, map->x + s_image_x, map->y + s_image_y,
1978 map->ptr, map->stride);
1979 } else {
1980 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1981 map->x, map->y, map->w, map->h,
1982 mt, map->ptr, map->stride);
1983 }
1984 }
1985
1986 static void
1987 intel_miptree_unmap_depthstencil(struct brw_context *brw,
1988 struct intel_mipmap_tree *mt,
1989 struct intel_miptree_map *map,
1990 unsigned int level,
1991 unsigned int slice)
1992 {
1993 struct intel_mipmap_tree *z_mt = mt;
1994 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
1995 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
1996
1997 if (map->mode & GL_MAP_WRITE_BIT) {
1998 uint32_t *packed_map = map->ptr;
1999 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2000 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2001 unsigned int s_image_x, s_image_y;
2002 unsigned int z_image_x, z_image_y;
2003
2004 intel_miptree_get_image_offset(s_mt, level, slice,
2005 &s_image_x, &s_image_y);
2006 intel_miptree_get_image_offset(z_mt, level, slice,
2007 &z_image_x, &z_image_y);
2008
2009 for (uint32_t y = 0; y < map->h; y++) {
2010 for (uint32_t x = 0; x < map->w; x++) {
2011 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2012 x + s_image_x + map->x,
2013 y + s_image_y + map->y,
2014 brw->has_swizzling);
2015 ptrdiff_t z_offset = ((y + z_image_y) *
2016 (z_mt->region->pitch / 4) +
2017 (x + z_image_x));
2018
2019 if (map_z32f_x24s8) {
2020 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2021 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2022 } else {
2023 uint32_t packed = packed_map[y * map->w + x];
2024 s_map[s_offset] = packed >> 24;
2025 z_map[z_offset] = packed;
2026 }
2027 }
2028 }
2029
2030 intel_miptree_unmap_raw(brw, s_mt);
2031 intel_miptree_unmap_raw(brw, z_mt);
2032
2033 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2034 __FUNCTION__,
2035 map->x, map->y, map->w, map->h,
2036 z_mt, _mesa_get_format_name(z_mt->format),
2037 map->x + z_image_x, map->y + z_image_y,
2038 s_mt, map->x + s_image_x, map->y + s_image_y,
2039 map->ptr, map->stride);
2040 }
2041
2042 free(map->buffer);
2043 }
2044
2045 /**
2046 * Create and attach a map to the miptree at (level, slice). Return the
2047 * attached map.
2048 */
2049 static struct intel_miptree_map*
2050 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2051 unsigned int level,
2052 unsigned int slice,
2053 unsigned int x,
2054 unsigned int y,
2055 unsigned int w,
2056 unsigned int h,
2057 GLbitfield mode)
2058 {
2059 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2060
2061 if (!map)
2062 return NULL;
2063
2064 assert(mt->level[level].slice[slice].map == NULL);
2065 mt->level[level].slice[slice].map = map;
2066
2067 map->mode = mode;
2068 map->x = x;
2069 map->y = y;
2070 map->w = w;
2071 map->h = h;
2072
2073 return map;
2074 }
2075
2076 /**
2077 * Release the map at (level, slice).
2078 */
2079 static void
2080 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2081 unsigned int level,
2082 unsigned int slice)
2083 {
2084 struct intel_miptree_map **map;
2085
2086 map = &mt->level[level].slice[slice].map;
2087 free(*map);
2088 *map = NULL;
2089 }
2090
2091 static void
2092 intel_miptree_map_singlesample(struct brw_context *brw,
2093 struct intel_mipmap_tree *mt,
2094 unsigned int level,
2095 unsigned int slice,
2096 unsigned int x,
2097 unsigned int y,
2098 unsigned int w,
2099 unsigned int h,
2100 GLbitfield mode,
2101 void **out_ptr,
2102 int *out_stride)
2103 {
2104 struct intel_miptree_map *map;
2105
2106 assert(mt->num_samples <= 1);
2107
2108 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2109 if (!map){
2110 *out_ptr = NULL;
2111 *out_stride = 0;
2112 return;
2113 }
2114
2115 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2116 if (map->mode & GL_MAP_WRITE_BIT) {
2117 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2118 }
2119
2120 if (mt->format == MESA_FORMAT_S8) {
2121 intel_miptree_map_s8(brw, mt, map, level, slice);
2122 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2123 !(mode & BRW_MAP_DIRECT_BIT)) {
2124 intel_miptree_map_etc(brw, mt, map, level, slice);
2125 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2126 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2127 }
2128 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2129 else if (brw->has_llc &&
2130 !(mode & GL_MAP_WRITE_BIT) &&
2131 !mt->compressed &&
2132 (mt->region->tiling == I915_TILING_X ||
2133 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2134 mt->region->pitch < 32768) {
2135 intel_miptree_map_blit(brw, mt, map, level, slice);
2136 } else if (mt->region->tiling != I915_TILING_NONE &&
2137 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2138 assert(mt->region->pitch < 32768);
2139 intel_miptree_map_blit(brw, mt, map, level, slice);
2140 } else {
2141 intel_miptree_map_gtt(brw, mt, map, level, slice);
2142 }
2143
2144 *out_ptr = map->ptr;
2145 *out_stride = map->stride;
2146
2147 if (map->ptr == NULL)
2148 intel_miptree_release_map(mt, level, slice);
2149 }
2150
2151 static void
2152 intel_miptree_unmap_singlesample(struct brw_context *brw,
2153 struct intel_mipmap_tree *mt,
2154 unsigned int level,
2155 unsigned int slice)
2156 {
2157 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2158
2159 assert(mt->num_samples <= 1);
2160
2161 if (!map)
2162 return;
2163
2164 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2165 mt, _mesa_get_format_name(mt->format), level, slice);
2166
2167 if (mt->format == MESA_FORMAT_S8) {
2168 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2169 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2170 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2171 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2172 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2173 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2174 } else if (map->mt) {
2175 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2176 } else {
2177 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2178 }
2179
2180 intel_miptree_release_map(mt, level, slice);
2181 }
2182
2183 static void
2184 intel_miptree_map_multisample(struct brw_context *brw,
2185 struct intel_mipmap_tree *mt,
2186 unsigned int level,
2187 unsigned int slice,
2188 unsigned int x,
2189 unsigned int y,
2190 unsigned int w,
2191 unsigned int h,
2192 GLbitfield mode,
2193 void **out_ptr,
2194 int *out_stride)
2195 {
2196 struct gl_context *ctx = &brw->ctx;
2197 struct intel_miptree_map *map;
2198
2199 assert(mt->num_samples > 1);
2200
2201 /* Only flat, renderbuffer-like miptrees are supported. */
2202 if (mt->target != GL_TEXTURE_2D ||
2203 mt->first_level != 0 ||
2204 mt->last_level != 0) {
2205 _mesa_problem(ctx, "attempt to map a multisample miptree for "
2206 "which (target, first_level, last_level != "
2207 "(GL_TEXTURE_2D, 0, 0)");
2208 goto fail;
2209 }
2210
2211 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2212 if (!map)
2213 goto fail;
2214
2215 if (!mt->singlesample_mt) {
2216 mt->singlesample_mt =
2217 intel_miptree_create_for_renderbuffer(brw,
2218 mt->format,
2219 mt->logical_width0,
2220 mt->logical_height0,
2221 0 /*num_samples*/);
2222 if (!mt->singlesample_mt)
2223 goto fail;
2224
2225 map->singlesample_mt_is_tmp = true;
2226 mt->need_downsample = true;
2227 }
2228
2229 intel_miptree_downsample(brw, mt);
2230 intel_miptree_map_singlesample(brw, mt->singlesample_mt,
2231 level, slice,
2232 x, y, w, h,
2233 mode,
2234 out_ptr, out_stride);
2235 return;
2236
2237 fail:
2238 intel_miptree_release_map(mt, level, slice);
2239 *out_ptr = NULL;
2240 *out_stride = 0;
2241 }
2242
2243 static void
2244 intel_miptree_unmap_multisample(struct brw_context *brw,
2245 struct intel_mipmap_tree *mt,
2246 unsigned int level,
2247 unsigned int slice)
2248 {
2249 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2250
2251 assert(mt->num_samples > 1);
2252
2253 if (!map)
2254 return;
2255
2256 intel_miptree_unmap_singlesample(brw, mt->singlesample_mt, level, slice);
2257
2258 mt->need_downsample = false;
2259 if (map->mode & GL_MAP_WRITE_BIT)
2260 intel_miptree_upsample(brw, mt);
2261
2262 if (map->singlesample_mt_is_tmp)
2263 intel_miptree_release(&mt->singlesample_mt);
2264
2265 intel_miptree_release_map(mt, level, slice);
2266 }
2267
2268 void
2269 intel_miptree_map(struct brw_context *brw,
2270 struct intel_mipmap_tree *mt,
2271 unsigned int level,
2272 unsigned int slice,
2273 unsigned int x,
2274 unsigned int y,
2275 unsigned int w,
2276 unsigned int h,
2277 GLbitfield mode,
2278 void **out_ptr,
2279 int *out_stride)
2280 {
2281 if (mt->num_samples <= 1)
2282 intel_miptree_map_singlesample(brw, mt,
2283 level, slice,
2284 x, y, w, h,
2285 mode,
2286 out_ptr, out_stride);
2287 else
2288 intel_miptree_map_multisample(brw, mt,
2289 level, slice,
2290 x, y, w, h,
2291 mode,
2292 out_ptr, out_stride);
2293 }
2294
2295 void
2296 intel_miptree_unmap(struct brw_context *brw,
2297 struct intel_mipmap_tree *mt,
2298 unsigned int level,
2299 unsigned int slice)
2300 {
2301 if (mt->num_samples <= 1)
2302 intel_miptree_unmap_singlesample(brw, mt, level, slice);
2303 else
2304 intel_miptree_unmap_multisample(brw, mt, level, slice);
2305 }