i965: fix resource leak
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 /* If the width is much smaller than a tile, don't bother tiling. */
523 if (row_pitch < 64)
524 return true;
525
526 if (ALIGN(row_pitch, 512) >= 32768) {
527 perf_debug("row pitch %u too large to blit, falling back to untiled",
528 row_pitch);
529 return true;
530 }
531
532 return false;
533 }
534
535 static bool
536 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
537 enum isl_tiling tiling)
538 {
539 const struct gen_device_info *devinfo = &brw->screen->devinfo;
540
541 /* If the BO is too large to fit in the aperture, we need to use the
542 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
543 * handle Y-tiling, so we need to fall back to X.
544 */
545 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
546 tiling == ISL_TILING_Y0)
547 return true;
548
549 return false;
550 }
551
552 static struct intel_mipmap_tree *
553 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
554 unsigned first_level, unsigned last_level,
555 unsigned width0, unsigned height0, unsigned depth0,
556 unsigned num_samples, isl_tiling_flags_t tiling_flags,
557 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
558 unsigned row_pitch, struct brw_bo *bo)
559 {
560 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
561 if (!mt)
562 return NULL;
563
564 if (!create_mapping_table(target, first_level, last_level, depth0,
565 mt->level)) {
566 free(mt);
567 return NULL;
568 }
569
570 mt->refcount = 1;
571
572 if (target == GL_TEXTURE_CUBE_MAP ||
573 target == GL_TEXTURE_CUBE_MAP_ARRAY)
574 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
575
576 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
577 __func__,
578 _mesa_enum_to_string(target),
579 _mesa_get_format_name(format),
580 num_samples, width0, height0, depth0,
581 first_level, last_level, mt);
582
583 struct isl_surf_init_info init_info = {
584 .dim = get_isl_surf_dim(target),
585 .format = translate_tex_format(brw, format, false),
586 .width = width0,
587 .height = height0,
588 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
589 .levels = last_level - first_level + 1,
590 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
591 .samples = num_samples,
592 .row_pitch = row_pitch,
593 .usage = isl_usage_flags,
594 .tiling_flags = tiling_flags,
595 };
596
597 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
598 goto fail;
599
600 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
601 * on gen7 platforms we also need to create Y-tiled copies of stencil for
602 * texturing since the hardware can't sample from W-tiled surfaces. For
603 * everything else, check for corner cases needing special treatment.
604 */
605 bool is_depth_stencil =
606 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
607 if (!is_depth_stencil) {
608 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
609 mt->surf.tiling, mt->surf.samples)) {
610 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
614 init_info.tiling_flags = 1u << ISL_TILING_X;
615 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
616 goto fail;
617 }
618 }
619
620 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
621 * the size may not be multiple of row_pitch.
622 * See isl_apply_surface_padding().
623 */
624 if (mt->surf.tiling != ISL_TILING_LINEAR)
625 assert(mt->surf.size % mt->surf.row_pitch == 0);
626
627 if (!bo) {
628 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
629 mt->surf.size,
630 BRW_MEMZONE_OTHER,
631 isl_tiling_to_i915_tiling(
632 mt->surf.tiling),
633 mt->surf.row_pitch, alloc_flags);
634 if (!mt->bo)
635 goto fail;
636 } else {
637 mt->bo = bo;
638 }
639
640 mt->first_level = first_level;
641 mt->last_level = last_level;
642 mt->target = target;
643 mt->format = format;
644 mt->aux_state = NULL;
645 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
646 mt->compressed = _mesa_is_format_compressed(format);
647 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
648
649 return mt;
650
651 fail:
652 intel_miptree_release(&mt);
653 return NULL;
654 }
655
656 static bool
657 make_separate_stencil_surface(struct brw_context *brw,
658 struct intel_mipmap_tree *mt)
659 {
660 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
661 0, mt->surf.levels - 1,
662 mt->surf.logical_level0_px.width,
663 mt->surf.logical_level0_px.height,
664 mt->surf.dim == ISL_SURF_DIM_3D ?
665 mt->surf.logical_level0_px.depth :
666 mt->surf.logical_level0_px.array_len,
667 mt->surf.samples, ISL_TILING_W_BIT,
668 ISL_SURF_USAGE_STENCIL_BIT |
669 ISL_SURF_USAGE_TEXTURE_BIT,
670 BO_ALLOC_BUSY, 0, NULL);
671
672 if (!mt->stencil_mt)
673 return false;
674
675 mt->stencil_mt->r8stencil_needs_update = true;
676
677 return true;
678 }
679
680 static struct intel_mipmap_tree *
681 miptree_create(struct brw_context *brw,
682 GLenum target,
683 mesa_format format,
684 GLuint first_level,
685 GLuint last_level,
686 GLuint width0,
687 GLuint height0,
688 GLuint depth0,
689 GLuint num_samples,
690 enum intel_miptree_create_flags flags)
691 {
692 const struct gen_device_info *devinfo = &brw->screen->devinfo;
693
694 if (format == MESA_FORMAT_S_UINT8)
695 return make_surface(brw, target, format, first_level, last_level,
696 width0, height0, depth0, num_samples,
697 ISL_TILING_W_BIT,
698 ISL_SURF_USAGE_STENCIL_BIT |
699 ISL_SURF_USAGE_TEXTURE_BIT,
700 BO_ALLOC_BUSY,
701 0,
702 NULL);
703
704 const GLenum base_format = _mesa_get_format_base_format(format);
705 if ((base_format == GL_DEPTH_COMPONENT ||
706 base_format == GL_DEPTH_STENCIL) &&
707 !(flags & MIPTREE_CREATE_LINEAR)) {
708 /* Fix up the Z miptree format for how we're splitting out separate
709 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
710 */
711 const mesa_format depth_only_format =
712 intel_depth_format_for_depthstencil_format(format);
713 struct intel_mipmap_tree *mt = make_surface(
714 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
715 first_level, last_level,
716 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
717 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
718 BO_ALLOC_BUSY, 0, NULL);
719
720 if (needs_separate_stencil(brw, mt, format) &&
721 !make_separate_stencil_surface(brw, mt)) {
722 intel_miptree_release(&mt);
723 return NULL;
724 }
725
726 if (!(flags & MIPTREE_CREATE_NO_AUX))
727 intel_miptree_choose_aux_usage(brw, mt);
728
729 return mt;
730 }
731
732 mesa_format tex_format = format;
733 mesa_format etc_format = MESA_FORMAT_NONE;
734 uint32_t alloc_flags = 0;
735
736 format = intel_lower_compressed_format(brw, format);
737
738 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
739
740 if (flags & MIPTREE_CREATE_BUSY)
741 alloc_flags |= BO_ALLOC_BUSY;
742
743 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
744 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
745
746 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
747 if (devinfo->gen < 6)
748 tiling_flags &= ~ISL_TILING_Y0_BIT;
749
750 struct intel_mipmap_tree *mt = make_surface(
751 brw, target, format,
752 first_level, last_level,
753 width0, height0, depth0,
754 num_samples, tiling_flags,
755 ISL_SURF_USAGE_RENDER_TARGET_BIT |
756 ISL_SURF_USAGE_TEXTURE_BIT,
757 alloc_flags, 0, NULL);
758 if (!mt)
759 return NULL;
760
761 mt->etc_format = etc_format;
762
763 if (!(flags & MIPTREE_CREATE_NO_AUX))
764 intel_miptree_choose_aux_usage(brw, mt);
765
766 return mt;
767 }
768
769 struct intel_mipmap_tree *
770 intel_miptree_create(struct brw_context *brw,
771 GLenum target,
772 mesa_format format,
773 GLuint first_level,
774 GLuint last_level,
775 GLuint width0,
776 GLuint height0,
777 GLuint depth0,
778 GLuint num_samples,
779 enum intel_miptree_create_flags flags)
780 {
781 assert(num_samples > 0);
782
783 struct intel_mipmap_tree *mt = miptree_create(
784 brw, target, format,
785 first_level, last_level,
786 width0, height0, depth0, num_samples,
787 flags);
788 if (!mt)
789 return NULL;
790
791 mt->offset = 0;
792
793 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
794 * compress clear color so we wait until an actual fast-clear to allocate
795 * it.
796 */
797 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
798 !intel_miptree_alloc_aux(brw, mt)) {
799 intel_miptree_release(&mt);
800 return NULL;
801 }
802
803 return mt;
804 }
805
806 struct intel_mipmap_tree *
807 intel_miptree_create_for_bo(struct brw_context *brw,
808 struct brw_bo *bo,
809 mesa_format format,
810 uint32_t offset,
811 uint32_t width,
812 uint32_t height,
813 uint32_t depth,
814 int pitch,
815 enum isl_tiling tiling,
816 enum intel_miptree_create_flags flags)
817 {
818 const struct gen_device_info *devinfo = &brw->screen->devinfo;
819 struct intel_mipmap_tree *mt;
820 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
821 const GLenum base_format = _mesa_get_format_base_format(format);
822
823 if ((base_format == GL_DEPTH_COMPONENT ||
824 base_format == GL_DEPTH_STENCIL)) {
825 const mesa_format depth_only_format =
826 intel_depth_format_for_depthstencil_format(format);
827 mt = make_surface(brw, target,
828 devinfo->gen >= 6 ? depth_only_format : format,
829 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
830 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
831 0, pitch, bo);
832 if (!mt)
833 return NULL;
834
835 brw_bo_reference(bo);
836
837 if (!(flags & MIPTREE_CREATE_NO_AUX))
838 intel_miptree_choose_aux_usage(brw, mt);
839
840 return mt;
841 } else if (format == MESA_FORMAT_S_UINT8) {
842 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
843 0, 0, width, height, depth, 1,
844 ISL_TILING_W_BIT,
845 ISL_SURF_USAGE_STENCIL_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 assert(bo->size >= mt->surf.size);
852
853 brw_bo_reference(bo);
854 return mt;
855 }
856
857 /* Nothing will be able to use this miptree with the BO if the offset isn't
858 * aligned.
859 */
860 if (tiling != ISL_TILING_LINEAR)
861 assert(offset % 4096 == 0);
862
863 /* miptrees can't handle negative pitch. If you need flipping of images,
864 * that's outside of the scope of the mt.
865 */
866 assert(pitch >= 0);
867
868 /* The BO already has a tiling format and we shouldn't confuse the lower
869 * layers by making it try to find a tiling format again.
870 */
871 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
872
873 mt = make_surface(brw, target, format,
874 0, 0, width, height, depth, 1,
875 1lu << tiling,
876 ISL_SURF_USAGE_RENDER_TARGET_BIT |
877 ISL_SURF_USAGE_TEXTURE_BIT,
878 0, pitch, bo);
879 if (!mt)
880 return NULL;
881
882 brw_bo_reference(bo);
883 mt->bo = bo;
884 mt->offset = offset;
885
886 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
887 intel_miptree_choose_aux_usage(brw, mt);
888
889 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
890 * only compress clear color so we wait until an actual fast-clear to
891 * allocate it.
892 */
893 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
894 !intel_miptree_alloc_aux(brw, mt)) {
895 intel_miptree_release(&mt);
896 return NULL;
897 }
898 }
899
900 return mt;
901 }
902
903 static struct intel_mipmap_tree *
904 miptree_create_for_planar_image(struct brw_context *brw,
905 __DRIimage *image, GLenum target,
906 enum isl_tiling tiling)
907 {
908 const struct intel_image_format *f = image->planar_format;
909 struct intel_mipmap_tree *planar_mt = NULL;
910
911 for (int i = 0; i < f->nplanes; i++) {
912 const int index = f->planes[i].buffer_index;
913 const uint32_t dri_format = f->planes[i].dri_format;
914 const mesa_format format = driImageFormatToGLFormat(dri_format);
915 const uint32_t width = image->width >> f->planes[i].width_shift;
916 const uint32_t height = image->height >> f->planes[i].height_shift;
917
918 /* Disable creation of the texture's aux buffers because the driver
919 * exposes no EGL API to manage them. That is, there is no API for
920 * resolving the aux buffer's content to the main buffer nor for
921 * invalidating the aux buffer's content.
922 */
923 struct intel_mipmap_tree *mt =
924 intel_miptree_create_for_bo(brw, image->bo, format,
925 image->offsets[index],
926 width, height, 1,
927 image->strides[index],
928 tiling,
929 MIPTREE_CREATE_NO_AUX);
930 if (mt == NULL) {
931 intel_miptree_release(&planar_mt);
932 return NULL;
933 }
934
935 mt->target = target;
936
937 if (i == 0)
938 planar_mt = mt;
939 else
940 planar_mt->plane[i - 1] = mt;
941 }
942
943 planar_mt->drm_modifier = image->modifier;
944
945 return planar_mt;
946 }
947
948 static bool
949 create_ccs_buf_for_image(struct brw_context *brw,
950 __DRIimage *image,
951 struct intel_mipmap_tree *mt,
952 enum isl_aux_state initial_state)
953 {
954 struct isl_surf temp_ccs_surf;
955
956 /* CCS is only supported for very simple miptrees */
957 assert(image->aux_offset != 0 && image->aux_pitch != 0);
958 assert(image->tile_x == 0 && image->tile_y == 0);
959 assert(mt->surf.samples == 1);
960 assert(mt->surf.levels == 1);
961 assert(mt->surf.logical_level0_px.depth == 1);
962 assert(mt->surf.logical_level0_px.array_len == 1);
963 assert(mt->first_level == 0);
964 assert(mt->last_level == 0);
965
966 /* We shouldn't already have a CCS */
967 assert(!mt->aux_buf);
968
969 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
970 image->aux_pitch))
971 return false;
972
973 assert(image->aux_offset < image->bo->size);
974 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
975
976 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
977 if (mt->aux_buf == NULL)
978 return false;
979
980 mt->aux_state = create_aux_state_map(mt, initial_state);
981 if (!mt->aux_state) {
982 free(mt->aux_buf);
983 mt->aux_buf = NULL;
984 return false;
985 }
986
987 /* On gen10+ we start using an extra space in the aux buffer to store the
988 * indirect clear color. However, if we imported an image from the window
989 * system with CCS, we don't have the extra space at the end of the aux
990 * buffer. So create a new bo here that will store that clear color.
991 */
992 if (brw->isl_dev.ss.clear_color_state_size > 0) {
993 mt->aux_buf->clear_color_bo =
994 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
995 brw->isl_dev.ss.clear_color_state_size,
996 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
997 BO_ALLOC_ZEROED);
998 if (!mt->aux_buf->clear_color_bo) {
999 free(mt->aux_buf);
1000 mt->aux_buf = NULL;
1001 return false;
1002 }
1003 }
1004
1005 mt->aux_buf->bo = image->bo;
1006 brw_bo_reference(image->bo);
1007
1008 mt->aux_buf->offset = image->aux_offset;
1009 mt->aux_buf->surf = temp_ccs_surf;
1010
1011 return true;
1012 }
1013
1014 struct intel_mipmap_tree *
1015 intel_miptree_create_for_dri_image(struct brw_context *brw,
1016 __DRIimage *image, GLenum target,
1017 mesa_format format,
1018 bool allow_internal_aux)
1019 {
1020 uint32_t bo_tiling, bo_swizzle;
1021 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1022
1023 const struct isl_drm_modifier_info *mod_info =
1024 isl_drm_modifier_get_info(image->modifier);
1025
1026 const enum isl_tiling tiling =
1027 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1028
1029 if (image->planar_format && image->planar_format->nplanes > 1)
1030 return miptree_create_for_planar_image(brw, image, target, tiling);
1031
1032 if (image->planar_format)
1033 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1034
1035 if (!brw->ctx.TextureFormatSupported[format]) {
1036 /* The texture storage paths in core Mesa detect if the driver does not
1037 * support the user-requested format, and then searches for a
1038 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1039 * do the fallbacks here for important formats.
1040 *
1041 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1042 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1043 * the Chrome OS compositor consumes as dma_buf EGLImages.
1044 */
1045 format = _mesa_format_fallback_rgbx_to_rgba(format);
1046 }
1047
1048 if (!brw->ctx.TextureFormatSupported[format])
1049 return NULL;
1050
1051 enum intel_miptree_create_flags mt_create_flags = 0;
1052
1053 /* If this image comes in from a window system, we have different
1054 * requirements than if it comes in via an EGL import operation. Window
1055 * system images can use any form of auxiliary compression we wish because
1056 * they get "flushed" before being handed off to the window system and we
1057 * have the opportunity to do resolves. Non window-system images, on the
1058 * other hand, have no resolve point so we can't have aux without a
1059 * modifier.
1060 */
1061 if (!allow_internal_aux)
1062 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1063
1064 /* If we have a modifier which specifies aux, don't create one yet */
1065 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1066 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1067
1068 /* Disable creation of the texture's aux buffers because the driver exposes
1069 * no EGL API to manage them. That is, there is no API for resolving the aux
1070 * buffer's content to the main buffer nor for invalidating the aux buffer's
1071 * content.
1072 */
1073 struct intel_mipmap_tree *mt =
1074 intel_miptree_create_for_bo(brw, image->bo, format,
1075 image->offset, image->width, image->height, 1,
1076 image->pitch, tiling, mt_create_flags);
1077 if (mt == NULL)
1078 return NULL;
1079
1080 mt->target = target;
1081 mt->level[0].level_x = image->tile_x;
1082 mt->level[0].level_y = image->tile_y;
1083 mt->drm_modifier = image->modifier;
1084
1085 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1086 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1087 * trouble resolving back to destination image due to alignment issues.
1088 */
1089 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1090 if (!devinfo->has_surface_tile_offset) {
1091 uint32_t draw_x, draw_y;
1092 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1093
1094 if (draw_x != 0 || draw_y != 0) {
1095 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1096 intel_miptree_release(&mt);
1097 return NULL;
1098 }
1099 }
1100
1101 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1102 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1103
1104 mt->aux_usage = mod_info->aux_usage;
1105 /* If we are a window system buffer, then we can support fast-clears
1106 * even if the modifier doesn't support them by doing a partial resolve
1107 * as part of the flush operation.
1108 */
1109 mt->supports_fast_clear =
1110 allow_internal_aux || mod_info->supports_clear_color;
1111
1112 /* We don't know the actual state of the surface when we get it but we
1113 * can make a pretty good guess based on the modifier. What we do know
1114 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1115 * a worst case of compression.
1116 */
1117 enum isl_aux_state initial_state =
1118 isl_drm_modifier_get_default_aux_state(image->modifier);
1119
1120 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1121 intel_miptree_release(&mt);
1122 return NULL;
1123 }
1124 }
1125
1126 /* Don't assume coherency for imported EGLimages. We don't know what
1127 * external clients are going to do with it. They may scan it out.
1128 */
1129 image->bo->cache_coherent = false;
1130
1131 return mt;
1132 }
1133
1134 /**
1135 * For a singlesample renderbuffer, this simply wraps the given BO with a
1136 * miptree.
1137 *
1138 * For a multisample renderbuffer, this wraps the window system's
1139 * (singlesample) BO with a singlesample miptree attached to the
1140 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1141 * that will contain the actual rendering (which is lazily resolved to
1142 * irb->singlesample_mt).
1143 */
1144 bool
1145 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1146 struct intel_renderbuffer *irb,
1147 struct intel_mipmap_tree *singlesample_mt,
1148 uint32_t width, uint32_t height,
1149 uint32_t pitch)
1150 {
1151 struct intel_mipmap_tree *multisample_mt = NULL;
1152 struct gl_renderbuffer *rb = &irb->Base.Base;
1153 mesa_format format = rb->Format;
1154 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1155
1156 /* Only the front and back buffers, which are color buffers, are allocated
1157 * through the image loader.
1158 */
1159 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1160 _mesa_get_format_base_format(format) == GL_RGBA);
1161
1162 assert(singlesample_mt);
1163
1164 if (num_samples == 1) {
1165 intel_miptree_release(&irb->mt);
1166 irb->mt = singlesample_mt;
1167
1168 assert(!irb->singlesample_mt);
1169 } else {
1170 intel_miptree_release(&irb->singlesample_mt);
1171 irb->singlesample_mt = singlesample_mt;
1172
1173 if (!irb->mt ||
1174 irb->mt->surf.logical_level0_px.width != width ||
1175 irb->mt->surf.logical_level0_px.height != height) {
1176 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1177 format,
1178 width,
1179 height,
1180 num_samples);
1181 if (!multisample_mt)
1182 goto fail;
1183
1184 irb->need_downsample = false;
1185 intel_miptree_release(&irb->mt);
1186 irb->mt = multisample_mt;
1187 }
1188 }
1189 return true;
1190
1191 fail:
1192 intel_miptree_release(&irb->mt);
1193 return false;
1194 }
1195
1196 struct intel_mipmap_tree*
1197 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1198 mesa_format format,
1199 uint32_t width,
1200 uint32_t height,
1201 uint32_t num_samples)
1202 {
1203 struct intel_mipmap_tree *mt;
1204 uint32_t depth = 1;
1205 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1206
1207 mt = intel_miptree_create(brw, target, format, 0, 0,
1208 width, height, depth, num_samples,
1209 MIPTREE_CREATE_BUSY);
1210 if (!mt)
1211 goto fail;
1212
1213 return mt;
1214
1215 fail:
1216 intel_miptree_release(&mt);
1217 return NULL;
1218 }
1219
1220 void
1221 intel_miptree_reference(struct intel_mipmap_tree **dst,
1222 struct intel_mipmap_tree *src)
1223 {
1224 if (*dst == src)
1225 return;
1226
1227 intel_miptree_release(dst);
1228
1229 if (src) {
1230 src->refcount++;
1231 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1232 }
1233
1234 *dst = src;
1235 }
1236
1237 static void
1238 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1239 {
1240 if (aux_buf == NULL)
1241 return;
1242
1243 brw_bo_unreference(aux_buf->bo);
1244 brw_bo_unreference(aux_buf->clear_color_bo);
1245
1246 free(aux_buf);
1247 }
1248
1249 void
1250 intel_miptree_release(struct intel_mipmap_tree **mt)
1251 {
1252 if (!*mt)
1253 return;
1254
1255 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1256 if (--(*mt)->refcount <= 0) {
1257 GLuint i;
1258
1259 DBG("%s deleting %p\n", __func__, *mt);
1260
1261 brw_bo_unreference((*mt)->bo);
1262 intel_miptree_release(&(*mt)->stencil_mt);
1263 intel_miptree_release(&(*mt)->r8stencil_mt);
1264 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1265 free_aux_state_map((*mt)->aux_state);
1266
1267 intel_miptree_release(&(*mt)->plane[0]);
1268 intel_miptree_release(&(*mt)->plane[1]);
1269
1270 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1271 free((*mt)->level[i].slice);
1272 }
1273
1274 free(*mt);
1275 }
1276 *mt = NULL;
1277 }
1278
1279
1280 void
1281 intel_get_image_dims(struct gl_texture_image *image,
1282 int *width, int *height, int *depth)
1283 {
1284 switch (image->TexObject->Target) {
1285 case GL_TEXTURE_1D_ARRAY:
1286 /* For a 1D Array texture the OpenGL API will treat the image height as
1287 * the number of array slices. For Intel hardware, we treat the 1D array
1288 * as a 2D Array with a height of 1. So, here we want to swap image
1289 * height and depth.
1290 */
1291 assert(image->Depth == 1);
1292 *width = image->Width;
1293 *height = 1;
1294 *depth = image->Height;
1295 break;
1296 case GL_TEXTURE_CUBE_MAP:
1297 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1298 * though we really have 6 slices.
1299 */
1300 assert(image->Depth == 1);
1301 *width = image->Width;
1302 *height = image->Height;
1303 *depth = 6;
1304 break;
1305 default:
1306 *width = image->Width;
1307 *height = image->Height;
1308 *depth = image->Depth;
1309 break;
1310 }
1311 }
1312
1313 /**
1314 * Can the image be pulled into a unified mipmap tree? This mirrors
1315 * the completeness test in a lot of ways.
1316 *
1317 * Not sure whether I want to pass gl_texture_image here.
1318 */
1319 bool
1320 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1321 struct gl_texture_image *image)
1322 {
1323 struct intel_texture_image *intelImage = intel_texture_image(image);
1324 GLuint level = intelImage->base.Base.Level;
1325 int width, height, depth;
1326
1327 /* glTexImage* choose the texture object based on the target passed in, and
1328 * objects can't change targets over their lifetimes, so this should be
1329 * true.
1330 */
1331 assert(image->TexObject->Target == mt->target);
1332
1333 mesa_format mt_format = mt->format;
1334 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1335 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1336 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1337 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1338 if (mt->etc_format != MESA_FORMAT_NONE)
1339 mt_format = mt->etc_format;
1340
1341 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1342 _mesa_get_srgb_format_linear(mt_format))
1343 return false;
1344
1345 intel_get_image_dims(image, &width, &height, &depth);
1346
1347 if (mt->target == GL_TEXTURE_CUBE_MAP)
1348 depth = 6;
1349
1350 if (level >= mt->surf.levels)
1351 return false;
1352
1353 const unsigned level_depth =
1354 mt->surf.dim == ISL_SURF_DIM_3D ?
1355 minify(mt->surf.logical_level0_px.depth, level) :
1356 mt->surf.logical_level0_px.array_len;
1357
1358 return width == minify(mt->surf.logical_level0_px.width, level) &&
1359 height == minify(mt->surf.logical_level0_px.height, level) &&
1360 depth == level_depth &&
1361 MAX2(image->NumSamples, 1) == mt->surf.samples;
1362 }
1363
1364 void
1365 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1366 GLuint level, GLuint slice,
1367 GLuint *x, GLuint *y)
1368 {
1369 if (level == 0 && slice == 0) {
1370 *x = mt->level[0].level_x;
1371 *y = mt->level[0].level_y;
1372 return;
1373 }
1374
1375 uint32_t x_offset_sa, y_offset_sa;
1376
1377 /* Miptree itself can have an offset only if it represents a single
1378 * slice in an imported buffer object.
1379 * See intel_miptree_create_for_dri_image().
1380 */
1381 assert(mt->level[0].level_x == 0);
1382 assert(mt->level[0].level_y == 0);
1383
1384 /* Given level is relative to level zero while the miptree may be
1385 * represent just a subset of all levels starting from 'first_level'.
1386 */
1387 assert(level >= mt->first_level);
1388 level -= mt->first_level;
1389
1390 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1391 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1392 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1393 &x_offset_sa, &y_offset_sa);
1394
1395 *x = x_offset_sa;
1396 *y = y_offset_sa;
1397 }
1398
1399
1400 /**
1401 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1402 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1403 * and tile_h is set to 1.
1404 */
1405 void
1406 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1407 uint32_t *tile_w, uint32_t *tile_h)
1408 {
1409 switch (tiling) {
1410 case ISL_TILING_X:
1411 *tile_w = 512;
1412 *tile_h = 8;
1413 break;
1414 case ISL_TILING_Y0:
1415 *tile_w = 128;
1416 *tile_h = 32;
1417 break;
1418 case ISL_TILING_LINEAR:
1419 *tile_w = cpp;
1420 *tile_h = 1;
1421 break;
1422 default:
1423 unreachable("not reached");
1424 }
1425 }
1426
1427
1428 /**
1429 * This function computes masks that may be used to select the bits of the X
1430 * and Y coordinates that indicate the offset within a tile. If the BO is
1431 * untiled, the masks are set to 0.
1432 */
1433 void
1434 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1435 uint32_t *mask_x, uint32_t *mask_y)
1436 {
1437 uint32_t tile_w_bytes, tile_h;
1438
1439 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1440
1441 *mask_x = tile_w_bytes / cpp - 1;
1442 *mask_y = tile_h - 1;
1443 }
1444
1445 /**
1446 * Compute the offset (in bytes) from the start of the BO to the given x
1447 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1448 * multiples of the tile size.
1449 */
1450 uint32_t
1451 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1452 uint32_t x, uint32_t y)
1453 {
1454 int cpp = mt->cpp;
1455 uint32_t pitch = mt->surf.row_pitch;
1456
1457 switch (mt->surf.tiling) {
1458 default:
1459 unreachable("not reached");
1460 case ISL_TILING_LINEAR:
1461 return y * pitch + x * cpp;
1462 case ISL_TILING_X:
1463 assert((x % (512 / cpp)) == 0);
1464 assert((y % 8) == 0);
1465 return y * pitch + x / (512 / cpp) * 4096;
1466 case ISL_TILING_Y0:
1467 assert((x % (128 / cpp)) == 0);
1468 assert((y % 32) == 0);
1469 return y * pitch + x / (128 / cpp) * 4096;
1470 }
1471 }
1472
1473 /**
1474 * Rendering with tiled buffers requires that the base address of the buffer
1475 * be aligned to a page boundary. For renderbuffers, and sometimes with
1476 * textures, we may want the surface to point at a texture image level that
1477 * isn't at a page boundary.
1478 *
1479 * This function returns an appropriately-aligned base offset
1480 * according to the tiling restrictions, plus any required x/y offset
1481 * from there.
1482 */
1483 uint32_t
1484 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1485 GLuint level, GLuint slice,
1486 uint32_t *tile_x,
1487 uint32_t *tile_y)
1488 {
1489 uint32_t x, y;
1490 uint32_t mask_x, mask_y;
1491
1492 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1493 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1494
1495 *tile_x = x & mask_x;
1496 *tile_y = y & mask_y;
1497
1498 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1499 }
1500
1501 static void
1502 intel_miptree_copy_slice_sw(struct brw_context *brw,
1503 struct intel_mipmap_tree *src_mt,
1504 unsigned src_level, unsigned src_layer,
1505 struct intel_mipmap_tree *dst_mt,
1506 unsigned dst_level, unsigned dst_layer,
1507 unsigned width, unsigned height)
1508 {
1509 void *src, *dst;
1510 ptrdiff_t src_stride, dst_stride;
1511 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1512
1513 intel_miptree_map(brw, src_mt,
1514 src_level, src_layer,
1515 0, 0,
1516 width, height,
1517 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1518 &src, &src_stride);
1519
1520 intel_miptree_map(brw, dst_mt,
1521 dst_level, dst_layer,
1522 0, 0,
1523 width, height,
1524 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1525 BRW_MAP_DIRECT_BIT,
1526 &dst, &dst_stride);
1527
1528 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1529 _mesa_get_format_name(src_mt->format),
1530 src_mt, src, src_stride,
1531 _mesa_get_format_name(dst_mt->format),
1532 dst_mt, dst, dst_stride,
1533 width, height);
1534
1535 int row_size = cpp * width;
1536 if (src_stride == row_size &&
1537 dst_stride == row_size) {
1538 memcpy(dst, src, row_size * height);
1539 } else {
1540 for (int i = 0; i < height; i++) {
1541 memcpy(dst, src, row_size);
1542 dst += dst_stride;
1543 src += src_stride;
1544 }
1545 }
1546
1547 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1548 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1549
1550 /* Don't forget to copy the stencil data over, too. We could have skipped
1551 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1552 * shuffling the two data sources in/out of temporary storage instead of
1553 * the direct mapping we get this way.
1554 */
1555 if (dst_mt->stencil_mt) {
1556 assert(src_mt->stencil_mt);
1557 intel_miptree_copy_slice_sw(brw,
1558 src_mt->stencil_mt, src_level, src_layer,
1559 dst_mt->stencil_mt, dst_level, dst_layer,
1560 width, height);
1561 }
1562 }
1563
1564 void
1565 intel_miptree_copy_slice(struct brw_context *brw,
1566 struct intel_mipmap_tree *src_mt,
1567 unsigned src_level, unsigned src_layer,
1568 struct intel_mipmap_tree *dst_mt,
1569 unsigned dst_level, unsigned dst_layer)
1570
1571 {
1572 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1573 mesa_format format = src_mt->format;
1574 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1575 src_level - src_mt->first_level);
1576 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1577 src_level - src_mt->first_level);
1578
1579 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1580 src_level - src_mt->first_level));
1581
1582 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1583 _mesa_get_srgb_format_linear(dst_mt->format));
1584
1585 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1586 _mesa_get_format_name(src_mt->format),
1587 src_mt, src_level, src_layer,
1588 _mesa_get_format_name(dst_mt->format),
1589 dst_mt, dst_level, dst_layer,
1590 width, height);
1591
1592 if (devinfo->gen >= 6) {
1593 /* On gen6 and above, we just use blorp. It's faster than the blitter
1594 * and can handle everything without software fallbacks.
1595 */
1596 brw_blorp_copy_miptrees(brw,
1597 src_mt, src_level, src_layer,
1598 dst_mt, dst_level, dst_layer,
1599 0, 0, 0, 0, width, height);
1600
1601 if (src_mt->stencil_mt) {
1602 assert(dst_mt->stencil_mt);
1603 brw_blorp_copy_miptrees(brw,
1604 src_mt->stencil_mt, src_level, src_layer,
1605 dst_mt->stencil_mt, dst_level, dst_layer,
1606 0, 0, 0, 0, width, height);
1607 }
1608 return;
1609 }
1610
1611 if (dst_mt->compressed) {
1612 unsigned int i, j;
1613 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1614 height = ALIGN_NPOT(height, j) / j;
1615 width = ALIGN_NPOT(width, i) / i;
1616 }
1617
1618 /* Gen4-5 doesn't support separate stencil */
1619 assert(!src_mt->stencil_mt);
1620
1621 uint32_t dst_x, dst_y, src_x, src_y;
1622 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1623 &dst_x, &dst_y);
1624 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1625 &src_x, &src_y);
1626
1627 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1628 _mesa_get_format_name(src_mt->format),
1629 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1630 _mesa_get_format_name(dst_mt->format),
1631 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1632 width, height);
1633
1634 if (!intel_miptree_blit(brw,
1635 src_mt, src_level, src_layer, 0, 0, false,
1636 dst_mt, dst_level, dst_layer, 0, 0, false,
1637 width, height, COLOR_LOGICOP_COPY)) {
1638 perf_debug("miptree validate blit for %s failed\n",
1639 _mesa_get_format_name(format));
1640
1641 intel_miptree_copy_slice_sw(brw,
1642 src_mt, src_level, src_layer,
1643 dst_mt, dst_level, dst_layer,
1644 width, height);
1645 }
1646 }
1647
1648 /**
1649 * Copies the image's current data to the given miptree, and associates that
1650 * miptree with the image.
1651 */
1652 void
1653 intel_miptree_copy_teximage(struct brw_context *brw,
1654 struct intel_texture_image *intelImage,
1655 struct intel_mipmap_tree *dst_mt)
1656 {
1657 struct intel_mipmap_tree *src_mt = intelImage->mt;
1658 struct intel_texture_object *intel_obj =
1659 intel_texture_object(intelImage->base.Base.TexObject);
1660 int level = intelImage->base.Base.Level;
1661 const unsigned face = intelImage->base.Base.Face;
1662 unsigned start_layer, end_layer;
1663
1664 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1665 assert(face == 0);
1666 assert(intelImage->base.Base.Height);
1667 start_layer = 0;
1668 end_layer = intelImage->base.Base.Height - 1;
1669 } else if (face > 0) {
1670 start_layer = face;
1671 end_layer = face;
1672 } else {
1673 assert(intelImage->base.Base.Depth);
1674 start_layer = 0;
1675 end_layer = intelImage->base.Base.Depth - 1;
1676 }
1677
1678 for (unsigned i = start_layer; i <= end_layer; i++) {
1679 intel_miptree_copy_slice(brw,
1680 src_mt, level, i,
1681 dst_mt, level, i);
1682 }
1683
1684 intel_miptree_reference(&intelImage->mt, dst_mt);
1685 intel_obj->needs_validate = true;
1686 }
1687
1688 static struct intel_miptree_aux_buffer *
1689 intel_alloc_aux_buffer(struct brw_context *brw,
1690 const struct isl_surf *aux_surf,
1691 bool wants_memset,
1692 uint8_t memset_value)
1693 {
1694 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1695 if (!buf)
1696 return false;
1697
1698 uint64_t size = aux_surf->size;
1699
1700 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1701 if (has_indirect_clear) {
1702 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1703 * will set a pointer to a dword somewhere that contains the color. So,
1704 * allocate the space for the clear color value here on the aux buffer.
1705 */
1706 buf->clear_color_offset = size;
1707 size += brw->isl_dev.ss.clear_color_state_size;
1708 }
1709
1710 /* If the buffer needs to be initialised (requiring the buffer to be
1711 * immediately mapped to cpu space for writing), do not use the gpu access
1712 * flag which can cause an unnecessary delay if the backing pages happened
1713 * to be just used by the GPU.
1714 */
1715 const bool alloc_zeroed = wants_memset && memset_value == 0;
1716 const bool needs_memset =
1717 !alloc_zeroed && (wants_memset || has_indirect_clear);
1718 const uint32_t alloc_flags =
1719 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1720
1721 /* ISL has stricter set of alignment rules then the drm allocator.
1722 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1723 * trying to recalculate based on different format block sizes.
1724 */
1725 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1726 BRW_MEMZONE_OTHER, I915_TILING_Y,
1727 aux_surf->row_pitch, alloc_flags);
1728 if (!buf->bo) {
1729 free(buf);
1730 return NULL;
1731 }
1732
1733 /* Initialize the bo to the desired value */
1734 if (needs_memset) {
1735 assert(!(alloc_flags & BO_ALLOC_BUSY));
1736
1737 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1738 if (map == NULL) {
1739 intel_miptree_aux_buffer_free(buf);
1740 return NULL;
1741 }
1742
1743 /* Memset the aux_surf portion of the BO. */
1744 if (wants_memset)
1745 memset(map, memset_value, aux_surf->size);
1746
1747 /* Zero the indirect clear color to match ::fast_clear_color. */
1748 if (has_indirect_clear) {
1749 memset((char *)map + buf->clear_color_offset, 0,
1750 brw->isl_dev.ss.clear_color_state_size);
1751 }
1752
1753 brw_bo_unmap(buf->bo);
1754 }
1755
1756 if (has_indirect_clear) {
1757 buf->clear_color_bo = buf->bo;
1758 brw_bo_reference(buf->clear_color_bo);
1759 }
1760
1761 buf->surf = *aux_surf;
1762
1763 return buf;
1764 }
1765
1766
1767 /**
1768 * Helper for intel_miptree_alloc_aux() that sets
1769 * \c mt->level[level].has_hiz. Return true if and only if
1770 * \c has_hiz was set.
1771 */
1772 static bool
1773 intel_miptree_level_enable_hiz(struct brw_context *brw,
1774 struct intel_mipmap_tree *mt,
1775 uint32_t level)
1776 {
1777 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1778
1779 assert(mt->aux_buf);
1780 assert(mt->surf.size > 0);
1781
1782 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1783 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1784 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1785
1786 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1787 * and the height is 4 aligned. This allows our HiZ support
1788 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1789 * we can grow the width & height to allow the HiZ op to
1790 * force the proper size alignments.
1791 */
1792 if (level > 0 && ((width & 7) || (height & 3))) {
1793 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1794 return false;
1795 }
1796 }
1797
1798 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1799 mt->level[level].has_hiz = true;
1800 return true;
1801 }
1802
1803
1804 /**
1805 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1806 *
1807 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1808 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1809 * compress clear color so we wait until an actual fast-clear to allocate it.
1810 */
1811 bool
1812 intel_miptree_alloc_aux(struct brw_context *brw,
1813 struct intel_mipmap_tree *mt)
1814 {
1815 assert(mt->aux_buf == NULL);
1816
1817 /* Get the aux buf allocation parameters for this miptree. */
1818 enum isl_aux_state initial_state;
1819 uint8_t memset_value;
1820 struct isl_surf aux_surf;
1821 MAYBE_UNUSED bool aux_surf_ok;
1822
1823 switch (mt->aux_usage) {
1824 case ISL_AUX_USAGE_NONE:
1825 aux_surf.size = 0;
1826 aux_surf_ok = true;
1827 break;
1828 case ISL_AUX_USAGE_HIZ:
1829 initial_state = ISL_AUX_STATE_AUX_INVALID;
1830 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1831 break;
1832 case ISL_AUX_USAGE_MCS:
1833 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1834 *
1835 * When MCS buffer is enabled and bound to MSRT, it is required that
1836 * it is cleared prior to any rendering.
1837 *
1838 * Since we don't use the MCS buffer for any purpose other than
1839 * rendering, it makes sense to just clear it immediately upon
1840 * allocation.
1841 *
1842 * Note: the clear value for MCS buffers is all 1's, so we memset to
1843 * 0xff.
1844 */
1845 initial_state = ISL_AUX_STATE_CLEAR;
1846 memset_value = 0xFF;
1847 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1848 break;
1849 case ISL_AUX_USAGE_CCS_D:
1850 case ISL_AUX_USAGE_CCS_E:
1851 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1852 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1853 * Target(s)":
1854 *
1855 * "If Software wants to enable Color Compression without Fast
1856 * clear, Software needs to initialize MCS with zeros."
1857 *
1858 * A CCS value of 0 indicates that the corresponding block is in the
1859 * pass-through state which is what we want.
1860 *
1861 * For CCS_D, do the same thing. On gen9+, this avoids having any
1862 * undefined bits in the aux buffer.
1863 */
1864 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1865 memset_value = 0;
1866 aux_surf_ok =
1867 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1868 break;
1869 }
1870
1871 /* We should have a valid aux_surf. */
1872 assert(aux_surf_ok);
1873
1874 /* No work is needed for a zero-sized auxiliary buffer. */
1875 if (aux_surf.size == 0)
1876 return true;
1877
1878 /* Create the aux_state for the auxiliary buffer. */
1879 mt->aux_state = create_aux_state_map(mt, initial_state);
1880 if (mt->aux_state == NULL)
1881 return false;
1882
1883 /* Allocate the auxiliary buffer. */
1884 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1885 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1886 memset_value);
1887 if (mt->aux_buf == NULL) {
1888 free_aux_state_map(mt->aux_state);
1889 mt->aux_state = NULL;
1890 return false;
1891 }
1892
1893 /* Perform aux_usage-specific initialization. */
1894 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1895 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1896 intel_miptree_level_enable_hiz(brw, mt, level);
1897 }
1898
1899 return true;
1900 }
1901
1902
1903 /**
1904 * Can the miptree sample using the hiz buffer?
1905 */
1906 bool
1907 intel_miptree_sample_with_hiz(struct brw_context *brw,
1908 struct intel_mipmap_tree *mt)
1909 {
1910 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1911
1912 if (!devinfo->has_sample_with_hiz) {
1913 return false;
1914 }
1915
1916 if (!mt->aux_buf) {
1917 return false;
1918 }
1919
1920 /* It seems the hardware won't fallback to the depth buffer if some of the
1921 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1922 * of the texture to be HiZ enabled.
1923 */
1924 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1925 if (!intel_miptree_level_has_hiz(mt, level))
1926 return false;
1927 }
1928
1929 /* If compressed multisampling is enabled, then we use it for the auxiliary
1930 * buffer instead.
1931 *
1932 * From the BDW PRM (Volume 2d: Command Reference: Structures
1933 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1934 *
1935 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1936 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1937 *
1938 * There is no such blurb for 1D textures, but there is sufficient evidence
1939 * that this is broken on SKL+.
1940 */
1941 return (mt->surf.samples == 1 &&
1942 mt->target != GL_TEXTURE_3D &&
1943 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1944 }
1945
1946 /**
1947 * Does the miptree slice have hiz enabled?
1948 */
1949 bool
1950 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1951 {
1952 intel_miptree_check_level_layer(mt, level, 0);
1953 return mt->level[level].has_hiz;
1954 }
1955
1956 static inline uint32_t
1957 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1958 uint32_t start_level, uint32_t num_levels)
1959 {
1960 assert(start_level >= mt->first_level);
1961 assert(start_level <= mt->last_level);
1962
1963 if (num_levels == INTEL_REMAINING_LAYERS)
1964 num_levels = mt->last_level - start_level + 1;
1965 /* Check for overflow */
1966 assert(start_level + num_levels >= start_level);
1967 assert(start_level + num_levels <= mt->last_level + 1);
1968
1969 return num_levels;
1970 }
1971
1972 static inline uint32_t
1973 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1974 uint32_t start_layer, uint32_t num_layers)
1975 {
1976 assert(level <= mt->last_level);
1977
1978 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1979 assert(start_layer < total_num_layers);
1980 if (num_layers == INTEL_REMAINING_LAYERS)
1981 num_layers = total_num_layers - start_layer;
1982 /* Check for overflow */
1983 assert(start_layer + num_layers >= start_layer);
1984 assert(start_layer + num_layers <= total_num_layers);
1985
1986 return num_layers;
1987 }
1988
1989 bool
1990 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1991 unsigned start_level, unsigned num_levels,
1992 unsigned start_layer, unsigned num_layers)
1993 {
1994 assert(_mesa_is_format_color_format(mt->format));
1995
1996 if (!mt->aux_buf)
1997 return false;
1998
1999 /* Clamp the level range to fit the miptree */
2000 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2001
2002 for (uint32_t l = 0; l < num_levels; l++) {
2003 const uint32_t level = start_level + l;
2004 const uint32_t level_layers =
2005 miptree_layer_range_length(mt, level, start_layer, num_layers);
2006 for (unsigned a = 0; a < level_layers; a++) {
2007 enum isl_aux_state aux_state =
2008 intel_miptree_get_aux_state(mt, level, start_layer + a);
2009 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2010 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2011 return true;
2012 }
2013 }
2014
2015 return false;
2016 }
2017
2018 static void
2019 intel_miptree_check_color_resolve(const struct brw_context *brw,
2020 const struct intel_mipmap_tree *mt,
2021 unsigned level, unsigned layer)
2022 {
2023 if (!mt->aux_buf)
2024 return;
2025
2026 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2027 assert(brw->screen->devinfo.gen >= 8 ||
2028 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2029
2030 /* Compression of arrayed msaa surfaces is supported. */
2031 if (mt->surf.samples > 1)
2032 return;
2033
2034 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2035 assert(brw->screen->devinfo.gen >= 8 ||
2036 (layer == 0 &&
2037 mt->surf.logical_level0_px.depth == 1 &&
2038 mt->surf.logical_level0_px.array_len == 1));
2039
2040 (void)level;
2041 (void)layer;
2042 }
2043
2044 static enum isl_aux_op
2045 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2046 enum isl_aux_usage aux_usage,
2047 bool fast_clear_supported)
2048 {
2049 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2050
2051 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2052
2053 assert(ccs_supported == fast_clear_supported);
2054
2055 switch (aux_state) {
2056 case ISL_AUX_STATE_CLEAR:
2057 case ISL_AUX_STATE_PARTIAL_CLEAR:
2058 if (!ccs_supported)
2059 return ISL_AUX_OP_FULL_RESOLVE;
2060 else
2061 return ISL_AUX_OP_NONE;
2062
2063 case ISL_AUX_STATE_PASS_THROUGH:
2064 return ISL_AUX_OP_NONE;
2065
2066 case ISL_AUX_STATE_RESOLVED:
2067 case ISL_AUX_STATE_AUX_INVALID:
2068 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2069 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2070 break;
2071 }
2072
2073 unreachable("Invalid aux state for CCS_D");
2074 }
2075
2076 static enum isl_aux_op
2077 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2078 enum isl_aux_usage aux_usage,
2079 bool fast_clear_supported)
2080 {
2081 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2082 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2083 aux_usage == ISL_AUX_USAGE_CCS_D ||
2084 aux_usage == ISL_AUX_USAGE_CCS_E);
2085
2086 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2087 assert(fast_clear_supported);
2088
2089 switch (aux_state) {
2090 case ISL_AUX_STATE_CLEAR:
2091 case ISL_AUX_STATE_PARTIAL_CLEAR:
2092 if (fast_clear_supported)
2093 return ISL_AUX_OP_NONE;
2094 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2095 return ISL_AUX_OP_PARTIAL_RESOLVE;
2096 else
2097 return ISL_AUX_OP_FULL_RESOLVE;
2098
2099 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2100 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2101 return ISL_AUX_OP_FULL_RESOLVE;
2102 else if (!fast_clear_supported)
2103 return ISL_AUX_OP_PARTIAL_RESOLVE;
2104 else
2105 return ISL_AUX_OP_NONE;
2106
2107 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2108 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2109 return ISL_AUX_OP_FULL_RESOLVE;
2110 else
2111 return ISL_AUX_OP_NONE;
2112
2113 case ISL_AUX_STATE_PASS_THROUGH:
2114 return ISL_AUX_OP_NONE;
2115
2116 case ISL_AUX_STATE_RESOLVED:
2117 case ISL_AUX_STATE_AUX_INVALID:
2118 break;
2119 }
2120
2121 unreachable("Invalid aux state for CCS_E");
2122 }
2123
2124 static void
2125 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2126 struct intel_mipmap_tree *mt,
2127 uint32_t level, uint32_t layer,
2128 enum isl_aux_usage aux_usage,
2129 bool fast_clear_supported)
2130 {
2131 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2132
2133 enum isl_aux_op resolve_op;
2134 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2135 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2136 fast_clear_supported);
2137 } else {
2138 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2139 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2140 fast_clear_supported);
2141 }
2142
2143 if (resolve_op != ISL_AUX_OP_NONE) {
2144 intel_miptree_check_color_resolve(brw, mt, level, layer);
2145 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2146
2147 switch (resolve_op) {
2148 case ISL_AUX_OP_FULL_RESOLVE:
2149 /* The CCS full resolve operation destroys the CCS and sets it to the
2150 * pass-through state. (You can also think of this as being both a
2151 * resolve and an ambiguate in one operation.)
2152 */
2153 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2154 ISL_AUX_STATE_PASS_THROUGH);
2155 break;
2156
2157 case ISL_AUX_OP_PARTIAL_RESOLVE:
2158 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2159 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2160 break;
2161
2162 default:
2163 unreachable("Invalid resolve op");
2164 }
2165 }
2166 }
2167
2168 static void
2169 intel_miptree_finish_ccs_write(struct brw_context *brw,
2170 struct intel_mipmap_tree *mt,
2171 uint32_t level, uint32_t layer,
2172 enum isl_aux_usage aux_usage)
2173 {
2174 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2175 aux_usage == ISL_AUX_USAGE_CCS_D ||
2176 aux_usage == ISL_AUX_USAGE_CCS_E);
2177
2178 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2179
2180 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2181 switch (aux_state) {
2182 case ISL_AUX_STATE_CLEAR:
2183 case ISL_AUX_STATE_PARTIAL_CLEAR:
2184 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2185 aux_usage == ISL_AUX_USAGE_CCS_D);
2186
2187 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2188 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2189 ISL_AUX_STATE_COMPRESSED_CLEAR);
2190 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2191 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2192 ISL_AUX_STATE_PARTIAL_CLEAR);
2193 }
2194 break;
2195
2196 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2197 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2198 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2199 break; /* Nothing to do */
2200
2201 case ISL_AUX_STATE_PASS_THROUGH:
2202 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2203 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2204 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2205 } else {
2206 /* Nothing to do */
2207 }
2208 break;
2209
2210 case ISL_AUX_STATE_RESOLVED:
2211 case ISL_AUX_STATE_AUX_INVALID:
2212 unreachable("Invalid aux state for CCS_E");
2213 }
2214 } else {
2215 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2216 /* CCS_D is a bit simpler */
2217 switch (aux_state) {
2218 case ISL_AUX_STATE_CLEAR:
2219 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2220 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2221 ISL_AUX_STATE_PARTIAL_CLEAR);
2222 break;
2223
2224 case ISL_AUX_STATE_PARTIAL_CLEAR:
2225 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2226 break; /* Nothing to do */
2227
2228 case ISL_AUX_STATE_PASS_THROUGH:
2229 /* Nothing to do */
2230 break;
2231
2232 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2233 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2234 case ISL_AUX_STATE_RESOLVED:
2235 case ISL_AUX_STATE_AUX_INVALID:
2236 unreachable("Invalid aux state for CCS_D");
2237 }
2238 }
2239 }
2240
2241 static void
2242 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2243 struct intel_mipmap_tree *mt,
2244 uint32_t layer,
2245 enum isl_aux_usage aux_usage,
2246 bool fast_clear_supported)
2247 {
2248 assert(aux_usage == ISL_AUX_USAGE_MCS);
2249
2250 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2251 case ISL_AUX_STATE_CLEAR:
2252 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2253 if (!fast_clear_supported) {
2254 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2255 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2256 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2257 }
2258 break;
2259
2260 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2261 break; /* Nothing to do */
2262
2263 case ISL_AUX_STATE_RESOLVED:
2264 case ISL_AUX_STATE_PASS_THROUGH:
2265 case ISL_AUX_STATE_AUX_INVALID:
2266 case ISL_AUX_STATE_PARTIAL_CLEAR:
2267 unreachable("Invalid aux state for MCS");
2268 }
2269 }
2270
2271 static void
2272 intel_miptree_finish_mcs_write(struct brw_context *brw,
2273 struct intel_mipmap_tree *mt,
2274 uint32_t layer,
2275 enum isl_aux_usage aux_usage)
2276 {
2277 assert(aux_usage == ISL_AUX_USAGE_MCS);
2278
2279 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2280 case ISL_AUX_STATE_CLEAR:
2281 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2282 ISL_AUX_STATE_COMPRESSED_CLEAR);
2283 break;
2284
2285 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2286 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2287 break; /* Nothing to do */
2288
2289 case ISL_AUX_STATE_RESOLVED:
2290 case ISL_AUX_STATE_PASS_THROUGH:
2291 case ISL_AUX_STATE_AUX_INVALID:
2292 case ISL_AUX_STATE_PARTIAL_CLEAR:
2293 unreachable("Invalid aux state for MCS");
2294 }
2295 }
2296
2297 static void
2298 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2299 struct intel_mipmap_tree *mt,
2300 uint32_t level, uint32_t layer,
2301 enum isl_aux_usage aux_usage,
2302 bool fast_clear_supported)
2303 {
2304 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2305
2306 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2307 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2308 case ISL_AUX_STATE_CLEAR:
2309 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2310 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2311 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2312 break;
2313
2314 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2315 if (aux_usage != ISL_AUX_USAGE_HIZ)
2316 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2317 break;
2318
2319 case ISL_AUX_STATE_PASS_THROUGH:
2320 case ISL_AUX_STATE_RESOLVED:
2321 break;
2322
2323 case ISL_AUX_STATE_AUX_INVALID:
2324 if (aux_usage == ISL_AUX_USAGE_HIZ)
2325 hiz_op = ISL_AUX_OP_AMBIGUATE;
2326 break;
2327
2328 case ISL_AUX_STATE_PARTIAL_CLEAR:
2329 unreachable("Invalid HiZ state");
2330 }
2331
2332 if (hiz_op != ISL_AUX_OP_NONE) {
2333 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2334
2335 switch (hiz_op) {
2336 case ISL_AUX_OP_FULL_RESOLVE:
2337 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2338 ISL_AUX_STATE_RESOLVED);
2339 break;
2340
2341 case ISL_AUX_OP_AMBIGUATE:
2342 /* The HiZ resolve operation is actually an ambiguate */
2343 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2344 ISL_AUX_STATE_PASS_THROUGH);
2345 break;
2346
2347 default:
2348 unreachable("Invalid HiZ op");
2349 }
2350 }
2351 }
2352
2353 static void
2354 intel_miptree_finish_hiz_write(struct brw_context *brw,
2355 struct intel_mipmap_tree *mt,
2356 uint32_t level, uint32_t layer,
2357 enum isl_aux_usage aux_usage)
2358 {
2359 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2360
2361 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2362 case ISL_AUX_STATE_CLEAR:
2363 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2364 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2365 ISL_AUX_STATE_COMPRESSED_CLEAR);
2366 break;
2367
2368 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2369 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2370 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2371 break; /* Nothing to do */
2372
2373 case ISL_AUX_STATE_RESOLVED:
2374 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2375 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2376 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2377 } else {
2378 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2379 ISL_AUX_STATE_AUX_INVALID);
2380 }
2381 break;
2382
2383 case ISL_AUX_STATE_PASS_THROUGH:
2384 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2385 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2386 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2387 }
2388 break;
2389
2390 case ISL_AUX_STATE_AUX_INVALID:
2391 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2392 break;
2393
2394 case ISL_AUX_STATE_PARTIAL_CLEAR:
2395 unreachable("Invalid HiZ state");
2396 }
2397 }
2398
2399 void
2400 intel_miptree_prepare_access(struct brw_context *brw,
2401 struct intel_mipmap_tree *mt,
2402 uint32_t start_level, uint32_t num_levels,
2403 uint32_t start_layer, uint32_t num_layers,
2404 enum isl_aux_usage aux_usage,
2405 bool fast_clear_supported)
2406 {
2407 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2408
2409 switch (mt->aux_usage) {
2410 case ISL_AUX_USAGE_NONE:
2411 /* Nothing to do */
2412 break;
2413
2414 case ISL_AUX_USAGE_MCS:
2415 assert(mt->aux_buf);
2416 assert(start_level == 0 && num_levels == 1);
2417 const uint32_t level_layers =
2418 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2419 for (uint32_t a = 0; a < level_layers; a++) {
2420 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2421 aux_usage, fast_clear_supported);
2422 }
2423 break;
2424
2425 case ISL_AUX_USAGE_CCS_D:
2426 case ISL_AUX_USAGE_CCS_E:
2427 if (!mt->aux_buf)
2428 return;
2429
2430 for (uint32_t l = 0; l < num_levels; l++) {
2431 const uint32_t level = start_level + l;
2432 const uint32_t level_layers =
2433 miptree_layer_range_length(mt, level, start_layer, num_layers);
2434 for (uint32_t a = 0; a < level_layers; a++) {
2435 intel_miptree_prepare_ccs_access(brw, mt, level,
2436 start_layer + a,
2437 aux_usage, fast_clear_supported);
2438 }
2439 }
2440 break;
2441
2442 case ISL_AUX_USAGE_HIZ:
2443 assert(mt->aux_buf);
2444 for (uint32_t l = 0; l < num_levels; l++) {
2445 const uint32_t level = start_level + l;
2446 if (!intel_miptree_level_has_hiz(mt, level))
2447 continue;
2448
2449 const uint32_t level_layers =
2450 miptree_layer_range_length(mt, level, start_layer, num_layers);
2451 for (uint32_t a = 0; a < level_layers; a++) {
2452 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2453 aux_usage, fast_clear_supported);
2454 }
2455 }
2456 break;
2457
2458 default:
2459 unreachable("Invalid aux usage");
2460 }
2461 }
2462
2463 void
2464 intel_miptree_finish_write(struct brw_context *brw,
2465 struct intel_mipmap_tree *mt, uint32_t level,
2466 uint32_t start_layer, uint32_t num_layers,
2467 enum isl_aux_usage aux_usage)
2468 {
2469 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2470
2471 switch (mt->aux_usage) {
2472 case ISL_AUX_USAGE_NONE:
2473 /* Nothing to do */
2474 break;
2475
2476 case ISL_AUX_USAGE_MCS:
2477 assert(mt->aux_buf);
2478 for (uint32_t a = 0; a < num_layers; a++) {
2479 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2480 aux_usage);
2481 }
2482 break;
2483
2484 case ISL_AUX_USAGE_CCS_D:
2485 case ISL_AUX_USAGE_CCS_E:
2486 if (!mt->aux_buf)
2487 return;
2488
2489 for (uint32_t a = 0; a < num_layers; a++) {
2490 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2491 aux_usage);
2492 }
2493 break;
2494
2495 case ISL_AUX_USAGE_HIZ:
2496 if (!intel_miptree_level_has_hiz(mt, level))
2497 return;
2498
2499 for (uint32_t a = 0; a < num_layers; a++) {
2500 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2501 aux_usage);
2502 }
2503 break;
2504
2505 default:
2506 unreachable("Invavlid aux usage");
2507 }
2508 }
2509
2510 enum isl_aux_state
2511 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2512 uint32_t level, uint32_t layer)
2513 {
2514 intel_miptree_check_level_layer(mt, level, layer);
2515
2516 if (_mesa_is_format_color_format(mt->format)) {
2517 assert(mt->aux_buf != NULL);
2518 assert(mt->surf.samples == 1 ||
2519 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2520 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2521 unreachable("Cannot get aux state for stencil");
2522 } else {
2523 assert(intel_miptree_level_has_hiz(mt, level));
2524 }
2525
2526 return mt->aux_state[level][layer];
2527 }
2528
2529 void
2530 intel_miptree_set_aux_state(struct brw_context *brw,
2531 struct intel_mipmap_tree *mt, uint32_t level,
2532 uint32_t start_layer, uint32_t num_layers,
2533 enum isl_aux_state aux_state)
2534 {
2535 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2536
2537 if (_mesa_is_format_color_format(mt->format)) {
2538 assert(mt->aux_buf != NULL);
2539 assert(mt->surf.samples == 1 ||
2540 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2541 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2542 unreachable("Cannot get aux state for stencil");
2543 } else {
2544 assert(intel_miptree_level_has_hiz(mt, level));
2545 }
2546
2547 for (unsigned a = 0; a < num_layers; a++) {
2548 if (mt->aux_state[level][start_layer + a] != aux_state) {
2549 mt->aux_state[level][start_layer + a] = aux_state;
2550 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2551 }
2552 }
2553 }
2554
2555 /* On Gen9 color buffers may be compressed by the hardware (lossless
2556 * compression). There are, however, format restrictions and care needs to be
2557 * taken that the sampler engine is capable for re-interpreting a buffer with
2558 * format different the buffer was originally written with.
2559 *
2560 * For example, SRGB formats are not compressible and the sampler engine isn't
2561 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2562 * color buffer needs to be resolved so that the sampling surface can be
2563 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2564 * set).
2565 */
2566 static bool
2567 can_texture_with_ccs(struct brw_context *brw,
2568 struct intel_mipmap_tree *mt,
2569 enum isl_format view_format)
2570 {
2571 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2572 return false;
2573
2574 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2575 mt, view_format)) {
2576 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2577 isl_format_get_layout(view_format)->name,
2578 _mesa_get_format_name(mt->format));
2579 return false;
2580 }
2581
2582 return true;
2583 }
2584
2585 enum isl_aux_usage
2586 intel_miptree_texture_aux_usage(struct brw_context *brw,
2587 struct intel_mipmap_tree *mt,
2588 enum isl_format view_format)
2589 {
2590 switch (mt->aux_usage) {
2591 case ISL_AUX_USAGE_HIZ:
2592 if (intel_miptree_sample_with_hiz(brw, mt))
2593 return ISL_AUX_USAGE_HIZ;
2594 break;
2595
2596 case ISL_AUX_USAGE_MCS:
2597 return ISL_AUX_USAGE_MCS;
2598
2599 case ISL_AUX_USAGE_CCS_D:
2600 case ISL_AUX_USAGE_CCS_E:
2601 if (!mt->aux_buf) {
2602 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2603 return ISL_AUX_USAGE_NONE;
2604 }
2605
2606 /* If we don't have any unresolved color, report an aux usage of
2607 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2608 * aux surface and we can save some bandwidth.
2609 */
2610 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2611 0, INTEL_REMAINING_LAYERS))
2612 return ISL_AUX_USAGE_NONE;
2613
2614 if (can_texture_with_ccs(brw, mt, view_format))
2615 return ISL_AUX_USAGE_CCS_E;
2616 break;
2617
2618 default:
2619 break;
2620 }
2621
2622 return ISL_AUX_USAGE_NONE;
2623 }
2624
2625 static bool
2626 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2627 {
2628 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2629 * values so sRGB curve application was a no-op for all fast-clearable
2630 * formats.
2631 *
2632 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2633 * values, the hardware interprets the floats, not as what would be
2634 * returned from the sampler (or written by the shader), but as being
2635 * between format conversion and sRGB curve application. This means that
2636 * we can switch between sRGB and UNORM without having to whack the clear
2637 * color.
2638 */
2639 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2640 }
2641
2642 void
2643 intel_miptree_prepare_texture(struct brw_context *brw,
2644 struct intel_mipmap_tree *mt,
2645 enum isl_format view_format,
2646 uint32_t start_level, uint32_t num_levels,
2647 uint32_t start_layer, uint32_t num_layers)
2648 {
2649 enum isl_aux_usage aux_usage =
2650 intel_miptree_texture_aux_usage(brw, mt, view_format);
2651 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2652
2653 /* Clear color is specified as ints or floats and the conversion is done by
2654 * the sampler. If we have a texture view, we would have to perform the
2655 * clear color conversion manually. Just disable clear color.
2656 */
2657 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2658 clear_supported = false;
2659
2660 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2661 start_layer, num_layers,
2662 aux_usage, clear_supported);
2663 }
2664
2665 void
2666 intel_miptree_prepare_image(struct brw_context *brw,
2667 struct intel_mipmap_tree *mt)
2668 {
2669 /* The data port doesn't understand any compression */
2670 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2671 0, INTEL_REMAINING_LAYERS,
2672 ISL_AUX_USAGE_NONE, false);
2673 }
2674
2675 enum isl_aux_usage
2676 intel_miptree_render_aux_usage(struct brw_context *brw,
2677 struct intel_mipmap_tree *mt,
2678 enum isl_format render_format,
2679 bool blend_enabled,
2680 bool draw_aux_disabled)
2681 {
2682 struct gen_device_info *devinfo = &brw->screen->devinfo;
2683
2684 if (draw_aux_disabled)
2685 return ISL_AUX_USAGE_NONE;
2686
2687 switch (mt->aux_usage) {
2688 case ISL_AUX_USAGE_MCS:
2689 assert(mt->aux_buf);
2690 return ISL_AUX_USAGE_MCS;
2691
2692 case ISL_AUX_USAGE_CCS_D:
2693 case ISL_AUX_USAGE_CCS_E:
2694 if (!mt->aux_buf) {
2695 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2696 return ISL_AUX_USAGE_NONE;
2697 }
2698
2699 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2700 * formats. However, there are issues with blending where it doesn't
2701 * properly apply the sRGB curve to the clear color when blending.
2702 */
2703 if (devinfo->gen >= 9 && blend_enabled &&
2704 isl_format_is_srgb(render_format) &&
2705 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2706 return ISL_AUX_USAGE_NONE;
2707
2708 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2709 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2710 mt, render_format))
2711 return ISL_AUX_USAGE_CCS_E;
2712
2713 /* Otherwise, we have to fall back to CCS_D */
2714 return ISL_AUX_USAGE_CCS_D;
2715
2716 default:
2717 return ISL_AUX_USAGE_NONE;
2718 }
2719 }
2720
2721 void
2722 intel_miptree_prepare_render(struct brw_context *brw,
2723 struct intel_mipmap_tree *mt, uint32_t level,
2724 uint32_t start_layer, uint32_t layer_count,
2725 enum isl_aux_usage aux_usage)
2726 {
2727 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2728 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2729 }
2730
2731 void
2732 intel_miptree_finish_render(struct brw_context *brw,
2733 struct intel_mipmap_tree *mt, uint32_t level,
2734 uint32_t start_layer, uint32_t layer_count,
2735 enum isl_aux_usage aux_usage)
2736 {
2737 assert(_mesa_is_format_color_format(mt->format));
2738
2739 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2740 aux_usage);
2741 }
2742
2743 void
2744 intel_miptree_prepare_depth(struct brw_context *brw,
2745 struct intel_mipmap_tree *mt, uint32_t level,
2746 uint32_t start_layer, uint32_t layer_count)
2747 {
2748 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2749 mt->aux_usage, mt->aux_buf != NULL);
2750 }
2751
2752 void
2753 intel_miptree_finish_depth(struct brw_context *brw,
2754 struct intel_mipmap_tree *mt, uint32_t level,
2755 uint32_t start_layer, uint32_t layer_count,
2756 bool depth_written)
2757 {
2758 if (depth_written) {
2759 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2760 mt->aux_buf != NULL);
2761 }
2762 }
2763
2764 void
2765 intel_miptree_prepare_external(struct brw_context *brw,
2766 struct intel_mipmap_tree *mt)
2767 {
2768 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2769 bool supports_fast_clear = false;
2770
2771 const struct isl_drm_modifier_info *mod_info =
2772 isl_drm_modifier_get_info(mt->drm_modifier);
2773
2774 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2775 /* CCS_E is the only supported aux for external images and it's only
2776 * supported on very simple images.
2777 */
2778 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2779 assert(_mesa_is_format_color_format(mt->format));
2780 assert(mt->first_level == 0 && mt->last_level == 0);
2781 assert(mt->surf.logical_level0_px.depth == 1);
2782 assert(mt->surf.logical_level0_px.array_len == 1);
2783 assert(mt->surf.samples == 1);
2784 assert(mt->aux_buf != NULL);
2785
2786 aux_usage = mod_info->aux_usage;
2787 supports_fast_clear = mod_info->supports_clear_color;
2788 }
2789
2790 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2791 0, INTEL_REMAINING_LAYERS,
2792 aux_usage, supports_fast_clear);
2793 }
2794
2795 void
2796 intel_miptree_finish_external(struct brw_context *brw,
2797 struct intel_mipmap_tree *mt)
2798 {
2799 if (!mt->aux_buf)
2800 return;
2801
2802 /* We don't know the actual aux state of the aux surface. The previous
2803 * owner could have given it to us in a number of different states.
2804 * Because we don't know the aux state, we reset the aux state to the
2805 * least common denominator of possible valid states.
2806 */
2807 enum isl_aux_state default_aux_state =
2808 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2809 assert(mt->last_level == mt->first_level);
2810 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2811 default_aux_state);
2812 }
2813
2814 /**
2815 * Make it possible to share the BO backing the given miptree with another
2816 * process or another miptree.
2817 *
2818 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2819 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2820 * ensure that no MCS buffer gets allocated in the future.
2821 *
2822 * HiZ is similarly unsafe with shared buffers.
2823 */
2824 void
2825 intel_miptree_make_shareable(struct brw_context *brw,
2826 struct intel_mipmap_tree *mt)
2827 {
2828 /* MCS buffers are also used for multisample buffers, but we can't resolve
2829 * away a multisample MCS buffer because it's an integral part of how the
2830 * pixel data is stored. Fortunately this code path should never be
2831 * reached for multisample buffers.
2832 */
2833 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2834 mt->surf.samples == 1);
2835
2836 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2837 0, INTEL_REMAINING_LAYERS,
2838 ISL_AUX_USAGE_NONE, false);
2839
2840 if (mt->aux_buf) {
2841 intel_miptree_aux_buffer_free(mt->aux_buf);
2842 mt->aux_buf = NULL;
2843
2844 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2845 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2846 mt->level[l].has_hiz = false;
2847 }
2848
2849 free(mt->aux_state);
2850 mt->aux_state = NULL;
2851 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2852 }
2853
2854 mt->aux_usage = ISL_AUX_USAGE_NONE;
2855 mt->supports_fast_clear = false;
2856 }
2857
2858
2859 /**
2860 * \brief Get pointer offset into stencil buffer.
2861 *
2862 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2863 * must decode the tile's layout in software.
2864 *
2865 * See
2866 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2867 * Format.
2868 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2869 *
2870 * Even though the returned offset is always positive, the return type is
2871 * signed due to
2872 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2873 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2874 */
2875 static intptr_t
2876 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2877 {
2878 uint32_t tile_size = 4096;
2879 uint32_t tile_width = 64;
2880 uint32_t tile_height = 64;
2881 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2882
2883 uint32_t tile_x = x / tile_width;
2884 uint32_t tile_y = y / tile_height;
2885
2886 /* The byte's address relative to the tile's base addres. */
2887 uint32_t byte_x = x % tile_width;
2888 uint32_t byte_y = y % tile_height;
2889
2890 uintptr_t u = tile_y * row_size
2891 + tile_x * tile_size
2892 + 512 * (byte_x / 8)
2893 + 64 * (byte_y / 8)
2894 + 32 * ((byte_y / 4) % 2)
2895 + 16 * ((byte_x / 4) % 2)
2896 + 8 * ((byte_y / 2) % 2)
2897 + 4 * ((byte_x / 2) % 2)
2898 + 2 * (byte_y % 2)
2899 + 1 * (byte_x % 2);
2900
2901 if (swizzled) {
2902 /* adjust for bit6 swizzling */
2903 if (((byte_x / 8) % 2) == 1) {
2904 if (((byte_y / 8) % 2) == 0) {
2905 u += 64;
2906 } else {
2907 u -= 64;
2908 }
2909 }
2910 }
2911
2912 return u;
2913 }
2914
2915 void
2916 intel_miptree_updownsample(struct brw_context *brw,
2917 struct intel_mipmap_tree *src,
2918 struct intel_mipmap_tree *dst)
2919 {
2920 unsigned src_w = src->surf.logical_level0_px.width;
2921 unsigned src_h = src->surf.logical_level0_px.height;
2922 unsigned dst_w = dst->surf.logical_level0_px.width;
2923 unsigned dst_h = dst->surf.logical_level0_px.height;
2924
2925 brw_blorp_blit_miptrees(brw,
2926 src, 0 /* level */, 0 /* layer */,
2927 src->format, SWIZZLE_XYZW,
2928 dst, 0 /* level */, 0 /* layer */, dst->format,
2929 0, 0, src_w, src_h,
2930 0, 0, dst_w, dst_h,
2931 GL_NEAREST, false, false /*mirror x, y*/,
2932 false, false);
2933
2934 if (src->stencil_mt) {
2935 src_w = src->stencil_mt->surf.logical_level0_px.width;
2936 src_h = src->stencil_mt->surf.logical_level0_px.height;
2937 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2938 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2939
2940 brw_blorp_blit_miptrees(brw,
2941 src->stencil_mt, 0 /* level */, 0 /* layer */,
2942 src->stencil_mt->format, SWIZZLE_XYZW,
2943 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2944 dst->stencil_mt->format,
2945 0, 0, src_w, src_h,
2946 0, 0, dst_w, dst_h,
2947 GL_NEAREST, false, false /*mirror x, y*/,
2948 false, false /* decode/encode srgb */);
2949 }
2950 }
2951
2952 void
2953 intel_update_r8stencil(struct brw_context *brw,
2954 struct intel_mipmap_tree *mt)
2955 {
2956 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2957
2958 assert(devinfo->gen >= 7);
2959 struct intel_mipmap_tree *src =
2960 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2961 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2962 return;
2963
2964 assert(src->surf.size > 0);
2965
2966 if (!mt->r8stencil_mt) {
2967 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2968 mt->r8stencil_mt = make_surface(
2969 brw,
2970 src->target,
2971 MESA_FORMAT_R_UINT8,
2972 src->first_level, src->last_level,
2973 src->surf.logical_level0_px.width,
2974 src->surf.logical_level0_px.height,
2975 src->surf.dim == ISL_SURF_DIM_3D ?
2976 src->surf.logical_level0_px.depth :
2977 src->surf.logical_level0_px.array_len,
2978 src->surf.samples,
2979 ISL_TILING_Y0_BIT,
2980 ISL_SURF_USAGE_TEXTURE_BIT,
2981 BO_ALLOC_BUSY, 0, NULL);
2982 assert(mt->r8stencil_mt);
2983 }
2984
2985 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2986
2987 for (int level = src->first_level; level <= src->last_level; level++) {
2988 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2989 minify(src->surf.phys_level0_sa.depth, level) :
2990 src->surf.phys_level0_sa.array_len;
2991
2992 for (unsigned layer = 0; layer < depth; layer++) {
2993 brw_blorp_copy_miptrees(brw,
2994 src, level, layer,
2995 dst, level, layer,
2996 0, 0, 0, 0,
2997 minify(src->surf.logical_level0_px.width,
2998 level),
2999 minify(src->surf.logical_level0_px.height,
3000 level));
3001 }
3002 }
3003
3004 brw_cache_flush_for_read(brw, dst->bo);
3005 src->r8stencil_needs_update = false;
3006 }
3007
3008 static void *
3009 intel_miptree_map_raw(struct brw_context *brw,
3010 struct intel_mipmap_tree *mt,
3011 GLbitfield mode)
3012 {
3013 struct brw_bo *bo = mt->bo;
3014
3015 if (brw_batch_references(&brw->batch, bo))
3016 intel_batchbuffer_flush(brw);
3017
3018 return brw_bo_map(brw, bo, mode);
3019 }
3020
3021 static void
3022 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3023 {
3024 brw_bo_unmap(mt->bo);
3025 }
3026
3027 static void
3028 intel_miptree_unmap_gtt(struct brw_context *brw,
3029 struct intel_mipmap_tree *mt,
3030 struct intel_miptree_map *map,
3031 unsigned int level, unsigned int slice)
3032 {
3033 intel_miptree_unmap_raw(mt);
3034 }
3035
3036 static void
3037 intel_miptree_map_gtt(struct brw_context *brw,
3038 struct intel_mipmap_tree *mt,
3039 struct intel_miptree_map *map,
3040 unsigned int level, unsigned int slice)
3041 {
3042 unsigned int bw, bh;
3043 void *base;
3044 unsigned int image_x, image_y;
3045 intptr_t x = map->x;
3046 intptr_t y = map->y;
3047
3048 /* For compressed formats, the stride is the number of bytes per
3049 * row of blocks. intel_miptree_get_image_offset() already does
3050 * the divide.
3051 */
3052 _mesa_get_format_block_size(mt->format, &bw, &bh);
3053 assert(y % bh == 0);
3054 assert(x % bw == 0);
3055 y /= bh;
3056 x /= bw;
3057
3058 intel_miptree_access_raw(brw, mt, level, slice,
3059 map->mode & GL_MAP_WRITE_BIT);
3060
3061 base = intel_miptree_map_raw(brw, mt, map->mode);
3062
3063 if (base == NULL)
3064 map->ptr = NULL;
3065 else {
3066 base += mt->offset;
3067
3068 /* Note that in the case of cube maps, the caller must have passed the
3069 * slice number referencing the face.
3070 */
3071 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3072 x += image_x;
3073 y += image_y;
3074
3075 map->stride = mt->surf.row_pitch;
3076 map->ptr = base + y * map->stride + x * mt->cpp;
3077 }
3078
3079 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3080 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3081 map->x, map->y, map->w, map->h,
3082 mt, _mesa_get_format_name(mt->format),
3083 x, y, map->ptr, map->stride);
3084
3085 map->unmap = intel_miptree_unmap_gtt;
3086 }
3087
3088 static void
3089 intel_miptree_unmap_blit(struct brw_context *brw,
3090 struct intel_mipmap_tree *mt,
3091 struct intel_miptree_map *map,
3092 unsigned int level,
3093 unsigned int slice)
3094 {
3095 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3096 struct gl_context *ctx = &brw->ctx;
3097
3098 intel_miptree_unmap_raw(map->linear_mt);
3099
3100 if (map->mode & GL_MAP_WRITE_BIT) {
3101 if (devinfo->gen >= 6) {
3102 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
3103 mt, level, slice,
3104 0, 0, map->x, map->y, map->w, map->h);
3105 } else {
3106 bool ok = intel_miptree_copy(brw,
3107 map->linear_mt, 0, 0, 0, 0,
3108 mt, level, slice, map->x, map->y,
3109 map->w, map->h);
3110 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3111 }
3112 }
3113
3114 intel_miptree_release(&map->linear_mt);
3115 }
3116
3117 static void
3118 intel_miptree_map_blit(struct brw_context *brw,
3119 struct intel_mipmap_tree *mt,
3120 struct intel_miptree_map *map,
3121 unsigned int level, unsigned int slice)
3122 {
3123 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3124 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3125 /* first_level */ 0,
3126 /* last_level */ 0,
3127 map->w, map->h, 1,
3128 /* samples */ 1,
3129 MIPTREE_CREATE_LINEAR);
3130
3131 if (!map->linear_mt) {
3132 fprintf(stderr, "Failed to allocate blit temporary\n");
3133 goto fail;
3134 }
3135 map->stride = map->linear_mt->surf.row_pitch;
3136
3137 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3138 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3139 * invalidate is set, since we'll be writing the whole rectangle from our
3140 * temporary buffer back out.
3141 */
3142 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3143 if (devinfo->gen >= 6) {
3144 brw_blorp_copy_miptrees(brw, mt, level, slice,
3145 map->linear_mt, 0, 0,
3146 map->x, map->y, 0, 0, map->w, map->h);
3147 } else {
3148 if (!intel_miptree_copy(brw,
3149 mt, level, slice, map->x, map->y,
3150 map->linear_mt, 0, 0, 0, 0,
3151 map->w, map->h)) {
3152 fprintf(stderr, "Failed to blit\n");
3153 goto fail;
3154 }
3155 }
3156 }
3157
3158 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3159
3160 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3161 map->x, map->y, map->w, map->h,
3162 mt, _mesa_get_format_name(mt->format),
3163 level, slice, map->ptr, map->stride);
3164
3165 map->unmap = intel_miptree_unmap_blit;
3166 return;
3167
3168 fail:
3169 intel_miptree_release(&map->linear_mt);
3170 map->ptr = NULL;
3171 map->stride = 0;
3172 }
3173
3174 /**
3175 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3176 */
3177 #if defined(USE_SSE41)
3178 static void
3179 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3180 struct intel_mipmap_tree *mt,
3181 struct intel_miptree_map *map,
3182 unsigned int level,
3183 unsigned int slice)
3184 {
3185 _mesa_align_free(map->buffer);
3186 map->buffer = NULL;
3187 map->ptr = NULL;
3188 }
3189
3190 static void
3191 intel_miptree_map_movntdqa(struct brw_context *brw,
3192 struct intel_mipmap_tree *mt,
3193 struct intel_miptree_map *map,
3194 unsigned int level, unsigned int slice)
3195 {
3196 assert(map->mode & GL_MAP_READ_BIT);
3197 assert(!(map->mode & GL_MAP_WRITE_BIT));
3198
3199 intel_miptree_access_raw(brw, mt, level, slice, false);
3200
3201 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3202 map->x, map->y, map->w, map->h,
3203 mt, _mesa_get_format_name(mt->format),
3204 level, slice, map->ptr, map->stride);
3205
3206 /* Map the original image */
3207 uint32_t image_x;
3208 uint32_t image_y;
3209 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3210 image_x += map->x;
3211 image_y += map->y;
3212
3213 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3214 if (!src)
3215 return;
3216
3217 src += mt->offset;
3218
3219 src += image_y * mt->surf.row_pitch;
3220 src += image_x * mt->cpp;
3221
3222 /* Due to the pixel offsets for the particular image being mapped, our
3223 * src pointer may not be 16-byte aligned. However, if the pitch is
3224 * divisible by 16, then the amount by which it's misaligned will remain
3225 * consistent from row to row.
3226 */
3227 assert((mt->surf.row_pitch % 16) == 0);
3228 const int misalignment = ((uintptr_t) src) & 15;
3229
3230 /* Create an untiled temporary buffer for the mapping. */
3231 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3232
3233 map->stride = ALIGN(misalignment + width_bytes, 16);
3234
3235 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3236 /* Offset the destination so it has the same misalignment as src. */
3237 map->ptr = map->buffer + misalignment;
3238
3239 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3240
3241 for (uint32_t y = 0; y < map->h; y++) {
3242 void *dst_ptr = map->ptr + y * map->stride;
3243 void *src_ptr = src + y * mt->surf.row_pitch;
3244
3245 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3246 }
3247
3248 intel_miptree_unmap_raw(mt);
3249
3250 map->unmap = intel_miptree_unmap_movntdqa;
3251 }
3252 #endif
3253
3254 static void
3255 intel_miptree_unmap_s8(struct brw_context *brw,
3256 struct intel_mipmap_tree *mt,
3257 struct intel_miptree_map *map,
3258 unsigned int level,
3259 unsigned int slice)
3260 {
3261 if (map->mode & GL_MAP_WRITE_BIT) {
3262 unsigned int image_x, image_y;
3263 uint8_t *untiled_s8_map = map->ptr;
3264 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3265
3266 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3267
3268 for (uint32_t y = 0; y < map->h; y++) {
3269 for (uint32_t x = 0; x < map->w; x++) {
3270 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3271 image_x + x + map->x,
3272 image_y + y + map->y,
3273 brw->has_swizzling);
3274 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3275 }
3276 }
3277
3278 intel_miptree_unmap_raw(mt);
3279 }
3280
3281 free(map->buffer);
3282 }
3283
3284 static void
3285 intel_miptree_map_s8(struct brw_context *brw,
3286 struct intel_mipmap_tree *mt,
3287 struct intel_miptree_map *map,
3288 unsigned int level, unsigned int slice)
3289 {
3290 map->stride = map->w;
3291 map->buffer = map->ptr = malloc(map->stride * map->h);
3292 if (!map->buffer)
3293 return;
3294
3295 intel_miptree_access_raw(brw, mt, level, slice,
3296 map->mode & GL_MAP_WRITE_BIT);
3297
3298 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3299 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3300 * invalidate is set, since we'll be writing the whole rectangle from our
3301 * temporary buffer back out.
3302 */
3303 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3304 uint8_t *untiled_s8_map = map->ptr;
3305 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3306 unsigned int image_x, image_y;
3307
3308 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3309
3310 for (uint32_t y = 0; y < map->h; y++) {
3311 for (uint32_t x = 0; x < map->w; x++) {
3312 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3313 x + image_x + map->x,
3314 y + image_y + map->y,
3315 brw->has_swizzling);
3316 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3317 }
3318 }
3319
3320 intel_miptree_unmap_raw(mt);
3321
3322 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3323 map->x, map->y, map->w, map->h,
3324 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3325 } else {
3326 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3327 map->x, map->y, map->w, map->h,
3328 mt, map->ptr, map->stride);
3329 }
3330
3331 map->unmap = intel_miptree_unmap_s8;
3332 }
3333
3334 static void
3335 intel_miptree_unmap_etc(struct brw_context *brw,
3336 struct intel_mipmap_tree *mt,
3337 struct intel_miptree_map *map,
3338 unsigned int level,
3339 unsigned int slice)
3340 {
3341 uint32_t image_x;
3342 uint32_t image_y;
3343 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3344
3345 image_x += map->x;
3346 image_y += map->y;
3347
3348 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3349 + image_y * mt->surf.row_pitch
3350 + image_x * mt->cpp;
3351
3352 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3353 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3354 map->ptr, map->stride,
3355 map->w, map->h);
3356 else
3357 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3358 map->ptr, map->stride,
3359 map->w, map->h, mt->etc_format);
3360
3361 intel_miptree_unmap_raw(mt);
3362 free(map->buffer);
3363 }
3364
3365 static void
3366 intel_miptree_map_etc(struct brw_context *brw,
3367 struct intel_mipmap_tree *mt,
3368 struct intel_miptree_map *map,
3369 unsigned int level,
3370 unsigned int slice)
3371 {
3372 assert(mt->etc_format != MESA_FORMAT_NONE);
3373 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3374 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3375 }
3376
3377 assert(map->mode & GL_MAP_WRITE_BIT);
3378 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3379
3380 intel_miptree_access_raw(brw, mt, level, slice, true);
3381
3382 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3383 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3384 map->w, map->h, 1));
3385 map->ptr = map->buffer;
3386 map->unmap = intel_miptree_unmap_etc;
3387 }
3388
3389 /**
3390 * Mapping functions for packed depth/stencil miptrees backed by real separate
3391 * miptrees for depth and stencil.
3392 *
3393 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3394 * separate from the depth buffer. Yet at the GL API level, we have to expose
3395 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3396 * be able to map that memory for texture storage and glReadPixels-type
3397 * operations. We give Mesa core that access by mallocing a temporary and
3398 * copying the data between the actual backing store and the temporary.
3399 */
3400 static void
3401 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3402 struct intel_mipmap_tree *mt,
3403 struct intel_miptree_map *map,
3404 unsigned int level,
3405 unsigned int slice)
3406 {
3407 struct intel_mipmap_tree *z_mt = mt;
3408 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3409 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3410
3411 if (map->mode & GL_MAP_WRITE_BIT) {
3412 uint32_t *packed_map = map->ptr;
3413 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3414 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3415 unsigned int s_image_x, s_image_y;
3416 unsigned int z_image_x, z_image_y;
3417
3418 intel_miptree_get_image_offset(s_mt, level, slice,
3419 &s_image_x, &s_image_y);
3420 intel_miptree_get_image_offset(z_mt, level, slice,
3421 &z_image_x, &z_image_y);
3422
3423 for (uint32_t y = 0; y < map->h; y++) {
3424 for (uint32_t x = 0; x < map->w; x++) {
3425 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3426 x + s_image_x + map->x,
3427 y + s_image_y + map->y,
3428 brw->has_swizzling);
3429 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3430 (z_mt->surf.row_pitch / 4) +
3431 (x + z_image_x + map->x));
3432
3433 if (map_z32f_x24s8) {
3434 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3435 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3436 } else {
3437 uint32_t packed = packed_map[y * map->w + x];
3438 s_map[s_offset] = packed >> 24;
3439 z_map[z_offset] = packed;
3440 }
3441 }
3442 }
3443
3444 intel_miptree_unmap_raw(s_mt);
3445 intel_miptree_unmap_raw(z_mt);
3446
3447 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3448 __func__,
3449 map->x, map->y, map->w, map->h,
3450 z_mt, _mesa_get_format_name(z_mt->format),
3451 map->x + z_image_x, map->y + z_image_y,
3452 s_mt, map->x + s_image_x, map->y + s_image_y,
3453 map->ptr, map->stride);
3454 }
3455
3456 free(map->buffer);
3457 }
3458
3459 static void
3460 intel_miptree_map_depthstencil(struct brw_context *brw,
3461 struct intel_mipmap_tree *mt,
3462 struct intel_miptree_map *map,
3463 unsigned int level, unsigned int slice)
3464 {
3465 struct intel_mipmap_tree *z_mt = mt;
3466 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3467 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3468 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3469
3470 map->stride = map->w * packed_bpp;
3471 map->buffer = map->ptr = malloc(map->stride * map->h);
3472 if (!map->buffer)
3473 return;
3474
3475 intel_miptree_access_raw(brw, mt, level, slice,
3476 map->mode & GL_MAP_WRITE_BIT);
3477
3478 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3479 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3480 * invalidate is set, since we'll be writing the whole rectangle from our
3481 * temporary buffer back out.
3482 */
3483 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3484 uint32_t *packed_map = map->ptr;
3485 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3486 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3487 unsigned int s_image_x, s_image_y;
3488 unsigned int z_image_x, z_image_y;
3489
3490 intel_miptree_get_image_offset(s_mt, level, slice,
3491 &s_image_x, &s_image_y);
3492 intel_miptree_get_image_offset(z_mt, level, slice,
3493 &z_image_x, &z_image_y);
3494
3495 for (uint32_t y = 0; y < map->h; y++) {
3496 for (uint32_t x = 0; x < map->w; x++) {
3497 int map_x = map->x + x, map_y = map->y + y;
3498 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3499 map_x + s_image_x,
3500 map_y + s_image_y,
3501 brw->has_swizzling);
3502 ptrdiff_t z_offset = ((map_y + z_image_y) *
3503 (z_mt->surf.row_pitch / 4) +
3504 (map_x + z_image_x));
3505 uint8_t s = s_map[s_offset];
3506 uint32_t z = z_map[z_offset];
3507
3508 if (map_z32f_x24s8) {
3509 packed_map[(y * map->w + x) * 2 + 0] = z;
3510 packed_map[(y * map->w + x) * 2 + 1] = s;
3511 } else {
3512 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3513 }
3514 }
3515 }
3516
3517 intel_miptree_unmap_raw(s_mt);
3518 intel_miptree_unmap_raw(z_mt);
3519
3520 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3521 __func__,
3522 map->x, map->y, map->w, map->h,
3523 z_mt, map->x + z_image_x, map->y + z_image_y,
3524 s_mt, map->x + s_image_x, map->y + s_image_y,
3525 map->ptr, map->stride);
3526 } else {
3527 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3528 map->x, map->y, map->w, map->h,
3529 mt, map->ptr, map->stride);
3530 }
3531
3532 map->unmap = intel_miptree_unmap_depthstencil;
3533 }
3534
3535 /**
3536 * Create and attach a map to the miptree at (level, slice). Return the
3537 * attached map.
3538 */
3539 static struct intel_miptree_map*
3540 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3541 unsigned int level,
3542 unsigned int slice,
3543 unsigned int x,
3544 unsigned int y,
3545 unsigned int w,
3546 unsigned int h,
3547 GLbitfield mode)
3548 {
3549 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3550
3551 if (!map)
3552 return NULL;
3553
3554 assert(mt->level[level].slice[slice].map == NULL);
3555 mt->level[level].slice[slice].map = map;
3556
3557 map->mode = mode;
3558 map->x = x;
3559 map->y = y;
3560 map->w = w;
3561 map->h = h;
3562
3563 return map;
3564 }
3565
3566 /**
3567 * Release the map at (level, slice).
3568 */
3569 static void
3570 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3571 unsigned int level,
3572 unsigned int slice)
3573 {
3574 struct intel_miptree_map **map;
3575
3576 map = &mt->level[level].slice[slice].map;
3577 free(*map);
3578 *map = NULL;
3579 }
3580
3581 static bool
3582 can_blit_slice(struct intel_mipmap_tree *mt,
3583 unsigned int level, unsigned int slice)
3584 {
3585 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3586 if (mt->surf.row_pitch >= 32768)
3587 return false;
3588
3589 return true;
3590 }
3591
3592 static bool
3593 use_intel_mipree_map_blit(struct brw_context *brw,
3594 struct intel_mipmap_tree *mt,
3595 GLbitfield mode,
3596 unsigned int level,
3597 unsigned int slice)
3598 {
3599 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3600
3601 if (devinfo->has_llc &&
3602 /* It's probably not worth swapping to the blit ring because of
3603 * all the overhead involved.
3604 */
3605 !(mode & GL_MAP_WRITE_BIT) &&
3606 !mt->compressed &&
3607 (mt->surf.tiling == ISL_TILING_X ||
3608 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3609 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3610 /* Fast copy blit on skl+ supports all tiling formats. */
3611 devinfo->gen >= 9) &&
3612 can_blit_slice(mt, level, slice))
3613 return true;
3614
3615 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3616 mt->bo->size >= brw->max_gtt_map_object_size) {
3617 assert(can_blit_slice(mt, level, slice));
3618 return true;
3619 }
3620
3621 return false;
3622 }
3623
3624 /**
3625 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3626 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3627 * arithmetic overflow.
3628 *
3629 * If you call this function and use \a out_stride, then you're doing pointer
3630 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3631 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3632 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3633 * which usually have type uint32_t or GLuint.
3634 */
3635 void
3636 intel_miptree_map(struct brw_context *brw,
3637 struct intel_mipmap_tree *mt,
3638 unsigned int level,
3639 unsigned int slice,
3640 unsigned int x,
3641 unsigned int y,
3642 unsigned int w,
3643 unsigned int h,
3644 GLbitfield mode,
3645 void **out_ptr,
3646 ptrdiff_t *out_stride)
3647 {
3648 struct intel_miptree_map *map;
3649
3650 assert(mt->surf.samples == 1);
3651
3652 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3653 if (!map){
3654 *out_ptr = NULL;
3655 *out_stride = 0;
3656 return;
3657 }
3658
3659 if (mt->format == MESA_FORMAT_S_UINT8) {
3660 intel_miptree_map_s8(brw, mt, map, level, slice);
3661 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3662 !(mode & BRW_MAP_DIRECT_BIT)) {
3663 intel_miptree_map_etc(brw, mt, map, level, slice);
3664 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3665 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3666 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3667 intel_miptree_map_blit(brw, mt, map, level, slice);
3668 #if defined(USE_SSE41)
3669 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3670 !mt->compressed && cpu_has_sse4_1 &&
3671 (mt->surf.row_pitch % 16 == 0)) {
3672 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3673 #endif
3674 } else {
3675 intel_miptree_map_gtt(brw, mt, map, level, slice);
3676 }
3677
3678 *out_ptr = map->ptr;
3679 *out_stride = map->stride;
3680
3681 if (map->ptr == NULL)
3682 intel_miptree_release_map(mt, level, slice);
3683 }
3684
3685 void
3686 intel_miptree_unmap(struct brw_context *brw,
3687 struct intel_mipmap_tree *mt,
3688 unsigned int level,
3689 unsigned int slice)
3690 {
3691 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3692
3693 assert(mt->surf.samples == 1);
3694
3695 if (!map)
3696 return;
3697
3698 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3699 mt, _mesa_get_format_name(mt->format), level, slice);
3700
3701 if (map->unmap)
3702 map->unmap(brw, mt, map, level, slice);
3703
3704 intel_miptree_release_map(mt, level, slice);
3705 }
3706
3707 enum isl_surf_dim
3708 get_isl_surf_dim(GLenum target)
3709 {
3710 switch (target) {
3711 case GL_TEXTURE_1D:
3712 case GL_TEXTURE_1D_ARRAY:
3713 return ISL_SURF_DIM_1D;
3714
3715 case GL_TEXTURE_2D:
3716 case GL_TEXTURE_2D_ARRAY:
3717 case GL_TEXTURE_RECTANGLE:
3718 case GL_TEXTURE_CUBE_MAP:
3719 case GL_TEXTURE_CUBE_MAP_ARRAY:
3720 case GL_TEXTURE_2D_MULTISAMPLE:
3721 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3722 case GL_TEXTURE_EXTERNAL_OES:
3723 return ISL_SURF_DIM_2D;
3724
3725 case GL_TEXTURE_3D:
3726 return ISL_SURF_DIM_3D;
3727 }
3728
3729 unreachable("Invalid texture target");
3730 }
3731
3732 enum isl_dim_layout
3733 get_isl_dim_layout(const struct gen_device_info *devinfo,
3734 enum isl_tiling tiling, GLenum target)
3735 {
3736 switch (target) {
3737 case GL_TEXTURE_1D:
3738 case GL_TEXTURE_1D_ARRAY:
3739 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3740 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3741
3742 case GL_TEXTURE_2D:
3743 case GL_TEXTURE_2D_ARRAY:
3744 case GL_TEXTURE_RECTANGLE:
3745 case GL_TEXTURE_2D_MULTISAMPLE:
3746 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3747 case GL_TEXTURE_EXTERNAL_OES:
3748 return ISL_DIM_LAYOUT_GEN4_2D;
3749
3750 case GL_TEXTURE_CUBE_MAP:
3751 case GL_TEXTURE_CUBE_MAP_ARRAY:
3752 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3753 ISL_DIM_LAYOUT_GEN4_2D);
3754
3755 case GL_TEXTURE_3D:
3756 return (devinfo->gen >= 9 ?
3757 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3758 }
3759
3760 unreachable("Invalid texture target");
3761 }
3762
3763 bool
3764 intel_miptree_set_clear_color(struct brw_context *brw,
3765 struct intel_mipmap_tree *mt,
3766 union isl_color_value clear_color)
3767 {
3768 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3769 mt->fast_clear_color = clear_color;
3770 if (mt->aux_buf->clear_color_bo) {
3771 /* We can't update the clear color while the hardware is still using
3772 * the previous one for a resolve or sampling from it. Make sure that
3773 * there are no pending commands at this point.
3774 */
3775 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3776 for (int i = 0; i < 4; i++) {
3777 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3778 mt->aux_buf->clear_color_offset + i * 4,
3779 mt->fast_clear_color.u32[i]);
3780 }
3781 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3782 }
3783 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3784 return true;
3785 }
3786 return false;
3787 }
3788
3789 union isl_color_value
3790 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3791 const struct intel_mipmap_tree *mt,
3792 enum isl_format view_format, bool sampling,
3793 struct brw_bo **clear_color_bo,
3794 uint32_t *clear_color_offset)
3795 {
3796 assert(mt->aux_buf);
3797
3798 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3799 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3800 * we switch to using the inline clear color and do the sRGB color
3801 * conversion process defined in the OpenGL spec. The red, green, and
3802 * blue channels take part in gamma correction, while the alpha channel
3803 * is unchanged.
3804 */
3805 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3806 for (unsigned i = 0; i < 3; i++) {
3807 srgb_decoded_value.f32[i] =
3808 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3809 }
3810 *clear_color_bo = 0;
3811 *clear_color_offset = 0;
3812 return srgb_decoded_value;
3813 } else {
3814 *clear_color_bo = mt->aux_buf->clear_color_bo;
3815 *clear_color_offset = mt->aux_buf->clear_color_offset;
3816 return mt->fast_clear_color;
3817 }
3818 }