58a6b86fce5243b2524a6db91182438700285fec
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38 #include "intel_fbo.h"
39
40 #include "brw_blorp.h"
41 #include "brw_context.h"
42
43 #include "main/enums.h"
44 #include "main/fbobject.h"
45 #include "main/formats.h"
46 #include "main/glformats.h"
47 #include "main/texcompress_etc.h"
48 #include "main/teximage.h"
49 #include "main/streaming-load-memcpy.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 /**
54 * Determine which MSAA layout should be used by the MSAA surface being
55 * created, based on the chip generation and the surface type.
56 */
57 static enum intel_msaa_layout
58 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
59 {
60 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
61 if (brw->gen < 7)
62 return INTEL_MSAA_LAYOUT_IMS;
63
64 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
65 switch (_mesa_get_format_base_format(format)) {
66 case GL_DEPTH_COMPONENT:
67 case GL_STENCIL_INDEX:
68 case GL_DEPTH_STENCIL:
69 return INTEL_MSAA_LAYOUT_IMS;
70 default:
71 /* Disable MCS on Broadwell for now. We can enable it once things
72 * are working without it.
73 */
74 if (brw->gen >= 8) {
75 perf_debug("Missing CMS support on Broadwell.\n");
76 return INTEL_MSAA_LAYOUT_UMS;
77 }
78
79 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
80 *
81 * This field must be set to 0 for all SINT MSRTs when all RT channels
82 * are not written
83 *
84 * In practice this means that we have to disable MCS for all signed
85 * integer MSAA buffers. The alternative, to disable MCS only when one
86 * of the render target channels is disabled, is impractical because it
87 * would require converting between CMS and UMS MSAA layouts on the fly,
88 * which is expensive.
89 */
90 if (_mesa_get_format_datatype(format) == GL_INT) {
91 /* TODO: is this workaround needed for future chipsets? */
92 assert(brw->gen == 7);
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else {
95 return INTEL_MSAA_LAYOUT_CMS;
96 }
97 }
98 }
99
100
101 /**
102 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
103 * scaled-down bitfield representation of the color buffer which is capable of
104 * recording when blocks of the color buffer are equal to the clear value.
105 * This function returns the block size that will be used by the MCS buffer
106 * corresponding to a certain color miptree.
107 *
108 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
109 * beneath the "Fast Color Clear" bullet (p327):
110 *
111 * The following table describes the RT alignment
112 *
113 * Pixels Lines
114 * TiledY RT CL
115 * bpp
116 * 32 8 4
117 * 64 4 4
118 * 128 2 4
119 * TiledX RT CL
120 * bpp
121 * 32 16 2
122 * 64 8 2
123 * 128 4 2
124 *
125 * This alignment has the following uses:
126 *
127 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
128 * buffer contains 128 blocks horizontally and 256 blocks vertically.
129 *
130 * - For figuring out alignment restrictions for a fast clear operation. Fast
131 * clear operations must always clear aligned multiples of 16 blocks
132 * horizontally and 32 blocks vertically.
133 *
134 * - For scaling down the coordinates sent through the render pipeline during
135 * a fast clear. X coordinates must be scaled down by 8 times the block
136 * width, and Y coordinates by 16 times the block height.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a "Render Target Resolve" operation. X coordinates must be scaled down
140 * by half the block width, and Y coordinates by half the block height.
141 */
142 void
143 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
144 struct intel_mipmap_tree *mt,
145 unsigned *width_px, unsigned *height)
146 {
147 switch (mt->region->tiling) {
148 default:
149 assert(!"Non-MSRT MCS requires X or Y tiling");
150 /* In release builds, fall through */
151 case I915_TILING_Y:
152 *width_px = 32 / mt->cpp;
153 *height = 4;
154 break;
155 case I915_TILING_X:
156 *width_px = 64 / mt->cpp;
157 *height = 2;
158 }
159 }
160
161
162 /**
163 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
164 * can be used.
165 *
166 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
167 * beneath the "Fast Color Clear" bullet (p326):
168 *
169 * - Support is limited to tiled render targets.
170 * - Support is for non-mip-mapped and non-array surface types only.
171 *
172 * And then later, on p327:
173 *
174 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
175 * 64bpp, and 128bpp.
176 */
177 bool
178 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
179 struct intel_mipmap_tree *mt)
180 {
181 /* MCS support does not exist prior to Gen7 */
182 if (brw->gen < 7 || brw->gen >= 8)
183 return false;
184
185 /* MCS is only supported for color buffers */
186 switch (_mesa_get_format_base_format(mt->format)) {
187 case GL_DEPTH_COMPONENT:
188 case GL_DEPTH_STENCIL:
189 case GL_STENCIL_INDEX:
190 return false;
191 }
192
193 if (mt->region->tiling != I915_TILING_X &&
194 mt->region->tiling != I915_TILING_Y)
195 return false;
196 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
197 return false;
198 if (mt->first_level != 0 || mt->last_level != 0)
199 return false;
200 if (mt->physical_depth0 != 1)
201 return false;
202
203 /* There's no point in using an MCS buffer if the surface isn't in a
204 * renderable format.
205 */
206 if (!brw->format_supported_as_render_target[mt->format])
207 return false;
208
209 return true;
210 }
211
212
213 /**
214 * Determine depth format corresponding to a depth+stencil format,
215 * for separate stencil.
216 */
217 mesa_format
218 intel_depth_format_for_depthstencil_format(mesa_format format) {
219 switch (format) {
220 case MESA_FORMAT_Z24_UNORM_S8_UINT:
221 return MESA_FORMAT_Z24_UNORM_X8_UINT;
222 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
223 return MESA_FORMAT_Z_FLOAT32;
224 default:
225 return format;
226 }
227 }
228
229
230 /**
231 * @param for_bo Indicates that the caller is
232 * intel_miptree_create_for_bo(). If true, then do not create
233 * \c stencil_mt.
234 */
235 struct intel_mipmap_tree *
236 intel_miptree_create_layout(struct brw_context *brw,
237 GLenum target,
238 mesa_format format,
239 GLuint first_level,
240 GLuint last_level,
241 GLuint width0,
242 GLuint height0,
243 GLuint depth0,
244 bool for_bo,
245 GLuint num_samples)
246 {
247 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
248 if (!mt)
249 return NULL;
250
251 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
252 _mesa_lookup_enum_by_nr(target),
253 _mesa_get_format_name(format),
254 first_level, last_level, depth0, mt);
255
256 mt->target = target;
257 mt->format = format;
258 mt->first_level = first_level;
259 mt->last_level = last_level;
260 mt->logical_width0 = width0;
261 mt->logical_height0 = height0;
262 mt->logical_depth0 = depth0;
263 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
264
265 /* The cpp is bytes per (1, blockheight)-sized block for compressed
266 * textures. This is why you'll see divides by blockheight all over
267 */
268 unsigned bw, bh;
269 _mesa_get_format_block_size(format, &bw, &bh);
270 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
271 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
272
273 mt->num_samples = num_samples;
274 mt->compressed = _mesa_is_format_compressed(format);
275 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
276 mt->refcount = 1;
277
278 if (num_samples > 1) {
279 /* Adjust width/height/depth for MSAA */
280 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
281 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
282 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
283 *
284 * "Any of the other messages (sample*, LOD, load4) used with a
285 * (4x) multisampled surface will in-effect sample a surface with
286 * double the height and width as that indicated in the surface
287 * state. Each pixel position on the original-sized surface is
288 * replaced with a 2x2 of samples with the following arrangement:
289 *
290 * sample 0 sample 2
291 * sample 1 sample 3"
292 *
293 * Thus, when sampling from a multisampled texture, it behaves as
294 * though the layout in memory for (x,y,sample) is:
295 *
296 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
297 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
298 *
299 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
300 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
301 *
302 * However, the actual layout of multisampled data in memory is:
303 *
304 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
305 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
306 *
307 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
308 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
309 *
310 * This pattern repeats for each 2x2 pixel block.
311 *
312 * As a result, when calculating the size of our 4-sample buffer for
313 * an odd width or height, we have to align before scaling up because
314 * sample 3 is in that bottom right 2x2 block.
315 */
316 switch (num_samples) {
317 case 2:
318 assert(brw->gen >= 8);
319 width0 = ALIGN(width0, 2) * 2;
320 height0 = ALIGN(height0, 2);
321 break;
322 case 4:
323 width0 = ALIGN(width0, 2) * 2;
324 height0 = ALIGN(height0, 2) * 2;
325 break;
326 case 8:
327 width0 = ALIGN(width0, 2) * 4;
328 height0 = ALIGN(height0, 2) * 2;
329 break;
330 default:
331 /* num_samples should already have been quantized to 0, 1, 2, 4, or
332 * 8.
333 */
334 assert(false);
335 }
336 } else {
337 /* Non-interleaved */
338 depth0 *= num_samples;
339 }
340 }
341
342 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
343 * use it elsewhere?
344 */
345 switch (mt->msaa_layout) {
346 case INTEL_MSAA_LAYOUT_NONE:
347 case INTEL_MSAA_LAYOUT_IMS:
348 mt->array_spacing_lod0 = false;
349 break;
350 case INTEL_MSAA_LAYOUT_UMS:
351 case INTEL_MSAA_LAYOUT_CMS:
352 mt->array_spacing_lod0 = true;
353 break;
354 }
355
356 if (target == GL_TEXTURE_CUBE_MAP) {
357 assert(depth0 == 1);
358 depth0 = 6;
359 }
360
361 mt->physical_width0 = width0;
362 mt->physical_height0 = height0;
363 mt->physical_depth0 = depth0;
364
365 if (!for_bo &&
366 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
367 (brw->must_use_separate_stencil ||
368 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
369 mt->stencil_mt = intel_miptree_create(brw,
370 mt->target,
371 MESA_FORMAT_S_UINT8,
372 mt->first_level,
373 mt->last_level,
374 mt->logical_width0,
375 mt->logical_height0,
376 mt->logical_depth0,
377 true,
378 num_samples,
379 INTEL_MIPTREE_TILING_ANY);
380 if (!mt->stencil_mt) {
381 intel_miptree_release(&mt);
382 return NULL;
383 }
384
385 /* Fix up the Z miptree format for how we're splitting out separate
386 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
387 */
388 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
389 mt->cpp = 4;
390
391 if (format == mt->format) {
392 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
393 _mesa_get_format_name(mt->format));
394 }
395 }
396
397 brw_miptree_layout(brw, mt);
398
399 return mt;
400 }
401
402 /**
403 * \brief Helper function for intel_miptree_create().
404 */
405 static uint32_t
406 intel_miptree_choose_tiling(struct brw_context *brw,
407 mesa_format format,
408 uint32_t width0,
409 uint32_t num_samples,
410 enum intel_miptree_tiling_mode requested,
411 struct intel_mipmap_tree *mt)
412 {
413 if (format == MESA_FORMAT_S_UINT8) {
414 /* The stencil buffer is W tiled. However, we request from the kernel a
415 * non-tiled buffer because the GTT is incapable of W fencing.
416 */
417 return I915_TILING_NONE;
418 }
419
420 /* Some usages may want only one type of tiling, like depth miptrees (Y
421 * tiled), or temporary BOs for uploading data once (linear).
422 */
423 switch (requested) {
424 case INTEL_MIPTREE_TILING_ANY:
425 break;
426 case INTEL_MIPTREE_TILING_Y:
427 return I915_TILING_Y;
428 case INTEL_MIPTREE_TILING_NONE:
429 return I915_TILING_NONE;
430 }
431
432 if (num_samples > 1) {
433 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
434 * Surface"):
435 *
436 * [DevSNB+]: For multi-sample render targets, this field must be
437 * 1. MSRTs can only be tiled.
438 *
439 * Our usual reason for preferring X tiling (fast blits using the
440 * blitting engine) doesn't apply to MSAA, since we'll generally be
441 * downsampling or upsampling when blitting between the MSAA buffer
442 * and another buffer, and the blitting engine doesn't support that.
443 * So use Y tiling, since it makes better use of the cache.
444 */
445 return I915_TILING_Y;
446 }
447
448 GLenum base_format = _mesa_get_format_base_format(format);
449 if (base_format == GL_DEPTH_COMPONENT ||
450 base_format == GL_DEPTH_STENCIL_EXT)
451 return I915_TILING_Y;
452
453 int minimum_pitch = mt->total_width * mt->cpp;
454
455 /* If the width is much smaller than a tile, don't bother tiling. */
456 if (minimum_pitch < 64)
457 return I915_TILING_NONE;
458
459 if (ALIGN(minimum_pitch, 512) >= 32768 ||
460 mt->total_width >= 32768 || mt->total_height >= 32768) {
461 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
462 mt->total_width, mt->total_height);
463 return I915_TILING_NONE;
464 }
465
466 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
467 if (brw->gen < 6)
468 return I915_TILING_X;
469
470 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
471 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
472 * or Linear."
473 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
474 * all the way back to 965, but is explicitly permitted on Gen7.
475 */
476 if (brw->gen != 7 && mt->cpp >= 16)
477 return I915_TILING_X;
478
479 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
480 * messages), on p64, under the heading "Surface Vertical Alignment":
481 *
482 * This field must be set to VALIGN_4 for all tiled Y Render Target
483 * surfaces.
484 *
485 * So if the surface is renderable and uses a vertical alignment of 2,
486 * force it to be X tiled. This is somewhat conservative (it's possible
487 * that the client won't ever render to this surface), but it's difficult
488 * to know that ahead of time. And besides, since we use a vertical
489 * alignment of 4 as often as we can, this shouldn't happen very often.
490 */
491 if (brw->gen == 7 && mt->align_h == 2 &&
492 brw->format_supported_as_render_target[format]) {
493 return I915_TILING_X;
494 }
495
496 return I915_TILING_Y | I915_TILING_X;
497 }
498
499
500 /**
501 * Choose an appropriate uncompressed format for a requested
502 * compressed format, if unsupported.
503 */
504 mesa_format
505 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
506 {
507 /* No need to lower ETC formats on these platforms,
508 * they are supported natively.
509 */
510 if (brw->gen >= 8 || brw->is_baytrail)
511 return format;
512
513 switch (format) {
514 case MESA_FORMAT_ETC1_RGB8:
515 return MESA_FORMAT_R8G8B8X8_UNORM;
516 case MESA_FORMAT_ETC2_RGB8:
517 return MESA_FORMAT_R8G8B8X8_UNORM;
518 case MESA_FORMAT_ETC2_SRGB8:
519 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
520 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
521 return MESA_FORMAT_B8G8R8A8_SRGB;
522 case MESA_FORMAT_ETC2_RGBA8_EAC:
523 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
524 return MESA_FORMAT_R8G8B8A8_UNORM;
525 case MESA_FORMAT_ETC2_R11_EAC:
526 return MESA_FORMAT_R_UNORM16;
527 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
528 return MESA_FORMAT_R_SNORM16;
529 case MESA_FORMAT_ETC2_RG11_EAC:
530 return MESA_FORMAT_R16G16_UNORM;
531 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
532 return MESA_FORMAT_R16G16_SNORM;
533 default:
534 /* Non ETC1 / ETC2 format */
535 return format;
536 }
537 }
538
539
540 struct intel_mipmap_tree *
541 intel_miptree_create(struct brw_context *brw,
542 GLenum target,
543 mesa_format format,
544 GLuint first_level,
545 GLuint last_level,
546 GLuint width0,
547 GLuint height0,
548 GLuint depth0,
549 bool expect_accelerated_upload,
550 GLuint num_samples,
551 enum intel_miptree_tiling_mode requested_tiling)
552 {
553 struct intel_mipmap_tree *mt;
554 mesa_format tex_format = format;
555 mesa_format etc_format = MESA_FORMAT_NONE;
556 GLuint total_width, total_height;
557
558 format = intel_lower_compressed_format(brw, format);
559
560 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
561
562 mt = intel_miptree_create_layout(brw, target, format,
563 first_level, last_level, width0,
564 height0, depth0,
565 false, num_samples);
566 /*
567 * pitch == 0 || height == 0 indicates the null texture
568 */
569 if (!mt || !mt->total_width || !mt->total_height) {
570 intel_miptree_release(&mt);
571 return NULL;
572 }
573
574 total_width = mt->total_width;
575 total_height = mt->total_height;
576
577 if (format == MESA_FORMAT_S_UINT8) {
578 /* Align to size of W tile, 64x64. */
579 total_width = ALIGN(total_width, 64);
580 total_height = ALIGN(total_height, 64);
581 }
582
583 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
584 num_samples, requested_tiling,
585 mt);
586 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
587
588 mt->etc_format = etc_format;
589 mt->region = intel_region_alloc(brw->intelScreen,
590 y_or_x ? I915_TILING_Y : tiling,
591 mt->cpp,
592 total_width,
593 total_height,
594 expect_accelerated_upload);
595
596 /* If the region is too large to fit in the aperture, we need to use the
597 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
598 * so we need to fall back to X.
599 */
600 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
601 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
602 mt->total_width, mt->total_height);
603 intel_region_release(&mt->region);
604
605 mt->region = intel_region_alloc(brw->intelScreen,
606 I915_TILING_X,
607 mt->cpp,
608 total_width,
609 total_height,
610 expect_accelerated_upload);
611 }
612
613 mt->offset = 0;
614
615 if (!mt->region) {
616 intel_miptree_release(&mt);
617 return NULL;
618 }
619
620
621 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
622 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
623 intel_miptree_release(&mt);
624 return NULL;
625 }
626 }
627
628 /* If this miptree is capable of supporting fast color clears, set
629 * fast_clear_state appropriately to ensure that fast clears will occur.
630 * Allocation of the MCS miptree will be deferred until the first fast
631 * clear actually occurs.
632 */
633 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
634 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
635
636 return mt;
637 }
638
639 struct intel_mipmap_tree *
640 intel_miptree_create_for_bo(struct brw_context *brw,
641 drm_intel_bo *bo,
642 mesa_format format,
643 uint32_t offset,
644 uint32_t width,
645 uint32_t height,
646 int pitch)
647 {
648 struct intel_mipmap_tree *mt;
649 uint32_t tiling, swizzle;
650
651 struct intel_region *region = calloc(1, sizeof(*region));
652 if (!region)
653 return NULL;
654
655 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
656
657 /* Nothing will be able to use this miptree with the BO if the offset isn't
658 * aligned.
659 */
660 if (tiling != I915_TILING_NONE)
661 assert(offset % 4096 == 0);
662
663 /* miptrees can't handle negative pitch. If you need flipping of images,
664 * that's outside of the scope of the mt.
665 */
666 assert(pitch >= 0);
667
668 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
669 0, 0,
670 width, height, 1,
671 true, 0 /* num_samples */);
672 if (!mt) {
673 free(region);
674 return mt;
675 }
676
677 region->cpp = mt->cpp;
678 region->width = width;
679 region->height = height;
680 region->pitch = pitch;
681 region->refcount = 1;
682 drm_intel_bo_reference(bo);
683 region->bo = bo;
684 region->tiling = tiling;
685
686 mt->region = region;
687 mt->offset = offset;
688
689 return mt;
690 }
691
692 /**
693 * For a singlesample image buffer, this simply wraps the given region with a miptree.
694 *
695 * For a multisample image buffer, this wraps the given region with
696 * a singlesample miptree, then creates a multisample miptree into which the
697 * singlesample miptree is embedded as a child.
698 */
699 void
700 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
701 struct intel_renderbuffer *irb,
702 struct intel_region *region)
703 {
704 struct intel_mipmap_tree *singlesample_mt = NULL;
705 struct intel_mipmap_tree *multisample_mt = NULL;
706 struct gl_renderbuffer *rb = &irb->Base.Base;
707 mesa_format format = rb->Format;
708 int num_samples = rb->NumSamples;
709
710 /* Only the front and back buffers, which are color buffers, are allocated
711 * through the image loader.
712 */
713 assert(_mesa_get_format_base_format(format) == GL_RGB ||
714 _mesa_get_format_base_format(format) == GL_RGBA);
715
716 singlesample_mt = intel_miptree_create_for_bo(intel,
717 region->bo,
718 format,
719 0,
720 region->width,
721 region->height,
722 region->pitch);
723 if (!singlesample_mt)
724 goto fail;
725
726 singlesample_mt->region->name = region->name;
727
728 /* If this miptree is capable of supporting fast color clears, set
729 * mcs_state appropriately to ensure that fast clears will occur.
730 * Allocation of the MCS miptree will be deferred until the first fast
731 * clear actually occurs.
732 */
733 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
734 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
735
736 if (num_samples == 0) {
737 intel_miptree_release(&irb->mt);
738 irb->mt = singlesample_mt;
739
740 assert(!irb->singlesample_mt);
741 } else {
742 intel_miptree_release(&irb->singlesample_mt);
743 irb->singlesample_mt = singlesample_mt;
744
745 if (!irb->mt ||
746 irb->mt->logical_width0 != region->width ||
747 irb->mt->logical_height0 != region->height) {
748 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
749 format,
750 region->width,
751 region->height,
752 num_samples);
753 if (!multisample_mt)
754 goto fail;
755
756 irb->need_downsample = false;
757 intel_miptree_release(&irb->mt);
758 irb->mt = multisample_mt;
759 }
760 }
761 return;
762
763 fail:
764 intel_miptree_release(&irb->singlesample_mt);
765 intel_miptree_release(&irb->mt);
766 return;
767 }
768
769 struct intel_mipmap_tree*
770 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
771 mesa_format format,
772 uint32_t width,
773 uint32_t height,
774 uint32_t num_samples)
775 {
776 struct intel_mipmap_tree *mt;
777 uint32_t depth = 1;
778 bool ok;
779 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
780
781 mt = intel_miptree_create(brw, target, format, 0, 0,
782 width, height, depth, true, num_samples,
783 INTEL_MIPTREE_TILING_ANY);
784 if (!mt)
785 goto fail;
786
787 if (brw_is_hiz_depth_format(brw, format)) {
788 ok = intel_miptree_alloc_hiz(brw, mt);
789 if (!ok)
790 goto fail;
791 }
792
793 return mt;
794
795 fail:
796 intel_miptree_release(&mt);
797 return NULL;
798 }
799
800 void
801 intel_miptree_reference(struct intel_mipmap_tree **dst,
802 struct intel_mipmap_tree *src)
803 {
804 if (*dst == src)
805 return;
806
807 intel_miptree_release(dst);
808
809 if (src) {
810 src->refcount++;
811 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
812 }
813
814 *dst = src;
815 }
816
817
818 void
819 intel_miptree_release(struct intel_mipmap_tree **mt)
820 {
821 if (!*mt)
822 return;
823
824 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
825 if (--(*mt)->refcount <= 0) {
826 GLuint i;
827
828 DBG("%s deleting %p\n", __FUNCTION__, *mt);
829
830 intel_region_release(&((*mt)->region));
831 intel_miptree_release(&(*mt)->stencil_mt);
832 intel_miptree_release(&(*mt)->hiz_mt);
833 intel_miptree_release(&(*mt)->mcs_mt);
834 intel_resolve_map_clear(&(*mt)->hiz_map);
835
836 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
837 free((*mt)->level[i].slice);
838 }
839
840 free(*mt);
841 }
842 *mt = NULL;
843 }
844
845 void
846 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
847 int *width, int *height, int *depth)
848 {
849 switch (image->TexObject->Target) {
850 case GL_TEXTURE_1D_ARRAY:
851 *width = image->Width;
852 *height = 1;
853 *depth = image->Height;
854 break;
855 default:
856 *width = image->Width;
857 *height = image->Height;
858 *depth = image->Depth;
859 break;
860 }
861 }
862
863 /**
864 * Can the image be pulled into a unified mipmap tree? This mirrors
865 * the completeness test in a lot of ways.
866 *
867 * Not sure whether I want to pass gl_texture_image here.
868 */
869 bool
870 intel_miptree_match_image(struct intel_mipmap_tree *mt,
871 struct gl_texture_image *image)
872 {
873 struct intel_texture_image *intelImage = intel_texture_image(image);
874 GLuint level = intelImage->base.Base.Level;
875 int width, height, depth;
876
877 /* glTexImage* choose the texture object based on the target passed in, and
878 * objects can't change targets over their lifetimes, so this should be
879 * true.
880 */
881 assert(image->TexObject->Target == mt->target);
882
883 mesa_format mt_format = mt->format;
884 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
885 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
886 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
887 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
888 if (mt->etc_format != MESA_FORMAT_NONE)
889 mt_format = mt->etc_format;
890
891 if (image->TexFormat != mt_format)
892 return false;
893
894 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
895
896 if (mt->target == GL_TEXTURE_CUBE_MAP)
897 depth = 6;
898
899 int level_depth = mt->level[level].depth;
900 if (mt->num_samples > 1) {
901 switch (mt->msaa_layout) {
902 case INTEL_MSAA_LAYOUT_NONE:
903 case INTEL_MSAA_LAYOUT_IMS:
904 break;
905 case INTEL_MSAA_LAYOUT_UMS:
906 case INTEL_MSAA_LAYOUT_CMS:
907 level_depth /= mt->num_samples;
908 break;
909 }
910 }
911
912 /* Test image dimensions against the base level image adjusted for
913 * minification. This will also catch images not present in the
914 * tree, changed targets, etc.
915 */
916 if (width != minify(mt->logical_width0, level - mt->first_level) ||
917 height != minify(mt->logical_height0, level - mt->first_level) ||
918 depth != level_depth) {
919 return false;
920 }
921
922 if (image->NumSamples != mt->num_samples)
923 return false;
924
925 return true;
926 }
927
928
929 void
930 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
931 GLuint level,
932 GLuint x, GLuint y, GLuint d)
933 {
934 mt->level[level].depth = d;
935 mt->level[level].level_x = x;
936 mt->level[level].level_y = y;
937
938 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
939 level, d, x, y);
940
941 assert(mt->level[level].slice == NULL);
942
943 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
944 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
945 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
946 }
947
948
949 void
950 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
951 GLuint level, GLuint img,
952 GLuint x, GLuint y)
953 {
954 if (img == 0 && level == 0)
955 assert(x == 0 && y == 0);
956
957 assert(img < mt->level[level].depth);
958
959 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
960 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
961
962 DBG("%s level %d img %d pos %d,%d\n",
963 __FUNCTION__, level, img,
964 mt->level[level].slice[img].x_offset,
965 mt->level[level].slice[img].y_offset);
966 }
967
968 void
969 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
970 GLuint level, GLuint slice,
971 GLuint *x, GLuint *y)
972 {
973 assert(slice < mt->level[level].depth);
974
975 *x = mt->level[level].slice[slice].x_offset;
976 *y = mt->level[level].slice[slice].y_offset;
977 }
978
979 /**
980 * This function computes masks that may be used to select the bits of the X
981 * and Y coordinates that indicate the offset within a tile. If the BO is
982 * untiled, the masks are set to 0.
983 */
984 void
985 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
986 uint32_t *mask_x, uint32_t *mask_y,
987 bool map_stencil_as_y_tiled)
988 {
989 int cpp = mt->region->cpp;
990 uint32_t tiling = mt->region->tiling;
991
992 if (map_stencil_as_y_tiled)
993 tiling = I915_TILING_Y;
994
995 switch (tiling) {
996 default:
997 assert(false);
998 case I915_TILING_NONE:
999 *mask_x = *mask_y = 0;
1000 break;
1001 case I915_TILING_X:
1002 *mask_x = 512 / cpp - 1;
1003 *mask_y = 7;
1004 break;
1005 case I915_TILING_Y:
1006 *mask_x = 128 / cpp - 1;
1007 *mask_y = 31;
1008 break;
1009 }
1010 }
1011
1012 /**
1013 * Compute the offset (in bytes) from the start of the BO to the given x
1014 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1015 * multiples of the tile size.
1016 */
1017 uint32_t
1018 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1019 uint32_t x, uint32_t y,
1020 bool map_stencil_as_y_tiled)
1021 {
1022 int cpp = mt->region->cpp;
1023 uint32_t pitch = mt->region->pitch;
1024 uint32_t tiling = mt->region->tiling;
1025
1026 if (map_stencil_as_y_tiled) {
1027 tiling = I915_TILING_Y;
1028
1029 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1030 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1031 * the resulting surface is twice the pitch of the original miptree,
1032 * since each row in the Y-tiled view corresponds to two rows in the
1033 * actual W-tiled surface. So we need to correct the pitch before
1034 * computing the offsets.
1035 */
1036 pitch *= 2;
1037 }
1038
1039 switch (tiling) {
1040 default:
1041 assert(false);
1042 case I915_TILING_NONE:
1043 return y * pitch + x * cpp;
1044 case I915_TILING_X:
1045 assert((x % (512 / cpp)) == 0);
1046 assert((y % 8) == 0);
1047 return y * pitch + x / (512 / cpp) * 4096;
1048 case I915_TILING_Y:
1049 assert((x % (128 / cpp)) == 0);
1050 assert((y % 32) == 0);
1051 return y * pitch + x / (128 / cpp) * 4096;
1052 }
1053 }
1054
1055 /**
1056 * Rendering with tiled buffers requires that the base address of the buffer
1057 * be aligned to a page boundary. For renderbuffers, and sometimes with
1058 * textures, we may want the surface to point at a texture image level that
1059 * isn't at a page boundary.
1060 *
1061 * This function returns an appropriately-aligned base offset
1062 * according to the tiling restrictions, plus any required x/y offset
1063 * from there.
1064 */
1065 uint32_t
1066 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1067 GLuint level, GLuint slice,
1068 uint32_t *tile_x,
1069 uint32_t *tile_y)
1070 {
1071 uint32_t x, y;
1072 uint32_t mask_x, mask_y;
1073
1074 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1075 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1076
1077 *tile_x = x & mask_x;
1078 *tile_y = y & mask_y;
1079
1080 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1081 }
1082
1083 static void
1084 intel_miptree_copy_slice_sw(struct brw_context *brw,
1085 struct intel_mipmap_tree *dst_mt,
1086 struct intel_mipmap_tree *src_mt,
1087 int level,
1088 int slice,
1089 int width,
1090 int height)
1091 {
1092 void *src, *dst;
1093 int src_stride, dst_stride;
1094 int cpp = dst_mt->cpp;
1095
1096 intel_miptree_map(brw, src_mt,
1097 level, slice,
1098 0, 0,
1099 width, height,
1100 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1101 &src, &src_stride);
1102
1103 intel_miptree_map(brw, dst_mt,
1104 level, slice,
1105 0, 0,
1106 width, height,
1107 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1108 BRW_MAP_DIRECT_BIT,
1109 &dst, &dst_stride);
1110
1111 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1112 _mesa_get_format_name(src_mt->format),
1113 src_mt, src, src_stride,
1114 _mesa_get_format_name(dst_mt->format),
1115 dst_mt, dst, dst_stride,
1116 width, height);
1117
1118 int row_size = cpp * width;
1119 if (src_stride == row_size &&
1120 dst_stride == row_size) {
1121 memcpy(dst, src, row_size * height);
1122 } else {
1123 for (int i = 0; i < height; i++) {
1124 memcpy(dst, src, row_size);
1125 dst += dst_stride;
1126 src += src_stride;
1127 }
1128 }
1129
1130 intel_miptree_unmap(brw, dst_mt, level, slice);
1131 intel_miptree_unmap(brw, src_mt, level, slice);
1132
1133 /* Don't forget to copy the stencil data over, too. We could have skipped
1134 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1135 * shuffling the two data sources in/out of temporary storage instead of
1136 * the direct mapping we get this way.
1137 */
1138 if (dst_mt->stencil_mt) {
1139 assert(src_mt->stencil_mt);
1140 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1141 level, slice, width, height);
1142 }
1143 }
1144
1145 static void
1146 intel_miptree_copy_slice(struct brw_context *brw,
1147 struct intel_mipmap_tree *dst_mt,
1148 struct intel_mipmap_tree *src_mt,
1149 int level,
1150 int face,
1151 int depth)
1152
1153 {
1154 mesa_format format = src_mt->format;
1155 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1156 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1157 int slice;
1158
1159 if (face > 0)
1160 slice = face;
1161 else
1162 slice = depth;
1163
1164 assert(depth < src_mt->level[level].depth);
1165 assert(src_mt->format == dst_mt->format);
1166
1167 if (dst_mt->compressed) {
1168 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1169 width = ALIGN(width, dst_mt->align_w);
1170 }
1171
1172 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1173 * below won't apply since we can't do the depth's Y tiling or the
1174 * stencil's W tiling in the blitter.
1175 */
1176 if (src_mt->stencil_mt) {
1177 intel_miptree_copy_slice_sw(brw,
1178 dst_mt, src_mt,
1179 level, slice,
1180 width, height);
1181 return;
1182 }
1183
1184 uint32_t dst_x, dst_y, src_x, src_y;
1185 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1186 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1187
1188 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1189 _mesa_get_format_name(src_mt->format),
1190 src_mt, src_x, src_y, src_mt->region->pitch,
1191 _mesa_get_format_name(dst_mt->format),
1192 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1193 width, height);
1194
1195 if (!intel_miptree_blit(brw,
1196 src_mt, level, slice, 0, 0, false,
1197 dst_mt, level, slice, 0, 0, false,
1198 width, height, GL_COPY)) {
1199 perf_debug("miptree validate blit for %s failed\n",
1200 _mesa_get_format_name(format));
1201
1202 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1203 width, height);
1204 }
1205 }
1206
1207 /**
1208 * Copies the image's current data to the given miptree, and associates that
1209 * miptree with the image.
1210 *
1211 * If \c invalidate is true, then the actual image data does not need to be
1212 * copied, but the image still needs to be associated to the new miptree (this
1213 * is set to true if we're about to clear the image).
1214 */
1215 void
1216 intel_miptree_copy_teximage(struct brw_context *brw,
1217 struct intel_texture_image *intelImage,
1218 struct intel_mipmap_tree *dst_mt,
1219 bool invalidate)
1220 {
1221 struct intel_mipmap_tree *src_mt = intelImage->mt;
1222 struct intel_texture_object *intel_obj =
1223 intel_texture_object(intelImage->base.Base.TexObject);
1224 int level = intelImage->base.Base.Level;
1225 int face = intelImage->base.Base.Face;
1226 GLuint depth = intelImage->base.Base.Depth;
1227
1228 if (!invalidate) {
1229 for (int slice = 0; slice < depth; slice++) {
1230 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1231 }
1232 }
1233
1234 intel_miptree_reference(&intelImage->mt, dst_mt);
1235 intel_obj->needs_validate = true;
1236 }
1237
1238 bool
1239 intel_miptree_alloc_mcs(struct brw_context *brw,
1240 struct intel_mipmap_tree *mt,
1241 GLuint num_samples)
1242 {
1243 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1244 assert(mt->mcs_mt == NULL);
1245
1246 /* Choose the correct format for the MCS buffer. All that really matters
1247 * is that we allocate the right buffer size, since we'll always be
1248 * accessing this miptree using MCS-specific hardware mechanisms, which
1249 * infer the correct format based on num_samples.
1250 */
1251 mesa_format format;
1252 switch (num_samples) {
1253 case 4:
1254 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1255 * each sample).
1256 */
1257 format = MESA_FORMAT_R_UNORM8;
1258 break;
1259 case 8:
1260 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1261 * for each sample, plus 8 padding bits).
1262 */
1263 format = MESA_FORMAT_R_UINT32;
1264 break;
1265 default:
1266 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1267 return false;
1268 };
1269
1270 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1271 *
1272 * "The MCS surface must be stored as Tile Y."
1273 */
1274 mt->mcs_mt = intel_miptree_create(brw,
1275 mt->target,
1276 format,
1277 mt->first_level,
1278 mt->last_level,
1279 mt->logical_width0,
1280 mt->logical_height0,
1281 mt->logical_depth0,
1282 true,
1283 0 /* num_samples */,
1284 INTEL_MIPTREE_TILING_Y);
1285
1286 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1287 *
1288 * When MCS buffer is enabled and bound to MSRT, it is required that it
1289 * is cleared prior to any rendering.
1290 *
1291 * Since we don't use the MCS buffer for any purpose other than rendering,
1292 * it makes sense to just clear it immediately upon allocation.
1293 *
1294 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1295 */
1296 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1297 memset(data, 0xff, mt->mcs_mt->region->height * mt->mcs_mt->region->pitch);
1298 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1299 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1300
1301 return mt->mcs_mt;
1302 }
1303
1304
1305 bool
1306 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1307 struct intel_mipmap_tree *mt)
1308 {
1309 assert(mt->mcs_mt == NULL);
1310
1311 /* The format of the MCS buffer is opaque to the driver; all that matters
1312 * is that we get its size and pitch right. We'll pretend that the format
1313 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1314 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1315 * the block width and then a further factor of 4. Since an MCS tile
1316 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1317 * we'll need to scale the height down by the block height and then a
1318 * further factor of 8.
1319 */
1320 const mesa_format format = MESA_FORMAT_R_UINT32;
1321 unsigned block_width_px;
1322 unsigned block_height;
1323 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1324 unsigned width_divisor = block_width_px * 4;
1325 unsigned height_divisor = block_height * 8;
1326 unsigned mcs_width =
1327 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1328 unsigned mcs_height =
1329 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1330 assert(mt->logical_depth0 == 1);
1331 mt->mcs_mt = intel_miptree_create(brw,
1332 mt->target,
1333 format,
1334 mt->first_level,
1335 mt->last_level,
1336 mcs_width,
1337 mcs_height,
1338 mt->logical_depth0,
1339 true,
1340 0 /* num_samples */,
1341 INTEL_MIPTREE_TILING_Y);
1342
1343 return mt->mcs_mt;
1344 }
1345
1346
1347 /**
1348 * Helper for intel_miptree_alloc_hiz() that sets
1349 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1350 * \c has_hiz was set.
1351 */
1352 static bool
1353 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1354 struct intel_mipmap_tree *mt,
1355 uint32_t level,
1356 uint32_t layer)
1357 {
1358 assert(mt->hiz_mt);
1359
1360 if (brw->gen >= 8 || brw->is_haswell) {
1361 uint32_t width = minify(mt->physical_width0, level);
1362 uint32_t height = minify(mt->physical_height0, level);
1363
1364 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1365 * and the height is 4 aligned. This allows our HiZ support
1366 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1367 * we can grow the width & height to allow the HiZ op to
1368 * force the proper size alignments.
1369 */
1370 if (level > 0 && ((width & 7) || (height & 3))) {
1371 return false;
1372 }
1373 }
1374
1375 mt->level[level].slice[layer].has_hiz = true;
1376 return true;
1377 }
1378
1379
1380
1381 bool
1382 intel_miptree_alloc_hiz(struct brw_context *brw,
1383 struct intel_mipmap_tree *mt)
1384 {
1385 assert(mt->hiz_mt == NULL);
1386 mt->hiz_mt = intel_miptree_create(brw,
1387 mt->target,
1388 mt->format,
1389 mt->first_level,
1390 mt->last_level,
1391 mt->logical_width0,
1392 mt->logical_height0,
1393 mt->logical_depth0,
1394 true,
1395 mt->num_samples,
1396 INTEL_MIPTREE_TILING_ANY);
1397
1398 if (!mt->hiz_mt)
1399 return false;
1400
1401 /* Mark that all slices need a HiZ resolve. */
1402 struct intel_resolve_map *head = &mt->hiz_map;
1403 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1404 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1405 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1406 continue;
1407
1408 head->next = malloc(sizeof(*head->next));
1409 head->next->prev = head;
1410 head->next->next = NULL;
1411 head = head->next;
1412
1413 head->level = level;
1414 head->layer = layer;
1415 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1416 }
1417 }
1418
1419 return true;
1420 }
1421
1422 /**
1423 * Does the miptree slice have hiz enabled?
1424 */
1425 bool
1426 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1427 uint32_t level,
1428 uint32_t layer)
1429 {
1430 intel_miptree_check_level_layer(mt, level, layer);
1431 return mt->level[level].slice[layer].has_hiz;
1432 }
1433
1434 void
1435 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1436 uint32_t level,
1437 uint32_t layer)
1438 {
1439 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1440 return;
1441
1442 intel_resolve_map_set(&mt->hiz_map,
1443 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1444 }
1445
1446
1447 void
1448 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1449 uint32_t level,
1450 uint32_t layer)
1451 {
1452 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1453 return;
1454
1455 intel_resolve_map_set(&mt->hiz_map,
1456 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1457 }
1458
1459 void
1460 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1461 uint32_t level)
1462 {
1463 uint32_t layer;
1464 uint32_t end_layer = mt->level[level].depth;
1465
1466 for (layer = 0; layer < end_layer; layer++) {
1467 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1468 }
1469 }
1470
1471 static bool
1472 intel_miptree_slice_resolve(struct brw_context *brw,
1473 struct intel_mipmap_tree *mt,
1474 uint32_t level,
1475 uint32_t layer,
1476 enum gen6_hiz_op need)
1477 {
1478 intel_miptree_check_level_layer(mt, level, layer);
1479
1480 struct intel_resolve_map *item =
1481 intel_resolve_map_get(&mt->hiz_map, level, layer);
1482
1483 if (!item || item->need != need)
1484 return false;
1485
1486 intel_hiz_exec(brw, mt, level, layer, need);
1487 intel_resolve_map_remove(item);
1488 return true;
1489 }
1490
1491 bool
1492 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1493 struct intel_mipmap_tree *mt,
1494 uint32_t level,
1495 uint32_t layer)
1496 {
1497 return intel_miptree_slice_resolve(brw, mt, level, layer,
1498 GEN6_HIZ_OP_HIZ_RESOLVE);
1499 }
1500
1501 bool
1502 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1503 struct intel_mipmap_tree *mt,
1504 uint32_t level,
1505 uint32_t layer)
1506 {
1507 return intel_miptree_slice_resolve(brw, mt, level, layer,
1508 GEN6_HIZ_OP_DEPTH_RESOLVE);
1509 }
1510
1511 static bool
1512 intel_miptree_all_slices_resolve(struct brw_context *brw,
1513 struct intel_mipmap_tree *mt,
1514 enum gen6_hiz_op need)
1515 {
1516 bool did_resolve = false;
1517 struct intel_resolve_map *i, *next;
1518
1519 for (i = mt->hiz_map.next; i; i = next) {
1520 next = i->next;
1521 if (i->need != need)
1522 continue;
1523
1524 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1525 intel_resolve_map_remove(i);
1526 did_resolve = true;
1527 }
1528
1529 return did_resolve;
1530 }
1531
1532 bool
1533 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1534 struct intel_mipmap_tree *mt)
1535 {
1536 return intel_miptree_all_slices_resolve(brw, mt,
1537 GEN6_HIZ_OP_HIZ_RESOLVE);
1538 }
1539
1540 bool
1541 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1542 struct intel_mipmap_tree *mt)
1543 {
1544 return intel_miptree_all_slices_resolve(brw, mt,
1545 GEN6_HIZ_OP_DEPTH_RESOLVE);
1546 }
1547
1548
1549 void
1550 intel_miptree_resolve_color(struct brw_context *brw,
1551 struct intel_mipmap_tree *mt)
1552 {
1553 switch (mt->fast_clear_state) {
1554 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1555 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1556 /* No resolve needed */
1557 break;
1558 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1559 case INTEL_FAST_CLEAR_STATE_CLEAR:
1560 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1561 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1562 brw_blorp_resolve_color(brw, mt);
1563 break;
1564 }
1565 }
1566
1567
1568 /**
1569 * Make it possible to share the region backing the given miptree with another
1570 * process or another miptree.
1571 *
1572 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1573 * then discard the MCS buffer, if present. We also set the fast_clear_state
1574 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1575 * allocated in the future.
1576 */
1577 void
1578 intel_miptree_make_shareable(struct brw_context *brw,
1579 struct intel_mipmap_tree *mt)
1580 {
1581 /* MCS buffers are also used for multisample buffers, but we can't resolve
1582 * away a multisample MCS buffer because it's an integral part of how the
1583 * pixel data is stored. Fortunately this code path should never be
1584 * reached for multisample buffers.
1585 */
1586 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1587
1588 if (mt->mcs_mt) {
1589 intel_miptree_resolve_color(brw, mt);
1590 intel_miptree_release(&mt->mcs_mt);
1591 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1592 }
1593 }
1594
1595
1596 /**
1597 * \brief Get pointer offset into stencil buffer.
1598 *
1599 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1600 * must decode the tile's layout in software.
1601 *
1602 * See
1603 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1604 * Format.
1605 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1606 *
1607 * Even though the returned offset is always positive, the return type is
1608 * signed due to
1609 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1610 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1611 */
1612 static intptr_t
1613 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1614 {
1615 uint32_t tile_size = 4096;
1616 uint32_t tile_width = 64;
1617 uint32_t tile_height = 64;
1618 uint32_t row_size = 64 * stride;
1619
1620 uint32_t tile_x = x / tile_width;
1621 uint32_t tile_y = y / tile_height;
1622
1623 /* The byte's address relative to the tile's base addres. */
1624 uint32_t byte_x = x % tile_width;
1625 uint32_t byte_y = y % tile_height;
1626
1627 uintptr_t u = tile_y * row_size
1628 + tile_x * tile_size
1629 + 512 * (byte_x / 8)
1630 + 64 * (byte_y / 8)
1631 + 32 * ((byte_y / 4) % 2)
1632 + 16 * ((byte_x / 4) % 2)
1633 + 8 * ((byte_y / 2) % 2)
1634 + 4 * ((byte_x / 2) % 2)
1635 + 2 * (byte_y % 2)
1636 + 1 * (byte_x % 2);
1637
1638 if (swizzled) {
1639 /* adjust for bit6 swizzling */
1640 if (((byte_x / 8) % 2) == 1) {
1641 if (((byte_y / 8) % 2) == 0) {
1642 u += 64;
1643 } else {
1644 u -= 64;
1645 }
1646 }
1647 }
1648
1649 return u;
1650 }
1651
1652 void
1653 intel_miptree_updownsample(struct brw_context *brw,
1654 struct intel_mipmap_tree *src,
1655 struct intel_mipmap_tree *dst)
1656 {
1657 if (brw->gen < 8 || src->format == MESA_FORMAT_S_UINT8) {
1658 brw_blorp_blit_miptrees(brw,
1659 src, 0 /* level */, 0 /* layer */,
1660 dst, 0 /* level */, 0 /* layer */,
1661 0, 0,
1662 src->logical_width0, src->logical_height0,
1663 0, 0,
1664 dst->logical_width0, dst->logical_height0,
1665 GL_NEAREST, false, false /*mirror x, y*/);
1666 } else {
1667 brw_meta_updownsample(brw, src, dst);
1668 }
1669
1670 if (src->stencil_mt) {
1671 brw_blorp_blit_miptrees(brw,
1672 src->stencil_mt, 0 /* level */, 0 /* layer */,
1673 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1674 0, 0,
1675 src->logical_width0, src->logical_height0,
1676 0, 0,
1677 dst->logical_width0, dst->logical_height0,
1678 GL_NEAREST, false, false /*mirror x, y*/);
1679 }
1680 }
1681
1682 void *
1683 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1684 {
1685 /* CPU accesses to color buffers don't understand fast color clears, so
1686 * resolve any pending fast color clears before we map.
1687 */
1688 intel_miptree_resolve_color(brw, mt);
1689
1690 drm_intel_bo *bo = mt->region->bo;
1691
1692 if (drm_intel_bo_references(brw->batch.bo, bo))
1693 intel_batchbuffer_flush(brw);
1694
1695 if (mt->region->tiling != I915_TILING_NONE)
1696 brw_bo_map_gtt(brw, bo, "miptree");
1697 else
1698 brw_bo_map(brw, bo, true, "miptree");
1699
1700 return bo->virtual;
1701 }
1702
1703 void
1704 intel_miptree_unmap_raw(struct brw_context *brw,
1705 struct intel_mipmap_tree *mt)
1706 {
1707 drm_intel_bo_unmap(mt->region->bo);
1708 }
1709
1710 static void
1711 intel_miptree_map_gtt(struct brw_context *brw,
1712 struct intel_mipmap_tree *mt,
1713 struct intel_miptree_map *map,
1714 unsigned int level, unsigned int slice)
1715 {
1716 unsigned int bw, bh;
1717 void *base;
1718 unsigned int image_x, image_y;
1719 int x = map->x;
1720 int y = map->y;
1721
1722 /* For compressed formats, the stride is the number of bytes per
1723 * row of blocks. intel_miptree_get_image_offset() already does
1724 * the divide.
1725 */
1726 _mesa_get_format_block_size(mt->format, &bw, &bh);
1727 assert(y % bh == 0);
1728 y /= bh;
1729
1730 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1731
1732 if (base == NULL)
1733 map->ptr = NULL;
1734 else {
1735 /* Note that in the case of cube maps, the caller must have passed the
1736 * slice number referencing the face.
1737 */
1738 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1739 x += image_x;
1740 y += image_y;
1741
1742 map->stride = mt->region->pitch;
1743 map->ptr = base + y * map->stride + x * mt->cpp;
1744 }
1745
1746 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1747 map->x, map->y, map->w, map->h,
1748 mt, _mesa_get_format_name(mt->format),
1749 x, y, map->ptr, map->stride);
1750 }
1751
1752 static void
1753 intel_miptree_unmap_gtt(struct brw_context *brw,
1754 struct intel_mipmap_tree *mt,
1755 struct intel_miptree_map *map,
1756 unsigned int level,
1757 unsigned int slice)
1758 {
1759 intel_miptree_unmap_raw(brw, mt);
1760 }
1761
1762 static void
1763 intel_miptree_map_blit(struct brw_context *brw,
1764 struct intel_mipmap_tree *mt,
1765 struct intel_miptree_map *map,
1766 unsigned int level, unsigned int slice)
1767 {
1768 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1769 0, 0,
1770 map->w, map->h, 1,
1771 false, 0,
1772 INTEL_MIPTREE_TILING_NONE);
1773 if (!map->mt) {
1774 fprintf(stderr, "Failed to allocate blit temporary\n");
1775 goto fail;
1776 }
1777 map->stride = map->mt->region->pitch;
1778
1779 if (!intel_miptree_blit(brw,
1780 mt, level, slice,
1781 map->x, map->y, false,
1782 map->mt, 0, 0,
1783 0, 0, false,
1784 map->w, map->h, GL_COPY)) {
1785 fprintf(stderr, "Failed to blit\n");
1786 goto fail;
1787 }
1788
1789 map->ptr = intel_miptree_map_raw(brw, map->mt);
1790
1791 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1792 map->x, map->y, map->w, map->h,
1793 mt, _mesa_get_format_name(mt->format),
1794 level, slice, map->ptr, map->stride);
1795
1796 return;
1797
1798 fail:
1799 intel_miptree_release(&map->mt);
1800 map->ptr = NULL;
1801 map->stride = 0;
1802 }
1803
1804 static void
1805 intel_miptree_unmap_blit(struct brw_context *brw,
1806 struct intel_mipmap_tree *mt,
1807 struct intel_miptree_map *map,
1808 unsigned int level,
1809 unsigned int slice)
1810 {
1811 struct gl_context *ctx = &brw->ctx;
1812
1813 intel_miptree_unmap_raw(brw, map->mt);
1814
1815 if (map->mode & GL_MAP_WRITE_BIT) {
1816 bool ok = intel_miptree_blit(brw,
1817 map->mt, 0, 0,
1818 0, 0, false,
1819 mt, level, slice,
1820 map->x, map->y, false,
1821 map->w, map->h, GL_COPY);
1822 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1823 }
1824
1825 intel_miptree_release(&map->mt);
1826 }
1827
1828 #ifdef __SSE4_1__
1829 /**
1830 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1831 */
1832 static void
1833 intel_miptree_map_movntdqa(struct brw_context *brw,
1834 struct intel_mipmap_tree *mt,
1835 struct intel_miptree_map *map,
1836 unsigned int level, unsigned int slice)
1837 {
1838 assert(map->mode & GL_MAP_READ_BIT);
1839 assert(!(map->mode & GL_MAP_WRITE_BIT));
1840
1841 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1842 map->x, map->y, map->w, map->h,
1843 mt, _mesa_get_format_name(mt->format),
1844 level, slice, map->ptr, map->stride);
1845
1846 /* Map the original image */
1847 uint32_t image_x;
1848 uint32_t image_y;
1849 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1850 image_x += map->x;
1851 image_y += map->y;
1852
1853 void *src = intel_miptree_map_raw(brw, mt);
1854 if (!src)
1855 return;
1856 src += image_y * mt->region->pitch;
1857 src += image_x * mt->region->cpp;
1858
1859 /* Due to the pixel offsets for the particular image being mapped, our
1860 * src pointer may not be 16-byte aligned. However, if the pitch is
1861 * divisible by 16, then the amount by which it's misaligned will remain
1862 * consistent from row to row.
1863 */
1864 assert((mt->region->pitch % 16) == 0);
1865 const int misalignment = ((uintptr_t) src) & 15;
1866
1867 /* Create an untiled temporary buffer for the mapping. */
1868 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1869
1870 map->stride = ALIGN(misalignment + width_bytes, 16);
1871
1872 map->buffer = malloc(map->stride * map->h);
1873 /* Offset the destination so it has the same misalignment as src. */
1874 map->ptr = map->buffer + misalignment;
1875
1876 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1877
1878 for (uint32_t y = 0; y < map->h; y++) {
1879 void *dst_ptr = map->ptr + y * map->stride;
1880 void *src_ptr = src + y * mt->region->pitch;
1881
1882 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1883 }
1884
1885 intel_miptree_unmap_raw(brw, mt);
1886 }
1887
1888 static void
1889 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1890 struct intel_mipmap_tree *mt,
1891 struct intel_miptree_map *map,
1892 unsigned int level,
1893 unsigned int slice)
1894 {
1895 free(map->buffer);
1896 map->buffer = NULL;
1897 map->ptr = NULL;
1898 }
1899 #endif
1900
1901 static void
1902 intel_miptree_map_s8(struct brw_context *brw,
1903 struct intel_mipmap_tree *mt,
1904 struct intel_miptree_map *map,
1905 unsigned int level, unsigned int slice)
1906 {
1907 map->stride = map->w;
1908 map->buffer = map->ptr = malloc(map->stride * map->h);
1909 if (!map->buffer)
1910 return;
1911
1912 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1913 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1914 * invalidate is set, since we'll be writing the whole rectangle from our
1915 * temporary buffer back out.
1916 */
1917 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1918 uint8_t *untiled_s8_map = map->ptr;
1919 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1920 unsigned int image_x, image_y;
1921
1922 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1923
1924 for (uint32_t y = 0; y < map->h; y++) {
1925 for (uint32_t x = 0; x < map->w; x++) {
1926 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1927 x + image_x + map->x,
1928 y + image_y + map->y,
1929 brw->has_swizzling);
1930 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1931 }
1932 }
1933
1934 intel_miptree_unmap_raw(brw, mt);
1935
1936 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1937 map->x, map->y, map->w, map->h,
1938 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1939 } else {
1940 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1941 map->x, map->y, map->w, map->h,
1942 mt, map->ptr, map->stride);
1943 }
1944 }
1945
1946 static void
1947 intel_miptree_unmap_s8(struct brw_context *brw,
1948 struct intel_mipmap_tree *mt,
1949 struct intel_miptree_map *map,
1950 unsigned int level,
1951 unsigned int slice)
1952 {
1953 if (map->mode & GL_MAP_WRITE_BIT) {
1954 unsigned int image_x, image_y;
1955 uint8_t *untiled_s8_map = map->ptr;
1956 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1957
1958 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1959
1960 for (uint32_t y = 0; y < map->h; y++) {
1961 for (uint32_t x = 0; x < map->w; x++) {
1962 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1963 x + map->x,
1964 y + map->y,
1965 brw->has_swizzling);
1966 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1967 }
1968 }
1969
1970 intel_miptree_unmap_raw(brw, mt);
1971 }
1972
1973 free(map->buffer);
1974 }
1975
1976 static void
1977 intel_miptree_map_etc(struct brw_context *brw,
1978 struct intel_mipmap_tree *mt,
1979 struct intel_miptree_map *map,
1980 unsigned int level,
1981 unsigned int slice)
1982 {
1983 assert(mt->etc_format != MESA_FORMAT_NONE);
1984 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
1985 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
1986 }
1987
1988 assert(map->mode & GL_MAP_WRITE_BIT);
1989 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
1990
1991 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
1992 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
1993 map->w, map->h, 1));
1994 map->ptr = map->buffer;
1995 }
1996
1997 static void
1998 intel_miptree_unmap_etc(struct brw_context *brw,
1999 struct intel_mipmap_tree *mt,
2000 struct intel_miptree_map *map,
2001 unsigned int level,
2002 unsigned int slice)
2003 {
2004 uint32_t image_x;
2005 uint32_t image_y;
2006 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2007
2008 image_x += map->x;
2009 image_y += map->y;
2010
2011 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2012 + image_y * mt->region->pitch
2013 + image_x * mt->region->cpp;
2014
2015 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2016 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
2017 map->ptr, map->stride,
2018 map->w, map->h);
2019 else
2020 _mesa_unpack_etc2_format(dst, mt->region->pitch,
2021 map->ptr, map->stride,
2022 map->w, map->h, mt->etc_format);
2023
2024 intel_miptree_unmap_raw(brw, mt);
2025 free(map->buffer);
2026 }
2027
2028 /**
2029 * Mapping function for packed depth/stencil miptrees backed by real separate
2030 * miptrees for depth and stencil.
2031 *
2032 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2033 * separate from the depth buffer. Yet at the GL API level, we have to expose
2034 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2035 * be able to map that memory for texture storage and glReadPixels-type
2036 * operations. We give Mesa core that access by mallocing a temporary and
2037 * copying the data between the actual backing store and the temporary.
2038 */
2039 static void
2040 intel_miptree_map_depthstencil(struct brw_context *brw,
2041 struct intel_mipmap_tree *mt,
2042 struct intel_miptree_map *map,
2043 unsigned int level, unsigned int slice)
2044 {
2045 struct intel_mipmap_tree *z_mt = mt;
2046 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2047 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2048 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2049
2050 map->stride = map->w * packed_bpp;
2051 map->buffer = map->ptr = malloc(map->stride * map->h);
2052 if (!map->buffer)
2053 return;
2054
2055 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2056 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2057 * invalidate is set, since we'll be writing the whole rectangle from our
2058 * temporary buffer back out.
2059 */
2060 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2061 uint32_t *packed_map = map->ptr;
2062 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2063 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2064 unsigned int s_image_x, s_image_y;
2065 unsigned int z_image_x, z_image_y;
2066
2067 intel_miptree_get_image_offset(s_mt, level, slice,
2068 &s_image_x, &s_image_y);
2069 intel_miptree_get_image_offset(z_mt, level, slice,
2070 &z_image_x, &z_image_y);
2071
2072 for (uint32_t y = 0; y < map->h; y++) {
2073 for (uint32_t x = 0; x < map->w; x++) {
2074 int map_x = map->x + x, map_y = map->y + y;
2075 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2076 map_x + s_image_x,
2077 map_y + s_image_y,
2078 brw->has_swizzling);
2079 ptrdiff_t z_offset = ((map_y + z_image_y) *
2080 (z_mt->region->pitch / 4) +
2081 (map_x + z_image_x));
2082 uint8_t s = s_map[s_offset];
2083 uint32_t z = z_map[z_offset];
2084
2085 if (map_z32f_x24s8) {
2086 packed_map[(y * map->w + x) * 2 + 0] = z;
2087 packed_map[(y * map->w + x) * 2 + 1] = s;
2088 } else {
2089 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2090 }
2091 }
2092 }
2093
2094 intel_miptree_unmap_raw(brw, s_mt);
2095 intel_miptree_unmap_raw(brw, z_mt);
2096
2097 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2098 __FUNCTION__,
2099 map->x, map->y, map->w, map->h,
2100 z_mt, map->x + z_image_x, map->y + z_image_y,
2101 s_mt, map->x + s_image_x, map->y + s_image_y,
2102 map->ptr, map->stride);
2103 } else {
2104 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2105 map->x, map->y, map->w, map->h,
2106 mt, map->ptr, map->stride);
2107 }
2108 }
2109
2110 static void
2111 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2112 struct intel_mipmap_tree *mt,
2113 struct intel_miptree_map *map,
2114 unsigned int level,
2115 unsigned int slice)
2116 {
2117 struct intel_mipmap_tree *z_mt = mt;
2118 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2119 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2120
2121 if (map->mode & GL_MAP_WRITE_BIT) {
2122 uint32_t *packed_map = map->ptr;
2123 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2124 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2125 unsigned int s_image_x, s_image_y;
2126 unsigned int z_image_x, z_image_y;
2127
2128 intel_miptree_get_image_offset(s_mt, level, slice,
2129 &s_image_x, &s_image_y);
2130 intel_miptree_get_image_offset(z_mt, level, slice,
2131 &z_image_x, &z_image_y);
2132
2133 for (uint32_t y = 0; y < map->h; y++) {
2134 for (uint32_t x = 0; x < map->w; x++) {
2135 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2136 x + s_image_x + map->x,
2137 y + s_image_y + map->y,
2138 brw->has_swizzling);
2139 ptrdiff_t z_offset = ((y + z_image_y) *
2140 (z_mt->region->pitch / 4) +
2141 (x + z_image_x));
2142
2143 if (map_z32f_x24s8) {
2144 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2145 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2146 } else {
2147 uint32_t packed = packed_map[y * map->w + x];
2148 s_map[s_offset] = packed >> 24;
2149 z_map[z_offset] = packed;
2150 }
2151 }
2152 }
2153
2154 intel_miptree_unmap_raw(brw, s_mt);
2155 intel_miptree_unmap_raw(brw, z_mt);
2156
2157 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2158 __FUNCTION__,
2159 map->x, map->y, map->w, map->h,
2160 z_mt, _mesa_get_format_name(z_mt->format),
2161 map->x + z_image_x, map->y + z_image_y,
2162 s_mt, map->x + s_image_x, map->y + s_image_y,
2163 map->ptr, map->stride);
2164 }
2165
2166 free(map->buffer);
2167 }
2168
2169 /**
2170 * Create and attach a map to the miptree at (level, slice). Return the
2171 * attached map.
2172 */
2173 static struct intel_miptree_map*
2174 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2175 unsigned int level,
2176 unsigned int slice,
2177 unsigned int x,
2178 unsigned int y,
2179 unsigned int w,
2180 unsigned int h,
2181 GLbitfield mode)
2182 {
2183 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2184
2185 if (!map)
2186 return NULL;
2187
2188 assert(mt->level[level].slice[slice].map == NULL);
2189 mt->level[level].slice[slice].map = map;
2190
2191 map->mode = mode;
2192 map->x = x;
2193 map->y = y;
2194 map->w = w;
2195 map->h = h;
2196
2197 return map;
2198 }
2199
2200 /**
2201 * Release the map at (level, slice).
2202 */
2203 static void
2204 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2205 unsigned int level,
2206 unsigned int slice)
2207 {
2208 struct intel_miptree_map **map;
2209
2210 map = &mt->level[level].slice[slice].map;
2211 free(*map);
2212 *map = NULL;
2213 }
2214
2215 static bool
2216 can_blit_slice(struct intel_mipmap_tree *mt,
2217 unsigned int level, unsigned int slice)
2218 {
2219 uint32_t image_x;
2220 uint32_t image_y;
2221 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2222 if (image_x >= 32768 || image_y >= 32768)
2223 return false;
2224
2225 if (mt->region->pitch >= 32768)
2226 return false;
2227
2228 return true;
2229 }
2230
2231 void
2232 intel_miptree_map(struct brw_context *brw,
2233 struct intel_mipmap_tree *mt,
2234 unsigned int level,
2235 unsigned int slice,
2236 unsigned int x,
2237 unsigned int y,
2238 unsigned int w,
2239 unsigned int h,
2240 GLbitfield mode,
2241 void **out_ptr,
2242 int *out_stride)
2243 {
2244 struct intel_miptree_map *map;
2245
2246 assert(mt->num_samples <= 1);
2247
2248 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2249 if (!map){
2250 *out_ptr = NULL;
2251 *out_stride = 0;
2252 return;
2253 }
2254
2255 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2256 if (map->mode & GL_MAP_WRITE_BIT) {
2257 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2258 }
2259
2260 if (mt->format == MESA_FORMAT_S_UINT8) {
2261 intel_miptree_map_s8(brw, mt, map, level, slice);
2262 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2263 !(mode & BRW_MAP_DIRECT_BIT)) {
2264 intel_miptree_map_etc(brw, mt, map, level, slice);
2265 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2266 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2267 }
2268 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2269 else if (brw->has_llc &&
2270 !(mode & GL_MAP_WRITE_BIT) &&
2271 !mt->compressed &&
2272 (mt->region->tiling == I915_TILING_X ||
2273 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2274 can_blit_slice(mt, level, slice)) {
2275 intel_miptree_map_blit(brw, mt, map, level, slice);
2276 } else if (mt->region->tiling != I915_TILING_NONE &&
2277 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2278 assert(can_blit_slice(mt, level, slice));
2279 intel_miptree_map_blit(brw, mt, map, level, slice);
2280 #ifdef __SSE4_1__
2281 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed) {
2282 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2283 #endif
2284 } else {
2285 intel_miptree_map_gtt(brw, mt, map, level, slice);
2286 }
2287
2288 *out_ptr = map->ptr;
2289 *out_stride = map->stride;
2290
2291 if (map->ptr == NULL)
2292 intel_miptree_release_map(mt, level, slice);
2293 }
2294
2295 void
2296 intel_miptree_unmap(struct brw_context *brw,
2297 struct intel_mipmap_tree *mt,
2298 unsigned int level,
2299 unsigned int slice)
2300 {
2301 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2302
2303 assert(mt->num_samples <= 1);
2304
2305 if (!map)
2306 return;
2307
2308 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2309 mt, _mesa_get_format_name(mt->format), level, slice);
2310
2311 if (mt->format == MESA_FORMAT_S_UINT8) {
2312 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2313 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2314 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2315 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2316 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2317 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2318 } else if (map->mt) {
2319 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2320 #ifdef __SSE4_1__
2321 } else if (map->buffer) {
2322 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2323 #endif
2324 } else {
2325 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2326 }
2327
2328 intel_miptree_release_map(mt, level, slice);
2329 }