i965/cnl: Don't write to Cache Mode Register 1 on gen10+
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_tex.h"
32 #include "intel_blit.h"
33 #include "intel_fbo.h"
34
35 #include "brw_blorp.h"
36 #include "brw_context.h"
37 #include "brw_state.h"
38
39 #include "main/enums.h"
40 #include "main/fbobject.h"
41 #include "main/formats.h"
42 #include "main/glformats.h"
43 #include "main/texcompress_etc.h"
44 #include "main/teximage.h"
45 #include "main/streaming-load-memcpy.h"
46 #include "x86/common_x86_asm.h"
47
48 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
49
50 static void *intel_miptree_map_raw(struct brw_context *brw,
51 struct intel_mipmap_tree *mt,
52 GLbitfield mode);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 enum intel_aux_disable aux_disable)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104 bool
105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106 unsigned tiling)
107 {
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (brw->gen >= 9)
116 return tiling == I915_TILING_Y;
117 else if (brw->gen >= 7)
118 return tiling != I915_TILING_NONE;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 bool
145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 /* MCS support does not exist prior to Gen7 */
149 if (brw->gen < 7)
150 return false;
151
152 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153 return false;
154
155 /* This function applies only to non-multisampled render targets. */
156 if (mt->num_samples > 1)
157 return false;
158
159 /* MCS is only supported for color buffers */
160 switch (_mesa_get_format_base_format(mt->format)) {
161 case GL_DEPTH_COMPONENT:
162 case GL_DEPTH_STENCIL:
163 case GL_STENCIL_INDEX:
164 return false;
165 }
166
167 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168 return false;
169
170 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171 const bool arrayed = mt->physical_depth0 != 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->num_samples <= 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (brw->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 if (brw->gen >= 9) {
211 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212 const enum isl_format isl_format =
213 brw_isl_format_for_mesa_format(linear_format);
214 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
215 } else
216 return true;
217 }
218
219 /* On Gen9 support for color buffer compression was extended to single
220 * sampled surfaces. This is a helper considering both auxiliary buffer
221 * type and number of samples telling if the given miptree represents
222 * the new single sampled case - also called lossless compression.
223 */
224 bool
225 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
226 const struct intel_mipmap_tree *mt)
227 {
228 /* Only available from Gen9 onwards. */
229 if (brw->gen < 9)
230 return false;
231
232 /* Compression always requires auxiliary buffer. */
233 if (!mt->mcs_buf)
234 return false;
235
236 /* Single sample compression is represented re-using msaa compression
237 * layout type: "Compressed Multisampled Surfaces".
238 */
239 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
240 return false;
241
242 /* And finally distinguish between msaa and single sample case. */
243 return mt->num_samples <= 1;
244 }
245
246 bool
247 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
248 const struct intel_mipmap_tree *mt)
249 {
250 /* For now compression is only enabled for integer formats even though
251 * there exist supported floating point formats also. This is a heuristic
252 * decision based on current public benchmarks. In none of the cases these
253 * formats provided any improvement but a few cases were seen to regress.
254 * Hence these are left to to be enabled in the future when they are known
255 * to improve things.
256 */
257 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
258 return false;
259
260 /* Fast clear mechanism and lossless compression go hand in hand. */
261 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
262 return false;
263
264 /* Fast clear can be also used to clear srgb surfaces by using equivalent
265 * linear format. This trick, however, can't be extended to be used with
266 * lossless compression and therefore a check is needed to see if the format
267 * really is linear.
268 */
269 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
270 }
271
272 /**
273 * Determine depth format corresponding to a depth+stencil format,
274 * for separate stencil.
275 */
276 mesa_format
277 intel_depth_format_for_depthstencil_format(mesa_format format) {
278 switch (format) {
279 case MESA_FORMAT_Z24_UNORM_S8_UINT:
280 return MESA_FORMAT_Z24_UNORM_X8_UINT;
281 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
282 return MESA_FORMAT_Z_FLOAT32;
283 default:
284 return format;
285 }
286 }
287
288 static bool
289 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
290 unsigned depth0, struct intel_mipmap_level *table)
291 {
292 for (unsigned level = first_level; level <= last_level; level++) {
293 const unsigned d =
294 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
295
296 table[level].slice = calloc(d, sizeof(*table[0].slice));
297 if (!table[level].slice)
298 goto unwind;
299 }
300
301 return true;
302
303 unwind:
304 for (unsigned level = first_level; level <= last_level; level++)
305 free(table[level].slice);
306
307 return false;
308 }
309
310 /**
311 * @param for_bo Indicates that the caller is
312 * intel_miptree_create_for_bo(). If true, then do not create
313 * \c stencil_mt.
314 */
315 static struct intel_mipmap_tree *
316 intel_miptree_create_layout(struct brw_context *brw,
317 GLenum target,
318 mesa_format format,
319 GLuint first_level,
320 GLuint last_level,
321 GLuint width0,
322 GLuint height0,
323 GLuint depth0,
324 GLuint num_samples,
325 uint32_t layout_flags)
326 {
327 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
328 if (!mt)
329 return NULL;
330
331 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
332 _mesa_enum_to_string(target),
333 _mesa_get_format_name(format),
334 first_level, last_level, depth0, mt);
335
336 if (target == GL_TEXTURE_1D_ARRAY)
337 assert(height0 == 1);
338
339 mt->target = target;
340 mt->format = format;
341 mt->first_level = first_level;
342 mt->last_level = last_level;
343 mt->logical_width0 = width0;
344 mt->logical_height0 = height0;
345 mt->logical_depth0 = depth0;
346 mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
347 INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
348 mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
349 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
350 mt->aux_state = NULL;
351 mt->cpp = _mesa_get_format_bytes(format);
352 mt->num_samples = num_samples;
353 mt->compressed = _mesa_is_format_compressed(format);
354 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
355 mt->refcount = 1;
356
357 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8)
358 layout_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL;
359
360 int depth_multiply = 1;
361 if (num_samples > 1) {
362 /* Adjust width/height/depth for MSAA */
363 mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
364 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
365 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
366 * "If the surface is multisampled and it is a depth or stencil
367 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
368 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
369 * proceeding:
370 *
371 * +----------------------------------------------------------------+
372 * | Num Multisamples | W_l = | H_l = |
373 * +----------------------------------------------------------------+
374 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
375 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
376 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
377 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
378 * +----------------------------------------------------------------+
379 * "
380 *
381 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
382 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
383 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
384 *
385 * Another more complicated explanation for these adjustments comes
386 * from the Sandybridge PRM, volume 4, part 1, page 31:
387 *
388 * "Any of the other messages (sample*, LOD, load4) used with a
389 * (4x) multisampled surface will in-effect sample a surface with
390 * double the height and width as that indicated in the surface
391 * state. Each pixel position on the original-sized surface is
392 * replaced with a 2x2 of samples with the following arrangement:
393 *
394 * sample 0 sample 2
395 * sample 1 sample 3"
396 *
397 * Thus, when sampling from a multisampled texture, it behaves as
398 * though the layout in memory for (x,y,sample) is:
399 *
400 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
401 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
402 *
403 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
404 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
405 *
406 * However, the actual layout of multisampled data in memory is:
407 *
408 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
409 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
410 *
411 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
412 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
413 *
414 * This pattern repeats for each 2x2 pixel block.
415 *
416 * As a result, when calculating the size of our 4-sample buffer for
417 * an odd width or height, we have to align before scaling up because
418 * sample 3 is in that bottom right 2x2 block.
419 */
420 switch (num_samples) {
421 case 2:
422 assert(brw->gen >= 8);
423 width0 = ALIGN(width0, 2) * 2;
424 height0 = ALIGN(height0, 2);
425 break;
426 case 4:
427 width0 = ALIGN(width0, 2) * 2;
428 height0 = ALIGN(height0, 2) * 2;
429 break;
430 case 8:
431 width0 = ALIGN(width0, 2) * 4;
432 height0 = ALIGN(height0, 2) * 2;
433 break;
434 case 16:
435 width0 = ALIGN(width0, 2) * 4;
436 height0 = ALIGN(height0, 2) * 4;
437 break;
438 default:
439 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
440 * or 16.
441 */
442 unreachable("not reached");
443 }
444 } else {
445 /* Non-interleaved */
446 depth_multiply = num_samples;
447 depth0 *= depth_multiply;
448 }
449 }
450
451 if (!create_mapping_table(target, first_level, last_level, depth0,
452 mt->level)) {
453 free(mt);
454 return NULL;
455 }
456
457 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
458 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
459 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
460 * used on Gen8 to make it pick a qpitch value which doesn't include space
461 * for the mipmaps. On Gen9 this is not necessary because it will
462 * automatically pick a packed qpitch value whenever mt->first_level ==
463 * mt->last_level.
464 * TODO: can we use it elsewhere?
465 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
466 */
467 if (brw->gen >= 9) {
468 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
469 } else {
470 switch (mt->msaa_layout) {
471 case INTEL_MSAA_LAYOUT_NONE:
472 case INTEL_MSAA_LAYOUT_IMS:
473 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
474 break;
475 case INTEL_MSAA_LAYOUT_UMS:
476 case INTEL_MSAA_LAYOUT_CMS:
477 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
478 break;
479 }
480 }
481
482 if (target == GL_TEXTURE_CUBE_MAP)
483 assert(depth0 == 6 * depth_multiply);
484
485 mt->physical_width0 = width0;
486 mt->physical_height0 = height0;
487 mt->physical_depth0 = depth0;
488
489 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
490 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
491 (brw->must_use_separate_stencil ||
492 (brw->has_separate_stencil &&
493 intel_miptree_wants_hiz_buffer(brw, mt)))) {
494 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
495 if (brw->gen == 6) {
496 stencil_flags |= MIPTREE_LAYOUT_TILING_ANY;
497 }
498
499 mt->stencil_mt = intel_miptree_create(brw,
500 mt->target,
501 MESA_FORMAT_S_UINT8,
502 mt->first_level,
503 mt->last_level,
504 mt->logical_width0,
505 mt->logical_height0,
506 mt->logical_depth0,
507 num_samples,
508 stencil_flags);
509
510 if (!mt->stencil_mt) {
511 intel_miptree_release(&mt);
512 return NULL;
513 }
514 mt->stencil_mt->r8stencil_needs_update = true;
515
516 /* Fix up the Z miptree format for how we're splitting out separate
517 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
518 */
519 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
520 mt->cpp = 4;
521
522 if (format == mt->format) {
523 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
524 _mesa_get_format_name(mt->format));
525 }
526 }
527
528 if (layout_flags & MIPTREE_LAYOUT_GEN6_HIZ_STENCIL)
529 mt->array_layout = GEN6_HIZ_STENCIL;
530
531 /*
532 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
533 * multisampled or have an AUX buffer attached to it.
534 *
535 * GEN | MSRT | AUX_CCS_* or AUX_MCS
536 * -------------------------------------------
537 * 9 | HALIGN_16 | HALIGN_16
538 * 8 | HALIGN_ANY | HALIGN_16
539 * 7 | ? | ?
540 * 6 | ? | ?
541 */
542 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
543 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
544 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
545 } else if (brw->gen >= 9 && num_samples > 1) {
546 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
547 } else {
548 const UNUSED bool is_lossless_compressed_aux =
549 brw->gen >= 9 && num_samples == 1 &&
550 mt->format == MESA_FORMAT_R_UINT32;
551
552 /* For now, nothing else has this requirement */
553 assert(is_lossless_compressed_aux ||
554 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
555 }
556
557 if (!brw_miptree_layout(brw, mt, layout_flags)) {
558 intel_miptree_release(&mt);
559 return NULL;
560 }
561
562 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
563 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
564
565 return mt;
566 }
567
568
569 /**
570 * Choose an appropriate uncompressed format for a requested
571 * compressed format, if unsupported.
572 */
573 mesa_format
574 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
575 {
576 /* No need to lower ETC formats on these platforms,
577 * they are supported natively.
578 */
579 if (brw->gen >= 8 || brw->is_baytrail)
580 return format;
581
582 switch (format) {
583 case MESA_FORMAT_ETC1_RGB8:
584 return MESA_FORMAT_R8G8B8X8_UNORM;
585 case MESA_FORMAT_ETC2_RGB8:
586 return MESA_FORMAT_R8G8B8X8_UNORM;
587 case MESA_FORMAT_ETC2_SRGB8:
588 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
589 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
590 return MESA_FORMAT_B8G8R8A8_SRGB;
591 case MESA_FORMAT_ETC2_RGBA8_EAC:
592 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
593 return MESA_FORMAT_R8G8B8A8_UNORM;
594 case MESA_FORMAT_ETC2_R11_EAC:
595 return MESA_FORMAT_R_UNORM16;
596 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
597 return MESA_FORMAT_R_SNORM16;
598 case MESA_FORMAT_ETC2_RG11_EAC:
599 return MESA_FORMAT_R16G16_UNORM;
600 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
601 return MESA_FORMAT_R16G16_SNORM;
602 default:
603 /* Non ETC1 / ETC2 format */
604 return format;
605 }
606 }
607
608 /** \brief Assert that the level and layer are valid for the miptree. */
609 void
610 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
611 uint32_t level,
612 uint32_t layer)
613 {
614 (void) mt;
615 (void) level;
616 (void) layer;
617
618 assert(level >= mt->first_level);
619 assert(level <= mt->last_level);
620
621 if (mt->surf.size > 0)
622 assert(layer < (mt->surf.dim == ISL_SURF_DIM_3D ?
623 minify(mt->surf.phys_level0_sa.depth, level) :
624 mt->surf.phys_level0_sa.array_len));
625 else
626 assert(layer < mt->level[level].depth);
627 }
628
629 static enum isl_aux_state **
630 create_aux_state_map(struct intel_mipmap_tree *mt,
631 enum isl_aux_state initial)
632 {
633 const uint32_t levels = mt->last_level + 1;
634
635 uint32_t total_slices = 0;
636 for (uint32_t level = 0; level < levels; level++)
637 total_slices += mt->level[level].depth;
638
639 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
640
641 /* We're going to allocate a single chunk of data for both the per-level
642 * reference array and the arrays of aux_state. This makes cleanup
643 * significantly easier.
644 */
645 const size_t total_size = per_level_array_size +
646 total_slices * sizeof(enum isl_aux_state);
647 void *data = malloc(total_size);
648 if (data == NULL)
649 return NULL;
650
651 enum isl_aux_state **per_level_arr = data;
652 enum isl_aux_state *s = data + per_level_array_size;
653 for (uint32_t level = 0; level < levels; level++) {
654 per_level_arr[level] = s;
655 for (uint32_t a = 0; a < mt->level[level].depth; a++)
656 *(s++) = initial;
657 }
658 assert((void *)s == data + total_size);
659
660 return per_level_arr;
661 }
662
663 static void
664 free_aux_state_map(enum isl_aux_state **state)
665 {
666 free(state);
667 }
668
669 static struct intel_mipmap_tree *
670 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
671 unsigned first_level, unsigned last_level,
672 unsigned width0, unsigned height0, unsigned depth0,
673 unsigned num_samples, enum isl_tiling isl_tiling,
674 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
675 struct brw_bo *bo)
676 {
677 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
678 if (!mt)
679 return NULL;
680
681 if (!create_mapping_table(target, first_level, last_level, depth0,
682 mt->level)) {
683 free(mt);
684 return NULL;
685 }
686
687 if (target == GL_TEXTURE_CUBE_MAP ||
688 target == GL_TEXTURE_CUBE_MAP_ARRAY)
689 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
690
691 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
692 __func__,
693 _mesa_enum_to_string(target),
694 _mesa_get_format_name(format),
695 num_samples, width0, height0, depth0,
696 first_level, last_level, mt);
697
698 struct isl_surf_init_info init_info = {
699 .dim = get_isl_surf_dim(target),
700 .format = translate_tex_format(brw, format, false),
701 .width = width0,
702 .height = height0,
703 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
704 .levels = last_level - first_level + 1,
705 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
706 .samples = MAX2(num_samples, 1),
707 .usage = isl_usage_flags,
708 .tiling_flags = 1u << isl_tiling
709 };
710
711 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
712 goto fail;
713
714 assert(mt->surf.size % mt->surf.row_pitch == 0);
715
716 if (!bo) {
717 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
718 mt->surf.size,
719 isl_tiling_to_bufmgr_tiling(isl_tiling),
720 mt->surf.row_pitch, alloc_flags);
721 if (!mt->bo)
722 goto fail;
723 } else {
724 mt->bo = bo;
725 }
726
727 mt->first_level = first_level;
728 mt->last_level = last_level;
729 mt->target = target;
730 mt->format = format;
731 mt->refcount = 1;
732 mt->aux_state = NULL;
733
734 return mt;
735
736 fail:
737 intel_miptree_release(&mt);
738 return NULL;
739 }
740
741 static struct intel_mipmap_tree *
742 miptree_create(struct brw_context *brw,
743 GLenum target,
744 mesa_format format,
745 GLuint first_level,
746 GLuint last_level,
747 GLuint width0,
748 GLuint height0,
749 GLuint depth0,
750 GLuint num_samples,
751 uint32_t layout_flags)
752 {
753 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8)
754 return make_surface(brw, target, format, first_level, last_level,
755 width0, height0, depth0, num_samples, ISL_TILING_W,
756 ISL_SURF_USAGE_STENCIL_BIT |
757 ISL_SURF_USAGE_TEXTURE_BIT,
758 BO_ALLOC_FOR_RENDER, NULL);
759
760 struct intel_mipmap_tree *mt;
761 mesa_format tex_format = format;
762 mesa_format etc_format = MESA_FORMAT_NONE;
763 uint32_t alloc_flags = 0;
764
765 format = intel_lower_compressed_format(brw, format);
766
767 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
768
769 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
770 mt = intel_miptree_create_layout(brw, target, format,
771 first_level, last_level, width0,
772 height0, depth0, num_samples,
773 layout_flags);
774 if (!mt)
775 return NULL;
776
777 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
778 mt->tiling = I915_TILING_Y;
779
780 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
781 alloc_flags |= BO_ALLOC_FOR_RENDER;
782
783 mt->etc_format = etc_format;
784
785 if (format == MESA_FORMAT_S_UINT8) {
786 /* Align to size of W tile, 64x64. */
787 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
788 ALIGN(mt->total_width, 64),
789 ALIGN(mt->total_height, 64),
790 mt->cpp, mt->tiling, &mt->pitch,
791 alloc_flags);
792 } else {
793 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
794 mt->total_width, mt->total_height,
795 mt->cpp, mt->tiling, &mt->pitch,
796 alloc_flags);
797 }
798
799 if (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT)
800 mt->bo->cache_coherent = false;
801
802 return mt;
803 }
804
805 struct intel_mipmap_tree *
806 intel_miptree_create(struct brw_context *brw,
807 GLenum target,
808 mesa_format format,
809 GLuint first_level,
810 GLuint last_level,
811 GLuint width0,
812 GLuint height0,
813 GLuint depth0,
814 GLuint num_samples,
815 uint32_t layout_flags)
816 {
817 struct intel_mipmap_tree *mt = miptree_create(
818 brw, target, format,
819 first_level, last_level,
820 width0, height0, depth0, num_samples,
821 layout_flags);
822
823 /* If the BO is too large to fit in the aperture, we need to use the
824 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
825 * handle Y-tiling, so we need to fall back to X.
826 */
827 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
828 mt->tiling == I915_TILING_Y) {
829 const uint32_t alloc_flags =
830 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
831 BO_ALLOC_FOR_RENDER : 0;
832 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
833 mt->total_width, mt->total_height);
834
835 mt->tiling = I915_TILING_X;
836 brw_bo_unreference(mt->bo);
837 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
838 mt->total_width, mt->total_height, mt->cpp,
839 mt->tiling, &mt->pitch, alloc_flags);
840 }
841
842 mt->offset = 0;
843
844 if (!mt->bo) {
845 intel_miptree_release(&mt);
846 return NULL;
847 }
848
849
850 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
851 assert(mt->num_samples > 1);
852 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
853 intel_miptree_release(&mt);
854 return NULL;
855 }
856 }
857
858 /* If this miptree is capable of supporting fast color clears, set
859 * fast_clear_state appropriately to ensure that fast clears will occur.
860 * Allocation of the MCS miptree will be deferred until the first fast
861 * clear actually occurs or when compressed single sampled buffer is
862 * written by the GPU for the first time.
863 */
864 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
865 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
866 mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
867 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
868
869 /* On Gen9+ clients are not currently capable of consuming compressed
870 * single-sampled buffers. Disabling compression allows us to skip
871 * resolves.
872 */
873 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
874 const bool is_lossless_compressed =
875 unlikely(!lossless_compression_disabled) &&
876 brw->gen >= 9 && !mt->is_scanout &&
877 intel_miptree_supports_lossless_compressed(brw, mt);
878
879 if (is_lossless_compressed) {
880 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
881 }
882 }
883
884 return mt;
885 }
886
887 struct intel_mipmap_tree *
888 intel_miptree_create_for_bo(struct brw_context *brw,
889 struct brw_bo *bo,
890 mesa_format format,
891 uint32_t offset,
892 uint32_t width,
893 uint32_t height,
894 uint32_t depth,
895 int pitch,
896 uint32_t layout_flags)
897 {
898 struct intel_mipmap_tree *mt;
899 uint32_t tiling, swizzle;
900 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
901
902 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8) {
903 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
904 0, 0, width, height, depth, 1, ISL_TILING_W,
905 ISL_SURF_USAGE_STENCIL_BIT |
906 ISL_SURF_USAGE_TEXTURE_BIT,
907 BO_ALLOC_FOR_RENDER, bo);
908 if (!mt)
909 return NULL;
910
911 assert(bo->size >= mt->surf.size);
912
913 brw_bo_reference(bo);
914 return mt;
915 }
916
917 brw_bo_get_tiling(bo, &tiling, &swizzle);
918
919 /* Nothing will be able to use this miptree with the BO if the offset isn't
920 * aligned.
921 */
922 if (tiling != I915_TILING_NONE)
923 assert(offset % 4096 == 0);
924
925 /* miptrees can't handle negative pitch. If you need flipping of images,
926 * that's outside of the scope of the mt.
927 */
928 assert(pitch >= 0);
929
930 /* The BO already has a tiling format and we shouldn't confuse the lower
931 * layers by making it try to find a tiling format again.
932 */
933 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
934 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
935
936 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
937 mt = intel_miptree_create_layout(brw, target, format,
938 0, 0,
939 width, height, depth, 0,
940 layout_flags);
941 if (!mt)
942 return NULL;
943
944 brw_bo_reference(bo);
945 mt->bo = bo;
946 mt->pitch = pitch;
947 mt->offset = offset;
948 mt->tiling = tiling;
949
950 return mt;
951 }
952
953 /**
954 * For a singlesample renderbuffer, this simply wraps the given BO with a
955 * miptree.
956 *
957 * For a multisample renderbuffer, this wraps the window system's
958 * (singlesample) BO with a singlesample miptree attached to the
959 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
960 * that will contain the actual rendering (which is lazily resolved to
961 * irb->singlesample_mt).
962 */
963 void
964 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
965 struct intel_renderbuffer *irb,
966 struct brw_bo *bo,
967 uint32_t width, uint32_t height,
968 uint32_t pitch)
969 {
970 struct intel_mipmap_tree *singlesample_mt = NULL;
971 struct intel_mipmap_tree *multisample_mt = NULL;
972 struct gl_renderbuffer *rb = &irb->Base.Base;
973 mesa_format format = rb->Format;
974 int num_samples = rb->NumSamples;
975
976 /* Only the front and back buffers, which are color buffers, are allocated
977 * through the image loader.
978 */
979 assert(_mesa_get_format_base_format(format) == GL_RGB ||
980 _mesa_get_format_base_format(format) == GL_RGBA);
981
982 singlesample_mt = intel_miptree_create_for_bo(intel,
983 bo,
984 format,
985 0,
986 width,
987 height,
988 1,
989 pitch,
990 MIPTREE_LAYOUT_FOR_SCANOUT);
991 if (!singlesample_mt)
992 goto fail;
993
994 /* If this miptree is capable of supporting fast color clears, set
995 * mcs_state appropriately to ensure that fast clears will occur.
996 * Allocation of the MCS miptree will be deferred until the first fast
997 * clear actually occurs.
998 */
999 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
1000 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
1001 singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
1002 }
1003
1004 if (num_samples == 0) {
1005 intel_miptree_release(&irb->mt);
1006 irb->mt = singlesample_mt;
1007
1008 assert(!irb->singlesample_mt);
1009 } else {
1010 intel_miptree_release(&irb->singlesample_mt);
1011 irb->singlesample_mt = singlesample_mt;
1012
1013 if (!irb->mt ||
1014 irb->mt->logical_width0 != width ||
1015 irb->mt->logical_height0 != height) {
1016 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1017 format,
1018 width,
1019 height,
1020 num_samples);
1021 if (!multisample_mt)
1022 goto fail;
1023
1024 irb->need_downsample = false;
1025 intel_miptree_release(&irb->mt);
1026 irb->mt = multisample_mt;
1027 }
1028 }
1029 return;
1030
1031 fail:
1032 intel_miptree_release(&irb->singlesample_mt);
1033 intel_miptree_release(&irb->mt);
1034 return;
1035 }
1036
1037 struct intel_mipmap_tree*
1038 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1039 mesa_format format,
1040 uint32_t width,
1041 uint32_t height,
1042 uint32_t num_samples)
1043 {
1044 struct intel_mipmap_tree *mt;
1045 uint32_t depth = 1;
1046 bool ok;
1047 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1048 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1049 MIPTREE_LAYOUT_TILING_ANY |
1050 MIPTREE_LAYOUT_FOR_SCANOUT;
1051
1052 mt = intel_miptree_create(brw, target, format, 0, 0,
1053 width, height, depth, num_samples,
1054 layout_flags);
1055 if (!mt)
1056 goto fail;
1057
1058 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
1059 ok = intel_miptree_alloc_hiz(brw, mt);
1060 if (!ok)
1061 goto fail;
1062 }
1063
1064 return mt;
1065
1066 fail:
1067 intel_miptree_release(&mt);
1068 return NULL;
1069 }
1070
1071 void
1072 intel_miptree_reference(struct intel_mipmap_tree **dst,
1073 struct intel_mipmap_tree *src)
1074 {
1075 if (*dst == src)
1076 return;
1077
1078 intel_miptree_release(dst);
1079
1080 if (src) {
1081 src->refcount++;
1082 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1083 }
1084
1085 *dst = src;
1086 }
1087
1088 static void
1089 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1090 {
1091 if (aux_buf == NULL)
1092 return;
1093
1094 brw_bo_unreference(aux_buf->bo);
1095
1096 free(aux_buf);
1097 }
1098
1099 void
1100 intel_miptree_release(struct intel_mipmap_tree **mt)
1101 {
1102 if (!*mt)
1103 return;
1104
1105 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1106 if (--(*mt)->refcount <= 0) {
1107 GLuint i;
1108
1109 DBG("%s deleting %p\n", __func__, *mt);
1110
1111 brw_bo_unreference((*mt)->bo);
1112 intel_miptree_release(&(*mt)->stencil_mt);
1113 intel_miptree_release(&(*mt)->r8stencil_mt);
1114 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1115 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1116 free_aux_state_map((*mt)->aux_state);
1117
1118 intel_miptree_release(&(*mt)->plane[0]);
1119 intel_miptree_release(&(*mt)->plane[1]);
1120
1121 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1122 free((*mt)->level[i].slice);
1123 }
1124
1125 free(*mt);
1126 }
1127 *mt = NULL;
1128 }
1129
1130
1131 void
1132 intel_get_image_dims(struct gl_texture_image *image,
1133 int *width, int *height, int *depth)
1134 {
1135 switch (image->TexObject->Target) {
1136 case GL_TEXTURE_1D_ARRAY:
1137 /* For a 1D Array texture the OpenGL API will treat the image height as
1138 * the number of array slices. For Intel hardware, we treat the 1D array
1139 * as a 2D Array with a height of 1. So, here we want to swap image
1140 * height and depth.
1141 */
1142 assert(image->Depth == 1);
1143 *width = image->Width;
1144 *height = 1;
1145 *depth = image->Height;
1146 break;
1147 case GL_TEXTURE_CUBE_MAP:
1148 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1149 * though we really have 6 slices.
1150 */
1151 assert(image->Depth == 1);
1152 *width = image->Width;
1153 *height = image->Height;
1154 *depth = 6;
1155 break;
1156 default:
1157 *width = image->Width;
1158 *height = image->Height;
1159 *depth = image->Depth;
1160 break;
1161 }
1162 }
1163
1164 /**
1165 * Can the image be pulled into a unified mipmap tree? This mirrors
1166 * the completeness test in a lot of ways.
1167 *
1168 * Not sure whether I want to pass gl_texture_image here.
1169 */
1170 bool
1171 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1172 struct gl_texture_image *image)
1173 {
1174 struct intel_texture_image *intelImage = intel_texture_image(image);
1175 GLuint level = intelImage->base.Base.Level;
1176 int width, height, depth;
1177
1178 /* glTexImage* choose the texture object based on the target passed in, and
1179 * objects can't change targets over their lifetimes, so this should be
1180 * true.
1181 */
1182 assert(image->TexObject->Target == mt->target);
1183
1184 mesa_format mt_format = mt->format;
1185 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1186 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1187 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1188 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1189 if (mt->etc_format != MESA_FORMAT_NONE)
1190 mt_format = mt->etc_format;
1191
1192 if (image->TexFormat != mt_format)
1193 return false;
1194
1195 intel_get_image_dims(image, &width, &height, &depth);
1196
1197 if (mt->target == GL_TEXTURE_CUBE_MAP)
1198 depth = 6;
1199
1200 if (mt->surf.size > 0) {
1201 if (level >= mt->surf.levels)
1202 return false;
1203
1204 const unsigned level_depth =
1205 mt->surf.dim == ISL_SURF_DIM_3D ?
1206 minify(mt->surf.logical_level0_px.depth, level) :
1207 mt->surf.logical_level0_px.array_len;
1208
1209 return width == minify(mt->surf.logical_level0_px.width, level) &&
1210 height == minify(mt->surf.logical_level0_px.height, level) &&
1211 depth == level_depth &&
1212 MAX2(image->NumSamples, 1) == mt->surf.samples;
1213 }
1214
1215 int level_depth = mt->level[level].depth;
1216 if (mt->num_samples > 1) {
1217 switch (mt->msaa_layout) {
1218 case INTEL_MSAA_LAYOUT_NONE:
1219 case INTEL_MSAA_LAYOUT_IMS:
1220 break;
1221 case INTEL_MSAA_LAYOUT_UMS:
1222 case INTEL_MSAA_LAYOUT_CMS:
1223 level_depth /= mt->num_samples;
1224 break;
1225 }
1226 }
1227
1228 /* Test image dimensions against the base level image adjusted for
1229 * minification. This will also catch images not present in the
1230 * tree, changed targets, etc.
1231 */
1232 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1233 height != minify(mt->logical_height0, level - mt->first_level) ||
1234 depth != level_depth) {
1235 return false;
1236 }
1237
1238 if (image->NumSamples != mt->num_samples)
1239 return false;
1240
1241 return true;
1242 }
1243
1244
1245 void
1246 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1247 GLuint level,
1248 GLuint x, GLuint y, GLuint d)
1249 {
1250 mt->level[level].depth = d;
1251 mt->level[level].level_x = x;
1252 mt->level[level].level_y = y;
1253
1254 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1255 level, d, x, y);
1256
1257 assert(mt->level[level].slice);
1258
1259 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1260 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1261 }
1262
1263
1264 void
1265 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1266 GLuint level, GLuint img,
1267 GLuint x, GLuint y)
1268 {
1269 if (img == 0 && level == 0)
1270 assert(x == 0 && y == 0);
1271
1272 assert(img < mt->level[level].depth);
1273
1274 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1275 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1276
1277 DBG("%s level %d img %d pos %d,%d\n",
1278 __func__, level, img,
1279 mt->level[level].slice[img].x_offset,
1280 mt->level[level].slice[img].y_offset);
1281 }
1282
1283 void
1284 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1285 GLuint level, GLuint slice,
1286 GLuint *x, GLuint *y)
1287 {
1288 if (mt->surf.size > 0) {
1289 uint32_t x_offset_sa, y_offset_sa;
1290
1291 /* Given level is relative to level zero while the miptree may be
1292 * represent just a subset of all levels starting from 'first_level'.
1293 */
1294 assert(level >= mt->first_level);
1295 level -= mt->first_level;
1296
1297 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1298 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1299 isl_surf_get_image_offset_sa(&mt->surf, level, slice, z,
1300 &x_offset_sa, &y_offset_sa);
1301
1302 *x = x_offset_sa;
1303 *y = y_offset_sa;
1304 return;
1305 }
1306
1307 assert(slice < mt->level[level].depth);
1308
1309 *x = mt->level[level].slice[slice].x_offset;
1310 *y = mt->level[level].slice[slice].y_offset;
1311 }
1312
1313
1314 /**
1315 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1316 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1317 * and tile_h is set to 1.
1318 */
1319 void
1320 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
1321 uint32_t *tile_w, uint32_t *tile_h)
1322 {
1323 switch (tiling) {
1324 case I915_TILING_X:
1325 *tile_w = 512;
1326 *tile_h = 8;
1327 break;
1328 case I915_TILING_Y:
1329 *tile_w = 128;
1330 *tile_h = 32;
1331 break;
1332 case I915_TILING_NONE:
1333 *tile_w = cpp;
1334 *tile_h = 1;
1335 break;
1336 default:
1337 unreachable("not reached");
1338 }
1339 }
1340
1341
1342 /**
1343 * This function computes masks that may be used to select the bits of the X
1344 * and Y coordinates that indicate the offset within a tile. If the BO is
1345 * untiled, the masks are set to 0.
1346 */
1347 void
1348 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
1349 uint32_t *mask_x, uint32_t *mask_y)
1350 {
1351 uint32_t tile_w_bytes, tile_h;
1352
1353 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1354
1355 *mask_x = tile_w_bytes / cpp - 1;
1356 *mask_y = tile_h - 1;
1357 }
1358
1359 /**
1360 * Compute the offset (in bytes) from the start of the BO to the given x
1361 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1362 * multiples of the tile size.
1363 */
1364 uint32_t
1365 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1366 uint32_t x, uint32_t y)
1367 {
1368 int cpp = mt->cpp;
1369 uint32_t pitch = mt->pitch;
1370 uint32_t tiling = mt->tiling;
1371
1372 switch (tiling) {
1373 default:
1374 unreachable("not reached");
1375 case I915_TILING_NONE:
1376 return y * pitch + x * cpp;
1377 case I915_TILING_X:
1378 assert((x % (512 / cpp)) == 0);
1379 assert((y % 8) == 0);
1380 return y * pitch + x / (512 / cpp) * 4096;
1381 case I915_TILING_Y:
1382 assert((x % (128 / cpp)) == 0);
1383 assert((y % 32) == 0);
1384 return y * pitch + x / (128 / cpp) * 4096;
1385 }
1386 }
1387
1388 /**
1389 * Rendering with tiled buffers requires that the base address of the buffer
1390 * be aligned to a page boundary. For renderbuffers, and sometimes with
1391 * textures, we may want the surface to point at a texture image level that
1392 * isn't at a page boundary.
1393 *
1394 * This function returns an appropriately-aligned base offset
1395 * according to the tiling restrictions, plus any required x/y offset
1396 * from there.
1397 */
1398 uint32_t
1399 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1400 GLuint level, GLuint slice,
1401 uint32_t *tile_x,
1402 uint32_t *tile_y)
1403 {
1404 uint32_t x, y;
1405 uint32_t mask_x, mask_y;
1406
1407 intel_get_tile_masks(mt->tiling, mt->cpp, &mask_x, &mask_y);
1408 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1409
1410 *tile_x = x & mask_x;
1411 *tile_y = y & mask_y;
1412
1413 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1414 }
1415
1416 static void
1417 intel_miptree_copy_slice_sw(struct brw_context *brw,
1418 struct intel_mipmap_tree *src_mt,
1419 unsigned src_level, unsigned src_layer,
1420 struct intel_mipmap_tree *dst_mt,
1421 unsigned dst_level, unsigned dst_layer,
1422 unsigned width, unsigned height)
1423 {
1424 void *src, *dst;
1425 ptrdiff_t src_stride, dst_stride;
1426 const unsigned cpp = dst_mt->surf.size > 0 ?
1427 (isl_format_get_layout(dst_mt->surf.format)->bpb / 8) : dst_mt->cpp;
1428
1429 intel_miptree_map(brw, src_mt,
1430 src_level, src_layer,
1431 0, 0,
1432 width, height,
1433 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1434 &src, &src_stride);
1435
1436 intel_miptree_map(brw, dst_mt,
1437 dst_level, dst_layer,
1438 0, 0,
1439 width, height,
1440 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1441 BRW_MAP_DIRECT_BIT,
1442 &dst, &dst_stride);
1443
1444 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1445 _mesa_get_format_name(src_mt->format),
1446 src_mt, src, src_stride,
1447 _mesa_get_format_name(dst_mt->format),
1448 dst_mt, dst, dst_stride,
1449 width, height);
1450
1451 int row_size = cpp * width;
1452 if (src_stride == row_size &&
1453 dst_stride == row_size) {
1454 memcpy(dst, src, row_size * height);
1455 } else {
1456 for (int i = 0; i < height; i++) {
1457 memcpy(dst, src, row_size);
1458 dst += dst_stride;
1459 src += src_stride;
1460 }
1461 }
1462
1463 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1464 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1465
1466 /* Don't forget to copy the stencil data over, too. We could have skipped
1467 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1468 * shuffling the two data sources in/out of temporary storage instead of
1469 * the direct mapping we get this way.
1470 */
1471 if (dst_mt->stencil_mt) {
1472 assert(src_mt->stencil_mt);
1473 intel_miptree_copy_slice_sw(brw,
1474 src_mt->stencil_mt, src_level, src_layer,
1475 dst_mt->stencil_mt, dst_level, dst_layer,
1476 width, height);
1477 }
1478 }
1479
1480 void
1481 intel_miptree_copy_slice(struct brw_context *brw,
1482 struct intel_mipmap_tree *src_mt,
1483 unsigned src_level, unsigned src_layer,
1484 struct intel_mipmap_tree *dst_mt,
1485 unsigned dst_level, unsigned dst_layer)
1486
1487 {
1488 mesa_format format = src_mt->format;
1489 uint32_t width, height;
1490
1491 if (src_mt->surf.size > 0) {
1492 width = minify(src_mt->surf.phys_level0_sa.width,
1493 src_level - src_mt->first_level);
1494 height = minify(src_mt->surf.phys_level0_sa.height,
1495 src_level - src_mt->first_level);
1496
1497 if (src_mt->surf.dim == ISL_SURF_DIM_3D)
1498 assert(src_layer < minify(src_mt->surf.phys_level0_sa.depth,
1499 src_level - src_mt->first_level));
1500 else
1501 assert(src_layer < src_mt->surf.phys_level0_sa.array_len);
1502 } else {
1503 width = minify(src_mt->physical_width0,
1504 src_level - src_mt->first_level);
1505 height = minify(src_mt->physical_height0,
1506 src_level - src_mt->first_level);
1507 assert(src_layer < src_mt->level[src_level].depth);
1508 }
1509
1510 assert(src_mt->format == dst_mt->format);
1511
1512 if (dst_mt->compressed) {
1513 unsigned int i, j;
1514 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1515 height = ALIGN_NPOT(height, j) / j;
1516 width = ALIGN_NPOT(width, i) / i;
1517 }
1518
1519 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1520 * below won't apply since we can't do the depth's Y tiling or the
1521 * stencil's W tiling in the blitter.
1522 */
1523 if (src_mt->stencil_mt) {
1524 intel_miptree_copy_slice_sw(brw,
1525 src_mt, src_level, src_layer,
1526 dst_mt, dst_level, dst_layer,
1527 width, height);
1528 return;
1529 }
1530
1531 uint32_t dst_x, dst_y, src_x, src_y;
1532 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1533 &dst_x, &dst_y);
1534 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1535 &src_x, &src_y);
1536
1537 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1538 _mesa_get_format_name(src_mt->format),
1539 src_mt, src_x, src_y, src_mt->pitch,
1540 _mesa_get_format_name(dst_mt->format),
1541 dst_mt, dst_x, dst_y, dst_mt->pitch,
1542 width, height);
1543
1544 if (!intel_miptree_blit(brw,
1545 src_mt, src_level, src_layer, 0, 0, false,
1546 dst_mt, dst_level, dst_layer, 0, 0, false,
1547 width, height, GL_COPY)) {
1548 perf_debug("miptree validate blit for %s failed\n",
1549 _mesa_get_format_name(format));
1550
1551 intel_miptree_copy_slice_sw(brw,
1552 src_mt, src_level, src_layer,
1553 dst_mt, dst_level, dst_layer,
1554 width, height);
1555 }
1556 }
1557
1558 /**
1559 * Copies the image's current data to the given miptree, and associates that
1560 * miptree with the image.
1561 *
1562 * If \c invalidate is true, then the actual image data does not need to be
1563 * copied, but the image still needs to be associated to the new miptree (this
1564 * is set to true if we're about to clear the image).
1565 */
1566 void
1567 intel_miptree_copy_teximage(struct brw_context *brw,
1568 struct intel_texture_image *intelImage,
1569 struct intel_mipmap_tree *dst_mt,
1570 bool invalidate)
1571 {
1572 struct intel_mipmap_tree *src_mt = intelImage->mt;
1573 struct intel_texture_object *intel_obj =
1574 intel_texture_object(intelImage->base.Base.TexObject);
1575 int level = intelImage->base.Base.Level;
1576 const unsigned face = intelImage->base.Base.Face;
1577 unsigned start_layer, end_layer;
1578
1579 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1580 assert(face == 0);
1581 assert(intelImage->base.Base.Height);
1582 start_layer = 0;
1583 end_layer = intelImage->base.Base.Height - 1;
1584 } else if (face > 0) {
1585 start_layer = face;
1586 end_layer = face;
1587 } else {
1588 assert(intelImage->base.Base.Depth);
1589 start_layer = 0;
1590 end_layer = intelImage->base.Base.Depth - 1;
1591 }
1592
1593 if (!invalidate) {
1594 for (unsigned i = start_layer; i <= end_layer; i++) {
1595 intel_miptree_copy_slice(brw,
1596 src_mt, level, i,
1597 dst_mt, level, i);
1598 }
1599 }
1600
1601 intel_miptree_reference(&intelImage->mt, dst_mt);
1602 intel_obj->needs_validate = true;
1603 }
1604
1605 static void
1606 intel_miptree_init_mcs(struct brw_context *brw,
1607 struct intel_mipmap_tree *mt,
1608 int init_value)
1609 {
1610 assert(mt->mcs_buf != NULL);
1611
1612 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1613 *
1614 * When MCS buffer is enabled and bound to MSRT, it is required that it
1615 * is cleared prior to any rendering.
1616 *
1617 * Since we don't use the MCS buffer for any purpose other than rendering,
1618 * it makes sense to just clear it immediately upon allocation.
1619 *
1620 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1621 */
1622 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1623 if (unlikely(map == NULL)) {
1624 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1625 brw_bo_unreference(mt->mcs_buf->bo);
1626 free(mt->mcs_buf);
1627 return;
1628 }
1629 void *data = map;
1630 memset(data, init_value, mt->mcs_buf->size);
1631 brw_bo_unmap(mt->mcs_buf->bo);
1632 }
1633
1634 static struct intel_miptree_aux_buffer *
1635 intel_alloc_aux_buffer(struct brw_context *brw,
1636 const char *name,
1637 const struct isl_surf *aux_surf,
1638 uint32_t alloc_flags,
1639 struct intel_mipmap_tree *mt)
1640 {
1641 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1642 if (!buf)
1643 return false;
1644
1645 buf->size = aux_surf->size;
1646 buf->pitch = aux_surf->row_pitch;
1647 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1648
1649 /* ISL has stricter set of alignment rules then the drm allocator.
1650 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1651 * trying to recalculate based on different format block sizes.
1652 */
1653 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1654 I915_TILING_Y, buf->pitch, alloc_flags);
1655 if (!buf->bo) {
1656 free(buf);
1657 return NULL;
1658 }
1659
1660 buf->surf = *aux_surf;
1661
1662 return buf;
1663 }
1664
1665 static bool
1666 intel_miptree_alloc_mcs(struct brw_context *brw,
1667 struct intel_mipmap_tree *mt,
1668 GLuint num_samples)
1669 {
1670 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1671 assert(mt->mcs_buf == NULL);
1672 assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1673
1674 /* Multisampled miptrees are only supported for single level. */
1675 assert(mt->first_level == 0);
1676 enum isl_aux_state **aux_state =
1677 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1678 if (!aux_state)
1679 return false;
1680
1681 struct isl_surf temp_main_surf;
1682 struct isl_surf temp_mcs_surf;
1683
1684 /* Create first an ISL presentation for the main color surface and let ISL
1685 * calculate equivalent MCS surface against it.
1686 */
1687 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1688 MAYBE_UNUSED bool ok =
1689 isl_surf_get_mcs_surf(&brw->isl_dev, &temp_main_surf, &temp_mcs_surf);
1690 assert(ok);
1691
1692 /* Buffer needs to be initialised requiring the buffer to be immediately
1693 * mapped to cpu space for writing. Therefore do not use the gpu access
1694 * flag which can cause an unnecessary delay if the backing pages happened
1695 * to be just used by the GPU.
1696 */
1697 const uint32_t alloc_flags = 0;
1698 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1699 &temp_mcs_surf, alloc_flags, mt);
1700 if (!mt->mcs_buf) {
1701 free(aux_state);
1702 return false;
1703 }
1704
1705 mt->aux_state = aux_state;
1706
1707 intel_miptree_init_mcs(brw, mt, 0xFF);
1708
1709 return true;
1710 }
1711
1712 bool
1713 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1714 struct intel_mipmap_tree *mt,
1715 bool is_lossless_compressed)
1716 {
1717 assert(mt->mcs_buf == NULL);
1718 assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1719
1720 struct isl_surf temp_main_surf;
1721 struct isl_surf temp_ccs_surf;
1722
1723 /* Create first an ISL presentation for the main color surface and let ISL
1724 * calculate equivalent CCS surface against it.
1725 */
1726 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1727 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1728 return false;
1729
1730 assert(temp_ccs_surf.size &&
1731 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1732
1733 enum isl_aux_state **aux_state =
1734 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1735 if (!aux_state)
1736 return false;
1737
1738 /* In case of compression mcs buffer needs to be initialised requiring the
1739 * buffer to be immediately mapped to cpu space for writing. Therefore do
1740 * not use the gpu access flag which can cause an unnecessary delay if the
1741 * backing pages happened to be just used by the GPU.
1742 */
1743 const uint32_t alloc_flags =
1744 is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1745 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1746 &temp_ccs_surf, alloc_flags, mt);
1747 if (!mt->mcs_buf) {
1748 free(aux_state);
1749 return false;
1750 }
1751
1752 mt->aux_state = aux_state;
1753
1754 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1755 * used for lossless compression which requires similar initialisation
1756 * as multi-sample compression.
1757 */
1758 if (is_lossless_compressed) {
1759 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1760 * resolve. Initialize it accordingly in case the first renderer is
1761 * cpu (or other none compression aware party).
1762 *
1763 * This is also explicitly stated in the spec (MCS Buffer for Render
1764 * Target(s)):
1765 * "If Software wants to enable Color Compression without Fast clear,
1766 * Software needs to initialize MCS with zeros."
1767 */
1768 intel_miptree_init_mcs(brw, mt, 0);
1769 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1770 }
1771
1772 return true;
1773 }
1774
1775 /**
1776 * Helper for intel_miptree_alloc_hiz() that sets
1777 * \c mt->level[level].has_hiz. Return true if and only if
1778 * \c has_hiz was set.
1779 */
1780 static bool
1781 intel_miptree_level_enable_hiz(struct brw_context *brw,
1782 struct intel_mipmap_tree *mt,
1783 uint32_t level)
1784 {
1785 assert(mt->hiz_buf);
1786
1787 if (brw->gen >= 8 || brw->is_haswell) {
1788 uint32_t width = minify(mt->physical_width0, level);
1789 uint32_t height = minify(mt->physical_height0, level);
1790
1791 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1792 * and the height is 4 aligned. This allows our HiZ support
1793 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1794 * we can grow the width & height to allow the HiZ op to
1795 * force the proper size alignments.
1796 */
1797 if (level > 0 && ((width & 7) || (height & 3))) {
1798 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1799 return false;
1800 }
1801 }
1802
1803 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1804 mt->level[level].has_hiz = true;
1805 return true;
1806 }
1807
1808 bool
1809 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1810 struct intel_mipmap_tree *mt)
1811 {
1812 if (!brw->has_hiz)
1813 return false;
1814
1815 if (mt->hiz_buf != NULL)
1816 return false;
1817
1818 if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1819 return false;
1820
1821 switch (mt->format) {
1822 case MESA_FORMAT_Z_FLOAT32:
1823 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1824 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1825 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1826 case MESA_FORMAT_Z_UNORM16:
1827 return true;
1828 default:
1829 return false;
1830 }
1831 }
1832
1833 bool
1834 intel_miptree_alloc_hiz(struct brw_context *brw,
1835 struct intel_mipmap_tree *mt)
1836 {
1837 assert(mt->hiz_buf == NULL);
1838 assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1839
1840 enum isl_aux_state **aux_state =
1841 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1842 if (!aux_state)
1843 return false;
1844
1845 struct isl_surf temp_main_surf;
1846 struct isl_surf temp_hiz_surf;
1847
1848 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1849 MAYBE_UNUSED bool ok =
1850 isl_surf_get_hiz_surf(&brw->isl_dev, &temp_main_surf, &temp_hiz_surf);
1851 assert(ok);
1852
1853 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1854 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1855 &temp_hiz_surf, alloc_flags, mt);
1856
1857 if (!mt->hiz_buf) {
1858 free(aux_state);
1859 return false;
1860 }
1861
1862 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1863 intel_miptree_level_enable_hiz(brw, mt, level);
1864
1865 mt->aux_state = aux_state;
1866
1867 return true;
1868 }
1869
1870 /**
1871 * Can the miptree sample using the hiz buffer?
1872 */
1873 bool
1874 intel_miptree_sample_with_hiz(struct brw_context *brw,
1875 struct intel_mipmap_tree *mt)
1876 {
1877 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1878 * so keep things conservative for now and never enable it unless we're SKL+.
1879 */
1880 if (brw->gen < 9) {
1881 return false;
1882 }
1883
1884 if (!mt->hiz_buf) {
1885 return false;
1886 }
1887
1888 /* It seems the hardware won't fallback to the depth buffer if some of the
1889 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1890 * of the texture to be HiZ enabled.
1891 */
1892 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1893 if (!intel_miptree_level_has_hiz(mt, level))
1894 return false;
1895 }
1896
1897 /* If compressed multisampling is enabled, then we use it for the auxiliary
1898 * buffer instead.
1899 *
1900 * From the BDW PRM (Volume 2d: Command Reference: Structures
1901 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1902 *
1903 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1904 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1905 *
1906 * There is no such blurb for 1D textures, but there is sufficient evidence
1907 * that this is broken on SKL+.
1908 */
1909 return (mt->num_samples <= 1 &&
1910 mt->target != GL_TEXTURE_3D &&
1911 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1912 }
1913
1914 /**
1915 * Does the miptree slice have hiz enabled?
1916 */
1917 bool
1918 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1919 {
1920 intel_miptree_check_level_layer(mt, level, 0);
1921 return mt->level[level].has_hiz;
1922 }
1923
1924 bool
1925 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1926 unsigned start_level, unsigned num_levels,
1927 unsigned start_layer, unsigned num_layers)
1928 {
1929 assert(_mesa_is_format_color_format(mt->format));
1930
1931 if (!mt->mcs_buf)
1932 return false;
1933
1934 /* Clamp the level range to fit the miptree */
1935 assert(start_level + num_levels >= start_level);
1936 const uint32_t last_level =
1937 MIN2(mt->last_level, start_level + num_levels - 1);
1938 start_level = MAX2(mt->first_level, start_level);
1939 num_levels = last_level - start_level + 1;
1940
1941 for (uint32_t level = start_level; level <= last_level; level++) {
1942 const uint32_t level_layers = MIN2(num_layers, mt->level[level].depth);
1943 for (unsigned a = 0; a < level_layers; a++) {
1944 enum isl_aux_state aux_state =
1945 intel_miptree_get_aux_state(mt, level, start_layer + a);
1946 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1947 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1948 return true;
1949 }
1950 }
1951
1952 return false;
1953 }
1954
1955 static void
1956 intel_miptree_check_color_resolve(const struct brw_context *brw,
1957 const struct intel_mipmap_tree *mt,
1958 unsigned level, unsigned layer)
1959 {
1960
1961 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
1962 return;
1963
1964 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1965 assert(brw->gen >= 8 ||
1966 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1967
1968 /* Compression of arrayed msaa surfaces is supported. */
1969 if (mt->num_samples > 1)
1970 return;
1971
1972 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1973 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
1974
1975 (void)level;
1976 (void)layer;
1977 }
1978
1979 static enum blorp_fast_clear_op
1980 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1981 bool ccs_supported, bool fast_clear_supported)
1982 {
1983 assert(ccs_supported == fast_clear_supported);
1984
1985 switch (aux_state) {
1986 case ISL_AUX_STATE_CLEAR:
1987 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1988 if (!ccs_supported)
1989 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1990 else
1991 return BLORP_FAST_CLEAR_OP_NONE;
1992
1993 case ISL_AUX_STATE_PASS_THROUGH:
1994 return BLORP_FAST_CLEAR_OP_NONE;
1995
1996 case ISL_AUX_STATE_RESOLVED:
1997 case ISL_AUX_STATE_AUX_INVALID:
1998 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1999 break;
2000 }
2001
2002 unreachable("Invalid aux state for CCS_D");
2003 }
2004
2005 static enum blorp_fast_clear_op
2006 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2007 bool ccs_supported, bool fast_clear_supported)
2008 {
2009 switch (aux_state) {
2010 case ISL_AUX_STATE_CLEAR:
2011 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2012 if (!ccs_supported)
2013 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2014 else if (!fast_clear_supported)
2015 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2016 else
2017 return BLORP_FAST_CLEAR_OP_NONE;
2018
2019 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2020 if (!ccs_supported)
2021 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2022 else
2023 return BLORP_FAST_CLEAR_OP_NONE;
2024
2025 case ISL_AUX_STATE_PASS_THROUGH:
2026 return BLORP_FAST_CLEAR_OP_NONE;
2027
2028 case ISL_AUX_STATE_RESOLVED:
2029 case ISL_AUX_STATE_AUX_INVALID:
2030 break;
2031 }
2032
2033 unreachable("Invalid aux state for CCS_E");
2034 }
2035
2036 static void
2037 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2038 struct intel_mipmap_tree *mt,
2039 uint32_t level, uint32_t layer,
2040 bool aux_supported,
2041 bool fast_clear_supported)
2042 {
2043 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2044
2045 enum blorp_fast_clear_op resolve_op;
2046 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2047 resolve_op = get_ccs_e_resolve_op(aux_state, aux_supported,
2048 fast_clear_supported);
2049 } else {
2050 resolve_op = get_ccs_d_resolve_op(aux_state, aux_supported,
2051 fast_clear_supported);
2052 }
2053
2054 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2055 intel_miptree_check_color_resolve(brw, mt, level, layer);
2056 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2057
2058 switch (resolve_op) {
2059 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2060 /* The CCS full resolve operation destroys the CCS and sets it to the
2061 * pass-through state. (You can also think of this as being both a
2062 * resolve and an ambiguate in one operation.)
2063 */
2064 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2065 ISL_AUX_STATE_PASS_THROUGH);
2066 break;
2067
2068 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2069 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2070 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2071 break;
2072
2073 default:
2074 unreachable("Invalid resolve op");
2075 }
2076 }
2077 }
2078
2079 static void
2080 intel_miptree_finish_ccs_write(struct brw_context *brw,
2081 struct intel_mipmap_tree *mt,
2082 uint32_t level, uint32_t layer,
2083 bool written_with_ccs)
2084 {
2085 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2086
2087 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2088 switch (aux_state) {
2089 case ISL_AUX_STATE_CLEAR:
2090 assert(written_with_ccs);
2091 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2092 ISL_AUX_STATE_COMPRESSED_CLEAR);
2093 break;
2094
2095 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2096 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2097 assert(written_with_ccs);
2098 break; /* Nothing to do */
2099
2100 case ISL_AUX_STATE_PASS_THROUGH:
2101 if (written_with_ccs) {
2102 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2103 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2104 } else {
2105 /* Nothing to do */
2106 }
2107 break;
2108
2109 case ISL_AUX_STATE_RESOLVED:
2110 case ISL_AUX_STATE_AUX_INVALID:
2111 unreachable("Invalid aux state for CCS_E");
2112 }
2113 } else {
2114 /* CCS_D is a bit simpler */
2115 switch (aux_state) {
2116 case ISL_AUX_STATE_CLEAR:
2117 assert(written_with_ccs);
2118 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2119 ISL_AUX_STATE_COMPRESSED_CLEAR);
2120 break;
2121
2122 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2123 assert(written_with_ccs);
2124 break; /* Nothing to do */
2125
2126 case ISL_AUX_STATE_PASS_THROUGH:
2127 /* Nothing to do */
2128 break;
2129
2130 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2131 case ISL_AUX_STATE_RESOLVED:
2132 case ISL_AUX_STATE_AUX_INVALID:
2133 unreachable("Invalid aux state for CCS_D");
2134 }
2135 }
2136 }
2137
2138 static void
2139 intel_miptree_finish_mcs_write(struct brw_context *brw,
2140 struct intel_mipmap_tree *mt,
2141 uint32_t level, uint32_t layer,
2142 bool written_with_aux)
2143 {
2144 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2145 case ISL_AUX_STATE_CLEAR:
2146 assert(written_with_aux);
2147 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2148 ISL_AUX_STATE_COMPRESSED_CLEAR);
2149 break;
2150
2151 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2152 assert(written_with_aux);
2153 break; /* Nothing to do */
2154
2155 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2156 case ISL_AUX_STATE_RESOLVED:
2157 case ISL_AUX_STATE_PASS_THROUGH:
2158 case ISL_AUX_STATE_AUX_INVALID:
2159 unreachable("Invalid aux state for MCS");
2160 }
2161 }
2162
2163 static void
2164 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2165 struct intel_mipmap_tree *mt,
2166 uint32_t level, uint32_t layer,
2167 bool hiz_supported, bool fast_clear_supported)
2168 {
2169 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2170 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2171 case ISL_AUX_STATE_CLEAR:
2172 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2173 if (!hiz_supported || !fast_clear_supported)
2174 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2175 break;
2176
2177 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2178 if (!hiz_supported)
2179 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2180 break;
2181
2182 case ISL_AUX_STATE_PASS_THROUGH:
2183 case ISL_AUX_STATE_RESOLVED:
2184 break;
2185
2186 case ISL_AUX_STATE_AUX_INVALID:
2187 if (hiz_supported)
2188 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2189 break;
2190 }
2191
2192 if (hiz_op != BLORP_HIZ_OP_NONE) {
2193 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2194
2195 switch (hiz_op) {
2196 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2197 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2198 ISL_AUX_STATE_RESOLVED);
2199 break;
2200
2201 case BLORP_HIZ_OP_HIZ_RESOLVE:
2202 /* The HiZ resolve operation is actually an ambiguate */
2203 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2204 ISL_AUX_STATE_PASS_THROUGH);
2205 break;
2206
2207 default:
2208 unreachable("Invalid HiZ op");
2209 }
2210 }
2211 }
2212
2213 static void
2214 intel_miptree_finish_hiz_write(struct brw_context *brw,
2215 struct intel_mipmap_tree *mt,
2216 uint32_t level, uint32_t layer,
2217 bool written_with_hiz)
2218 {
2219 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2220 case ISL_AUX_STATE_CLEAR:
2221 assert(written_with_hiz);
2222 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2223 ISL_AUX_STATE_COMPRESSED_CLEAR);
2224 break;
2225
2226 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2227 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2228 assert(written_with_hiz);
2229 break; /* Nothing to do */
2230
2231 case ISL_AUX_STATE_RESOLVED:
2232 if (written_with_hiz) {
2233 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2234 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2235 } else {
2236 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2237 ISL_AUX_STATE_AUX_INVALID);
2238 }
2239 break;
2240
2241 case ISL_AUX_STATE_PASS_THROUGH:
2242 if (written_with_hiz) {
2243 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2244 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2245 }
2246 break;
2247
2248 case ISL_AUX_STATE_AUX_INVALID:
2249 assert(!written_with_hiz);
2250 break;
2251 }
2252 }
2253
2254 static inline uint32_t
2255 miptree_level_range_length(const struct intel_mipmap_tree *mt,
2256 uint32_t start_level, uint32_t num_levels)
2257 {
2258 assert(start_level >= mt->first_level);
2259 assert(start_level <= mt->last_level);
2260
2261 if (num_levels == INTEL_REMAINING_LAYERS)
2262 num_levels = mt->last_level - start_level + 1;
2263 /* Check for overflow */
2264 assert(start_level + num_levels >= start_level);
2265 assert(start_level + num_levels <= mt->last_level + 1);
2266
2267 return num_levels;
2268 }
2269
2270 static inline uint32_t
2271 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2272 uint32_t start_layer, uint32_t num_layers)
2273 {
2274 assert(level <= mt->last_level);
2275 uint32_t total_num_layers;
2276
2277 if (mt->surf.size > 0)
2278 total_num_layers = mt->surf.dim == ISL_SURF_DIM_3D ?
2279 minify(mt->surf.phys_level0_sa.depth, level) :
2280 mt->surf.phys_level0_sa.array_len;
2281 else
2282 total_num_layers = mt->level[level].depth;
2283
2284 assert(start_layer < total_num_layers);
2285 if (num_layers == INTEL_REMAINING_LAYERS)
2286 num_layers = total_num_layers - start_layer;
2287 /* Check for overflow */
2288 assert(start_layer + num_layers >= start_layer);
2289 assert(start_layer + num_layers <= total_num_layers);
2290
2291 return num_layers;
2292 }
2293
2294 void
2295 intel_miptree_prepare_access(struct brw_context *brw,
2296 struct intel_mipmap_tree *mt,
2297 uint32_t start_level, uint32_t num_levels,
2298 uint32_t start_layer, uint32_t num_layers,
2299 bool aux_supported, bool fast_clear_supported)
2300 {
2301 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2302
2303 if (_mesa_is_format_color_format(mt->format)) {
2304 if (!mt->mcs_buf)
2305 return;
2306
2307 if (mt->num_samples > 1) {
2308 /* Nothing to do for MSAA */
2309 assert(aux_supported && fast_clear_supported);
2310 } else {
2311 for (uint32_t l = 0; l < num_levels; l++) {
2312 const uint32_t level = start_level + l;
2313 const uint32_t level_layers =
2314 miptree_layer_range_length(mt, level, start_layer, num_layers);
2315 for (uint32_t a = 0; a < level_layers; a++) {
2316 intel_miptree_prepare_ccs_access(brw, mt, level,
2317 start_layer + a, aux_supported,
2318 fast_clear_supported);
2319 }
2320 }
2321 }
2322 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2323 /* Nothing to do for stencil */
2324 } else {
2325 if (!mt->hiz_buf)
2326 return;
2327
2328 for (uint32_t l = 0; l < num_levels; l++) {
2329 const uint32_t level = start_level + l;
2330 if (!intel_miptree_level_has_hiz(mt, level))
2331 continue;
2332
2333 const uint32_t level_layers =
2334 miptree_layer_range_length(mt, level, start_layer, num_layers);
2335 for (uint32_t a = 0; a < level_layers; a++) {
2336 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2337 aux_supported,
2338 fast_clear_supported);
2339 }
2340 }
2341 }
2342 }
2343
2344 void
2345 intel_miptree_finish_write(struct brw_context *brw,
2346 struct intel_mipmap_tree *mt, uint32_t level,
2347 uint32_t start_layer, uint32_t num_layers,
2348 bool written_with_aux)
2349 {
2350 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2351
2352 if (_mesa_is_format_color_format(mt->format)) {
2353 if (!mt->mcs_buf)
2354 return;
2355
2356 if (mt->num_samples > 1) {
2357 for (uint32_t a = 0; a < num_layers; a++) {
2358 intel_miptree_finish_mcs_write(brw, mt, level, start_layer + a,
2359 written_with_aux);
2360 }
2361 } else {
2362 for (uint32_t a = 0; a < num_layers; a++) {
2363 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2364 written_with_aux);
2365 }
2366 }
2367 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2368 /* Nothing to do for stencil */
2369 } else {
2370 if (!intel_miptree_level_has_hiz(mt, level))
2371 return;
2372
2373 for (uint32_t a = 0; a < num_layers; a++) {
2374 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2375 written_with_aux);
2376 }
2377 }
2378 }
2379
2380 enum isl_aux_state
2381 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2382 uint32_t level, uint32_t layer)
2383 {
2384 intel_miptree_check_level_layer(mt, level, layer);
2385
2386 if (_mesa_is_format_color_format(mt->format)) {
2387 assert(mt->mcs_buf != NULL);
2388 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2389 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2390 unreachable("Cannot get aux state for stencil");
2391 } else {
2392 assert(intel_miptree_level_has_hiz(mt, level));
2393 }
2394
2395 return mt->aux_state[level][layer];
2396 }
2397
2398 void
2399 intel_miptree_set_aux_state(struct brw_context *brw,
2400 struct intel_mipmap_tree *mt, uint32_t level,
2401 uint32_t start_layer, uint32_t num_layers,
2402 enum isl_aux_state aux_state)
2403 {
2404 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2405
2406 if (_mesa_is_format_color_format(mt->format)) {
2407 assert(mt->mcs_buf != NULL);
2408 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2409 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2410 unreachable("Cannot get aux state for stencil");
2411 } else {
2412 assert(intel_miptree_level_has_hiz(mt, level));
2413 }
2414
2415 for (unsigned a = 0; a < num_layers; a++)
2416 mt->aux_state[level][start_layer + a] = aux_state;
2417 }
2418
2419 /* On Gen9 color buffers may be compressed by the hardware (lossless
2420 * compression). There are, however, format restrictions and care needs to be
2421 * taken that the sampler engine is capable for re-interpreting a buffer with
2422 * format different the buffer was originally written with.
2423 *
2424 * For example, SRGB formats are not compressible and the sampler engine isn't
2425 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2426 * color buffer needs to be resolved so that the sampling surface can be
2427 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2428 * set).
2429 */
2430 static bool
2431 can_texture_with_ccs(struct brw_context *brw,
2432 struct intel_mipmap_tree *mt,
2433 mesa_format view_format)
2434 {
2435 if (!intel_miptree_is_lossless_compressed(brw, mt))
2436 return false;
2437
2438 enum isl_format isl_mt_format = brw_isl_format_for_mesa_format(mt->format);
2439 enum isl_format isl_view_format = brw_isl_format_for_mesa_format(view_format);
2440
2441 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2442 isl_mt_format, isl_view_format)) {
2443 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2444 _mesa_get_format_name(view_format),
2445 _mesa_get_format_name(mt->format));
2446 return false;
2447 }
2448
2449 return true;
2450 }
2451
2452 static void
2453 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2454 struct intel_mipmap_tree *mt,
2455 mesa_format view_format,
2456 uint32_t start_level, uint32_t num_levels,
2457 uint32_t start_layer, uint32_t num_layers,
2458 bool *aux_supported_out)
2459 {
2460 bool aux_supported, clear_supported;
2461 if (_mesa_is_format_color_format(mt->format)) {
2462 if (mt->num_samples > 1) {
2463 aux_supported = clear_supported = true;
2464 } else {
2465 aux_supported = can_texture_with_ccs(brw, mt, view_format);
2466
2467 /* Clear color is specified as ints or floats and the conversion is
2468 * done by the sampler. If we have a texture view, we would have to
2469 * perform the clear color conversion manually. Just disable clear
2470 * color.
2471 */
2472 clear_supported = aux_supported && (mt->format == view_format);
2473 }
2474 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2475 aux_supported = clear_supported = false;
2476 } else {
2477 aux_supported = clear_supported = intel_miptree_sample_with_hiz(brw, mt);
2478 }
2479
2480 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2481 start_layer, num_layers,
2482 aux_supported, clear_supported);
2483 if (aux_supported_out)
2484 *aux_supported_out = aux_supported;
2485 }
2486
2487 void
2488 intel_miptree_prepare_texture(struct brw_context *brw,
2489 struct intel_mipmap_tree *mt,
2490 mesa_format view_format,
2491 bool *aux_supported_out)
2492 {
2493 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2494 0, INTEL_REMAINING_LEVELS,
2495 0, INTEL_REMAINING_LAYERS,
2496 aux_supported_out);
2497 }
2498
2499 void
2500 intel_miptree_prepare_image(struct brw_context *brw,
2501 struct intel_mipmap_tree *mt)
2502 {
2503 /* The data port doesn't understand any compression */
2504 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2505 0, INTEL_REMAINING_LAYERS, false, false);
2506 }
2507
2508 void
2509 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2510 struct intel_mipmap_tree *mt, uint32_t level,
2511 uint32_t start_layer, uint32_t num_layers)
2512 {
2513 intel_miptree_prepare_texture_slices(brw, mt, mt->format, level, 1,
2514 start_layer, num_layers, NULL);
2515 }
2516
2517 void
2518 intel_miptree_prepare_render(struct brw_context *brw,
2519 struct intel_mipmap_tree *mt, uint32_t level,
2520 uint32_t start_layer, uint32_t layer_count,
2521 bool srgb_enabled)
2522 {
2523 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of
2524 * the single-sampled color renderbuffers because the CCS buffer isn't
2525 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
2526 * enabled because otherwise the surface state will be programmed with
2527 * the linear equivalent format anyway.
2528 */
2529 if (brw->gen == 9 && srgb_enabled && mt->num_samples <= 1 &&
2530 _mesa_get_srgb_format_linear(mt->format) != mt->format) {
2531
2532 /* Lossless compression is not supported for SRGB formats, it
2533 * should be impossible to get here with such surfaces.
2534 */
2535 assert(!intel_miptree_is_lossless_compressed(brw, mt));
2536 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2537 false, false);
2538 }
2539
2540 /* For layered rendering non-compressed fast cleared buffers need to be
2541 * resolved. Surface state can carry only one fast color clear value
2542 * while each layer may have its own fast clear color value. For
2543 * compressed buffers color value is available in the color buffer.
2544 */
2545 if (layer_count > 1 &&
2546 !(mt->aux_disable & INTEL_AUX_DISABLE_CCS) &&
2547 !intel_miptree_is_lossless_compressed(brw, mt)) {
2548 assert(brw->gen >= 8);
2549
2550 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2551 false, false);
2552 }
2553 }
2554
2555 void
2556 intel_miptree_finish_render(struct brw_context *brw,
2557 struct intel_mipmap_tree *mt, uint32_t level,
2558 uint32_t start_layer, uint32_t layer_count)
2559 {
2560 assert(_mesa_is_format_color_format(mt->format));
2561 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2562 mt->mcs_buf != NULL);
2563 }
2564
2565 void
2566 intel_miptree_prepare_depth(struct brw_context *brw,
2567 struct intel_mipmap_tree *mt, uint32_t level,
2568 uint32_t start_layer, uint32_t layer_count)
2569 {
2570 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2571 mt->hiz_buf != NULL, mt->hiz_buf != NULL);
2572 }
2573
2574 void
2575 intel_miptree_finish_depth(struct brw_context *brw,
2576 struct intel_mipmap_tree *mt, uint32_t level,
2577 uint32_t start_layer, uint32_t layer_count,
2578 bool depth_written)
2579 {
2580 if (depth_written) {
2581 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2582 mt->hiz_buf != NULL);
2583 }
2584 }
2585
2586 /**
2587 * Make it possible to share the BO backing the given miptree with another
2588 * process or another miptree.
2589 *
2590 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2591 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2592 * ensure that no MCS buffer gets allocated in the future.
2593 *
2594 * HiZ is similarly unsafe with shared buffers.
2595 */
2596 void
2597 intel_miptree_make_shareable(struct brw_context *brw,
2598 struct intel_mipmap_tree *mt)
2599 {
2600 /* MCS buffers are also used for multisample buffers, but we can't resolve
2601 * away a multisample MCS buffer because it's an integral part of how the
2602 * pixel data is stored. Fortunately this code path should never be
2603 * reached for multisample buffers.
2604 */
2605 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2606
2607 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2608 0, INTEL_REMAINING_LAYERS, false, false);
2609
2610 if (mt->mcs_buf) {
2611 mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2612 brw_bo_unreference(mt->mcs_buf->bo);
2613 free(mt->mcs_buf);
2614 mt->mcs_buf = NULL;
2615
2616 /* Any pending MCS/CCS operations are no longer needed. Trying to
2617 * execute any will likely crash due to the missing aux buffer. So let's
2618 * delete all pending ops.
2619 */
2620 free(mt->aux_state);
2621 mt->aux_state = NULL;
2622 }
2623
2624 if (mt->hiz_buf) {
2625 mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2626 intel_miptree_aux_buffer_free(mt->hiz_buf);
2627 mt->hiz_buf = NULL;
2628
2629 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2630 mt->level[l].has_hiz = false;
2631 }
2632
2633 /* Any pending HiZ operations are no longer needed. Trying to execute
2634 * any will likely crash due to the missing aux buffer. So let's delete
2635 * all pending ops.
2636 */
2637 free(mt->aux_state);
2638 mt->aux_state = NULL;
2639 }
2640 }
2641
2642
2643 /**
2644 * \brief Get pointer offset into stencil buffer.
2645 *
2646 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2647 * must decode the tile's layout in software.
2648 *
2649 * See
2650 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2651 * Format.
2652 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2653 *
2654 * Even though the returned offset is always positive, the return type is
2655 * signed due to
2656 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2657 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2658 */
2659 static intptr_t
2660 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2661 {
2662 uint32_t tile_size = 4096;
2663 uint32_t tile_width = 64;
2664 uint32_t tile_height = 64;
2665 uint32_t row_size = 64 * stride;
2666
2667 uint32_t tile_x = x / tile_width;
2668 uint32_t tile_y = y / tile_height;
2669
2670 /* The byte's address relative to the tile's base addres. */
2671 uint32_t byte_x = x % tile_width;
2672 uint32_t byte_y = y % tile_height;
2673
2674 uintptr_t u = tile_y * row_size
2675 + tile_x * tile_size
2676 + 512 * (byte_x / 8)
2677 + 64 * (byte_y / 8)
2678 + 32 * ((byte_y / 4) % 2)
2679 + 16 * ((byte_x / 4) % 2)
2680 + 8 * ((byte_y / 2) % 2)
2681 + 4 * ((byte_x / 2) % 2)
2682 + 2 * (byte_y % 2)
2683 + 1 * (byte_x % 2);
2684
2685 if (swizzled) {
2686 /* adjust for bit6 swizzling */
2687 if (((byte_x / 8) % 2) == 1) {
2688 if (((byte_y / 8) % 2) == 0) {
2689 u += 64;
2690 } else {
2691 u -= 64;
2692 }
2693 }
2694 }
2695
2696 return u;
2697 }
2698
2699 void
2700 intel_miptree_updownsample(struct brw_context *brw,
2701 struct intel_mipmap_tree *src,
2702 struct intel_mipmap_tree *dst)
2703 {
2704 unsigned src_w, src_h, dst_w, dst_h;
2705
2706 if (src->surf.size > 0) {
2707 src_w = src->surf.logical_level0_px.width;
2708 src_h = src->surf.logical_level0_px.height;
2709 } else {
2710 src_w = src->logical_width0;
2711 src_h = src->logical_height0;
2712 }
2713
2714 if (dst->surf.size > 0) {
2715 dst_w = dst->surf.logical_level0_px.width;
2716 dst_h = dst->surf.logical_level0_px.height;
2717 } else {
2718 dst_w = dst->logical_width0;
2719 dst_h = dst->logical_height0;
2720 }
2721
2722 brw_blorp_blit_miptrees(brw,
2723 src, 0 /* level */, 0 /* layer */,
2724 src->format, SWIZZLE_XYZW,
2725 dst, 0 /* level */, 0 /* layer */, dst->format,
2726 0, 0, src_w, src_h,
2727 0, 0, dst_w, dst_h,
2728 GL_NEAREST, false, false /*mirror x, y*/,
2729 false, false);
2730
2731 if (src->stencil_mt) {
2732 if (src->stencil_mt->surf.size > 0) {
2733 src_w = src->stencil_mt->surf.logical_level0_px.width;
2734 src_h = src->stencil_mt->surf.logical_level0_px.height;
2735 } else {
2736 src_w = src->stencil_mt->logical_width0;
2737 src_h = src->stencil_mt->logical_height0;
2738 }
2739
2740 if (dst->stencil_mt->surf.size > 0) {
2741 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2742 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2743 } else {
2744 dst_w = dst->stencil_mt->logical_width0;
2745 dst_h = dst->stencil_mt->logical_height0;
2746 }
2747
2748 brw_blorp_blit_miptrees(brw,
2749 src->stencil_mt, 0 /* level */, 0 /* layer */,
2750 src->stencil_mt->format, SWIZZLE_XYZW,
2751 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2752 dst->stencil_mt->format,
2753 0, 0, src_w, src_h,
2754 0, 0, dst_w, dst_h,
2755 GL_NEAREST, false, false /*mirror x, y*/,
2756 false, false /* decode/encode srgb */);
2757 }
2758 }
2759
2760 void
2761 intel_update_r8stencil(struct brw_context *brw,
2762 struct intel_mipmap_tree *mt)
2763 {
2764 assert(brw->gen >= 7);
2765 struct intel_mipmap_tree *src =
2766 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2767 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2768 return;
2769
2770 if (!mt->r8stencil_mt) {
2771 const uint32_t r8stencil_flags =
2772 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2773 MIPTREE_LAYOUT_DISABLE_AUX;
2774 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2775 mt->r8stencil_mt = intel_miptree_create(brw,
2776 src->target,
2777 MESA_FORMAT_R_UINT8,
2778 src->first_level,
2779 src->last_level,
2780 src->logical_width0,
2781 src->logical_height0,
2782 src->logical_depth0,
2783 src->num_samples,
2784 r8stencil_flags);
2785 assert(mt->r8stencil_mt);
2786 }
2787
2788 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2789
2790 for (int level = src->first_level; level <= src->last_level; level++) {
2791 const unsigned depth = src->level[level].depth;
2792
2793 for (unsigned layer = 0; layer < depth; layer++) {
2794 brw_blorp_copy_miptrees(brw,
2795 src, level, layer,
2796 dst, level, layer,
2797 0, 0, 0, 0,
2798 minify(src->logical_width0, level),
2799 minify(src->logical_height0, level));
2800 }
2801 }
2802
2803 brw_render_cache_set_check_flush(brw, dst->bo);
2804 src->r8stencil_needs_update = false;
2805 }
2806
2807 static void *
2808 intel_miptree_map_raw(struct brw_context *brw,
2809 struct intel_mipmap_tree *mt,
2810 GLbitfield mode)
2811 {
2812 struct brw_bo *bo = mt->bo;
2813
2814 if (brw_batch_references(&brw->batch, bo))
2815 intel_batchbuffer_flush(brw);
2816
2817 return brw_bo_map(brw, bo, mode);
2818 }
2819
2820 static void
2821 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2822 {
2823 brw_bo_unmap(mt->bo);
2824 }
2825
2826 static void
2827 intel_miptree_map_gtt(struct brw_context *brw,
2828 struct intel_mipmap_tree *mt,
2829 struct intel_miptree_map *map,
2830 unsigned int level, unsigned int slice)
2831 {
2832 unsigned int bw, bh;
2833 void *base;
2834 unsigned int image_x, image_y;
2835 intptr_t x = map->x;
2836 intptr_t y = map->y;
2837
2838 /* For compressed formats, the stride is the number of bytes per
2839 * row of blocks. intel_miptree_get_image_offset() already does
2840 * the divide.
2841 */
2842 _mesa_get_format_block_size(mt->format, &bw, &bh);
2843 assert(y % bh == 0);
2844 assert(x % bw == 0);
2845 y /= bh;
2846 x /= bw;
2847
2848 base = intel_miptree_map_raw(brw, mt, map->mode) + mt->offset;
2849
2850 if (base == NULL)
2851 map->ptr = NULL;
2852 else {
2853 /* Note that in the case of cube maps, the caller must have passed the
2854 * slice number referencing the face.
2855 */
2856 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2857 x += image_x;
2858 y += image_y;
2859
2860 map->stride = mt->pitch;
2861 map->ptr = base + y * map->stride + x * mt->cpp;
2862 }
2863
2864 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2865 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2866 map->x, map->y, map->w, map->h,
2867 mt, _mesa_get_format_name(mt->format),
2868 x, y, map->ptr, map->stride);
2869 }
2870
2871 static void
2872 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2873 {
2874 intel_miptree_unmap_raw(mt);
2875 }
2876
2877 static void
2878 intel_miptree_map_blit(struct brw_context *brw,
2879 struct intel_mipmap_tree *mt,
2880 struct intel_miptree_map *map,
2881 unsigned int level, unsigned int slice)
2882 {
2883 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2884 /* first_level */ 0,
2885 /* last_level */ 0,
2886 map->w, map->h, 1,
2887 /* samples */ 0,
2888 MIPTREE_LAYOUT_TILING_NONE);
2889
2890 if (!map->linear_mt) {
2891 fprintf(stderr, "Failed to allocate blit temporary\n");
2892 goto fail;
2893 }
2894 map->stride = map->linear_mt->pitch;
2895
2896 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2897 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2898 * invalidate is set, since we'll be writing the whole rectangle from our
2899 * temporary buffer back out.
2900 */
2901 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2902 if (!intel_miptree_copy(brw,
2903 mt, level, slice, map->x, map->y,
2904 map->linear_mt, 0, 0, 0, 0,
2905 map->w, map->h)) {
2906 fprintf(stderr, "Failed to blit\n");
2907 goto fail;
2908 }
2909 }
2910
2911 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2912
2913 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2914 map->x, map->y, map->w, map->h,
2915 mt, _mesa_get_format_name(mt->format),
2916 level, slice, map->ptr, map->stride);
2917
2918 return;
2919
2920 fail:
2921 intel_miptree_release(&map->linear_mt);
2922 map->ptr = NULL;
2923 map->stride = 0;
2924 }
2925
2926 static void
2927 intel_miptree_unmap_blit(struct brw_context *brw,
2928 struct intel_mipmap_tree *mt,
2929 struct intel_miptree_map *map,
2930 unsigned int level,
2931 unsigned int slice)
2932 {
2933 struct gl_context *ctx = &brw->ctx;
2934
2935 intel_miptree_unmap_raw(map->linear_mt);
2936
2937 if (map->mode & GL_MAP_WRITE_BIT) {
2938 bool ok = intel_miptree_copy(brw,
2939 map->linear_mt, 0, 0, 0, 0,
2940 mt, level, slice, map->x, map->y,
2941 map->w, map->h);
2942 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2943 }
2944
2945 intel_miptree_release(&map->linear_mt);
2946 }
2947
2948 /**
2949 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2950 */
2951 #if defined(USE_SSE41)
2952 static void
2953 intel_miptree_map_movntdqa(struct brw_context *brw,
2954 struct intel_mipmap_tree *mt,
2955 struct intel_miptree_map *map,
2956 unsigned int level, unsigned int slice)
2957 {
2958 assert(map->mode & GL_MAP_READ_BIT);
2959 assert(!(map->mode & GL_MAP_WRITE_BIT));
2960
2961 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2962 map->x, map->y, map->w, map->h,
2963 mt, _mesa_get_format_name(mt->format),
2964 level, slice, map->ptr, map->stride);
2965
2966 /* Map the original image */
2967 uint32_t image_x;
2968 uint32_t image_y;
2969 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2970 image_x += map->x;
2971 image_y += map->y;
2972
2973 void *src = intel_miptree_map_raw(brw, mt, map->mode);
2974 if (!src)
2975 return;
2976
2977 src += mt->offset;
2978
2979 src += image_y * mt->pitch;
2980 src += image_x * mt->cpp;
2981
2982 /* Due to the pixel offsets for the particular image being mapped, our
2983 * src pointer may not be 16-byte aligned. However, if the pitch is
2984 * divisible by 16, then the amount by which it's misaligned will remain
2985 * consistent from row to row.
2986 */
2987 assert((mt->pitch % 16) == 0);
2988 const int misalignment = ((uintptr_t) src) & 15;
2989
2990 /* Create an untiled temporary buffer for the mapping. */
2991 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2992
2993 map->stride = ALIGN(misalignment + width_bytes, 16);
2994
2995 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2996 /* Offset the destination so it has the same misalignment as src. */
2997 map->ptr = map->buffer + misalignment;
2998
2999 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3000
3001 for (uint32_t y = 0; y < map->h; y++) {
3002 void *dst_ptr = map->ptr + y * map->stride;
3003 void *src_ptr = src + y * mt->pitch;
3004
3005 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3006 }
3007
3008 intel_miptree_unmap_raw(mt);
3009 }
3010
3011 static void
3012 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3013 struct intel_mipmap_tree *mt,
3014 struct intel_miptree_map *map,
3015 unsigned int level,
3016 unsigned int slice)
3017 {
3018 _mesa_align_free(map->buffer);
3019 map->buffer = NULL;
3020 map->ptr = NULL;
3021 }
3022 #endif
3023
3024 static void
3025 intel_miptree_map_s8(struct brw_context *brw,
3026 struct intel_mipmap_tree *mt,
3027 struct intel_miptree_map *map,
3028 unsigned int level, unsigned int slice)
3029 {
3030 map->stride = map->w;
3031 map->buffer = map->ptr = malloc(map->stride * map->h);
3032 if (!map->buffer)
3033 return;
3034
3035 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3036 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3037 * invalidate is set, since we'll be writing the whole rectangle from our
3038 * temporary buffer back out.
3039 */
3040 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3041 /* ISL uses a stencil pitch value that is expected by hardware whereas
3042 * traditional miptree uses half of that. Below the value gets supplied
3043 * to intel_offset_S8() which expects the legacy interpretation.
3044 */
3045 const unsigned pitch = mt->surf.size > 0 ?
3046 mt->surf.row_pitch / 2 : mt->pitch;
3047 uint8_t *untiled_s8_map = map->ptr;
3048 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3049 unsigned int image_x, image_y;
3050
3051 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3052
3053 for (uint32_t y = 0; y < map->h; y++) {
3054 for (uint32_t x = 0; x < map->w; x++) {
3055 ptrdiff_t offset = intel_offset_S8(pitch,
3056 x + image_x + map->x,
3057 y + image_y + map->y,
3058 brw->has_swizzling);
3059 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3060 }
3061 }
3062
3063 intel_miptree_unmap_raw(mt);
3064
3065 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3066 map->x, map->y, map->w, map->h,
3067 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3068 } else {
3069 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3070 map->x, map->y, map->w, map->h,
3071 mt, map->ptr, map->stride);
3072 }
3073 }
3074
3075 static void
3076 intel_miptree_unmap_s8(struct brw_context *brw,
3077 struct intel_mipmap_tree *mt,
3078 struct intel_miptree_map *map,
3079 unsigned int level,
3080 unsigned int slice)
3081 {
3082 if (map->mode & GL_MAP_WRITE_BIT) {
3083 /* ISL uses a stencil pitch value that is expected by hardware whereas
3084 * traditional miptree uses half of that. Below the value gets supplied
3085 * to intel_offset_S8() which expects the legacy interpretation.
3086 */
3087 const unsigned pitch = mt->surf.size > 0 ?
3088 mt->surf.row_pitch / 2: mt->pitch;
3089 unsigned int image_x, image_y;
3090 uint8_t *untiled_s8_map = map->ptr;
3091 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3092
3093 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3094
3095 for (uint32_t y = 0; y < map->h; y++) {
3096 for (uint32_t x = 0; x < map->w; x++) {
3097 ptrdiff_t offset = intel_offset_S8(pitch,
3098 image_x + x + map->x,
3099 image_y + y + map->y,
3100 brw->has_swizzling);
3101 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3102 }
3103 }
3104
3105 intel_miptree_unmap_raw(mt);
3106 }
3107
3108 free(map->buffer);
3109 }
3110
3111 static void
3112 intel_miptree_map_etc(struct brw_context *brw,
3113 struct intel_mipmap_tree *mt,
3114 struct intel_miptree_map *map,
3115 unsigned int level,
3116 unsigned int slice)
3117 {
3118 assert(mt->etc_format != MESA_FORMAT_NONE);
3119 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3120 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3121 }
3122
3123 assert(map->mode & GL_MAP_WRITE_BIT);
3124 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3125
3126 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3127 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3128 map->w, map->h, 1));
3129 map->ptr = map->buffer;
3130 }
3131
3132 static void
3133 intel_miptree_unmap_etc(struct brw_context *brw,
3134 struct intel_mipmap_tree *mt,
3135 struct intel_miptree_map *map,
3136 unsigned int level,
3137 unsigned int slice)
3138 {
3139 uint32_t image_x;
3140 uint32_t image_y;
3141 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3142
3143 image_x += map->x;
3144 image_y += map->y;
3145
3146 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3147 + image_y * mt->pitch
3148 + image_x * mt->cpp;
3149
3150 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3151 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
3152 map->ptr, map->stride,
3153 map->w, map->h);
3154 else
3155 _mesa_unpack_etc2_format(dst, mt->pitch,
3156 map->ptr, map->stride,
3157 map->w, map->h, mt->etc_format);
3158
3159 intel_miptree_unmap_raw(mt);
3160 free(map->buffer);
3161 }
3162
3163 /**
3164 * Mapping function for packed depth/stencil miptrees backed by real separate
3165 * miptrees for depth and stencil.
3166 *
3167 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3168 * separate from the depth buffer. Yet at the GL API level, we have to expose
3169 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3170 * be able to map that memory for texture storage and glReadPixels-type
3171 * operations. We give Mesa core that access by mallocing a temporary and
3172 * copying the data between the actual backing store and the temporary.
3173 */
3174 static void
3175 intel_miptree_map_depthstencil(struct brw_context *brw,
3176 struct intel_mipmap_tree *mt,
3177 struct intel_miptree_map *map,
3178 unsigned int level, unsigned int slice)
3179 {
3180 struct intel_mipmap_tree *z_mt = mt;
3181 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3182 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3183 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3184
3185 map->stride = map->w * packed_bpp;
3186 map->buffer = map->ptr = malloc(map->stride * map->h);
3187 if (!map->buffer)
3188 return;
3189
3190 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3191 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3192 * invalidate is set, since we'll be writing the whole rectangle from our
3193 * temporary buffer back out.
3194 */
3195 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3196 /* ISL uses a stencil pitch value that is expected by hardware whereas
3197 * traditional miptree uses half of that. Below the value gets supplied
3198 * to intel_offset_S8() which expects the legacy interpretation.
3199 */
3200 const unsigned s_pitch = s_mt->surf.size > 0 ?
3201 s_mt->surf.row_pitch / 2 : s_mt->pitch;
3202 uint32_t *packed_map = map->ptr;
3203 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3204 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3205 unsigned int s_image_x, s_image_y;
3206 unsigned int z_image_x, z_image_y;
3207
3208 intel_miptree_get_image_offset(s_mt, level, slice,
3209 &s_image_x, &s_image_y);
3210 intel_miptree_get_image_offset(z_mt, level, slice,
3211 &z_image_x, &z_image_y);
3212
3213 for (uint32_t y = 0; y < map->h; y++) {
3214 for (uint32_t x = 0; x < map->w; x++) {
3215 int map_x = map->x + x, map_y = map->y + y;
3216 ptrdiff_t s_offset = intel_offset_S8(s_pitch,
3217 map_x + s_image_x,
3218 map_y + s_image_y,
3219 brw->has_swizzling);
3220 ptrdiff_t z_offset = ((map_y + z_image_y) *
3221 (z_mt->pitch / 4) +
3222 (map_x + z_image_x));
3223 uint8_t s = s_map[s_offset];
3224 uint32_t z = z_map[z_offset];
3225
3226 if (map_z32f_x24s8) {
3227 packed_map[(y * map->w + x) * 2 + 0] = z;
3228 packed_map[(y * map->w + x) * 2 + 1] = s;
3229 } else {
3230 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3231 }
3232 }
3233 }
3234
3235 intel_miptree_unmap_raw(s_mt);
3236 intel_miptree_unmap_raw(z_mt);
3237
3238 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3239 __func__,
3240 map->x, map->y, map->w, map->h,
3241 z_mt, map->x + z_image_x, map->y + z_image_y,
3242 s_mt, map->x + s_image_x, map->y + s_image_y,
3243 map->ptr, map->stride);
3244 } else {
3245 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3246 map->x, map->y, map->w, map->h,
3247 mt, map->ptr, map->stride);
3248 }
3249 }
3250
3251 static void
3252 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3253 struct intel_mipmap_tree *mt,
3254 struct intel_miptree_map *map,
3255 unsigned int level,
3256 unsigned int slice)
3257 {
3258 struct intel_mipmap_tree *z_mt = mt;
3259 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3260 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3261
3262 if (map->mode & GL_MAP_WRITE_BIT) {
3263 /* ISL uses a stencil pitch value that is expected by hardware whereas
3264 * traditional miptree uses half of that. Below the value gets supplied
3265 * to intel_offset_S8() which expects the legacy interpretation.
3266 */
3267 const unsigned s_pitch = s_mt->surf.size > 0 ?
3268 s_mt->surf.row_pitch / 2 : s_mt->pitch;
3269 uint32_t *packed_map = map->ptr;
3270 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3271 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3272 unsigned int s_image_x, s_image_y;
3273 unsigned int z_image_x, z_image_y;
3274
3275 intel_miptree_get_image_offset(s_mt, level, slice,
3276 &s_image_x, &s_image_y);
3277 intel_miptree_get_image_offset(z_mt, level, slice,
3278 &z_image_x, &z_image_y);
3279
3280 for (uint32_t y = 0; y < map->h; y++) {
3281 for (uint32_t x = 0; x < map->w; x++) {
3282 ptrdiff_t s_offset = intel_offset_S8(s_pitch,
3283 x + s_image_x + map->x,
3284 y + s_image_y + map->y,
3285 brw->has_swizzling);
3286 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3287 (z_mt->pitch / 4) +
3288 (x + z_image_x + map->x));
3289
3290 if (map_z32f_x24s8) {
3291 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3292 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3293 } else {
3294 uint32_t packed = packed_map[y * map->w + x];
3295 s_map[s_offset] = packed >> 24;
3296 z_map[z_offset] = packed;
3297 }
3298 }
3299 }
3300
3301 intel_miptree_unmap_raw(s_mt);
3302 intel_miptree_unmap_raw(z_mt);
3303
3304 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3305 __func__,
3306 map->x, map->y, map->w, map->h,
3307 z_mt, _mesa_get_format_name(z_mt->format),
3308 map->x + z_image_x, map->y + z_image_y,
3309 s_mt, map->x + s_image_x, map->y + s_image_y,
3310 map->ptr, map->stride);
3311 }
3312
3313 free(map->buffer);
3314 }
3315
3316 /**
3317 * Create and attach a map to the miptree at (level, slice). Return the
3318 * attached map.
3319 */
3320 static struct intel_miptree_map*
3321 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3322 unsigned int level,
3323 unsigned int slice,
3324 unsigned int x,
3325 unsigned int y,
3326 unsigned int w,
3327 unsigned int h,
3328 GLbitfield mode)
3329 {
3330 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3331
3332 if (!map)
3333 return NULL;
3334
3335 assert(mt->level[level].slice[slice].map == NULL);
3336 mt->level[level].slice[slice].map = map;
3337
3338 map->mode = mode;
3339 map->x = x;
3340 map->y = y;
3341 map->w = w;
3342 map->h = h;
3343
3344 return map;
3345 }
3346
3347 /**
3348 * Release the map at (level, slice).
3349 */
3350 static void
3351 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3352 unsigned int level,
3353 unsigned int slice)
3354 {
3355 struct intel_miptree_map **map;
3356
3357 map = &mt->level[level].slice[slice].map;
3358 free(*map);
3359 *map = NULL;
3360 }
3361
3362 static bool
3363 can_blit_slice(struct intel_mipmap_tree *mt,
3364 unsigned int level, unsigned int slice)
3365 {
3366 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3367 if (mt->pitch >= 32768)
3368 return false;
3369
3370 return true;
3371 }
3372
3373 static bool
3374 use_intel_mipree_map_blit(struct brw_context *brw,
3375 struct intel_mipmap_tree *mt,
3376 GLbitfield mode,
3377 unsigned int level,
3378 unsigned int slice)
3379 {
3380 if (brw->has_llc &&
3381 /* It's probably not worth swapping to the blit ring because of
3382 * all the overhead involved.
3383 */
3384 !(mode & GL_MAP_WRITE_BIT) &&
3385 !mt->compressed &&
3386 (mt->tiling == I915_TILING_X ||
3387 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3388 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3389 /* Fast copy blit on skl+ supports all tiling formats. */
3390 brw->gen >= 9) &&
3391 can_blit_slice(mt, level, slice))
3392 return true;
3393
3394 if (mt->tiling != I915_TILING_NONE &&
3395 mt->bo->size >= brw->max_gtt_map_object_size) {
3396 assert(can_blit_slice(mt, level, slice));
3397 return true;
3398 }
3399
3400 return false;
3401 }
3402
3403 /**
3404 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3405 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3406 * arithmetic overflow.
3407 *
3408 * If you call this function and use \a out_stride, then you're doing pointer
3409 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3410 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3411 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3412 * which usually have type uint32_t or GLuint.
3413 */
3414 void
3415 intel_miptree_map(struct brw_context *brw,
3416 struct intel_mipmap_tree *mt,
3417 unsigned int level,
3418 unsigned int slice,
3419 unsigned int x,
3420 unsigned int y,
3421 unsigned int w,
3422 unsigned int h,
3423 GLbitfield mode,
3424 void **out_ptr,
3425 ptrdiff_t *out_stride)
3426 {
3427 struct intel_miptree_map *map;
3428
3429 assert(mt->num_samples <= 1);
3430
3431 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3432 if (!map){
3433 *out_ptr = NULL;
3434 *out_stride = 0;
3435 return;
3436 }
3437
3438 intel_miptree_access_raw(brw, mt, level, slice,
3439 map->mode & GL_MAP_WRITE_BIT);
3440
3441 if (mt->format == MESA_FORMAT_S_UINT8) {
3442 intel_miptree_map_s8(brw, mt, map, level, slice);
3443 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3444 !(mode & BRW_MAP_DIRECT_BIT)) {
3445 intel_miptree_map_etc(brw, mt, map, level, slice);
3446 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3447 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3448 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3449 intel_miptree_map_blit(brw, mt, map, level, slice);
3450 #if defined(USE_SSE41)
3451 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3452 !mt->compressed && cpu_has_sse4_1 &&
3453 (mt->pitch % 16 == 0)) {
3454 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3455 #endif
3456 } else {
3457 intel_miptree_map_gtt(brw, mt, map, level, slice);
3458 }
3459
3460 *out_ptr = map->ptr;
3461 *out_stride = map->stride;
3462
3463 if (map->ptr == NULL)
3464 intel_miptree_release_map(mt, level, slice);
3465 }
3466
3467 void
3468 intel_miptree_unmap(struct brw_context *brw,
3469 struct intel_mipmap_tree *mt,
3470 unsigned int level,
3471 unsigned int slice)
3472 {
3473 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3474
3475 assert(mt->num_samples <= 1);
3476
3477 if (!map)
3478 return;
3479
3480 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3481 mt, _mesa_get_format_name(mt->format), level, slice);
3482
3483 if (mt->format == MESA_FORMAT_S_UINT8) {
3484 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3485 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3486 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3487 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3488 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3489 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3490 } else if (map->linear_mt) {
3491 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3492 #if defined(USE_SSE41)
3493 } else if (map->buffer && cpu_has_sse4_1) {
3494 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3495 #endif
3496 } else {
3497 intel_miptree_unmap_gtt(mt);
3498 }
3499
3500 intel_miptree_release_map(mt, level, slice);
3501 }
3502
3503 enum isl_surf_dim
3504 get_isl_surf_dim(GLenum target)
3505 {
3506 switch (target) {
3507 case GL_TEXTURE_1D:
3508 case GL_TEXTURE_1D_ARRAY:
3509 return ISL_SURF_DIM_1D;
3510
3511 case GL_TEXTURE_2D:
3512 case GL_TEXTURE_2D_ARRAY:
3513 case GL_TEXTURE_RECTANGLE:
3514 case GL_TEXTURE_CUBE_MAP:
3515 case GL_TEXTURE_CUBE_MAP_ARRAY:
3516 case GL_TEXTURE_2D_MULTISAMPLE:
3517 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3518 case GL_TEXTURE_EXTERNAL_OES:
3519 return ISL_SURF_DIM_2D;
3520
3521 case GL_TEXTURE_3D:
3522 return ISL_SURF_DIM_3D;
3523 }
3524
3525 unreachable("Invalid texture target");
3526 }
3527
3528 enum isl_dim_layout
3529 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3530 GLenum target, enum miptree_array_layout array_layout)
3531 {
3532 if (array_layout == GEN6_HIZ_STENCIL)
3533 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
3534
3535 switch (target) {
3536 case GL_TEXTURE_1D:
3537 case GL_TEXTURE_1D_ARRAY:
3538 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3539 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3540
3541 case GL_TEXTURE_2D:
3542 case GL_TEXTURE_2D_ARRAY:
3543 case GL_TEXTURE_RECTANGLE:
3544 case GL_TEXTURE_2D_MULTISAMPLE:
3545 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3546 case GL_TEXTURE_EXTERNAL_OES:
3547 return ISL_DIM_LAYOUT_GEN4_2D;
3548
3549 case GL_TEXTURE_CUBE_MAP:
3550 case GL_TEXTURE_CUBE_MAP_ARRAY:
3551 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3552 ISL_DIM_LAYOUT_GEN4_2D);
3553
3554 case GL_TEXTURE_3D:
3555 return (devinfo->gen >= 9 ?
3556 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3557 }
3558
3559 unreachable("Invalid texture target");
3560 }
3561
3562 enum isl_tiling
3563 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3564 {
3565 if (mt->format == MESA_FORMAT_S_UINT8) {
3566 return ISL_TILING_W;
3567 } else {
3568 switch (mt->tiling) {
3569 case I915_TILING_NONE:
3570 return ISL_TILING_LINEAR;
3571 case I915_TILING_X:
3572 return ISL_TILING_X;
3573 case I915_TILING_Y:
3574 return ISL_TILING_Y0;
3575 default:
3576 unreachable("Invalid tiling mode");
3577 }
3578 }
3579 }
3580
3581 void
3582 intel_miptree_get_isl_surf(struct brw_context *brw,
3583 const struct intel_mipmap_tree *mt,
3584 struct isl_surf *surf)
3585 {
3586 surf->dim = get_isl_surf_dim(mt->target);
3587 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3588 mt->tiling, mt->target,
3589 mt->array_layout);
3590
3591 if (mt->num_samples > 1) {
3592 switch (mt->msaa_layout) {
3593 case INTEL_MSAA_LAYOUT_IMS:
3594 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3595 break;
3596 case INTEL_MSAA_LAYOUT_UMS:
3597 case INTEL_MSAA_LAYOUT_CMS:
3598 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3599 break;
3600 default:
3601 unreachable("Invalid MSAA layout");
3602 }
3603 } else {
3604 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3605 }
3606
3607 surf->tiling = intel_miptree_get_isl_tiling(mt);
3608
3609 if (mt->format == MESA_FORMAT_S_UINT8) {
3610 /* The ISL definition of row_pitch matches the surface state pitch field
3611 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3612 * the factor of 2 for W-tiling in row_pitch.
3613 */
3614 surf->row_pitch = 2 * mt->pitch;
3615 } else {
3616 surf->row_pitch = mt->pitch;
3617 }
3618
3619 surf->format = translate_tex_format(brw, mt->format, false);
3620
3621 if (brw->gen >= 9) {
3622 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3623 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3624 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3625 } else {
3626 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3627 * alignment in terms of surface elements like we want.
3628 */
3629 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3630 }
3631 } else {
3632 /* On earlier gens it's stored in pixels. */
3633 unsigned bw, bh;
3634 _mesa_get_format_block_size(mt->format, &bw, &bh);
3635 surf->image_alignment_el =
3636 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3637 }
3638
3639 surf->logical_level0_px.width = mt->logical_width0;
3640 surf->logical_level0_px.height = mt->logical_height0;
3641 if (surf->dim == ISL_SURF_DIM_3D) {
3642 surf->logical_level0_px.depth = mt->logical_depth0;
3643 surf->logical_level0_px.array_len = 1;
3644 } else {
3645 surf->logical_level0_px.depth = 1;
3646 surf->logical_level0_px.array_len = mt->logical_depth0;
3647 }
3648
3649 surf->phys_level0_sa.width = mt->physical_width0;
3650 surf->phys_level0_sa.height = mt->physical_height0;
3651 if (surf->dim == ISL_SURF_DIM_3D) {
3652 surf->phys_level0_sa.depth = mt->physical_depth0;
3653 surf->phys_level0_sa.array_len = 1;
3654 } else {
3655 surf->phys_level0_sa.depth = 1;
3656 surf->phys_level0_sa.array_len = mt->physical_depth0;
3657 }
3658
3659 surf->levels = mt->last_level - mt->first_level + 1;
3660 surf->samples = MAX2(mt->num_samples, 1);
3661
3662 surf->size = 0; /* TODO */
3663 surf->alignment = 0; /* TODO */
3664
3665 switch (surf->dim_layout) {
3666 case ISL_DIM_LAYOUT_GEN4_2D:
3667 case ISL_DIM_LAYOUT_GEN4_3D:
3668 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
3669 if (brw->gen >= 9) {
3670 surf->array_pitch_el_rows = mt->qpitch;
3671 } else {
3672 unsigned bw, bh;
3673 _mesa_get_format_block_size(mt->format, &bw, &bh);
3674 assert(mt->qpitch % bh == 0);
3675 surf->array_pitch_el_rows = mt->qpitch / bh;
3676 }
3677 break;
3678 case ISL_DIM_LAYOUT_GEN9_1D:
3679 surf->array_pitch_el_rows = 1;
3680 break;
3681 }
3682
3683 switch (mt->array_layout) {
3684 case ALL_LOD_IN_EACH_SLICE:
3685 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3686 break;
3687 case ALL_SLICES_AT_EACH_LOD:
3688 case GEN6_HIZ_STENCIL:
3689 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3690 break;
3691 default:
3692 unreachable("Invalid array layout");
3693 }
3694
3695 GLenum base_format = _mesa_get_format_base_format(mt->format);
3696 switch (base_format) {
3697 case GL_DEPTH_COMPONENT:
3698 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3699 break;
3700 case GL_STENCIL_INDEX:
3701 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3702 if (brw->gen >= 8)
3703 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3704 break;
3705 case GL_DEPTH_STENCIL:
3706 /* In this case we only texture from the depth part */
3707 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3708 ISL_SURF_USAGE_TEXTURE_BIT;
3709 break;
3710 default:
3711 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3712 if (brw->mesa_format_supports_render[mt->format])
3713 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3714 break;
3715 }
3716
3717 if (_mesa_is_cube_map_texture(mt->target))
3718 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3719 }
3720
3721 enum isl_aux_usage
3722 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3723 const struct intel_mipmap_tree *mt)
3724 {
3725 if (mt->hiz_buf)
3726 return ISL_AUX_USAGE_HIZ;
3727
3728 if (!mt->mcs_buf)
3729 return ISL_AUX_USAGE_NONE;
3730
3731 if (mt->num_samples > 1) {
3732 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3733 return ISL_AUX_USAGE_MCS;
3734 }
3735
3736 if (intel_miptree_is_lossless_compressed(brw, mt)) {
3737 assert(brw->gen >= 9);
3738 return ISL_AUX_USAGE_CCS_E;
3739 }
3740
3741 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0)
3742 return ISL_AUX_USAGE_CCS_D;
3743
3744 unreachable("Invalid MCS miptree");
3745 }