i965/miptree: Allocate MS texture BOs as BUSY
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 if (blt_pitch >= 32768) {
523 perf_debug("blt pitch %u too large to blit, falling back to untiled",
524 blt_pitch);
525 return true;
526 }
527
528 return false;
529 }
530
531 static bool
532 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
533 enum isl_tiling tiling)
534 {
535 const struct gen_device_info *devinfo = &brw->screen->devinfo;
536
537 /* If the BO is too large to fit in the aperture, we need to use the
538 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
539 * handle Y-tiling, so we need to fall back to X.
540 */
541 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
542 tiling == ISL_TILING_Y0)
543 return true;
544
545 return false;
546 }
547
548 static struct intel_mipmap_tree *
549 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
550 unsigned first_level, unsigned last_level,
551 unsigned width0, unsigned height0, unsigned depth0,
552 unsigned num_samples, isl_tiling_flags_t tiling_flags,
553 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
554 unsigned row_pitch, struct brw_bo *bo)
555 {
556 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
557 if (!mt)
558 return NULL;
559
560 if (!create_mapping_table(target, first_level, last_level, depth0,
561 mt->level)) {
562 free(mt);
563 return NULL;
564 }
565
566 mt->refcount = 1;
567
568 if (target == GL_TEXTURE_CUBE_MAP ||
569 target == GL_TEXTURE_CUBE_MAP_ARRAY)
570 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
571
572 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
573 __func__,
574 _mesa_enum_to_string(target),
575 _mesa_get_format_name(format),
576 num_samples, width0, height0, depth0,
577 first_level, last_level, mt);
578
579 struct isl_surf_init_info init_info = {
580 .dim = get_isl_surf_dim(target),
581 .format = translate_tex_format(brw, format, false),
582 .width = width0,
583 .height = height0,
584 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
585 .levels = last_level - first_level + 1,
586 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
587 .samples = num_samples,
588 .row_pitch = row_pitch,
589 .usage = isl_usage_flags,
590 .tiling_flags = tiling_flags,
591 };
592
593 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
594 goto fail;
595
596 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
597 * on gen7 platforms we also need to create Y-tiled copies of stencil for
598 * texturing since the hardware can't sample from W-tiled surfaces. For
599 * everything else, check for corner cases needing special treatment.
600 */
601 bool is_depth_stencil =
602 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
603 if (!is_depth_stencil) {
604 if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
605 mt->surf.tiling, mt->surf.samples)) {
606 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
607 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
608 goto fail;
609 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
610 init_info.tiling_flags = 1u << ISL_TILING_X;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 }
614 }
615
616 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
617 * the size may not be multiple of row_pitch.
618 * See isl_apply_surface_padding().
619 */
620 if (mt->surf.tiling != ISL_TILING_LINEAR)
621 assert(mt->surf.size % mt->surf.row_pitch == 0);
622
623 if (!bo) {
624 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
625 mt->surf.size,
626 BRW_MEMZONE_OTHER,
627 isl_tiling_to_i915_tiling(
628 mt->surf.tiling),
629 mt->surf.row_pitch, alloc_flags);
630 if (!mt->bo)
631 goto fail;
632 } else {
633 mt->bo = bo;
634 }
635
636 mt->first_level = first_level;
637 mt->last_level = last_level;
638 mt->target = target;
639 mt->format = format;
640 mt->aux_state = NULL;
641 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
642 mt->compressed = _mesa_is_format_compressed(format);
643 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
644
645 return mt;
646
647 fail:
648 intel_miptree_release(&mt);
649 return NULL;
650 }
651
652 /* Return the usual surface usage flags for the given format. */
653 static isl_surf_usage_flags_t
654 mt_surf_usage(mesa_format format)
655 {
656 switch(_mesa_get_format_base_format(format)) {
657 case GL_DEPTH_COMPONENT:
658 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
659 case GL_DEPTH_STENCIL:
660 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
661 ISL_SURF_USAGE_TEXTURE_BIT;
662 case GL_STENCIL_INDEX:
663 return ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
664 default:
665 return ISL_SURF_USAGE_RENDER_TARGET_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
666 }
667 }
668
669 static struct intel_mipmap_tree *
670 miptree_create(struct brw_context *brw,
671 GLenum target,
672 mesa_format format,
673 GLuint first_level,
674 GLuint last_level,
675 GLuint width0,
676 GLuint height0,
677 GLuint depth0,
678 GLuint num_samples,
679 enum intel_miptree_create_flags flags)
680 {
681 const struct gen_device_info *devinfo = &brw->screen->devinfo;
682 const uint32_t alloc_flags =
683 (flags & MIPTREE_CREATE_BUSY || num_samples > 1) ? BO_ALLOC_BUSY : 0;
684 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
685
686 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
687 if (devinfo->gen < 6 && _mesa_is_format_color_format(format))
688 tiling_flags &= ~ISL_TILING_Y0_BIT;
689
690 mesa_format mt_fmt;
691 if (_mesa_is_format_color_format(format)) {
692 mt_fmt = intel_lower_compressed_format(brw, format);
693 } else {
694 /* Fix up the Z miptree format for how we're splitting out separate
695 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
696 */
697 mt_fmt = (devinfo->gen < 6) ? format :
698 intel_depth_format_for_depthstencil_format(format);
699 }
700
701 struct intel_mipmap_tree *mt =
702 make_surface(brw, target, mt_fmt, first_level, last_level,
703 width0, height0, depth0, num_samples,
704 tiling_flags, mt_surf_usage(mt_fmt),
705 alloc_flags, 0, NULL);
706
707 if (mt == NULL)
708 return NULL;
709
710 if (needs_separate_stencil(brw, mt, format)) {
711 mt->stencil_mt =
712 make_surface(brw, target, MESA_FORMAT_S_UINT8, first_level, last_level,
713 width0, height0, depth0, num_samples,
714 ISL_TILING_W_BIT, mt_surf_usage(MESA_FORMAT_S_UINT8),
715 alloc_flags, 0, NULL);
716 if (mt->stencil_mt == NULL) {
717 intel_miptree_release(&mt);
718 return NULL;
719 }
720 }
721
722 mt->etc_format = (_mesa_is_format_color_format(format) && mt_fmt != format) ?
723 format : MESA_FORMAT_NONE;
724
725 if (!(flags & MIPTREE_CREATE_NO_AUX))
726 intel_miptree_choose_aux_usage(brw, mt);
727
728 return mt;
729 }
730
731 struct intel_mipmap_tree *
732 intel_miptree_create(struct brw_context *brw,
733 GLenum target,
734 mesa_format format,
735 GLuint first_level,
736 GLuint last_level,
737 GLuint width0,
738 GLuint height0,
739 GLuint depth0,
740 GLuint num_samples,
741 enum intel_miptree_create_flags flags)
742 {
743 assert(num_samples > 0);
744
745 struct intel_mipmap_tree *mt = miptree_create(
746 brw, target, format,
747 first_level, last_level,
748 width0, height0, depth0, num_samples,
749 flags);
750 if (!mt)
751 return NULL;
752
753 mt->offset = 0;
754
755 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
756 * compress clear color so we wait until an actual fast-clear to allocate
757 * it.
758 */
759 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
760 !intel_miptree_alloc_aux(brw, mt)) {
761 intel_miptree_release(&mt);
762 return NULL;
763 }
764
765 return mt;
766 }
767
768 struct intel_mipmap_tree *
769 intel_miptree_create_for_bo(struct brw_context *brw,
770 struct brw_bo *bo,
771 mesa_format format,
772 uint32_t offset,
773 uint32_t width,
774 uint32_t height,
775 uint32_t depth,
776 int pitch,
777 enum isl_tiling tiling,
778 enum intel_miptree_create_flags flags)
779 {
780 const struct gen_device_info *devinfo = &brw->screen->devinfo;
781 struct intel_mipmap_tree *mt;
782 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
783 const GLenum base_format = _mesa_get_format_base_format(format);
784
785 if ((base_format == GL_DEPTH_COMPONENT ||
786 base_format == GL_DEPTH_STENCIL)) {
787 const mesa_format mt_fmt = (devinfo->gen < 6) ? format :
788 intel_depth_format_for_depthstencil_format(format);
789 mt = make_surface(brw, target, mt_fmt,
790 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
791 mt_surf_usage(mt_fmt),
792 0, pitch, bo);
793 if (!mt)
794 return NULL;
795
796 brw_bo_reference(bo);
797
798 if (!(flags & MIPTREE_CREATE_NO_AUX))
799 intel_miptree_choose_aux_usage(brw, mt);
800
801 return mt;
802 } else if (format == MESA_FORMAT_S_UINT8) {
803 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
804 0, 0, width, height, depth, 1,
805 ISL_TILING_W_BIT,
806 mt_surf_usage(MESA_FORMAT_S_UINT8),
807 0, pitch, bo);
808 if (!mt)
809 return NULL;
810
811 assert(bo->size >= mt->surf.size);
812
813 brw_bo_reference(bo);
814 return mt;
815 }
816
817 /* Nothing will be able to use this miptree with the BO if the offset isn't
818 * aligned.
819 */
820 if (tiling != ISL_TILING_LINEAR)
821 assert(offset % 4096 == 0);
822
823 /* miptrees can't handle negative pitch. If you need flipping of images,
824 * that's outside of the scope of the mt.
825 */
826 assert(pitch >= 0);
827
828 mt = make_surface(brw, target, format,
829 0, 0, width, height, depth, 1,
830 1lu << tiling,
831 mt_surf_usage(format),
832 0, pitch, bo);
833 if (!mt)
834 return NULL;
835
836 brw_bo_reference(bo);
837 mt->bo = bo;
838 mt->offset = offset;
839
840 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
841 intel_miptree_choose_aux_usage(brw, mt);
842
843 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
844 * only compress clear color so we wait until an actual fast-clear to
845 * allocate it.
846 */
847 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
848 !intel_miptree_alloc_aux(brw, mt)) {
849 intel_miptree_release(&mt);
850 return NULL;
851 }
852 }
853
854 return mt;
855 }
856
857 static struct intel_mipmap_tree *
858 miptree_create_for_planar_image(struct brw_context *brw,
859 __DRIimage *image, GLenum target,
860 enum isl_tiling tiling)
861 {
862 const struct intel_image_format *f = image->planar_format;
863 struct intel_mipmap_tree *planar_mt = NULL;
864
865 for (int i = 0; i < f->nplanes; i++) {
866 const int index = f->planes[i].buffer_index;
867 const uint32_t dri_format = f->planes[i].dri_format;
868 const mesa_format format = driImageFormatToGLFormat(dri_format);
869 const uint32_t width = image->width >> f->planes[i].width_shift;
870 const uint32_t height = image->height >> f->planes[i].height_shift;
871
872 /* Disable creation of the texture's aux buffers because the driver
873 * exposes no EGL API to manage them. That is, there is no API for
874 * resolving the aux buffer's content to the main buffer nor for
875 * invalidating the aux buffer's content.
876 */
877 struct intel_mipmap_tree *mt =
878 intel_miptree_create_for_bo(brw, image->bo, format,
879 image->offsets[index],
880 width, height, 1,
881 image->strides[index],
882 tiling,
883 MIPTREE_CREATE_NO_AUX);
884 if (mt == NULL) {
885 intel_miptree_release(&planar_mt);
886 return NULL;
887 }
888
889 mt->target = target;
890
891 if (i == 0)
892 planar_mt = mt;
893 else
894 planar_mt->plane[i - 1] = mt;
895 }
896
897 planar_mt->drm_modifier = image->modifier;
898
899 return planar_mt;
900 }
901
902 static bool
903 create_ccs_buf_for_image(struct brw_context *brw,
904 __DRIimage *image,
905 struct intel_mipmap_tree *mt,
906 enum isl_aux_state initial_state)
907 {
908 struct isl_surf temp_ccs_surf;
909
910 /* CCS is only supported for very simple miptrees */
911 assert(image->aux_offset != 0 && image->aux_pitch != 0);
912 assert(image->tile_x == 0 && image->tile_y == 0);
913 assert(mt->surf.samples == 1);
914 assert(mt->surf.levels == 1);
915 assert(mt->surf.logical_level0_px.depth == 1);
916 assert(mt->surf.logical_level0_px.array_len == 1);
917 assert(mt->first_level == 0);
918 assert(mt->last_level == 0);
919
920 /* We shouldn't already have a CCS */
921 assert(!mt->aux_buf);
922
923 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
924 image->aux_pitch))
925 return false;
926
927 assert(image->aux_offset < image->bo->size);
928 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
929
930 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
931 if (mt->aux_buf == NULL)
932 return false;
933
934 mt->aux_state = create_aux_state_map(mt, initial_state);
935 if (!mt->aux_state) {
936 free(mt->aux_buf);
937 mt->aux_buf = NULL;
938 return false;
939 }
940
941 /* On gen10+ we start using an extra space in the aux buffer to store the
942 * indirect clear color. However, if we imported an image from the window
943 * system with CCS, we don't have the extra space at the end of the aux
944 * buffer. So create a new bo here that will store that clear color.
945 */
946 if (brw->isl_dev.ss.clear_color_state_size > 0) {
947 mt->aux_buf->clear_color_bo =
948 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
949 brw->isl_dev.ss.clear_color_state_size,
950 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
951 BO_ALLOC_ZEROED);
952 if (!mt->aux_buf->clear_color_bo) {
953 free(mt->aux_buf);
954 mt->aux_buf = NULL;
955 return false;
956 }
957 }
958
959 mt->aux_buf->bo = image->bo;
960 brw_bo_reference(image->bo);
961
962 mt->aux_buf->offset = image->aux_offset;
963 mt->aux_buf->surf = temp_ccs_surf;
964
965 return true;
966 }
967
968 struct intel_mipmap_tree *
969 intel_miptree_create_for_dri_image(struct brw_context *brw,
970 __DRIimage *image, GLenum target,
971 mesa_format format,
972 bool allow_internal_aux)
973 {
974 uint32_t bo_tiling, bo_swizzle;
975 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
976
977 const struct isl_drm_modifier_info *mod_info =
978 isl_drm_modifier_get_info(image->modifier);
979
980 const enum isl_tiling tiling =
981 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
982
983 if (image->planar_format && image->planar_format->nplanes > 1)
984 return miptree_create_for_planar_image(brw, image, target, tiling);
985
986 if (image->planar_format)
987 assert(image->planar_format->planes[0].dri_format == image->dri_format);
988
989 if (!brw->ctx.TextureFormatSupported[format]) {
990 /* The texture storage paths in core Mesa detect if the driver does not
991 * support the user-requested format, and then searches for a
992 * fallback format. The DRIimage code bypasses core Mesa, though. So we
993 * do the fallbacks here for important formats.
994 *
995 * We must support DRM_FOURCC_XBGR8888 textures because the Android
996 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
997 * the Chrome OS compositor consumes as dma_buf EGLImages.
998 */
999 format = _mesa_format_fallback_rgbx_to_rgba(format);
1000 }
1001
1002 if (!brw->ctx.TextureFormatSupported[format])
1003 return NULL;
1004
1005 enum intel_miptree_create_flags mt_create_flags = 0;
1006
1007 /* If this image comes in from a window system, we have different
1008 * requirements than if it comes in via an EGL import operation. Window
1009 * system images can use any form of auxiliary compression we wish because
1010 * they get "flushed" before being handed off to the window system and we
1011 * have the opportunity to do resolves. Non window-system images, on the
1012 * other hand, have no resolve point so we can't have aux without a
1013 * modifier.
1014 */
1015 if (!allow_internal_aux)
1016 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1017
1018 /* If we have a modifier which specifies aux, don't create one yet */
1019 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1020 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1021
1022 /* Disable creation of the texture's aux buffers because the driver exposes
1023 * no EGL API to manage them. That is, there is no API for resolving the aux
1024 * buffer's content to the main buffer nor for invalidating the aux buffer's
1025 * content.
1026 */
1027 struct intel_mipmap_tree *mt =
1028 intel_miptree_create_for_bo(brw, image->bo, format,
1029 image->offset, image->width, image->height, 1,
1030 image->pitch, tiling, mt_create_flags);
1031 if (mt == NULL)
1032 return NULL;
1033
1034 mt->target = target;
1035 mt->level[0].level_x = image->tile_x;
1036 mt->level[0].level_y = image->tile_y;
1037 mt->drm_modifier = image->modifier;
1038
1039 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1040 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1041 * trouble resolving back to destination image due to alignment issues.
1042 */
1043 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1044 if (!devinfo->has_surface_tile_offset) {
1045 uint32_t draw_x, draw_y;
1046 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1047
1048 if (draw_x != 0 || draw_y != 0) {
1049 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1050 intel_miptree_release(&mt);
1051 return NULL;
1052 }
1053 }
1054
1055 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1056 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1057
1058 mt->aux_usage = mod_info->aux_usage;
1059 /* If we are a window system buffer, then we can support fast-clears
1060 * even if the modifier doesn't support them by doing a partial resolve
1061 * as part of the flush operation.
1062 */
1063 mt->supports_fast_clear =
1064 allow_internal_aux || mod_info->supports_clear_color;
1065
1066 /* We don't know the actual state of the surface when we get it but we
1067 * can make a pretty good guess based on the modifier. What we do know
1068 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1069 * a worst case of compression.
1070 */
1071 enum isl_aux_state initial_state =
1072 isl_drm_modifier_get_default_aux_state(image->modifier);
1073
1074 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1075 intel_miptree_release(&mt);
1076 return NULL;
1077 }
1078 }
1079
1080 /* Don't assume coherency for imported EGLimages. We don't know what
1081 * external clients are going to do with it. They may scan it out.
1082 */
1083 image->bo->cache_coherent = false;
1084
1085 return mt;
1086 }
1087
1088 /**
1089 * For a singlesample renderbuffer, this simply wraps the given BO with a
1090 * miptree.
1091 *
1092 * For a multisample renderbuffer, this wraps the window system's
1093 * (singlesample) BO with a singlesample miptree attached to the
1094 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1095 * that will contain the actual rendering (which is lazily resolved to
1096 * irb->singlesample_mt).
1097 */
1098 bool
1099 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1100 struct intel_renderbuffer *irb,
1101 struct intel_mipmap_tree *singlesample_mt,
1102 uint32_t width, uint32_t height,
1103 uint32_t pitch)
1104 {
1105 struct intel_mipmap_tree *multisample_mt = NULL;
1106 struct gl_renderbuffer *rb = &irb->Base.Base;
1107 mesa_format format = rb->Format;
1108 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1109
1110 /* Only the front and back buffers, which are color buffers, are allocated
1111 * through the image loader.
1112 */
1113 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1114 _mesa_get_format_base_format(format) == GL_RGBA);
1115
1116 assert(singlesample_mt);
1117
1118 if (num_samples == 1) {
1119 intel_miptree_release(&irb->mt);
1120 irb->mt = singlesample_mt;
1121
1122 assert(!irb->singlesample_mt);
1123 } else {
1124 intel_miptree_release(&irb->singlesample_mt);
1125 irb->singlesample_mt = singlesample_mt;
1126
1127 if (!irb->mt ||
1128 irb->mt->surf.logical_level0_px.width != width ||
1129 irb->mt->surf.logical_level0_px.height != height) {
1130 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1131 format,
1132 width,
1133 height,
1134 num_samples);
1135 if (!multisample_mt)
1136 goto fail;
1137
1138 irb->need_downsample = false;
1139 intel_miptree_release(&irb->mt);
1140 irb->mt = multisample_mt;
1141 }
1142 }
1143 return true;
1144
1145 fail:
1146 intel_miptree_release(&irb->mt);
1147 return false;
1148 }
1149
1150 struct intel_mipmap_tree*
1151 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1152 mesa_format format,
1153 uint32_t width,
1154 uint32_t height,
1155 uint32_t num_samples)
1156 {
1157 struct intel_mipmap_tree *mt;
1158 uint32_t depth = 1;
1159 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1160
1161 mt = intel_miptree_create(brw, target, format, 0, 0,
1162 width, height, depth, num_samples,
1163 MIPTREE_CREATE_BUSY);
1164 if (!mt)
1165 goto fail;
1166
1167 return mt;
1168
1169 fail:
1170 intel_miptree_release(&mt);
1171 return NULL;
1172 }
1173
1174 void
1175 intel_miptree_reference(struct intel_mipmap_tree **dst,
1176 struct intel_mipmap_tree *src)
1177 {
1178 if (*dst == src)
1179 return;
1180
1181 intel_miptree_release(dst);
1182
1183 if (src) {
1184 src->refcount++;
1185 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1186 }
1187
1188 *dst = src;
1189 }
1190
1191 static void
1192 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1193 {
1194 if (aux_buf == NULL)
1195 return;
1196
1197 brw_bo_unreference(aux_buf->bo);
1198 brw_bo_unreference(aux_buf->clear_color_bo);
1199
1200 free(aux_buf);
1201 }
1202
1203 void
1204 intel_miptree_release(struct intel_mipmap_tree **mt)
1205 {
1206 if (!*mt)
1207 return;
1208
1209 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1210 if (--(*mt)->refcount <= 0) {
1211 GLuint i;
1212
1213 DBG("%s deleting %p\n", __func__, *mt);
1214
1215 brw_bo_unreference((*mt)->bo);
1216 intel_miptree_release(&(*mt)->stencil_mt);
1217 intel_miptree_release(&(*mt)->r8stencil_mt);
1218 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1219 free_aux_state_map((*mt)->aux_state);
1220
1221 intel_miptree_release(&(*mt)->plane[0]);
1222 intel_miptree_release(&(*mt)->plane[1]);
1223
1224 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1225 free((*mt)->level[i].slice);
1226 }
1227
1228 free(*mt);
1229 }
1230 *mt = NULL;
1231 }
1232
1233
1234 void
1235 intel_get_image_dims(struct gl_texture_image *image,
1236 int *width, int *height, int *depth)
1237 {
1238 switch (image->TexObject->Target) {
1239 case GL_TEXTURE_1D_ARRAY:
1240 /* For a 1D Array texture the OpenGL API will treat the image height as
1241 * the number of array slices. For Intel hardware, we treat the 1D array
1242 * as a 2D Array with a height of 1. So, here we want to swap image
1243 * height and depth.
1244 */
1245 assert(image->Depth == 1);
1246 *width = image->Width;
1247 *height = 1;
1248 *depth = image->Height;
1249 break;
1250 case GL_TEXTURE_CUBE_MAP:
1251 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1252 * though we really have 6 slices.
1253 */
1254 assert(image->Depth == 1);
1255 *width = image->Width;
1256 *height = image->Height;
1257 *depth = 6;
1258 break;
1259 default:
1260 *width = image->Width;
1261 *height = image->Height;
1262 *depth = image->Depth;
1263 break;
1264 }
1265 }
1266
1267 /**
1268 * Can the image be pulled into a unified mipmap tree? This mirrors
1269 * the completeness test in a lot of ways.
1270 *
1271 * Not sure whether I want to pass gl_texture_image here.
1272 */
1273 bool
1274 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1275 struct gl_texture_image *image)
1276 {
1277 struct intel_texture_image *intelImage = intel_texture_image(image);
1278 GLuint level = intelImage->base.Base.Level;
1279 int width, height, depth;
1280
1281 /* glTexImage* choose the texture object based on the target passed in, and
1282 * objects can't change targets over their lifetimes, so this should be
1283 * true.
1284 */
1285 assert(image->TexObject->Target == mt->target);
1286
1287 mesa_format mt_format = mt->format;
1288 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1289 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1290 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1291 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1292 if (mt->etc_format != MESA_FORMAT_NONE)
1293 mt_format = mt->etc_format;
1294
1295 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1296 _mesa_get_srgb_format_linear(mt_format))
1297 return false;
1298
1299 intel_get_image_dims(image, &width, &height, &depth);
1300
1301 if (mt->target == GL_TEXTURE_CUBE_MAP)
1302 depth = 6;
1303
1304 if (level >= mt->surf.levels)
1305 return false;
1306
1307 const unsigned level_depth =
1308 mt->surf.dim == ISL_SURF_DIM_3D ?
1309 minify(mt->surf.logical_level0_px.depth, level) :
1310 mt->surf.logical_level0_px.array_len;
1311
1312 return width == minify(mt->surf.logical_level0_px.width, level) &&
1313 height == minify(mt->surf.logical_level0_px.height, level) &&
1314 depth == level_depth &&
1315 MAX2(image->NumSamples, 1) == mt->surf.samples;
1316 }
1317
1318 void
1319 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1320 GLuint level, GLuint slice,
1321 GLuint *x, GLuint *y)
1322 {
1323 if (level == 0 && slice == 0) {
1324 *x = mt->level[0].level_x;
1325 *y = mt->level[0].level_y;
1326 return;
1327 }
1328
1329 uint32_t x_offset_sa, y_offset_sa;
1330
1331 /* Miptree itself can have an offset only if it represents a single
1332 * slice in an imported buffer object.
1333 * See intel_miptree_create_for_dri_image().
1334 */
1335 assert(mt->level[0].level_x == 0);
1336 assert(mt->level[0].level_y == 0);
1337
1338 /* Given level is relative to level zero while the miptree may be
1339 * represent just a subset of all levels starting from 'first_level'.
1340 */
1341 assert(level >= mt->first_level);
1342 level -= mt->first_level;
1343
1344 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1345 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1346 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1347 &x_offset_sa, &y_offset_sa);
1348
1349 *x = x_offset_sa;
1350 *y = y_offset_sa;
1351 }
1352
1353
1354 /**
1355 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1356 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1357 * and tile_h is set to 1.
1358 */
1359 void
1360 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1361 uint32_t *tile_w, uint32_t *tile_h)
1362 {
1363 switch (tiling) {
1364 case ISL_TILING_X:
1365 *tile_w = 512;
1366 *tile_h = 8;
1367 break;
1368 case ISL_TILING_Y0:
1369 *tile_w = 128;
1370 *tile_h = 32;
1371 break;
1372 case ISL_TILING_LINEAR:
1373 *tile_w = cpp;
1374 *tile_h = 1;
1375 break;
1376 default:
1377 unreachable("not reached");
1378 }
1379 }
1380
1381
1382 /**
1383 * This function computes masks that may be used to select the bits of the X
1384 * and Y coordinates that indicate the offset within a tile. If the BO is
1385 * untiled, the masks are set to 0.
1386 */
1387 void
1388 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1389 uint32_t *mask_x, uint32_t *mask_y)
1390 {
1391 uint32_t tile_w_bytes, tile_h;
1392
1393 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1394
1395 *mask_x = tile_w_bytes / cpp - 1;
1396 *mask_y = tile_h - 1;
1397 }
1398
1399 /**
1400 * Compute the offset (in bytes) from the start of the BO to the given x
1401 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1402 * multiples of the tile size.
1403 */
1404 uint32_t
1405 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1406 uint32_t x, uint32_t y)
1407 {
1408 int cpp = mt->cpp;
1409 uint32_t pitch = mt->surf.row_pitch;
1410
1411 switch (mt->surf.tiling) {
1412 default:
1413 unreachable("not reached");
1414 case ISL_TILING_LINEAR:
1415 return y * pitch + x * cpp;
1416 case ISL_TILING_X:
1417 assert((x % (512 / cpp)) == 0);
1418 assert((y % 8) == 0);
1419 return y * pitch + x / (512 / cpp) * 4096;
1420 case ISL_TILING_Y0:
1421 assert((x % (128 / cpp)) == 0);
1422 assert((y % 32) == 0);
1423 return y * pitch + x / (128 / cpp) * 4096;
1424 }
1425 }
1426
1427 /**
1428 * Rendering with tiled buffers requires that the base address of the buffer
1429 * be aligned to a page boundary. For renderbuffers, and sometimes with
1430 * textures, we may want the surface to point at a texture image level that
1431 * isn't at a page boundary.
1432 *
1433 * This function returns an appropriately-aligned base offset
1434 * according to the tiling restrictions, plus any required x/y offset
1435 * from there.
1436 */
1437 uint32_t
1438 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1439 GLuint level, GLuint slice,
1440 uint32_t *tile_x,
1441 uint32_t *tile_y)
1442 {
1443 uint32_t x, y;
1444 uint32_t mask_x, mask_y;
1445
1446 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1447 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1448
1449 *tile_x = x & mask_x;
1450 *tile_y = y & mask_y;
1451
1452 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1453 }
1454
1455 static void
1456 intel_miptree_copy_slice_sw(struct brw_context *brw,
1457 struct intel_mipmap_tree *src_mt,
1458 unsigned src_level, unsigned src_layer,
1459 struct intel_mipmap_tree *dst_mt,
1460 unsigned dst_level, unsigned dst_layer,
1461 unsigned width, unsigned height)
1462 {
1463 void *src, *dst;
1464 ptrdiff_t src_stride, dst_stride;
1465 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1466
1467 intel_miptree_map(brw, src_mt,
1468 src_level, src_layer,
1469 0, 0,
1470 width, height,
1471 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1472 &src, &src_stride);
1473
1474 intel_miptree_map(brw, dst_mt,
1475 dst_level, dst_layer,
1476 0, 0,
1477 width, height,
1478 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1479 BRW_MAP_DIRECT_BIT,
1480 &dst, &dst_stride);
1481
1482 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1483 _mesa_get_format_name(src_mt->format),
1484 src_mt, src, src_stride,
1485 _mesa_get_format_name(dst_mt->format),
1486 dst_mt, dst, dst_stride,
1487 width, height);
1488
1489 int row_size = cpp * width;
1490 if (src_stride == row_size &&
1491 dst_stride == row_size) {
1492 memcpy(dst, src, row_size * height);
1493 } else {
1494 for (int i = 0; i < height; i++) {
1495 memcpy(dst, src, row_size);
1496 dst += dst_stride;
1497 src += src_stride;
1498 }
1499 }
1500
1501 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1502 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1503
1504 /* Don't forget to copy the stencil data over, too. We could have skipped
1505 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1506 * shuffling the two data sources in/out of temporary storage instead of
1507 * the direct mapping we get this way.
1508 */
1509 if (dst_mt->stencil_mt) {
1510 assert(src_mt->stencil_mt);
1511 intel_miptree_copy_slice_sw(brw,
1512 src_mt->stencil_mt, src_level, src_layer,
1513 dst_mt->stencil_mt, dst_level, dst_layer,
1514 width, height);
1515 }
1516 }
1517
1518 void
1519 intel_miptree_copy_slice(struct brw_context *brw,
1520 struct intel_mipmap_tree *src_mt,
1521 unsigned src_level, unsigned src_layer,
1522 struct intel_mipmap_tree *dst_mt,
1523 unsigned dst_level, unsigned dst_layer)
1524
1525 {
1526 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1527 mesa_format format = src_mt->format;
1528 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1529 src_level - src_mt->first_level);
1530 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1531 src_level - src_mt->first_level);
1532
1533 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1534 src_level - src_mt->first_level));
1535
1536 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1537 _mesa_get_srgb_format_linear(dst_mt->format));
1538
1539 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1540 _mesa_get_format_name(src_mt->format),
1541 src_mt, src_level, src_layer,
1542 _mesa_get_format_name(dst_mt->format),
1543 dst_mt, dst_level, dst_layer,
1544 width, height);
1545
1546 if (devinfo->gen >= 6) {
1547 /* On gen6 and above, we just use blorp. It's faster than the blitter
1548 * and can handle everything without software fallbacks.
1549 */
1550 brw_blorp_copy_miptrees(brw,
1551 src_mt, src_level, src_layer,
1552 dst_mt, dst_level, dst_layer,
1553 0, 0, 0, 0, width, height);
1554
1555 if (src_mt->stencil_mt) {
1556 assert(dst_mt->stencil_mt);
1557 brw_blorp_copy_miptrees(brw,
1558 src_mt->stencil_mt, src_level, src_layer,
1559 dst_mt->stencil_mt, dst_level, dst_layer,
1560 0, 0, 0, 0, width, height);
1561 }
1562 return;
1563 }
1564
1565 if (dst_mt->compressed) {
1566 unsigned int i, j;
1567 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1568 height = ALIGN_NPOT(height, j) / j;
1569 width = ALIGN_NPOT(width, i) / i;
1570 }
1571
1572 /* Gen4-5 doesn't support separate stencil */
1573 assert(!src_mt->stencil_mt);
1574
1575 uint32_t dst_x, dst_y, src_x, src_y;
1576 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1577 &dst_x, &dst_y);
1578 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1579 &src_x, &src_y);
1580
1581 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1582 _mesa_get_format_name(src_mt->format),
1583 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1584 _mesa_get_format_name(dst_mt->format),
1585 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1586 width, height);
1587
1588 if (!intel_miptree_blit(brw,
1589 src_mt, src_level, src_layer, 0, 0, false,
1590 dst_mt, dst_level, dst_layer, 0, 0, false,
1591 width, height, COLOR_LOGICOP_COPY)) {
1592 perf_debug("miptree validate blit for %s failed\n",
1593 _mesa_get_format_name(format));
1594
1595 intel_miptree_copy_slice_sw(brw,
1596 src_mt, src_level, src_layer,
1597 dst_mt, dst_level, dst_layer,
1598 width, height);
1599 }
1600 }
1601
1602 /**
1603 * Copies the image's current data to the given miptree, and associates that
1604 * miptree with the image.
1605 */
1606 void
1607 intel_miptree_copy_teximage(struct brw_context *brw,
1608 struct intel_texture_image *intelImage,
1609 struct intel_mipmap_tree *dst_mt)
1610 {
1611 struct intel_mipmap_tree *src_mt = intelImage->mt;
1612 struct intel_texture_object *intel_obj =
1613 intel_texture_object(intelImage->base.Base.TexObject);
1614 int level = intelImage->base.Base.Level;
1615 const unsigned face = intelImage->base.Base.Face;
1616 unsigned start_layer, end_layer;
1617
1618 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1619 assert(face == 0);
1620 assert(intelImage->base.Base.Height);
1621 start_layer = 0;
1622 end_layer = intelImage->base.Base.Height - 1;
1623 } else if (face > 0) {
1624 start_layer = face;
1625 end_layer = face;
1626 } else {
1627 assert(intelImage->base.Base.Depth);
1628 start_layer = 0;
1629 end_layer = intelImage->base.Base.Depth - 1;
1630 }
1631
1632 for (unsigned i = start_layer; i <= end_layer; i++) {
1633 intel_miptree_copy_slice(brw,
1634 src_mt, level, i,
1635 dst_mt, level, i);
1636 }
1637
1638 intel_miptree_reference(&intelImage->mt, dst_mt);
1639 intel_obj->needs_validate = true;
1640 }
1641
1642 static struct intel_miptree_aux_buffer *
1643 intel_alloc_aux_buffer(struct brw_context *brw,
1644 const struct isl_surf *aux_surf,
1645 bool wants_memset,
1646 uint8_t memset_value)
1647 {
1648 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1649 if (!buf)
1650 return false;
1651
1652 uint64_t size = aux_surf->size;
1653
1654 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1655 if (has_indirect_clear) {
1656 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1657 * will set a pointer to a dword somewhere that contains the color. So,
1658 * allocate the space for the clear color value here on the aux buffer.
1659 */
1660 buf->clear_color_offset = size;
1661 size += brw->isl_dev.ss.clear_color_state_size;
1662 }
1663
1664 /* If the buffer needs to be initialised (requiring the buffer to be
1665 * immediately mapped to cpu space for writing), do not use the gpu access
1666 * flag which can cause an unnecessary delay if the backing pages happened
1667 * to be just used by the GPU.
1668 */
1669 const bool alloc_zeroed = wants_memset && memset_value == 0;
1670 const bool needs_memset =
1671 !alloc_zeroed && (wants_memset || has_indirect_clear);
1672 const uint32_t alloc_flags =
1673 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1674
1675 /* ISL has stricter set of alignment rules then the drm allocator.
1676 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1677 * trying to recalculate based on different format block sizes.
1678 */
1679 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1680 BRW_MEMZONE_OTHER, I915_TILING_Y,
1681 aux_surf->row_pitch, alloc_flags);
1682 if (!buf->bo) {
1683 free(buf);
1684 return NULL;
1685 }
1686
1687 /* Initialize the bo to the desired value */
1688 if (needs_memset) {
1689 assert(!(alloc_flags & BO_ALLOC_BUSY));
1690
1691 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1692 if (map == NULL) {
1693 intel_miptree_aux_buffer_free(buf);
1694 return NULL;
1695 }
1696
1697 /* Memset the aux_surf portion of the BO. */
1698 if (wants_memset)
1699 memset(map, memset_value, aux_surf->size);
1700
1701 /* Zero the indirect clear color to match ::fast_clear_color. */
1702 if (has_indirect_clear) {
1703 memset((char *)map + buf->clear_color_offset, 0,
1704 brw->isl_dev.ss.clear_color_state_size);
1705 }
1706
1707 brw_bo_unmap(buf->bo);
1708 }
1709
1710 if (has_indirect_clear) {
1711 buf->clear_color_bo = buf->bo;
1712 brw_bo_reference(buf->clear_color_bo);
1713 }
1714
1715 buf->surf = *aux_surf;
1716
1717 return buf;
1718 }
1719
1720
1721 /**
1722 * Helper for intel_miptree_alloc_aux() that sets
1723 * \c mt->level[level].has_hiz. Return true if and only if
1724 * \c has_hiz was set.
1725 */
1726 static bool
1727 intel_miptree_level_enable_hiz(struct brw_context *brw,
1728 struct intel_mipmap_tree *mt,
1729 uint32_t level)
1730 {
1731 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1732
1733 assert(mt->aux_buf);
1734 assert(mt->surf.size > 0);
1735
1736 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1737 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1738 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1739
1740 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1741 * and the height is 4 aligned. This allows our HiZ support
1742 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1743 * we can grow the width & height to allow the HiZ op to
1744 * force the proper size alignments.
1745 */
1746 if (level > 0 && ((width & 7) || (height & 3))) {
1747 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1748 return false;
1749 }
1750 }
1751
1752 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1753 mt->level[level].has_hiz = true;
1754 return true;
1755 }
1756
1757
1758 /**
1759 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1760 *
1761 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1762 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1763 * compress clear color so we wait until an actual fast-clear to allocate it.
1764 */
1765 bool
1766 intel_miptree_alloc_aux(struct brw_context *brw,
1767 struct intel_mipmap_tree *mt)
1768 {
1769 assert(mt->aux_buf == NULL);
1770
1771 /* Get the aux buf allocation parameters for this miptree. */
1772 enum isl_aux_state initial_state;
1773 uint8_t memset_value;
1774 struct isl_surf aux_surf;
1775 MAYBE_UNUSED bool aux_surf_ok;
1776
1777 switch (mt->aux_usage) {
1778 case ISL_AUX_USAGE_NONE:
1779 aux_surf.size = 0;
1780 aux_surf_ok = true;
1781 break;
1782 case ISL_AUX_USAGE_HIZ:
1783 initial_state = ISL_AUX_STATE_AUX_INVALID;
1784 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1785 break;
1786 case ISL_AUX_USAGE_MCS:
1787 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1788 *
1789 * When MCS buffer is enabled and bound to MSRT, it is required that
1790 * it is cleared prior to any rendering.
1791 *
1792 * Since we don't use the MCS buffer for any purpose other than
1793 * rendering, it makes sense to just clear it immediately upon
1794 * allocation.
1795 *
1796 * Note: the clear value for MCS buffers is all 1's, so we memset to
1797 * 0xff.
1798 */
1799 initial_state = ISL_AUX_STATE_CLEAR;
1800 memset_value = 0xFF;
1801 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1802 break;
1803 case ISL_AUX_USAGE_CCS_D:
1804 case ISL_AUX_USAGE_CCS_E:
1805 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1806 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1807 * Target(s)":
1808 *
1809 * "If Software wants to enable Color Compression without Fast
1810 * clear, Software needs to initialize MCS with zeros."
1811 *
1812 * A CCS value of 0 indicates that the corresponding block is in the
1813 * pass-through state which is what we want.
1814 *
1815 * For CCS_D, do the same thing. On gen9+, this avoids having any
1816 * undefined bits in the aux buffer.
1817 */
1818 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1819 memset_value = 0;
1820 aux_surf_ok =
1821 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1822 break;
1823 }
1824
1825 /* We should have a valid aux_surf. */
1826 assert(aux_surf_ok);
1827
1828 /* No work is needed for a zero-sized auxiliary buffer. */
1829 if (aux_surf.size == 0)
1830 return true;
1831
1832 /* Create the aux_state for the auxiliary buffer. */
1833 mt->aux_state = create_aux_state_map(mt, initial_state);
1834 if (mt->aux_state == NULL)
1835 return false;
1836
1837 /* Allocate the auxiliary buffer. */
1838 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1839 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1840 memset_value);
1841 if (mt->aux_buf == NULL) {
1842 free_aux_state_map(mt->aux_state);
1843 mt->aux_state = NULL;
1844 return false;
1845 }
1846
1847 /* Perform aux_usage-specific initialization. */
1848 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1849 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1850 intel_miptree_level_enable_hiz(brw, mt, level);
1851 }
1852
1853 return true;
1854 }
1855
1856
1857 /**
1858 * Can the miptree sample using the hiz buffer?
1859 */
1860 bool
1861 intel_miptree_sample_with_hiz(struct brw_context *brw,
1862 struct intel_mipmap_tree *mt)
1863 {
1864 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1865
1866 if (!devinfo->has_sample_with_hiz) {
1867 return false;
1868 }
1869
1870 if (!mt->aux_buf) {
1871 return false;
1872 }
1873
1874 /* It seems the hardware won't fallback to the depth buffer if some of the
1875 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1876 * of the texture to be HiZ enabled.
1877 */
1878 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1879 if (!intel_miptree_level_has_hiz(mt, level))
1880 return false;
1881 }
1882
1883 /* If compressed multisampling is enabled, then we use it for the auxiliary
1884 * buffer instead.
1885 *
1886 * From the BDW PRM (Volume 2d: Command Reference: Structures
1887 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1888 *
1889 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1890 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1891 *
1892 * There is no such blurb for 1D textures, but there is sufficient evidence
1893 * that this is broken on SKL+.
1894 */
1895 return (mt->surf.samples == 1 &&
1896 mt->target != GL_TEXTURE_3D &&
1897 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1898 }
1899
1900 /**
1901 * Does the miptree slice have hiz enabled?
1902 */
1903 bool
1904 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1905 {
1906 intel_miptree_check_level_layer(mt, level, 0);
1907 return mt->level[level].has_hiz;
1908 }
1909
1910 static inline uint32_t
1911 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1912 uint32_t start_level, uint32_t num_levels)
1913 {
1914 assert(start_level >= mt->first_level);
1915 assert(start_level <= mt->last_level);
1916
1917 if (num_levels == INTEL_REMAINING_LAYERS)
1918 num_levels = mt->last_level - start_level + 1;
1919 /* Check for overflow */
1920 assert(start_level + num_levels >= start_level);
1921 assert(start_level + num_levels <= mt->last_level + 1);
1922
1923 return num_levels;
1924 }
1925
1926 static inline uint32_t
1927 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1928 uint32_t start_layer, uint32_t num_layers)
1929 {
1930 assert(level <= mt->last_level);
1931
1932 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1933 assert(start_layer < total_num_layers);
1934 if (num_layers == INTEL_REMAINING_LAYERS)
1935 num_layers = total_num_layers - start_layer;
1936 /* Check for overflow */
1937 assert(start_layer + num_layers >= start_layer);
1938 assert(start_layer + num_layers <= total_num_layers);
1939
1940 return num_layers;
1941 }
1942
1943 bool
1944 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1945 unsigned start_level, unsigned num_levels,
1946 unsigned start_layer, unsigned num_layers)
1947 {
1948 assert(_mesa_is_format_color_format(mt->format));
1949
1950 if (!mt->aux_buf)
1951 return false;
1952
1953 /* Clamp the level range to fit the miptree */
1954 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1955
1956 for (uint32_t l = 0; l < num_levels; l++) {
1957 const uint32_t level = start_level + l;
1958 const uint32_t level_layers =
1959 miptree_layer_range_length(mt, level, start_layer, num_layers);
1960 for (unsigned a = 0; a < level_layers; a++) {
1961 enum isl_aux_state aux_state =
1962 intel_miptree_get_aux_state(mt, level, start_layer + a);
1963 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1964 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1965 return true;
1966 }
1967 }
1968
1969 return false;
1970 }
1971
1972 static void
1973 intel_miptree_check_color_resolve(const struct brw_context *brw,
1974 const struct intel_mipmap_tree *mt,
1975 unsigned level, unsigned layer)
1976 {
1977 if (!mt->aux_buf)
1978 return;
1979
1980 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1981 assert(brw->screen->devinfo.gen >= 8 ||
1982 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1983
1984 /* Compression of arrayed msaa surfaces is supported. */
1985 if (mt->surf.samples > 1)
1986 return;
1987
1988 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1989 assert(brw->screen->devinfo.gen >= 8 ||
1990 (layer == 0 &&
1991 mt->surf.logical_level0_px.depth == 1 &&
1992 mt->surf.logical_level0_px.array_len == 1));
1993
1994 (void)level;
1995 (void)layer;
1996 }
1997
1998 static enum isl_aux_op
1999 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2000 enum isl_aux_usage aux_usage,
2001 bool fast_clear_supported)
2002 {
2003 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2004
2005 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2006
2007 assert(ccs_supported == fast_clear_supported);
2008
2009 switch (aux_state) {
2010 case ISL_AUX_STATE_CLEAR:
2011 case ISL_AUX_STATE_PARTIAL_CLEAR:
2012 if (!ccs_supported)
2013 return ISL_AUX_OP_FULL_RESOLVE;
2014 else
2015 return ISL_AUX_OP_NONE;
2016
2017 case ISL_AUX_STATE_PASS_THROUGH:
2018 return ISL_AUX_OP_NONE;
2019
2020 case ISL_AUX_STATE_RESOLVED:
2021 case ISL_AUX_STATE_AUX_INVALID:
2022 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2023 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2024 break;
2025 }
2026
2027 unreachable("Invalid aux state for CCS_D");
2028 }
2029
2030 static enum isl_aux_op
2031 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2032 enum isl_aux_usage aux_usage,
2033 bool fast_clear_supported)
2034 {
2035 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2036 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2037 aux_usage == ISL_AUX_USAGE_CCS_D ||
2038 aux_usage == ISL_AUX_USAGE_CCS_E);
2039
2040 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2041 assert(fast_clear_supported);
2042
2043 switch (aux_state) {
2044 case ISL_AUX_STATE_CLEAR:
2045 case ISL_AUX_STATE_PARTIAL_CLEAR:
2046 if (fast_clear_supported)
2047 return ISL_AUX_OP_NONE;
2048 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2049 return ISL_AUX_OP_PARTIAL_RESOLVE;
2050 else
2051 return ISL_AUX_OP_FULL_RESOLVE;
2052
2053 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2054 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2055 return ISL_AUX_OP_FULL_RESOLVE;
2056 else if (!fast_clear_supported)
2057 return ISL_AUX_OP_PARTIAL_RESOLVE;
2058 else
2059 return ISL_AUX_OP_NONE;
2060
2061 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2062 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2063 return ISL_AUX_OP_FULL_RESOLVE;
2064 else
2065 return ISL_AUX_OP_NONE;
2066
2067 case ISL_AUX_STATE_PASS_THROUGH:
2068 return ISL_AUX_OP_NONE;
2069
2070 case ISL_AUX_STATE_RESOLVED:
2071 case ISL_AUX_STATE_AUX_INVALID:
2072 break;
2073 }
2074
2075 unreachable("Invalid aux state for CCS_E");
2076 }
2077
2078 static void
2079 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2080 struct intel_mipmap_tree *mt,
2081 uint32_t level, uint32_t layer,
2082 enum isl_aux_usage aux_usage,
2083 bool fast_clear_supported)
2084 {
2085 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2086
2087 enum isl_aux_op resolve_op;
2088 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2089 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2090 fast_clear_supported);
2091 } else {
2092 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2093 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2094 fast_clear_supported);
2095 }
2096
2097 if (resolve_op != ISL_AUX_OP_NONE) {
2098 intel_miptree_check_color_resolve(brw, mt, level, layer);
2099 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2100
2101 switch (resolve_op) {
2102 case ISL_AUX_OP_FULL_RESOLVE:
2103 /* The CCS full resolve operation destroys the CCS and sets it to the
2104 * pass-through state. (You can also think of this as being both a
2105 * resolve and an ambiguate in one operation.)
2106 */
2107 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2108 ISL_AUX_STATE_PASS_THROUGH);
2109 break;
2110
2111 case ISL_AUX_OP_PARTIAL_RESOLVE:
2112 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2113 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2114 break;
2115
2116 default:
2117 unreachable("Invalid resolve op");
2118 }
2119 }
2120 }
2121
2122 static void
2123 intel_miptree_finish_ccs_write(struct brw_context *brw,
2124 struct intel_mipmap_tree *mt,
2125 uint32_t level, uint32_t layer,
2126 enum isl_aux_usage aux_usage)
2127 {
2128 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2129 aux_usage == ISL_AUX_USAGE_CCS_D ||
2130 aux_usage == ISL_AUX_USAGE_CCS_E);
2131
2132 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2133
2134 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2135 switch (aux_state) {
2136 case ISL_AUX_STATE_CLEAR:
2137 case ISL_AUX_STATE_PARTIAL_CLEAR:
2138 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2139 aux_usage == ISL_AUX_USAGE_CCS_D);
2140
2141 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2142 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2143 ISL_AUX_STATE_COMPRESSED_CLEAR);
2144 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2145 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2146 ISL_AUX_STATE_PARTIAL_CLEAR);
2147 }
2148 break;
2149
2150 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2151 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2152 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2153 break; /* Nothing to do */
2154
2155 case ISL_AUX_STATE_PASS_THROUGH:
2156 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2157 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2158 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2159 } else {
2160 /* Nothing to do */
2161 }
2162 break;
2163
2164 case ISL_AUX_STATE_RESOLVED:
2165 case ISL_AUX_STATE_AUX_INVALID:
2166 unreachable("Invalid aux state for CCS_E");
2167 }
2168 } else {
2169 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2170 /* CCS_D is a bit simpler */
2171 switch (aux_state) {
2172 case ISL_AUX_STATE_CLEAR:
2173 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2174 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2175 ISL_AUX_STATE_PARTIAL_CLEAR);
2176 break;
2177
2178 case ISL_AUX_STATE_PARTIAL_CLEAR:
2179 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2180 break; /* Nothing to do */
2181
2182 case ISL_AUX_STATE_PASS_THROUGH:
2183 /* Nothing to do */
2184 break;
2185
2186 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2187 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2188 case ISL_AUX_STATE_RESOLVED:
2189 case ISL_AUX_STATE_AUX_INVALID:
2190 unreachable("Invalid aux state for CCS_D");
2191 }
2192 }
2193 }
2194
2195 static void
2196 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2197 struct intel_mipmap_tree *mt,
2198 uint32_t layer,
2199 enum isl_aux_usage aux_usage,
2200 bool fast_clear_supported)
2201 {
2202 assert(aux_usage == ISL_AUX_USAGE_MCS);
2203
2204 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2205 case ISL_AUX_STATE_CLEAR:
2206 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2207 if (!fast_clear_supported) {
2208 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2209 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2210 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2211 }
2212 break;
2213
2214 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2215 break; /* Nothing to do */
2216
2217 case ISL_AUX_STATE_RESOLVED:
2218 case ISL_AUX_STATE_PASS_THROUGH:
2219 case ISL_AUX_STATE_AUX_INVALID:
2220 case ISL_AUX_STATE_PARTIAL_CLEAR:
2221 unreachable("Invalid aux state for MCS");
2222 }
2223 }
2224
2225 static void
2226 intel_miptree_finish_mcs_write(struct brw_context *brw,
2227 struct intel_mipmap_tree *mt,
2228 uint32_t layer,
2229 enum isl_aux_usage aux_usage)
2230 {
2231 assert(aux_usage == ISL_AUX_USAGE_MCS);
2232
2233 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2234 case ISL_AUX_STATE_CLEAR:
2235 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2236 ISL_AUX_STATE_COMPRESSED_CLEAR);
2237 break;
2238
2239 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2240 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2241 break; /* Nothing to do */
2242
2243 case ISL_AUX_STATE_RESOLVED:
2244 case ISL_AUX_STATE_PASS_THROUGH:
2245 case ISL_AUX_STATE_AUX_INVALID:
2246 case ISL_AUX_STATE_PARTIAL_CLEAR:
2247 unreachable("Invalid aux state for MCS");
2248 }
2249 }
2250
2251 static void
2252 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2253 struct intel_mipmap_tree *mt,
2254 uint32_t level, uint32_t layer,
2255 enum isl_aux_usage aux_usage,
2256 bool fast_clear_supported)
2257 {
2258 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2259
2260 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2261 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2262 case ISL_AUX_STATE_CLEAR:
2263 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2264 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2265 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2266 break;
2267
2268 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2269 if (aux_usage != ISL_AUX_USAGE_HIZ)
2270 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2271 break;
2272
2273 case ISL_AUX_STATE_PASS_THROUGH:
2274 case ISL_AUX_STATE_RESOLVED:
2275 break;
2276
2277 case ISL_AUX_STATE_AUX_INVALID:
2278 if (aux_usage == ISL_AUX_USAGE_HIZ)
2279 hiz_op = ISL_AUX_OP_AMBIGUATE;
2280 break;
2281
2282 case ISL_AUX_STATE_PARTIAL_CLEAR:
2283 unreachable("Invalid HiZ state");
2284 }
2285
2286 if (hiz_op != ISL_AUX_OP_NONE) {
2287 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2288
2289 switch (hiz_op) {
2290 case ISL_AUX_OP_FULL_RESOLVE:
2291 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2292 ISL_AUX_STATE_RESOLVED);
2293 break;
2294
2295 case ISL_AUX_OP_AMBIGUATE:
2296 /* The HiZ resolve operation is actually an ambiguate */
2297 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2298 ISL_AUX_STATE_PASS_THROUGH);
2299 break;
2300
2301 default:
2302 unreachable("Invalid HiZ op");
2303 }
2304 }
2305 }
2306
2307 static void
2308 intel_miptree_finish_hiz_write(struct brw_context *brw,
2309 struct intel_mipmap_tree *mt,
2310 uint32_t level, uint32_t layer,
2311 enum isl_aux_usage aux_usage)
2312 {
2313 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2314
2315 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2316 case ISL_AUX_STATE_CLEAR:
2317 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2318 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2319 ISL_AUX_STATE_COMPRESSED_CLEAR);
2320 break;
2321
2322 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2323 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2324 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2325 break; /* Nothing to do */
2326
2327 case ISL_AUX_STATE_RESOLVED:
2328 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2329 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2330 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2331 } else {
2332 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2333 ISL_AUX_STATE_AUX_INVALID);
2334 }
2335 break;
2336
2337 case ISL_AUX_STATE_PASS_THROUGH:
2338 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2339 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2340 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2341 }
2342 break;
2343
2344 case ISL_AUX_STATE_AUX_INVALID:
2345 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2346 break;
2347
2348 case ISL_AUX_STATE_PARTIAL_CLEAR:
2349 unreachable("Invalid HiZ state");
2350 }
2351 }
2352
2353 void
2354 intel_miptree_prepare_access(struct brw_context *brw,
2355 struct intel_mipmap_tree *mt,
2356 uint32_t start_level, uint32_t num_levels,
2357 uint32_t start_layer, uint32_t num_layers,
2358 enum isl_aux_usage aux_usage,
2359 bool fast_clear_supported)
2360 {
2361 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2362
2363 switch (mt->aux_usage) {
2364 case ISL_AUX_USAGE_NONE:
2365 /* Nothing to do */
2366 break;
2367
2368 case ISL_AUX_USAGE_MCS:
2369 assert(mt->aux_buf);
2370 assert(start_level == 0 && num_levels == 1);
2371 const uint32_t level_layers =
2372 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2373 for (uint32_t a = 0; a < level_layers; a++) {
2374 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2375 aux_usage, fast_clear_supported);
2376 }
2377 break;
2378
2379 case ISL_AUX_USAGE_CCS_D:
2380 case ISL_AUX_USAGE_CCS_E:
2381 if (!mt->aux_buf)
2382 return;
2383
2384 for (uint32_t l = 0; l < num_levels; l++) {
2385 const uint32_t level = start_level + l;
2386 const uint32_t level_layers =
2387 miptree_layer_range_length(mt, level, start_layer, num_layers);
2388 for (uint32_t a = 0; a < level_layers; a++) {
2389 intel_miptree_prepare_ccs_access(brw, mt, level,
2390 start_layer + a,
2391 aux_usage, fast_clear_supported);
2392 }
2393 }
2394 break;
2395
2396 case ISL_AUX_USAGE_HIZ:
2397 assert(mt->aux_buf);
2398 for (uint32_t l = 0; l < num_levels; l++) {
2399 const uint32_t level = start_level + l;
2400 if (!intel_miptree_level_has_hiz(mt, level))
2401 continue;
2402
2403 const uint32_t level_layers =
2404 miptree_layer_range_length(mt, level, start_layer, num_layers);
2405 for (uint32_t a = 0; a < level_layers; a++) {
2406 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2407 aux_usage, fast_clear_supported);
2408 }
2409 }
2410 break;
2411
2412 default:
2413 unreachable("Invalid aux usage");
2414 }
2415 }
2416
2417 void
2418 intel_miptree_finish_write(struct brw_context *brw,
2419 struct intel_mipmap_tree *mt, uint32_t level,
2420 uint32_t start_layer, uint32_t num_layers,
2421 enum isl_aux_usage aux_usage)
2422 {
2423 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2424 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2425
2426 switch (mt->aux_usage) {
2427 case ISL_AUX_USAGE_NONE:
2428 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->gen <= 7)
2429 mt->r8stencil_needs_update = true;
2430 break;
2431
2432 case ISL_AUX_USAGE_MCS:
2433 assert(mt->aux_buf);
2434 for (uint32_t a = 0; a < num_layers; a++) {
2435 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2436 aux_usage);
2437 }
2438 break;
2439
2440 case ISL_AUX_USAGE_CCS_D:
2441 case ISL_AUX_USAGE_CCS_E:
2442 if (!mt->aux_buf)
2443 return;
2444
2445 for (uint32_t a = 0; a < num_layers; a++) {
2446 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2447 aux_usage);
2448 }
2449 break;
2450
2451 case ISL_AUX_USAGE_HIZ:
2452 if (!intel_miptree_level_has_hiz(mt, level))
2453 return;
2454
2455 for (uint32_t a = 0; a < num_layers; a++) {
2456 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2457 aux_usage);
2458 }
2459 break;
2460
2461 default:
2462 unreachable("Invavlid aux usage");
2463 }
2464 }
2465
2466 enum isl_aux_state
2467 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2468 uint32_t level, uint32_t layer)
2469 {
2470 intel_miptree_check_level_layer(mt, level, layer);
2471
2472 if (_mesa_is_format_color_format(mt->format)) {
2473 assert(mt->aux_buf != NULL);
2474 assert(mt->surf.samples == 1 ||
2475 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2476 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2477 unreachable("Cannot get aux state for stencil");
2478 } else {
2479 assert(intel_miptree_level_has_hiz(mt, level));
2480 }
2481
2482 return mt->aux_state[level][layer];
2483 }
2484
2485 void
2486 intel_miptree_set_aux_state(struct brw_context *brw,
2487 struct intel_mipmap_tree *mt, uint32_t level,
2488 uint32_t start_layer, uint32_t num_layers,
2489 enum isl_aux_state aux_state)
2490 {
2491 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2492
2493 if (_mesa_is_format_color_format(mt->format)) {
2494 assert(mt->aux_buf != NULL);
2495 assert(mt->surf.samples == 1 ||
2496 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2497 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2498 unreachable("Cannot get aux state for stencil");
2499 } else {
2500 assert(intel_miptree_level_has_hiz(mt, level));
2501 }
2502
2503 for (unsigned a = 0; a < num_layers; a++) {
2504 if (mt->aux_state[level][start_layer + a] != aux_state) {
2505 mt->aux_state[level][start_layer + a] = aux_state;
2506 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2507 }
2508 }
2509 }
2510
2511 /* On Gen9 color buffers may be compressed by the hardware (lossless
2512 * compression). There are, however, format restrictions and care needs to be
2513 * taken that the sampler engine is capable for re-interpreting a buffer with
2514 * format different the buffer was originally written with.
2515 *
2516 * For example, SRGB formats are not compressible and the sampler engine isn't
2517 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2518 * color buffer needs to be resolved so that the sampling surface can be
2519 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2520 * set).
2521 */
2522 static bool
2523 can_texture_with_ccs(struct brw_context *brw,
2524 struct intel_mipmap_tree *mt,
2525 enum isl_format view_format)
2526 {
2527 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2528 return false;
2529
2530 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2531 mt, view_format)) {
2532 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2533 isl_format_get_layout(view_format)->name,
2534 _mesa_get_format_name(mt->format));
2535 return false;
2536 }
2537
2538 return true;
2539 }
2540
2541 enum isl_aux_usage
2542 intel_miptree_texture_aux_usage(struct brw_context *brw,
2543 struct intel_mipmap_tree *mt,
2544 enum isl_format view_format)
2545 {
2546 switch (mt->aux_usage) {
2547 case ISL_AUX_USAGE_HIZ:
2548 if (intel_miptree_sample_with_hiz(brw, mt))
2549 return ISL_AUX_USAGE_HIZ;
2550 break;
2551
2552 case ISL_AUX_USAGE_MCS:
2553 return ISL_AUX_USAGE_MCS;
2554
2555 case ISL_AUX_USAGE_CCS_D:
2556 case ISL_AUX_USAGE_CCS_E:
2557 if (!mt->aux_buf) {
2558 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2559 return ISL_AUX_USAGE_NONE;
2560 }
2561
2562 /* If we don't have any unresolved color, report an aux usage of
2563 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2564 * aux surface and we can save some bandwidth.
2565 */
2566 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2567 0, INTEL_REMAINING_LAYERS))
2568 return ISL_AUX_USAGE_NONE;
2569
2570 if (can_texture_with_ccs(brw, mt, view_format))
2571 return ISL_AUX_USAGE_CCS_E;
2572 break;
2573
2574 default:
2575 break;
2576 }
2577
2578 return ISL_AUX_USAGE_NONE;
2579 }
2580
2581 static bool
2582 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2583 {
2584 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2585 * values so sRGB curve application was a no-op for all fast-clearable
2586 * formats.
2587 *
2588 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2589 * values, the hardware interprets the floats, not as what would be
2590 * returned from the sampler (or written by the shader), but as being
2591 * between format conversion and sRGB curve application. This means that
2592 * we can switch between sRGB and UNORM without having to whack the clear
2593 * color.
2594 */
2595 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2596 }
2597
2598 void
2599 intel_miptree_prepare_texture(struct brw_context *brw,
2600 struct intel_mipmap_tree *mt,
2601 enum isl_format view_format,
2602 uint32_t start_level, uint32_t num_levels,
2603 uint32_t start_layer, uint32_t num_layers)
2604 {
2605 enum isl_aux_usage aux_usage =
2606 intel_miptree_texture_aux_usage(brw, mt, view_format);
2607 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2608
2609 /* Clear color is specified as ints or floats and the conversion is done by
2610 * the sampler. If we have a texture view, we would have to perform the
2611 * clear color conversion manually. Just disable clear color.
2612 */
2613 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2614 clear_supported = false;
2615
2616 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2617 start_layer, num_layers,
2618 aux_usage, clear_supported);
2619 }
2620
2621 void
2622 intel_miptree_prepare_image(struct brw_context *brw,
2623 struct intel_mipmap_tree *mt)
2624 {
2625 /* The data port doesn't understand any compression */
2626 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2627 0, INTEL_REMAINING_LAYERS,
2628 ISL_AUX_USAGE_NONE, false);
2629 }
2630
2631 enum isl_aux_usage
2632 intel_miptree_render_aux_usage(struct brw_context *brw,
2633 struct intel_mipmap_tree *mt,
2634 enum isl_format render_format,
2635 bool blend_enabled,
2636 bool draw_aux_disabled)
2637 {
2638 struct gen_device_info *devinfo = &brw->screen->devinfo;
2639
2640 if (draw_aux_disabled)
2641 return ISL_AUX_USAGE_NONE;
2642
2643 switch (mt->aux_usage) {
2644 case ISL_AUX_USAGE_MCS:
2645 assert(mt->aux_buf);
2646 return ISL_AUX_USAGE_MCS;
2647
2648 case ISL_AUX_USAGE_CCS_D:
2649 case ISL_AUX_USAGE_CCS_E:
2650 if (!mt->aux_buf) {
2651 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2652 return ISL_AUX_USAGE_NONE;
2653 }
2654
2655 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2656 * formats. However, there are issues with blending where it doesn't
2657 * properly apply the sRGB curve to the clear color when blending.
2658 */
2659 if (devinfo->gen >= 9 && blend_enabled &&
2660 isl_format_is_srgb(render_format) &&
2661 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2662 return ISL_AUX_USAGE_NONE;
2663
2664 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2665 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2666 mt, render_format))
2667 return ISL_AUX_USAGE_CCS_E;
2668
2669 /* Otherwise, we have to fall back to CCS_D */
2670 return ISL_AUX_USAGE_CCS_D;
2671
2672 default:
2673 return ISL_AUX_USAGE_NONE;
2674 }
2675 }
2676
2677 void
2678 intel_miptree_prepare_render(struct brw_context *brw,
2679 struct intel_mipmap_tree *mt, uint32_t level,
2680 uint32_t start_layer, uint32_t layer_count,
2681 enum isl_aux_usage aux_usage)
2682 {
2683 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2684 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2685 }
2686
2687 void
2688 intel_miptree_finish_render(struct brw_context *brw,
2689 struct intel_mipmap_tree *mt, uint32_t level,
2690 uint32_t start_layer, uint32_t layer_count,
2691 enum isl_aux_usage aux_usage)
2692 {
2693 assert(_mesa_is_format_color_format(mt->format));
2694
2695 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2696 aux_usage);
2697 }
2698
2699 void
2700 intel_miptree_prepare_depth(struct brw_context *brw,
2701 struct intel_mipmap_tree *mt, uint32_t level,
2702 uint32_t start_layer, uint32_t layer_count)
2703 {
2704 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2705 mt->aux_usage, mt->aux_buf != NULL);
2706 }
2707
2708 void
2709 intel_miptree_finish_depth(struct brw_context *brw,
2710 struct intel_mipmap_tree *mt, uint32_t level,
2711 uint32_t start_layer, uint32_t layer_count,
2712 bool depth_written)
2713 {
2714 if (depth_written) {
2715 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2716 mt->aux_buf != NULL);
2717 }
2718 }
2719
2720 void
2721 intel_miptree_prepare_external(struct brw_context *brw,
2722 struct intel_mipmap_tree *mt)
2723 {
2724 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2725 bool supports_fast_clear = false;
2726
2727 const struct isl_drm_modifier_info *mod_info =
2728 isl_drm_modifier_get_info(mt->drm_modifier);
2729
2730 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2731 /* CCS_E is the only supported aux for external images and it's only
2732 * supported on very simple images.
2733 */
2734 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2735 assert(_mesa_is_format_color_format(mt->format));
2736 assert(mt->first_level == 0 && mt->last_level == 0);
2737 assert(mt->surf.logical_level0_px.depth == 1);
2738 assert(mt->surf.logical_level0_px.array_len == 1);
2739 assert(mt->surf.samples == 1);
2740 assert(mt->aux_buf != NULL);
2741
2742 aux_usage = mod_info->aux_usage;
2743 supports_fast_clear = mod_info->supports_clear_color;
2744 }
2745
2746 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2747 0, INTEL_REMAINING_LAYERS,
2748 aux_usage, supports_fast_clear);
2749 }
2750
2751 void
2752 intel_miptree_finish_external(struct brw_context *brw,
2753 struct intel_mipmap_tree *mt)
2754 {
2755 if (!mt->aux_buf)
2756 return;
2757
2758 /* We don't know the actual aux state of the aux surface. The previous
2759 * owner could have given it to us in a number of different states.
2760 * Because we don't know the aux state, we reset the aux state to the
2761 * least common denominator of possible valid states.
2762 */
2763 enum isl_aux_state default_aux_state =
2764 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2765 assert(mt->last_level == mt->first_level);
2766 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2767 default_aux_state);
2768 }
2769
2770 /**
2771 * Make it possible to share the BO backing the given miptree with another
2772 * process or another miptree.
2773 *
2774 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2775 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2776 * ensure that no MCS buffer gets allocated in the future.
2777 *
2778 * HiZ is similarly unsafe with shared buffers.
2779 */
2780 void
2781 intel_miptree_make_shareable(struct brw_context *brw,
2782 struct intel_mipmap_tree *mt)
2783 {
2784 /* MCS buffers are also used for multisample buffers, but we can't resolve
2785 * away a multisample MCS buffer because it's an integral part of how the
2786 * pixel data is stored. Fortunately this code path should never be
2787 * reached for multisample buffers.
2788 */
2789 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2790 mt->surf.samples == 1);
2791
2792 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2793 0, INTEL_REMAINING_LAYERS,
2794 ISL_AUX_USAGE_NONE, false);
2795
2796 if (mt->aux_buf) {
2797 intel_miptree_aux_buffer_free(mt->aux_buf);
2798 mt->aux_buf = NULL;
2799
2800 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2801 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2802 mt->level[l].has_hiz = false;
2803 }
2804
2805 free(mt->aux_state);
2806 mt->aux_state = NULL;
2807 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2808 }
2809
2810 mt->aux_usage = ISL_AUX_USAGE_NONE;
2811 mt->supports_fast_clear = false;
2812 }
2813
2814
2815 /**
2816 * \brief Get pointer offset into stencil buffer.
2817 *
2818 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2819 * must decode the tile's layout in software.
2820 *
2821 * See
2822 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2823 * Format.
2824 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2825 *
2826 * Even though the returned offset is always positive, the return type is
2827 * signed due to
2828 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2829 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2830 */
2831 static intptr_t
2832 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2833 {
2834 uint32_t tile_size = 4096;
2835 uint32_t tile_width = 64;
2836 uint32_t tile_height = 64;
2837 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2838
2839 uint32_t tile_x = x / tile_width;
2840 uint32_t tile_y = y / tile_height;
2841
2842 /* The byte's address relative to the tile's base addres. */
2843 uint32_t byte_x = x % tile_width;
2844 uint32_t byte_y = y % tile_height;
2845
2846 uintptr_t u = tile_y * row_size
2847 + tile_x * tile_size
2848 + 512 * (byte_x / 8)
2849 + 64 * (byte_y / 8)
2850 + 32 * ((byte_y / 4) % 2)
2851 + 16 * ((byte_x / 4) % 2)
2852 + 8 * ((byte_y / 2) % 2)
2853 + 4 * ((byte_x / 2) % 2)
2854 + 2 * (byte_y % 2)
2855 + 1 * (byte_x % 2);
2856
2857 if (swizzled) {
2858 /* adjust for bit6 swizzling */
2859 if (((byte_x / 8) % 2) == 1) {
2860 if (((byte_y / 8) % 2) == 0) {
2861 u += 64;
2862 } else {
2863 u -= 64;
2864 }
2865 }
2866 }
2867
2868 return u;
2869 }
2870
2871 void
2872 intel_miptree_updownsample(struct brw_context *brw,
2873 struct intel_mipmap_tree *src,
2874 struct intel_mipmap_tree *dst)
2875 {
2876 unsigned src_w = src->surf.logical_level0_px.width;
2877 unsigned src_h = src->surf.logical_level0_px.height;
2878 unsigned dst_w = dst->surf.logical_level0_px.width;
2879 unsigned dst_h = dst->surf.logical_level0_px.height;
2880
2881 brw_blorp_blit_miptrees(brw,
2882 src, 0 /* level */, 0 /* layer */,
2883 src->format, SWIZZLE_XYZW,
2884 dst, 0 /* level */, 0 /* layer */, dst->format,
2885 0, 0, src_w, src_h,
2886 0, 0, dst_w, dst_h,
2887 GL_NEAREST, false, false /*mirror x, y*/,
2888 false, false);
2889
2890 if (src->stencil_mt) {
2891 src_w = src->stencil_mt->surf.logical_level0_px.width;
2892 src_h = src->stencil_mt->surf.logical_level0_px.height;
2893 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2894 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2895
2896 brw_blorp_blit_miptrees(brw,
2897 src->stencil_mt, 0 /* level */, 0 /* layer */,
2898 src->stencil_mt->format, SWIZZLE_XYZW,
2899 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2900 dst->stencil_mt->format,
2901 0, 0, src_w, src_h,
2902 0, 0, dst_w, dst_h,
2903 GL_NEAREST, false, false /*mirror x, y*/,
2904 false, false /* decode/encode srgb */);
2905 }
2906 }
2907
2908 void
2909 intel_update_r8stencil(struct brw_context *brw,
2910 struct intel_mipmap_tree *mt)
2911 {
2912 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2913
2914 assert(devinfo->gen >= 7);
2915 struct intel_mipmap_tree *src =
2916 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2917 if (!src || devinfo->gen >= 8)
2918 return;
2919
2920 assert(src->surf.size > 0);
2921
2922 if (!mt->r8stencil_mt) {
2923 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2924 mt->r8stencil_mt = make_surface(
2925 brw,
2926 src->target,
2927 MESA_FORMAT_R_UINT8,
2928 src->first_level, src->last_level,
2929 src->surf.logical_level0_px.width,
2930 src->surf.logical_level0_px.height,
2931 src->surf.dim == ISL_SURF_DIM_3D ?
2932 src->surf.logical_level0_px.depth :
2933 src->surf.logical_level0_px.array_len,
2934 src->surf.samples,
2935 ISL_TILING_Y0_BIT,
2936 ISL_SURF_USAGE_TEXTURE_BIT,
2937 BO_ALLOC_BUSY, 0, NULL);
2938 assert(mt->r8stencil_mt);
2939 }
2940
2941 if (src->r8stencil_needs_update == false)
2942 return;
2943
2944 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2945
2946 for (int level = src->first_level; level <= src->last_level; level++) {
2947 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2948 minify(src->surf.phys_level0_sa.depth, level) :
2949 src->surf.phys_level0_sa.array_len;
2950
2951 for (unsigned layer = 0; layer < depth; layer++) {
2952 brw_blorp_copy_miptrees(brw,
2953 src, level, layer,
2954 dst, level, layer,
2955 0, 0, 0, 0,
2956 minify(src->surf.logical_level0_px.width,
2957 level),
2958 minify(src->surf.logical_level0_px.height,
2959 level));
2960 }
2961 }
2962
2963 brw_cache_flush_for_read(brw, dst->bo);
2964 src->r8stencil_needs_update = false;
2965 }
2966
2967 static void *
2968 intel_miptree_map_raw(struct brw_context *brw,
2969 struct intel_mipmap_tree *mt,
2970 GLbitfield mode)
2971 {
2972 struct brw_bo *bo = mt->bo;
2973
2974 if (brw_batch_references(&brw->batch, bo))
2975 intel_batchbuffer_flush(brw);
2976
2977 return brw_bo_map(brw, bo, mode);
2978 }
2979
2980 static void
2981 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2982 {
2983 brw_bo_unmap(mt->bo);
2984 }
2985
2986 static void
2987 intel_miptree_unmap_gtt(struct brw_context *brw,
2988 struct intel_mipmap_tree *mt,
2989 struct intel_miptree_map *map,
2990 unsigned int level, unsigned int slice)
2991 {
2992 intel_miptree_unmap_raw(mt);
2993 }
2994
2995 static void
2996 intel_miptree_map_gtt(struct brw_context *brw,
2997 struct intel_mipmap_tree *mt,
2998 struct intel_miptree_map *map,
2999 unsigned int level, unsigned int slice)
3000 {
3001 unsigned int bw, bh;
3002 void *base;
3003 unsigned int image_x, image_y;
3004 intptr_t x = map->x;
3005 intptr_t y = map->y;
3006
3007 /* For compressed formats, the stride is the number of bytes per
3008 * row of blocks. intel_miptree_get_image_offset() already does
3009 * the divide.
3010 */
3011 _mesa_get_format_block_size(mt->format, &bw, &bh);
3012 assert(y % bh == 0);
3013 assert(x % bw == 0);
3014 y /= bh;
3015 x /= bw;
3016
3017 intel_miptree_access_raw(brw, mt, level, slice,
3018 map->mode & GL_MAP_WRITE_BIT);
3019
3020 base = intel_miptree_map_raw(brw, mt, map->mode);
3021
3022 if (base == NULL)
3023 map->ptr = NULL;
3024 else {
3025 base += mt->offset;
3026
3027 /* Note that in the case of cube maps, the caller must have passed the
3028 * slice number referencing the face.
3029 */
3030 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3031 x += image_x;
3032 y += image_y;
3033
3034 map->stride = mt->surf.row_pitch;
3035 map->ptr = base + y * map->stride + x * mt->cpp;
3036 }
3037
3038 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3039 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3040 map->x, map->y, map->w, map->h,
3041 mt, _mesa_get_format_name(mt->format),
3042 x, y, map->ptr, map->stride);
3043
3044 map->unmap = intel_miptree_unmap_gtt;
3045 }
3046
3047 static void
3048 intel_miptree_unmap_blit(struct brw_context *brw,
3049 struct intel_mipmap_tree *mt,
3050 struct intel_miptree_map *map,
3051 unsigned int level,
3052 unsigned int slice)
3053 {
3054 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3055 struct gl_context *ctx = &brw->ctx;
3056
3057 intel_miptree_unmap_raw(map->linear_mt);
3058
3059 if (map->mode & GL_MAP_WRITE_BIT) {
3060 if (devinfo->gen >= 6) {
3061 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
3062 mt, level, slice,
3063 0, 0, map->x, map->y, map->w, map->h);
3064 } else {
3065 bool ok = intel_miptree_copy(brw,
3066 map->linear_mt, 0, 0, 0, 0,
3067 mt, level, slice, map->x, map->y,
3068 map->w, map->h);
3069 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3070 }
3071 }
3072
3073 intel_miptree_release(&map->linear_mt);
3074 }
3075
3076 static void
3077 intel_miptree_map_blit(struct brw_context *brw,
3078 struct intel_mipmap_tree *mt,
3079 struct intel_miptree_map *map,
3080 unsigned int level, unsigned int slice)
3081 {
3082 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3083 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
3084 0, 0, map->w, map->h, 1, 1,
3085 ISL_TILING_LINEAR_BIT,
3086 ISL_SURF_USAGE_RENDER_TARGET_BIT |
3087 ISL_SURF_USAGE_TEXTURE_BIT,
3088 0, 0, NULL);
3089
3090 if (!map->linear_mt) {
3091 fprintf(stderr, "Failed to allocate blit temporary\n");
3092 goto fail;
3093 }
3094 map->stride = map->linear_mt->surf.row_pitch;
3095
3096 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3097 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3098 * invalidate is set, since we'll be writing the whole rectangle from our
3099 * temporary buffer back out.
3100 */
3101 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3102 if (devinfo->gen >= 6) {
3103 brw_blorp_copy_miptrees(brw, mt, level, slice,
3104 map->linear_mt, 0, 0,
3105 map->x, map->y, 0, 0, map->w, map->h);
3106 } else {
3107 if (!intel_miptree_copy(brw,
3108 mt, level, slice, map->x, map->y,
3109 map->linear_mt, 0, 0, 0, 0,
3110 map->w, map->h)) {
3111 fprintf(stderr, "Failed to blit\n");
3112 goto fail;
3113 }
3114 }
3115 }
3116
3117 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3118
3119 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3120 map->x, map->y, map->w, map->h,
3121 mt, _mesa_get_format_name(mt->format),
3122 level, slice, map->ptr, map->stride);
3123
3124 map->unmap = intel_miptree_unmap_blit;
3125 return;
3126
3127 fail:
3128 intel_miptree_release(&map->linear_mt);
3129 map->ptr = NULL;
3130 map->stride = 0;
3131 }
3132
3133 /**
3134 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3135 */
3136 #if defined(USE_SSE41)
3137 static void
3138 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3139 struct intel_mipmap_tree *mt,
3140 struct intel_miptree_map *map,
3141 unsigned int level,
3142 unsigned int slice)
3143 {
3144 _mesa_align_free(map->buffer);
3145 map->buffer = NULL;
3146 map->ptr = NULL;
3147 }
3148
3149 static void
3150 intel_miptree_map_movntdqa(struct brw_context *brw,
3151 struct intel_mipmap_tree *mt,
3152 struct intel_miptree_map *map,
3153 unsigned int level, unsigned int slice)
3154 {
3155 assert(map->mode & GL_MAP_READ_BIT);
3156 assert(!(map->mode & GL_MAP_WRITE_BIT));
3157
3158 intel_miptree_access_raw(brw, mt, level, slice, false);
3159
3160 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3161 map->x, map->y, map->w, map->h,
3162 mt, _mesa_get_format_name(mt->format),
3163 level, slice, map->ptr, map->stride);
3164
3165 /* Map the original image */
3166 uint32_t image_x;
3167 uint32_t image_y;
3168 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3169 image_x += map->x;
3170 image_y += map->y;
3171
3172 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3173 if (!src)
3174 return;
3175
3176 src += mt->offset;
3177
3178 src += image_y * mt->surf.row_pitch;
3179 src += image_x * mt->cpp;
3180
3181 /* Due to the pixel offsets for the particular image being mapped, our
3182 * src pointer may not be 16-byte aligned. However, if the pitch is
3183 * divisible by 16, then the amount by which it's misaligned will remain
3184 * consistent from row to row.
3185 */
3186 assert((mt->surf.row_pitch % 16) == 0);
3187 const int misalignment = ((uintptr_t) src) & 15;
3188
3189 /* Create an untiled temporary buffer for the mapping. */
3190 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3191
3192 map->stride = ALIGN(misalignment + width_bytes, 16);
3193
3194 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3195 /* Offset the destination so it has the same misalignment as src. */
3196 map->ptr = map->buffer + misalignment;
3197
3198 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3199
3200 for (uint32_t y = 0; y < map->h; y++) {
3201 void *dst_ptr = map->ptr + y * map->stride;
3202 void *src_ptr = src + y * mt->surf.row_pitch;
3203
3204 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3205 }
3206
3207 intel_miptree_unmap_raw(mt);
3208
3209 map->unmap = intel_miptree_unmap_movntdqa;
3210 }
3211 #endif
3212
3213 static void
3214 intel_miptree_unmap_s8(struct brw_context *brw,
3215 struct intel_mipmap_tree *mt,
3216 struct intel_miptree_map *map,
3217 unsigned int level,
3218 unsigned int slice)
3219 {
3220 if (map->mode & GL_MAP_WRITE_BIT) {
3221 unsigned int image_x, image_y;
3222 uint8_t *untiled_s8_map = map->ptr;
3223 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3224
3225 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3226
3227 for (uint32_t y = 0; y < map->h; y++) {
3228 for (uint32_t x = 0; x < map->w; x++) {
3229 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3230 image_x + x + map->x,
3231 image_y + y + map->y,
3232 brw->has_swizzling);
3233 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3234 }
3235 }
3236
3237 intel_miptree_unmap_raw(mt);
3238 }
3239
3240 free(map->buffer);
3241 }
3242
3243 static void
3244 intel_miptree_map_s8(struct brw_context *brw,
3245 struct intel_mipmap_tree *mt,
3246 struct intel_miptree_map *map,
3247 unsigned int level, unsigned int slice)
3248 {
3249 map->stride = map->w;
3250 map->buffer = map->ptr = malloc(map->stride * map->h);
3251 if (!map->buffer)
3252 return;
3253
3254 intel_miptree_access_raw(brw, mt, level, slice,
3255 map->mode & GL_MAP_WRITE_BIT);
3256
3257 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3258 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3259 * invalidate is set, since we'll be writing the whole rectangle from our
3260 * temporary buffer back out.
3261 */
3262 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3263 uint8_t *untiled_s8_map = map->ptr;
3264 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3265 unsigned int image_x, image_y;
3266
3267 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3268
3269 for (uint32_t y = 0; y < map->h; y++) {
3270 for (uint32_t x = 0; x < map->w; x++) {
3271 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3272 x + image_x + map->x,
3273 y + image_y + map->y,
3274 brw->has_swizzling);
3275 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3276 }
3277 }
3278
3279 intel_miptree_unmap_raw(mt);
3280
3281 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3282 map->x, map->y, map->w, map->h,
3283 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3284 } else {
3285 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3286 map->x, map->y, map->w, map->h,
3287 mt, map->ptr, map->stride);
3288 }
3289
3290 map->unmap = intel_miptree_unmap_s8;
3291 }
3292
3293 static void
3294 intel_miptree_unmap_etc(struct brw_context *brw,
3295 struct intel_mipmap_tree *mt,
3296 struct intel_miptree_map *map,
3297 unsigned int level,
3298 unsigned int slice)
3299 {
3300 uint32_t image_x;
3301 uint32_t image_y;
3302 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3303
3304 image_x += map->x;
3305 image_y += map->y;
3306
3307 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3308 + image_y * mt->surf.row_pitch
3309 + image_x * mt->cpp;
3310
3311 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3312 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3313 map->ptr, map->stride,
3314 map->w, map->h);
3315 else
3316 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3317 map->ptr, map->stride,
3318 map->w, map->h, mt->etc_format, true);
3319
3320 intel_miptree_unmap_raw(mt);
3321 free(map->buffer);
3322 }
3323
3324 static void
3325 intel_miptree_map_etc(struct brw_context *brw,
3326 struct intel_mipmap_tree *mt,
3327 struct intel_miptree_map *map,
3328 unsigned int level,
3329 unsigned int slice)
3330 {
3331 assert(mt->etc_format != MESA_FORMAT_NONE);
3332 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3333 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3334 }
3335
3336 assert(map->mode & GL_MAP_WRITE_BIT);
3337 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3338
3339 intel_miptree_access_raw(brw, mt, level, slice, true);
3340
3341 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3342 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3343 map->w, map->h, 1));
3344 map->ptr = map->buffer;
3345 map->unmap = intel_miptree_unmap_etc;
3346 }
3347
3348 /**
3349 * Mapping functions for packed depth/stencil miptrees backed by real separate
3350 * miptrees for depth and stencil.
3351 *
3352 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3353 * separate from the depth buffer. Yet at the GL API level, we have to expose
3354 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3355 * be able to map that memory for texture storage and glReadPixels-type
3356 * operations. We give Mesa core that access by mallocing a temporary and
3357 * copying the data between the actual backing store and the temporary.
3358 */
3359 static void
3360 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3361 struct intel_mipmap_tree *mt,
3362 struct intel_miptree_map *map,
3363 unsigned int level,
3364 unsigned int slice)
3365 {
3366 struct intel_mipmap_tree *z_mt = mt;
3367 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3368 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3369
3370 if (map->mode & GL_MAP_WRITE_BIT) {
3371 uint32_t *packed_map = map->ptr;
3372 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3373 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3374 unsigned int s_image_x, s_image_y;
3375 unsigned int z_image_x, z_image_y;
3376
3377 intel_miptree_get_image_offset(s_mt, level, slice,
3378 &s_image_x, &s_image_y);
3379 intel_miptree_get_image_offset(z_mt, level, slice,
3380 &z_image_x, &z_image_y);
3381
3382 for (uint32_t y = 0; y < map->h; y++) {
3383 for (uint32_t x = 0; x < map->w; x++) {
3384 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3385 x + s_image_x + map->x,
3386 y + s_image_y + map->y,
3387 brw->has_swizzling);
3388 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3389 (z_mt->surf.row_pitch / 4) +
3390 (x + z_image_x + map->x));
3391
3392 if (map_z32f_x24s8) {
3393 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3394 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3395 } else {
3396 uint32_t packed = packed_map[y * map->w + x];
3397 s_map[s_offset] = packed >> 24;
3398 z_map[z_offset] = packed;
3399 }
3400 }
3401 }
3402
3403 intel_miptree_unmap_raw(s_mt);
3404 intel_miptree_unmap_raw(z_mt);
3405
3406 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3407 __func__,
3408 map->x, map->y, map->w, map->h,
3409 z_mt, _mesa_get_format_name(z_mt->format),
3410 map->x + z_image_x, map->y + z_image_y,
3411 s_mt, map->x + s_image_x, map->y + s_image_y,
3412 map->ptr, map->stride);
3413 }
3414
3415 free(map->buffer);
3416 }
3417
3418 static void
3419 intel_miptree_map_depthstencil(struct brw_context *brw,
3420 struct intel_mipmap_tree *mt,
3421 struct intel_miptree_map *map,
3422 unsigned int level, unsigned int slice)
3423 {
3424 struct intel_mipmap_tree *z_mt = mt;
3425 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3426 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3427 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3428
3429 map->stride = map->w * packed_bpp;
3430 map->buffer = map->ptr = malloc(map->stride * map->h);
3431 if (!map->buffer)
3432 return;
3433
3434 intel_miptree_access_raw(brw, z_mt, level, slice,
3435 map->mode & GL_MAP_WRITE_BIT);
3436 intel_miptree_access_raw(brw, s_mt, level, slice,
3437 map->mode & GL_MAP_WRITE_BIT);
3438
3439 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3440 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3441 * invalidate is set, since we'll be writing the whole rectangle from our
3442 * temporary buffer back out.
3443 */
3444 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3445 uint32_t *packed_map = map->ptr;
3446 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3447 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3448 unsigned int s_image_x, s_image_y;
3449 unsigned int z_image_x, z_image_y;
3450
3451 intel_miptree_get_image_offset(s_mt, level, slice,
3452 &s_image_x, &s_image_y);
3453 intel_miptree_get_image_offset(z_mt, level, slice,
3454 &z_image_x, &z_image_y);
3455
3456 for (uint32_t y = 0; y < map->h; y++) {
3457 for (uint32_t x = 0; x < map->w; x++) {
3458 int map_x = map->x + x, map_y = map->y + y;
3459 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3460 map_x + s_image_x,
3461 map_y + s_image_y,
3462 brw->has_swizzling);
3463 ptrdiff_t z_offset = ((map_y + z_image_y) *
3464 (z_mt->surf.row_pitch / 4) +
3465 (map_x + z_image_x));
3466 uint8_t s = s_map[s_offset];
3467 uint32_t z = z_map[z_offset];
3468
3469 if (map_z32f_x24s8) {
3470 packed_map[(y * map->w + x) * 2 + 0] = z;
3471 packed_map[(y * map->w + x) * 2 + 1] = s;
3472 } else {
3473 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3474 }
3475 }
3476 }
3477
3478 intel_miptree_unmap_raw(s_mt);
3479 intel_miptree_unmap_raw(z_mt);
3480
3481 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3482 __func__,
3483 map->x, map->y, map->w, map->h,
3484 z_mt, map->x + z_image_x, map->y + z_image_y,
3485 s_mt, map->x + s_image_x, map->y + s_image_y,
3486 map->ptr, map->stride);
3487 } else {
3488 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3489 map->x, map->y, map->w, map->h,
3490 mt, map->ptr, map->stride);
3491 }
3492
3493 map->unmap = intel_miptree_unmap_depthstencil;
3494 }
3495
3496 /**
3497 * Create and attach a map to the miptree at (level, slice). Return the
3498 * attached map.
3499 */
3500 static struct intel_miptree_map*
3501 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3502 unsigned int level,
3503 unsigned int slice,
3504 unsigned int x,
3505 unsigned int y,
3506 unsigned int w,
3507 unsigned int h,
3508 GLbitfield mode)
3509 {
3510 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3511
3512 if (!map)
3513 return NULL;
3514
3515 assert(mt->level[level].slice[slice].map == NULL);
3516 mt->level[level].slice[slice].map = map;
3517
3518 map->mode = mode;
3519 map->x = x;
3520 map->y = y;
3521 map->w = w;
3522 map->h = h;
3523
3524 return map;
3525 }
3526
3527 /**
3528 * Release the map at (level, slice).
3529 */
3530 static void
3531 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3532 unsigned int level,
3533 unsigned int slice)
3534 {
3535 struct intel_miptree_map **map;
3536
3537 map = &mt->level[level].slice[slice].map;
3538 free(*map);
3539 *map = NULL;
3540 }
3541
3542 static bool
3543 can_blit_slice(struct intel_mipmap_tree *mt,
3544 unsigned int level, unsigned int slice)
3545 {
3546 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3547 if (intel_miptree_blt_pitch(mt) >= 32768)
3548 return false;
3549
3550 return true;
3551 }
3552
3553 static bool
3554 use_intel_mipree_map_blit(struct brw_context *brw,
3555 struct intel_mipmap_tree *mt,
3556 GLbitfield mode,
3557 unsigned int level,
3558 unsigned int slice)
3559 {
3560 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3561
3562 if (devinfo->has_llc &&
3563 /* It's probably not worth swapping to the blit ring because of
3564 * all the overhead involved.
3565 */
3566 !(mode & GL_MAP_WRITE_BIT) &&
3567 !mt->compressed &&
3568 (mt->surf.tiling == ISL_TILING_X ||
3569 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3570 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3571 /* Fast copy blit on skl+ supports all tiling formats. */
3572 devinfo->gen >= 9) &&
3573 can_blit_slice(mt, level, slice))
3574 return true;
3575
3576 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3577 mt->bo->size >= brw->max_gtt_map_object_size) {
3578 assert(can_blit_slice(mt, level, slice));
3579 return true;
3580 }
3581
3582 return false;
3583 }
3584
3585 /**
3586 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3587 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3588 * arithmetic overflow.
3589 *
3590 * If you call this function and use \a out_stride, then you're doing pointer
3591 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3592 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3593 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3594 * which usually have type uint32_t or GLuint.
3595 */
3596 void
3597 intel_miptree_map(struct brw_context *brw,
3598 struct intel_mipmap_tree *mt,
3599 unsigned int level,
3600 unsigned int slice,
3601 unsigned int x,
3602 unsigned int y,
3603 unsigned int w,
3604 unsigned int h,
3605 GLbitfield mode,
3606 void **out_ptr,
3607 ptrdiff_t *out_stride)
3608 {
3609 struct intel_miptree_map *map;
3610
3611 assert(mt->surf.samples == 1);
3612
3613 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3614 if (!map){
3615 *out_ptr = NULL;
3616 *out_stride = 0;
3617 return;
3618 }
3619
3620 if (mt->format == MESA_FORMAT_S_UINT8) {
3621 intel_miptree_map_s8(brw, mt, map, level, slice);
3622 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3623 !(mode & BRW_MAP_DIRECT_BIT)) {
3624 intel_miptree_map_etc(brw, mt, map, level, slice);
3625 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3626 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3627 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3628 intel_miptree_map_blit(brw, mt, map, level, slice);
3629 #if defined(USE_SSE41)
3630 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3631 !mt->compressed && cpu_has_sse4_1 &&
3632 (mt->surf.row_pitch % 16 == 0)) {
3633 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3634 #endif
3635 } else {
3636 intel_miptree_map_gtt(brw, mt, map, level, slice);
3637 }
3638
3639 *out_ptr = map->ptr;
3640 *out_stride = map->stride;
3641
3642 if (map->ptr == NULL)
3643 intel_miptree_release_map(mt, level, slice);
3644 }
3645
3646 void
3647 intel_miptree_unmap(struct brw_context *brw,
3648 struct intel_mipmap_tree *mt,
3649 unsigned int level,
3650 unsigned int slice)
3651 {
3652 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3653
3654 assert(mt->surf.samples == 1);
3655
3656 if (!map)
3657 return;
3658
3659 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3660 mt, _mesa_get_format_name(mt->format), level, slice);
3661
3662 if (map->unmap)
3663 map->unmap(brw, mt, map, level, slice);
3664
3665 intel_miptree_release_map(mt, level, slice);
3666 }
3667
3668 enum isl_surf_dim
3669 get_isl_surf_dim(GLenum target)
3670 {
3671 switch (target) {
3672 case GL_TEXTURE_1D:
3673 case GL_TEXTURE_1D_ARRAY:
3674 return ISL_SURF_DIM_1D;
3675
3676 case GL_TEXTURE_2D:
3677 case GL_TEXTURE_2D_ARRAY:
3678 case GL_TEXTURE_RECTANGLE:
3679 case GL_TEXTURE_CUBE_MAP:
3680 case GL_TEXTURE_CUBE_MAP_ARRAY:
3681 case GL_TEXTURE_2D_MULTISAMPLE:
3682 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3683 case GL_TEXTURE_EXTERNAL_OES:
3684 return ISL_SURF_DIM_2D;
3685
3686 case GL_TEXTURE_3D:
3687 return ISL_SURF_DIM_3D;
3688 }
3689
3690 unreachable("Invalid texture target");
3691 }
3692
3693 enum isl_dim_layout
3694 get_isl_dim_layout(const struct gen_device_info *devinfo,
3695 enum isl_tiling tiling, GLenum target)
3696 {
3697 switch (target) {
3698 case GL_TEXTURE_1D:
3699 case GL_TEXTURE_1D_ARRAY:
3700 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3701 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3702
3703 case GL_TEXTURE_2D:
3704 case GL_TEXTURE_2D_ARRAY:
3705 case GL_TEXTURE_RECTANGLE:
3706 case GL_TEXTURE_2D_MULTISAMPLE:
3707 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3708 case GL_TEXTURE_EXTERNAL_OES:
3709 return ISL_DIM_LAYOUT_GEN4_2D;
3710
3711 case GL_TEXTURE_CUBE_MAP:
3712 case GL_TEXTURE_CUBE_MAP_ARRAY:
3713 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3714 ISL_DIM_LAYOUT_GEN4_2D);
3715
3716 case GL_TEXTURE_3D:
3717 return (devinfo->gen >= 9 ?
3718 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3719 }
3720
3721 unreachable("Invalid texture target");
3722 }
3723
3724 bool
3725 intel_miptree_set_clear_color(struct brw_context *brw,
3726 struct intel_mipmap_tree *mt,
3727 union isl_color_value clear_color)
3728 {
3729 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3730 mt->fast_clear_color = clear_color;
3731 if (mt->aux_buf->clear_color_bo) {
3732 /* We can't update the clear color while the hardware is still using
3733 * the previous one for a resolve or sampling from it. Make sure that
3734 * there are no pending commands at this point.
3735 */
3736 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3737 for (int i = 0; i < 4; i++) {
3738 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3739 mt->aux_buf->clear_color_offset + i * 4,
3740 mt->fast_clear_color.u32[i]);
3741 }
3742 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3743 }
3744 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3745 return true;
3746 }
3747 return false;
3748 }
3749
3750 union isl_color_value
3751 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3752 const struct intel_mipmap_tree *mt,
3753 enum isl_format view_format, bool sampling,
3754 struct brw_bo **clear_color_bo,
3755 uint32_t *clear_color_offset)
3756 {
3757 assert(mt->aux_buf);
3758
3759 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3760 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3761 * we switch to using the inline clear color and do the sRGB color
3762 * conversion process defined in the OpenGL spec. The red, green, and
3763 * blue channels take part in gamma correction, while the alpha channel
3764 * is unchanged.
3765 */
3766 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3767 for (unsigned i = 0; i < 3; i++) {
3768 srgb_decoded_value.f32[i] =
3769 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3770 }
3771 *clear_color_bo = 0;
3772 *clear_color_offset = 0;
3773 return srgb_decoded_value;
3774 } else {
3775 *clear_color_bo = mt->aux_buf->clear_color_bo;
3776 *clear_color_offset = mt->aux_buf->clear_color_offset;
3777 return mt->fast_clear_color;
3778 }
3779 }