82f5a814a1ed2ad81a1e60244b4556fb3e9af39b
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 /**
245 * Return true if the format that will be used to access the miptree is
246 * CCS_E-compatible with the miptree's linear/non-sRGB format.
247 *
248 * Why use the linear format? Well, although the miptree may be specified with
249 * an sRGB format, the usage of that color space/format can be toggled. Since
250 * our HW tends to support more linear formats than sRGB ones, we use this
251 * format variant for check for CCS_E compatibility.
252 */
253 static bool
254 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
255 const struct intel_mipmap_tree *mt,
256 enum isl_format access_format)
257 {
258 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
259
260 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
261 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
262 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
263 }
264
265 static bool
266 intel_miptree_supports_ccs_e(struct brw_context *brw,
267 const struct intel_mipmap_tree *mt)
268 {
269 const struct gen_device_info *devinfo = &brw->screen->devinfo;
270
271 if (devinfo->gen < 9)
272 return false;
273
274 /* For now compression is only enabled for integer formats even though
275 * there exist supported floating point formats also. This is a heuristic
276 * decision based on current public benchmarks. In none of the cases these
277 * formats provided any improvement but a few cases were seen to regress.
278 * Hence these are left to to be enabled in the future when they are known
279 * to improve things.
280 */
281 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
282 return false;
283
284 if (!intel_miptree_supports_ccs(brw, mt))
285 return false;
286
287 /* Many window system buffers are sRGB even if they are never rendered as
288 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
289 * surface is used as sRGB, we fall back to CCS_D.
290 */
291 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
292 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
293 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
294 }
295
296 /**
297 * Determine depth format corresponding to a depth+stencil format,
298 * for separate stencil.
299 */
300 mesa_format
301 intel_depth_format_for_depthstencil_format(mesa_format format) {
302 switch (format) {
303 case MESA_FORMAT_Z24_UNORM_S8_UINT:
304 return MESA_FORMAT_Z24_UNORM_X8_UINT;
305 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
306 return MESA_FORMAT_Z_FLOAT32;
307 default:
308 return format;
309 }
310 }
311
312 static bool
313 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
314 unsigned depth0, struct intel_mipmap_level *table)
315 {
316 for (unsigned level = first_level; level <= last_level; level++) {
317 const unsigned d =
318 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
319
320 table[level].slice = calloc(d, sizeof(*table[0].slice));
321 if (!table[level].slice)
322 goto unwind;
323 }
324
325 return true;
326
327 unwind:
328 for (unsigned level = first_level; level <= last_level; level++)
329 free(table[level].slice);
330
331 return false;
332 }
333
334 static bool
335 needs_separate_stencil(const struct brw_context *brw,
336 struct intel_mipmap_tree *mt,
337 mesa_format format)
338 {
339 const struct gen_device_info *devinfo = &brw->screen->devinfo;
340
341 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
342 return false;
343
344 if (devinfo->must_use_separate_stencil)
345 return true;
346
347 return brw->has_separate_stencil &&
348 intel_miptree_supports_hiz(brw, mt);
349 }
350
351 /**
352 * Choose the aux usage for this miptree. This function must be called fairly
353 * late in the miptree create process after we have a tiling.
354 */
355 static void
356 intel_miptree_choose_aux_usage(struct brw_context *brw,
357 struct intel_mipmap_tree *mt)
358 {
359 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
360
361 if (intel_miptree_supports_mcs(brw, mt)) {
362 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
363 mt->aux_usage = ISL_AUX_USAGE_MCS;
364 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
365 intel_miptree_supports_ccs(brw, mt)) {
366 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
367 intel_miptree_supports_ccs_e(brw, mt)) {
368 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
369 } else {
370 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
371 }
372 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
373 intel_miptree_supports_hiz(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_HIZ;
375 }
376
377 /* We can do fast-clear on all auxiliary surface types that are
378 * allocated through the normal texture creation paths.
379 */
380 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
381 mt->supports_fast_clear = true;
382 }
383
384
385 /**
386 * Choose an appropriate uncompressed format for a requested
387 * compressed format, if unsupported.
388 */
389 mesa_format
390 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
391 {
392 const struct gen_device_info *devinfo = &brw->screen->devinfo;
393
394 /* No need to lower ETC formats on these platforms,
395 * they are supported natively.
396 */
397 if (devinfo->gen >= 8 || devinfo->is_baytrail)
398 return format;
399
400 switch (format) {
401 case MESA_FORMAT_ETC1_RGB8:
402 return MESA_FORMAT_R8G8B8X8_UNORM;
403 case MESA_FORMAT_ETC2_RGB8:
404 return MESA_FORMAT_R8G8B8X8_UNORM;
405 case MESA_FORMAT_ETC2_SRGB8:
406 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
407 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
408 return MESA_FORMAT_B8G8R8A8_SRGB;
409 case MESA_FORMAT_ETC2_RGBA8_EAC:
410 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
411 return MESA_FORMAT_R8G8B8A8_UNORM;
412 case MESA_FORMAT_ETC2_R11_EAC:
413 return MESA_FORMAT_R_UNORM16;
414 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
415 return MESA_FORMAT_R_SNORM16;
416 case MESA_FORMAT_ETC2_RG11_EAC:
417 return MESA_FORMAT_R16G16_UNORM;
418 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
419 return MESA_FORMAT_R16G16_SNORM;
420 default:
421 /* Non ETC1 / ETC2 format */
422 return format;
423 }
424 }
425
426 unsigned
427 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
428 {
429 if (mt->surf.dim == ISL_SURF_DIM_3D)
430 return minify(mt->surf.logical_level0_px.depth, level);
431 else
432 return mt->surf.logical_level0_px.array_len;
433 }
434
435 UNUSED static unsigned
436 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
437 {
438 /* In case of physical dimensions one needs to consider also the layout.
439 * See isl_calc_phys_level0_extent_sa().
440 */
441 if (surf->dim != ISL_SURF_DIM_3D)
442 return surf->phys_level0_sa.array_len;
443
444 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
445 return minify(surf->phys_level0_sa.array_len, level);
446
447 return minify(surf->phys_level0_sa.depth, level);
448 }
449
450 /** \brief Assert that the level and layer are valid for the miptree. */
451 void
452 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
453 uint32_t level,
454 uint32_t layer)
455 {
456 (void) mt;
457 (void) level;
458 (void) layer;
459
460 assert(level >= mt->first_level);
461 assert(level <= mt->last_level);
462 assert(layer < get_num_phys_layers(&mt->surf, level));
463 }
464
465 static enum isl_aux_state **
466 create_aux_state_map(struct intel_mipmap_tree *mt,
467 enum isl_aux_state initial)
468 {
469 const uint32_t levels = mt->last_level + 1;
470
471 uint32_t total_slices = 0;
472 for (uint32_t level = 0; level < levels; level++)
473 total_slices += brw_get_num_logical_layers(mt, level);
474
475 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
476
477 /* We're going to allocate a single chunk of data for both the per-level
478 * reference array and the arrays of aux_state. This makes cleanup
479 * significantly easier.
480 */
481 const size_t total_size = per_level_array_size +
482 total_slices * sizeof(enum isl_aux_state);
483 void *data = malloc(total_size);
484 if (data == NULL)
485 return NULL;
486
487 enum isl_aux_state **per_level_arr = data;
488 enum isl_aux_state *s = data + per_level_array_size;
489 for (uint32_t level = 0; level < levels; level++) {
490 per_level_arr[level] = s;
491 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
492 for (uint32_t a = 0; a < level_layers; a++)
493 *(s++) = initial;
494 }
495 assert((void *)s == data + total_size);
496
497 return per_level_arr;
498 }
499
500 static void
501 free_aux_state_map(enum isl_aux_state **state)
502 {
503 free(state);
504 }
505
506 static bool
507 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
508 enum isl_tiling tiling, unsigned samples)
509 {
510 if (samples > 1)
511 return false;
512
513 if (tiling == ISL_TILING_LINEAR)
514 return false;
515
516 /* If the width is much smaller than a tile, don't bother tiling. */
517 if (row_pitch < 64)
518 return true;
519
520 if (ALIGN(row_pitch, 512) >= 32768) {
521 perf_debug("row pitch %u too large to blit, falling back to untiled",
522 row_pitch);
523 return true;
524 }
525
526 return false;
527 }
528
529 static bool
530 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
531 enum isl_tiling tiling)
532 {
533 const struct gen_device_info *devinfo = &brw->screen->devinfo;
534
535 /* If the BO is too large to fit in the aperture, we need to use the
536 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
537 * handle Y-tiling, so we need to fall back to X.
538 */
539 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
540 tiling == ISL_TILING_Y0)
541 return true;
542
543 return false;
544 }
545
546 static struct intel_mipmap_tree *
547 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
548 unsigned first_level, unsigned last_level,
549 unsigned width0, unsigned height0, unsigned depth0,
550 unsigned num_samples, isl_tiling_flags_t tiling_flags,
551 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
552 unsigned row_pitch, struct brw_bo *bo)
553 {
554 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
555 if (!mt)
556 return NULL;
557
558 if (!create_mapping_table(target, first_level, last_level, depth0,
559 mt->level)) {
560 free(mt);
561 return NULL;
562 }
563
564 mt->refcount = 1;
565
566 if (target == GL_TEXTURE_CUBE_MAP ||
567 target == GL_TEXTURE_CUBE_MAP_ARRAY)
568 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
569
570 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
571 __func__,
572 _mesa_enum_to_string(target),
573 _mesa_get_format_name(format),
574 num_samples, width0, height0, depth0,
575 first_level, last_level, mt);
576
577 struct isl_surf_init_info init_info = {
578 .dim = get_isl_surf_dim(target),
579 .format = translate_tex_format(brw, format, false),
580 .width = width0,
581 .height = height0,
582 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
583 .levels = last_level - first_level + 1,
584 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
585 .samples = num_samples,
586 .row_pitch = row_pitch,
587 .usage = isl_usage_flags,
588 .tiling_flags = tiling_flags,
589 };
590
591 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
592 goto fail;
593
594 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
595 * on gen7 platforms we also need to create Y-tiled copies of stencil for
596 * texturing since the hardware can't sample from W-tiled surfaces. For
597 * everything else, check for corner cases needing special treatment.
598 */
599 bool is_depth_stencil =
600 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
601 if (!is_depth_stencil) {
602 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
603 mt->surf.tiling, mt->surf.samples)) {
604 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
605 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
606 goto fail;
607 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
608 init_info.tiling_flags = 1u << ISL_TILING_X;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 }
612 }
613
614 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
615 * the size may not be multiple of row_pitch.
616 * See isl_apply_surface_padding().
617 */
618 if (mt->surf.tiling != ISL_TILING_LINEAR)
619 assert(mt->surf.size % mt->surf.row_pitch == 0);
620
621 if (!bo) {
622 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
623 mt->surf.size,
624 isl_tiling_to_i915_tiling(
625 mt->surf.tiling),
626 mt->surf.row_pitch, alloc_flags);
627 if (!mt->bo)
628 goto fail;
629 } else {
630 mt->bo = bo;
631 }
632
633 mt->first_level = first_level;
634 mt->last_level = last_level;
635 mt->target = target;
636 mt->format = format;
637 mt->aux_state = NULL;
638 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
639 mt->compressed = _mesa_is_format_compressed(format);
640 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
641
642 return mt;
643
644 fail:
645 intel_miptree_release(&mt);
646 return NULL;
647 }
648
649 static bool
650 make_separate_stencil_surface(struct brw_context *brw,
651 struct intel_mipmap_tree *mt)
652 {
653 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
654 0, mt->surf.levels - 1,
655 mt->surf.logical_level0_px.width,
656 mt->surf.logical_level0_px.height,
657 mt->surf.dim == ISL_SURF_DIM_3D ?
658 mt->surf.logical_level0_px.depth :
659 mt->surf.logical_level0_px.array_len,
660 mt->surf.samples, ISL_TILING_W_BIT,
661 ISL_SURF_USAGE_STENCIL_BIT |
662 ISL_SURF_USAGE_TEXTURE_BIT,
663 BO_ALLOC_BUSY, 0, NULL);
664
665 if (!mt->stencil_mt)
666 return false;
667
668 mt->stencil_mt->r8stencil_needs_update = true;
669
670 return true;
671 }
672
673 static struct intel_mipmap_tree *
674 miptree_create(struct brw_context *brw,
675 GLenum target,
676 mesa_format format,
677 GLuint first_level,
678 GLuint last_level,
679 GLuint width0,
680 GLuint height0,
681 GLuint depth0,
682 GLuint num_samples,
683 enum intel_miptree_create_flags flags)
684 {
685 const struct gen_device_info *devinfo = &brw->screen->devinfo;
686
687 if (format == MESA_FORMAT_S_UINT8)
688 return make_surface(brw, target, format, first_level, last_level,
689 width0, height0, depth0, num_samples,
690 ISL_TILING_W_BIT,
691 ISL_SURF_USAGE_STENCIL_BIT |
692 ISL_SURF_USAGE_TEXTURE_BIT,
693 BO_ALLOC_BUSY,
694 0,
695 NULL);
696
697 const GLenum base_format = _mesa_get_format_base_format(format);
698 if ((base_format == GL_DEPTH_COMPONENT ||
699 base_format == GL_DEPTH_STENCIL) &&
700 !(flags & MIPTREE_CREATE_LINEAR)) {
701 /* Fix up the Z miptree format for how we're splitting out separate
702 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
703 */
704 const mesa_format depth_only_format =
705 intel_depth_format_for_depthstencil_format(format);
706 struct intel_mipmap_tree *mt = make_surface(
707 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
708 first_level, last_level,
709 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
710 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
711 BO_ALLOC_BUSY, 0, NULL);
712
713 if (needs_separate_stencil(brw, mt, format) &&
714 !make_separate_stencil_surface(brw, mt)) {
715 intel_miptree_release(&mt);
716 return NULL;
717 }
718
719 if (!(flags & MIPTREE_CREATE_NO_AUX))
720 intel_miptree_choose_aux_usage(brw, mt);
721
722 return mt;
723 }
724
725 mesa_format tex_format = format;
726 mesa_format etc_format = MESA_FORMAT_NONE;
727 uint32_t alloc_flags = 0;
728
729 format = intel_lower_compressed_format(brw, format);
730
731 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
732
733 if (flags & MIPTREE_CREATE_BUSY)
734 alloc_flags |= BO_ALLOC_BUSY;
735
736 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
737 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
738
739 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
740 if (devinfo->gen < 6)
741 tiling_flags &= ~ISL_TILING_Y0_BIT;
742
743 struct intel_mipmap_tree *mt = make_surface(
744 brw, target, format,
745 first_level, last_level,
746 width0, height0, depth0,
747 num_samples, tiling_flags,
748 ISL_SURF_USAGE_RENDER_TARGET_BIT |
749 ISL_SURF_USAGE_TEXTURE_BIT,
750 alloc_flags, 0, NULL);
751 if (!mt)
752 return NULL;
753
754 mt->etc_format = etc_format;
755
756 if (!(flags & MIPTREE_CREATE_NO_AUX))
757 intel_miptree_choose_aux_usage(brw, mt);
758
759 return mt;
760 }
761
762 struct intel_mipmap_tree *
763 intel_miptree_create(struct brw_context *brw,
764 GLenum target,
765 mesa_format format,
766 GLuint first_level,
767 GLuint last_level,
768 GLuint width0,
769 GLuint height0,
770 GLuint depth0,
771 GLuint num_samples,
772 enum intel_miptree_create_flags flags)
773 {
774 assert(num_samples > 0);
775
776 struct intel_mipmap_tree *mt = miptree_create(
777 brw, target, format,
778 first_level, last_level,
779 width0, height0, depth0, num_samples,
780 flags);
781 if (!mt)
782 return NULL;
783
784 mt->offset = 0;
785
786 if (!intel_miptree_alloc_aux(brw, mt)) {
787 intel_miptree_release(&mt);
788 return NULL;
789 }
790
791 return mt;
792 }
793
794 struct intel_mipmap_tree *
795 intel_miptree_create_for_bo(struct brw_context *brw,
796 struct brw_bo *bo,
797 mesa_format format,
798 uint32_t offset,
799 uint32_t width,
800 uint32_t height,
801 uint32_t depth,
802 int pitch,
803 enum intel_miptree_create_flags flags)
804 {
805 const struct gen_device_info *devinfo = &brw->screen->devinfo;
806 struct intel_mipmap_tree *mt;
807 uint32_t tiling, swizzle;
808 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
809 const GLenum base_format = _mesa_get_format_base_format(format);
810
811 if ((base_format == GL_DEPTH_COMPONENT ||
812 base_format == GL_DEPTH_STENCIL)) {
813 const mesa_format depth_only_format =
814 intel_depth_format_for_depthstencil_format(format);
815 mt = make_surface(brw, target,
816 devinfo->gen >= 6 ? depth_only_format : format,
817 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
818 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
819 BO_ALLOC_BUSY, pitch, bo);
820 if (!mt)
821 return NULL;
822
823 brw_bo_reference(bo);
824
825 if (!(flags & MIPTREE_CREATE_NO_AUX))
826 intel_miptree_choose_aux_usage(brw, mt);
827
828 return mt;
829 } else if (format == MESA_FORMAT_S_UINT8) {
830 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
831 0, 0, width, height, depth, 1,
832 ISL_TILING_W_BIT,
833 ISL_SURF_USAGE_STENCIL_BIT |
834 ISL_SURF_USAGE_TEXTURE_BIT,
835 BO_ALLOC_BUSY, pitch, bo);
836 if (!mt)
837 return NULL;
838
839 assert(bo->size >= mt->surf.size);
840
841 brw_bo_reference(bo);
842 return mt;
843 }
844
845 brw_bo_get_tiling(bo, &tiling, &swizzle);
846
847 /* Nothing will be able to use this miptree with the BO if the offset isn't
848 * aligned.
849 */
850 if (tiling != I915_TILING_NONE)
851 assert(offset % 4096 == 0);
852
853 /* miptrees can't handle negative pitch. If you need flipping of images,
854 * that's outside of the scope of the mt.
855 */
856 assert(pitch >= 0);
857
858 /* The BO already has a tiling format and we shouldn't confuse the lower
859 * layers by making it try to find a tiling format again.
860 */
861 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
862
863 mt = make_surface(brw, target, format,
864 0, 0, width, height, depth, 1,
865 1lu << isl_tiling_from_i915_tiling(tiling),
866 ISL_SURF_USAGE_RENDER_TARGET_BIT |
867 ISL_SURF_USAGE_TEXTURE_BIT,
868 0, pitch, bo);
869 if (!mt)
870 return NULL;
871
872 brw_bo_reference(bo);
873 mt->bo = bo;
874 mt->offset = offset;
875
876 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
877 intel_miptree_choose_aux_usage(brw, mt);
878
879 if (!intel_miptree_alloc_aux(brw, mt)) {
880 intel_miptree_release(&mt);
881 return NULL;
882 }
883 }
884
885 return mt;
886 }
887
888 static struct intel_mipmap_tree *
889 miptree_create_for_planar_image(struct brw_context *brw,
890 __DRIimage *image, GLenum target)
891 {
892 const struct intel_image_format *f = image->planar_format;
893 struct intel_mipmap_tree *planar_mt = NULL;
894
895 for (int i = 0; i < f->nplanes; i++) {
896 const int index = f->planes[i].buffer_index;
897 const uint32_t dri_format = f->planes[i].dri_format;
898 const mesa_format format = driImageFormatToGLFormat(dri_format);
899 const uint32_t width = image->width >> f->planes[i].width_shift;
900 const uint32_t height = image->height >> f->planes[i].height_shift;
901
902 /* Disable creation of the texture's aux buffers because the driver
903 * exposes no EGL API to manage them. That is, there is no API for
904 * resolving the aux buffer's content to the main buffer nor for
905 * invalidating the aux buffer's content.
906 */
907 struct intel_mipmap_tree *mt =
908 intel_miptree_create_for_bo(brw, image->bo, format,
909 image->offsets[index],
910 width, height, 1,
911 image->strides[index],
912 MIPTREE_CREATE_NO_AUX);
913 if (mt == NULL)
914 return NULL;
915
916 mt->target = target;
917
918 if (i == 0)
919 planar_mt = mt;
920 else
921 planar_mt->plane[i - 1] = mt;
922 }
923
924 planar_mt->drm_modifier = image->modifier;
925
926 return planar_mt;
927 }
928
929 static bool
930 create_ccs_buf_for_image(struct brw_context *brw,
931 __DRIimage *image,
932 struct intel_mipmap_tree *mt,
933 enum isl_aux_state initial_state)
934 {
935 struct isl_surf temp_ccs_surf;
936
937 /* CCS is only supported for very simple miptrees */
938 assert(image->aux_offset != 0 && image->aux_pitch != 0);
939 assert(image->tile_x == 0 && image->tile_y == 0);
940 assert(mt->surf.samples == 1);
941 assert(mt->surf.levels == 1);
942 assert(mt->surf.logical_level0_px.depth == 1);
943 assert(mt->surf.logical_level0_px.array_len == 1);
944 assert(mt->first_level == 0);
945 assert(mt->last_level == 0);
946
947 /* We shouldn't already have a CCS */
948 assert(!mt->mcs_buf);
949
950 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
951 image->aux_pitch))
952 return false;
953
954 assert(image->aux_offset < image->bo->size);
955 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
956
957 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
958 if (mt->mcs_buf == NULL)
959 return false;
960
961 mt->aux_state = create_aux_state_map(mt, initial_state);
962 if (!mt->aux_state) {
963 free(mt->mcs_buf);
964 mt->mcs_buf = NULL;
965 return false;
966 }
967
968 mt->mcs_buf->bo = image->bo;
969 brw_bo_reference(image->bo);
970
971 mt->mcs_buf->offset = image->aux_offset;
972 mt->mcs_buf->size = image->bo->size - image->aux_offset;
973 mt->mcs_buf->pitch = image->aux_pitch;
974 mt->mcs_buf->qpitch = 0;
975 mt->mcs_buf->surf = temp_ccs_surf;
976
977 return true;
978 }
979
980 struct intel_mipmap_tree *
981 intel_miptree_create_for_dri_image(struct brw_context *brw,
982 __DRIimage *image, GLenum target,
983 mesa_format format,
984 bool is_winsys_image)
985 {
986 if (image->planar_format && image->planar_format->nplanes > 1)
987 return miptree_create_for_planar_image(brw, image, target);
988
989 if (image->planar_format)
990 assert(image->planar_format->planes[0].dri_format == image->dri_format);
991
992 if (!brw->ctx.TextureFormatSupported[format]) {
993 /* The texture storage paths in core Mesa detect if the driver does not
994 * support the user-requested format, and then searches for a
995 * fallback format. The DRIimage code bypasses core Mesa, though. So we
996 * do the fallbacks here for important formats.
997 *
998 * We must support DRM_FOURCC_XBGR8888 textures because the Android
999 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1000 * the Chrome OS compositor consumes as dma_buf EGLImages.
1001 */
1002 format = _mesa_format_fallback_rgbx_to_rgba(format);
1003 }
1004
1005 if (!brw->ctx.TextureFormatSupported[format])
1006 return NULL;
1007
1008 const struct isl_drm_modifier_info *mod_info =
1009 isl_drm_modifier_get_info(image->modifier);
1010
1011 enum intel_miptree_create_flags mt_create_flags = 0;
1012
1013 /* If this image comes in from a window system, we have different
1014 * requirements than if it comes in via an EGL import operation. Window
1015 * system images can use any form of auxiliary compression we wish because
1016 * they get "flushed" before being handed off to the window system and we
1017 * have the opportunity to do resolves. Non window-system images, on the
1018 * other hand, have no resolve point so we can't have aux without a
1019 * modifier.
1020 */
1021 if (!is_winsys_image)
1022 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1023
1024 /* If we have a modifier which specifies aux, don't create one yet */
1025 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1026 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1027
1028 /* Disable creation of the texture's aux buffers because the driver exposes
1029 * no EGL API to manage them. That is, there is no API for resolving the aux
1030 * buffer's content to the main buffer nor for invalidating the aux buffer's
1031 * content.
1032 */
1033 struct intel_mipmap_tree *mt =
1034 intel_miptree_create_for_bo(brw, image->bo, format,
1035 image->offset, image->width, image->height, 1,
1036 image->pitch, mt_create_flags);
1037 if (mt == NULL)
1038 return NULL;
1039
1040 mt->target = target;
1041 mt->level[0].level_x = image->tile_x;
1042 mt->level[0].level_y = image->tile_y;
1043 mt->drm_modifier = image->modifier;
1044
1045 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1046 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1047 * trouble resolving back to destination image due to alignment issues.
1048 */
1049 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1050 if (!devinfo->has_surface_tile_offset) {
1051 uint32_t draw_x, draw_y;
1052 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1053
1054 if (draw_x != 0 || draw_y != 0) {
1055 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1056 intel_miptree_release(&mt);
1057 return NULL;
1058 }
1059 }
1060
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1062 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1063
1064 mt->aux_usage = mod_info->aux_usage;
1065 /* If we are a window system buffer, then we can support fast-clears
1066 * even if the modifier doesn't support them by doing a partial resolve
1067 * as part of the flush operation.
1068 */
1069 mt->supports_fast_clear =
1070 is_winsys_image || mod_info->supports_clear_color;
1071
1072 /* We don't know the actual state of the surface when we get it but we
1073 * can make a pretty good guess based on the modifier. What we do know
1074 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1075 * a worst case of compression.
1076 */
1077 enum isl_aux_state initial_state =
1078 isl_drm_modifier_get_default_aux_state(image->modifier);
1079
1080 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1081 intel_miptree_release(&mt);
1082 return NULL;
1083 }
1084 }
1085
1086 /* Don't assume coherency for imported EGLimages. We don't know what
1087 * external clients are going to do with it. They may scan it out.
1088 */
1089 image->bo->cache_coherent = false;
1090
1091 return mt;
1092 }
1093
1094 /**
1095 * For a singlesample renderbuffer, this simply wraps the given BO with a
1096 * miptree.
1097 *
1098 * For a multisample renderbuffer, this wraps the window system's
1099 * (singlesample) BO with a singlesample miptree attached to the
1100 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1101 * that will contain the actual rendering (which is lazily resolved to
1102 * irb->singlesample_mt).
1103 */
1104 bool
1105 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1106 struct intel_renderbuffer *irb,
1107 struct intel_mipmap_tree *singlesample_mt,
1108 uint32_t width, uint32_t height,
1109 uint32_t pitch)
1110 {
1111 struct intel_mipmap_tree *multisample_mt = NULL;
1112 struct gl_renderbuffer *rb = &irb->Base.Base;
1113 mesa_format format = rb->Format;
1114 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1115
1116 /* Only the front and back buffers, which are color buffers, are allocated
1117 * through the image loader.
1118 */
1119 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1120 _mesa_get_format_base_format(format) == GL_RGBA);
1121
1122 assert(singlesample_mt);
1123
1124 if (num_samples == 1) {
1125 intel_miptree_release(&irb->mt);
1126 irb->mt = singlesample_mt;
1127
1128 assert(!irb->singlesample_mt);
1129 } else {
1130 intel_miptree_release(&irb->singlesample_mt);
1131 irb->singlesample_mt = singlesample_mt;
1132
1133 if (!irb->mt ||
1134 irb->mt->surf.logical_level0_px.width != width ||
1135 irb->mt->surf.logical_level0_px.height != height) {
1136 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1137 format,
1138 width,
1139 height,
1140 num_samples);
1141 if (!multisample_mt)
1142 goto fail;
1143
1144 irb->need_downsample = false;
1145 intel_miptree_release(&irb->mt);
1146 irb->mt = multisample_mt;
1147 }
1148 }
1149 return true;
1150
1151 fail:
1152 intel_miptree_release(&irb->mt);
1153 return false;
1154 }
1155
1156 struct intel_mipmap_tree*
1157 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1158 mesa_format format,
1159 uint32_t width,
1160 uint32_t height,
1161 uint32_t num_samples)
1162 {
1163 struct intel_mipmap_tree *mt;
1164 uint32_t depth = 1;
1165 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1166
1167 mt = intel_miptree_create(brw, target, format, 0, 0,
1168 width, height, depth, num_samples,
1169 MIPTREE_CREATE_BUSY);
1170 if (!mt)
1171 goto fail;
1172
1173 return mt;
1174
1175 fail:
1176 intel_miptree_release(&mt);
1177 return NULL;
1178 }
1179
1180 void
1181 intel_miptree_reference(struct intel_mipmap_tree **dst,
1182 struct intel_mipmap_tree *src)
1183 {
1184 if (*dst == src)
1185 return;
1186
1187 intel_miptree_release(dst);
1188
1189 if (src) {
1190 src->refcount++;
1191 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1192 }
1193
1194 *dst = src;
1195 }
1196
1197 static void
1198 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1199 {
1200 if (aux_buf == NULL)
1201 return;
1202
1203 brw_bo_unreference(aux_buf->bo);
1204
1205 free(aux_buf);
1206 }
1207
1208 void
1209 intel_miptree_release(struct intel_mipmap_tree **mt)
1210 {
1211 if (!*mt)
1212 return;
1213
1214 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1215 if (--(*mt)->refcount <= 0) {
1216 GLuint i;
1217
1218 DBG("%s deleting %p\n", __func__, *mt);
1219
1220 brw_bo_unreference((*mt)->bo);
1221 intel_miptree_release(&(*mt)->stencil_mt);
1222 intel_miptree_release(&(*mt)->r8stencil_mt);
1223 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1224 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1225 free_aux_state_map((*mt)->aux_state);
1226
1227 intel_miptree_release(&(*mt)->plane[0]);
1228 intel_miptree_release(&(*mt)->plane[1]);
1229
1230 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1231 free((*mt)->level[i].slice);
1232 }
1233
1234 free(*mt);
1235 }
1236 *mt = NULL;
1237 }
1238
1239
1240 void
1241 intel_get_image_dims(struct gl_texture_image *image,
1242 int *width, int *height, int *depth)
1243 {
1244 switch (image->TexObject->Target) {
1245 case GL_TEXTURE_1D_ARRAY:
1246 /* For a 1D Array texture the OpenGL API will treat the image height as
1247 * the number of array slices. For Intel hardware, we treat the 1D array
1248 * as a 2D Array with a height of 1. So, here we want to swap image
1249 * height and depth.
1250 */
1251 assert(image->Depth == 1);
1252 *width = image->Width;
1253 *height = 1;
1254 *depth = image->Height;
1255 break;
1256 case GL_TEXTURE_CUBE_MAP:
1257 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1258 * though we really have 6 slices.
1259 */
1260 assert(image->Depth == 1);
1261 *width = image->Width;
1262 *height = image->Height;
1263 *depth = 6;
1264 break;
1265 default:
1266 *width = image->Width;
1267 *height = image->Height;
1268 *depth = image->Depth;
1269 break;
1270 }
1271 }
1272
1273 /**
1274 * Can the image be pulled into a unified mipmap tree? This mirrors
1275 * the completeness test in a lot of ways.
1276 *
1277 * Not sure whether I want to pass gl_texture_image here.
1278 */
1279 bool
1280 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1281 struct gl_texture_image *image)
1282 {
1283 struct intel_texture_image *intelImage = intel_texture_image(image);
1284 GLuint level = intelImage->base.Base.Level;
1285 int width, height, depth;
1286
1287 /* glTexImage* choose the texture object based on the target passed in, and
1288 * objects can't change targets over their lifetimes, so this should be
1289 * true.
1290 */
1291 assert(image->TexObject->Target == mt->target);
1292
1293 mesa_format mt_format = mt->format;
1294 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1295 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1296 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1297 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1298 if (mt->etc_format != MESA_FORMAT_NONE)
1299 mt_format = mt->etc_format;
1300
1301 if (image->TexFormat != mt_format)
1302 return false;
1303
1304 intel_get_image_dims(image, &width, &height, &depth);
1305
1306 if (mt->target == GL_TEXTURE_CUBE_MAP)
1307 depth = 6;
1308
1309 if (level >= mt->surf.levels)
1310 return false;
1311
1312 const unsigned level_depth =
1313 mt->surf.dim == ISL_SURF_DIM_3D ?
1314 minify(mt->surf.logical_level0_px.depth, level) :
1315 mt->surf.logical_level0_px.array_len;
1316
1317 return width == minify(mt->surf.logical_level0_px.width, level) &&
1318 height == minify(mt->surf.logical_level0_px.height, level) &&
1319 depth == level_depth &&
1320 MAX2(image->NumSamples, 1) == mt->surf.samples;
1321 }
1322
1323 void
1324 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1325 GLuint level, GLuint slice,
1326 GLuint *x, GLuint *y)
1327 {
1328 if (level == 0 && slice == 0) {
1329 *x = mt->level[0].level_x;
1330 *y = mt->level[0].level_y;
1331 return;
1332 }
1333
1334 uint32_t x_offset_sa, y_offset_sa;
1335
1336 /* Miptree itself can have an offset only if it represents a single
1337 * slice in an imported buffer object.
1338 * See intel_miptree_create_for_dri_image().
1339 */
1340 assert(mt->level[0].level_x == 0);
1341 assert(mt->level[0].level_y == 0);
1342
1343 /* Given level is relative to level zero while the miptree may be
1344 * represent just a subset of all levels starting from 'first_level'.
1345 */
1346 assert(level >= mt->first_level);
1347 level -= mt->first_level;
1348
1349 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1350 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1351 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1352 &x_offset_sa, &y_offset_sa);
1353
1354 *x = x_offset_sa;
1355 *y = y_offset_sa;
1356 }
1357
1358
1359 /**
1360 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1361 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1362 * and tile_h is set to 1.
1363 */
1364 void
1365 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1366 uint32_t *tile_w, uint32_t *tile_h)
1367 {
1368 switch (tiling) {
1369 case ISL_TILING_X:
1370 *tile_w = 512;
1371 *tile_h = 8;
1372 break;
1373 case ISL_TILING_Y0:
1374 *tile_w = 128;
1375 *tile_h = 32;
1376 break;
1377 case ISL_TILING_LINEAR:
1378 *tile_w = cpp;
1379 *tile_h = 1;
1380 break;
1381 default:
1382 unreachable("not reached");
1383 }
1384 }
1385
1386
1387 /**
1388 * This function computes masks that may be used to select the bits of the X
1389 * and Y coordinates that indicate the offset within a tile. If the BO is
1390 * untiled, the masks are set to 0.
1391 */
1392 void
1393 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1394 uint32_t *mask_x, uint32_t *mask_y)
1395 {
1396 uint32_t tile_w_bytes, tile_h;
1397
1398 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1399
1400 *mask_x = tile_w_bytes / cpp - 1;
1401 *mask_y = tile_h - 1;
1402 }
1403
1404 /**
1405 * Compute the offset (in bytes) from the start of the BO to the given x
1406 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1407 * multiples of the tile size.
1408 */
1409 uint32_t
1410 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1411 uint32_t x, uint32_t y)
1412 {
1413 int cpp = mt->cpp;
1414 uint32_t pitch = mt->surf.row_pitch;
1415
1416 switch (mt->surf.tiling) {
1417 default:
1418 unreachable("not reached");
1419 case ISL_TILING_LINEAR:
1420 return y * pitch + x * cpp;
1421 case ISL_TILING_X:
1422 assert((x % (512 / cpp)) == 0);
1423 assert((y % 8) == 0);
1424 return y * pitch + x / (512 / cpp) * 4096;
1425 case ISL_TILING_Y0:
1426 assert((x % (128 / cpp)) == 0);
1427 assert((y % 32) == 0);
1428 return y * pitch + x / (128 / cpp) * 4096;
1429 }
1430 }
1431
1432 /**
1433 * Rendering with tiled buffers requires that the base address of the buffer
1434 * be aligned to a page boundary. For renderbuffers, and sometimes with
1435 * textures, we may want the surface to point at a texture image level that
1436 * isn't at a page boundary.
1437 *
1438 * This function returns an appropriately-aligned base offset
1439 * according to the tiling restrictions, plus any required x/y offset
1440 * from there.
1441 */
1442 uint32_t
1443 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1444 GLuint level, GLuint slice,
1445 uint32_t *tile_x,
1446 uint32_t *tile_y)
1447 {
1448 uint32_t x, y;
1449 uint32_t mask_x, mask_y;
1450
1451 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1452 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1453
1454 *tile_x = x & mask_x;
1455 *tile_y = y & mask_y;
1456
1457 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1458 }
1459
1460 static void
1461 intel_miptree_copy_slice_sw(struct brw_context *brw,
1462 struct intel_mipmap_tree *src_mt,
1463 unsigned src_level, unsigned src_layer,
1464 struct intel_mipmap_tree *dst_mt,
1465 unsigned dst_level, unsigned dst_layer,
1466 unsigned width, unsigned height)
1467 {
1468 void *src, *dst;
1469 ptrdiff_t src_stride, dst_stride;
1470 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1471
1472 intel_miptree_map(brw, src_mt,
1473 src_level, src_layer,
1474 0, 0,
1475 width, height,
1476 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1477 &src, &src_stride);
1478
1479 intel_miptree_map(brw, dst_mt,
1480 dst_level, dst_layer,
1481 0, 0,
1482 width, height,
1483 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1484 BRW_MAP_DIRECT_BIT,
1485 &dst, &dst_stride);
1486
1487 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1488 _mesa_get_format_name(src_mt->format),
1489 src_mt, src, src_stride,
1490 _mesa_get_format_name(dst_mt->format),
1491 dst_mt, dst, dst_stride,
1492 width, height);
1493
1494 int row_size = cpp * width;
1495 if (src_stride == row_size &&
1496 dst_stride == row_size) {
1497 memcpy(dst, src, row_size * height);
1498 } else {
1499 for (int i = 0; i < height; i++) {
1500 memcpy(dst, src, row_size);
1501 dst += dst_stride;
1502 src += src_stride;
1503 }
1504 }
1505
1506 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1507 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1508
1509 /* Don't forget to copy the stencil data over, too. We could have skipped
1510 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1511 * shuffling the two data sources in/out of temporary storage instead of
1512 * the direct mapping we get this way.
1513 */
1514 if (dst_mt->stencil_mt) {
1515 assert(src_mt->stencil_mt);
1516 intel_miptree_copy_slice_sw(brw,
1517 src_mt->stencil_mt, src_level, src_layer,
1518 dst_mt->stencil_mt, dst_level, dst_layer,
1519 width, height);
1520 }
1521 }
1522
1523 void
1524 intel_miptree_copy_slice(struct brw_context *brw,
1525 struct intel_mipmap_tree *src_mt,
1526 unsigned src_level, unsigned src_layer,
1527 struct intel_mipmap_tree *dst_mt,
1528 unsigned dst_level, unsigned dst_layer)
1529
1530 {
1531 mesa_format format = src_mt->format;
1532 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1533 src_level - src_mt->first_level);
1534 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1535 src_level - src_mt->first_level);
1536
1537 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1538 src_level - src_mt->first_level));
1539
1540 assert(src_mt->format == dst_mt->format);
1541
1542 if (dst_mt->compressed) {
1543 unsigned int i, j;
1544 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1545 height = ALIGN_NPOT(height, j) / j;
1546 width = ALIGN_NPOT(width, i) / i;
1547 }
1548
1549 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1550 * below won't apply since we can't do the depth's Y tiling or the
1551 * stencil's W tiling in the blitter.
1552 */
1553 if (src_mt->stencil_mt) {
1554 intel_miptree_copy_slice_sw(brw,
1555 src_mt, src_level, src_layer,
1556 dst_mt, dst_level, dst_layer,
1557 width, height);
1558 return;
1559 }
1560
1561 uint32_t dst_x, dst_y, src_x, src_y;
1562 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1563 &dst_x, &dst_y);
1564 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1565 &src_x, &src_y);
1566
1567 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1568 _mesa_get_format_name(src_mt->format),
1569 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1570 _mesa_get_format_name(dst_mt->format),
1571 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1572 width, height);
1573
1574 if (!intel_miptree_blit(brw,
1575 src_mt, src_level, src_layer, 0, 0, false,
1576 dst_mt, dst_level, dst_layer, 0, 0, false,
1577 width, height, GL_COPY)) {
1578 perf_debug("miptree validate blit for %s failed\n",
1579 _mesa_get_format_name(format));
1580
1581 intel_miptree_copy_slice_sw(brw,
1582 src_mt, src_level, src_layer,
1583 dst_mt, dst_level, dst_layer,
1584 width, height);
1585 }
1586 }
1587
1588 /**
1589 * Copies the image's current data to the given miptree, and associates that
1590 * miptree with the image.
1591 */
1592 void
1593 intel_miptree_copy_teximage(struct brw_context *brw,
1594 struct intel_texture_image *intelImage,
1595 struct intel_mipmap_tree *dst_mt)
1596 {
1597 struct intel_mipmap_tree *src_mt = intelImage->mt;
1598 struct intel_texture_object *intel_obj =
1599 intel_texture_object(intelImage->base.Base.TexObject);
1600 int level = intelImage->base.Base.Level;
1601 const unsigned face = intelImage->base.Base.Face;
1602 unsigned start_layer, end_layer;
1603
1604 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1605 assert(face == 0);
1606 assert(intelImage->base.Base.Height);
1607 start_layer = 0;
1608 end_layer = intelImage->base.Base.Height - 1;
1609 } else if (face > 0) {
1610 start_layer = face;
1611 end_layer = face;
1612 } else {
1613 assert(intelImage->base.Base.Depth);
1614 start_layer = 0;
1615 end_layer = intelImage->base.Base.Depth - 1;
1616 }
1617
1618 for (unsigned i = start_layer; i <= end_layer; i++) {
1619 intel_miptree_copy_slice(brw,
1620 src_mt, level, i,
1621 dst_mt, level, i);
1622 }
1623
1624 intel_miptree_reference(&intelImage->mt, dst_mt);
1625 intel_obj->needs_validate = true;
1626 }
1627
1628 static void
1629 intel_miptree_init_mcs(struct brw_context *brw,
1630 struct intel_mipmap_tree *mt,
1631 int init_value)
1632 {
1633 assert(mt->mcs_buf != NULL);
1634
1635 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1636 *
1637 * When MCS buffer is enabled and bound to MSRT, it is required that it
1638 * is cleared prior to any rendering.
1639 *
1640 * Since we don't use the MCS buffer for any purpose other than rendering,
1641 * it makes sense to just clear it immediately upon allocation.
1642 *
1643 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1644 */
1645 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1646 if (unlikely(map == NULL)) {
1647 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1648 brw_bo_unreference(mt->mcs_buf->bo);
1649 free(mt->mcs_buf);
1650 return;
1651 }
1652 void *data = map;
1653 memset(data, init_value, mt->mcs_buf->size);
1654 brw_bo_unmap(mt->mcs_buf->bo);
1655 }
1656
1657 static struct intel_miptree_aux_buffer *
1658 intel_alloc_aux_buffer(struct brw_context *brw,
1659 const char *name,
1660 const struct isl_surf *aux_surf,
1661 uint32_t alloc_flags,
1662 struct intel_mipmap_tree *mt)
1663 {
1664 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1665 if (!buf)
1666 return false;
1667
1668 buf->size = aux_surf->size;
1669 buf->pitch = aux_surf->row_pitch;
1670 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1671
1672 /* ISL has stricter set of alignment rules then the drm allocator.
1673 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1674 * trying to recalculate based on different format block sizes.
1675 */
1676 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1677 I915_TILING_Y, buf->pitch, alloc_flags);
1678 if (!buf->bo) {
1679 free(buf);
1680 return NULL;
1681 }
1682
1683 buf->surf = *aux_surf;
1684
1685 return buf;
1686 }
1687
1688 static bool
1689 intel_miptree_alloc_mcs(struct brw_context *brw,
1690 struct intel_mipmap_tree *mt,
1691 GLuint num_samples)
1692 {
1693 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1694 assert(mt->mcs_buf == NULL);
1695 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1696
1697 /* Multisampled miptrees are only supported for single level. */
1698 assert(mt->first_level == 0);
1699 enum isl_aux_state **aux_state =
1700 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1701 if (!aux_state)
1702 return false;
1703
1704 struct isl_surf temp_mcs_surf;
1705
1706 MAYBE_UNUSED bool ok =
1707 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1708 assert(ok);
1709
1710 /* Buffer needs to be initialised requiring the buffer to be immediately
1711 * mapped to cpu space for writing. Therefore do not use the gpu access
1712 * flag which can cause an unnecessary delay if the backing pages happened
1713 * to be just used by the GPU.
1714 */
1715 const uint32_t alloc_flags = 0;
1716 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1717 &temp_mcs_surf, alloc_flags, mt);
1718 if (!mt->mcs_buf) {
1719 free(aux_state);
1720 return false;
1721 }
1722
1723 mt->aux_state = aux_state;
1724
1725 intel_miptree_init_mcs(brw, mt, 0xFF);
1726
1727 return true;
1728 }
1729
1730 bool
1731 intel_miptree_alloc_ccs(struct brw_context *brw,
1732 struct intel_mipmap_tree *mt)
1733 {
1734 assert(mt->mcs_buf == NULL);
1735 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1736 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1737
1738 struct isl_surf temp_ccs_surf;
1739
1740 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1741 return false;
1742
1743 assert(temp_ccs_surf.size &&
1744 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1745
1746 enum isl_aux_state **aux_state =
1747 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1748 if (!aux_state)
1749 return false;
1750
1751 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1752 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1753 *
1754 * "If Software wants to enable Color Compression without Fast clear,
1755 * Software needs to initialize MCS with zeros."
1756 *
1757 * A CCS value of 0 indicates that the corresponding block is in the
1758 * pass-through state which is what we want.
1759 *
1760 * For CCS_D, on the other hand, we don't care as we're about to perform a
1761 * fast-clear operation. In that case, being hot in caches more useful.
1762 */
1763 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1764 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1765 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1766 &temp_ccs_surf, alloc_flags, mt);
1767 if (!mt->mcs_buf) {
1768 free(aux_state);
1769 return false;
1770 }
1771
1772 mt->aux_state = aux_state;
1773
1774 return true;
1775 }
1776
1777 /**
1778 * Helper for intel_miptree_alloc_hiz() that sets
1779 * \c mt->level[level].has_hiz. Return true if and only if
1780 * \c has_hiz was set.
1781 */
1782 static bool
1783 intel_miptree_level_enable_hiz(struct brw_context *brw,
1784 struct intel_mipmap_tree *mt,
1785 uint32_t level)
1786 {
1787 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1788
1789 assert(mt->hiz_buf);
1790 assert(mt->surf.size > 0);
1791
1792 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1793 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1794 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1795
1796 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1797 * and the height is 4 aligned. This allows our HiZ support
1798 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1799 * we can grow the width & height to allow the HiZ op to
1800 * force the proper size alignments.
1801 */
1802 if (level > 0 && ((width & 7) || (height & 3))) {
1803 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1804 return false;
1805 }
1806 }
1807
1808 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1809 mt->level[level].has_hiz = true;
1810 return true;
1811 }
1812
1813 bool
1814 intel_miptree_alloc_hiz(struct brw_context *brw,
1815 struct intel_mipmap_tree *mt)
1816 {
1817 assert(mt->hiz_buf == NULL);
1818 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1819
1820 enum isl_aux_state **aux_state =
1821 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1822 if (!aux_state)
1823 return false;
1824
1825 struct isl_surf temp_hiz_surf;
1826
1827 MAYBE_UNUSED bool ok =
1828 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1829 assert(ok);
1830
1831 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1832 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1833 &temp_hiz_surf, alloc_flags, mt);
1834
1835 if (!mt->hiz_buf) {
1836 free(aux_state);
1837 return false;
1838 }
1839
1840 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1841 intel_miptree_level_enable_hiz(brw, mt, level);
1842
1843 mt->aux_state = aux_state;
1844
1845 return true;
1846 }
1847
1848
1849 /**
1850 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1851 *
1852 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1853 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1854 * compress clear color so we wait until an actual fast-clear to allocate it.
1855 */
1856 static bool
1857 intel_miptree_alloc_aux(struct brw_context *brw,
1858 struct intel_mipmap_tree *mt)
1859 {
1860 switch (mt->aux_usage) {
1861 case ISL_AUX_USAGE_NONE:
1862 return true;
1863
1864 case ISL_AUX_USAGE_HIZ:
1865 assert(!_mesa_is_format_color_format(mt->format));
1866 if (!intel_miptree_alloc_hiz(brw, mt))
1867 return false;
1868 return true;
1869
1870 case ISL_AUX_USAGE_MCS:
1871 assert(_mesa_is_format_color_format(mt->format));
1872 assert(mt->surf.samples > 1);
1873 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1874 return false;
1875 return true;
1876
1877 case ISL_AUX_USAGE_CCS_D:
1878 /* Since CCS_D can only compress clear color so we wait until an actual
1879 * fast-clear to allocate it.
1880 */
1881 return true;
1882
1883 case ISL_AUX_USAGE_CCS_E:
1884 assert(_mesa_is_format_color_format(mt->format));
1885 assert(mt->surf.samples == 1);
1886 if (!intel_miptree_alloc_ccs(brw, mt))
1887 return false;
1888 return true;
1889 }
1890
1891 unreachable("Invalid aux usage");
1892 }
1893
1894
1895 /**
1896 * Can the miptree sample using the hiz buffer?
1897 */
1898 bool
1899 intel_miptree_sample_with_hiz(struct brw_context *brw,
1900 struct intel_mipmap_tree *mt)
1901 {
1902 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1903
1904 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1905 * so keep things conservative for now and never enable it unless we're SKL+.
1906 */
1907 if (devinfo->gen < 9) {
1908 return false;
1909 }
1910
1911 if (!mt->hiz_buf) {
1912 return false;
1913 }
1914
1915 /* It seems the hardware won't fallback to the depth buffer if some of the
1916 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1917 * of the texture to be HiZ enabled.
1918 */
1919 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1920 if (!intel_miptree_level_has_hiz(mt, level))
1921 return false;
1922 }
1923
1924 /* If compressed multisampling is enabled, then we use it for the auxiliary
1925 * buffer instead.
1926 *
1927 * From the BDW PRM (Volume 2d: Command Reference: Structures
1928 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1929 *
1930 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1931 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1932 *
1933 * There is no such blurb for 1D textures, but there is sufficient evidence
1934 * that this is broken on SKL+.
1935 */
1936 return (mt->surf.samples == 1 &&
1937 mt->target != GL_TEXTURE_3D &&
1938 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1939 }
1940
1941 /**
1942 * Does the miptree slice have hiz enabled?
1943 */
1944 bool
1945 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1946 {
1947 intel_miptree_check_level_layer(mt, level, 0);
1948 return mt->level[level].has_hiz;
1949 }
1950
1951 static inline uint32_t
1952 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1953 uint32_t start_level, uint32_t num_levels)
1954 {
1955 assert(start_level >= mt->first_level);
1956 assert(start_level <= mt->last_level);
1957
1958 if (num_levels == INTEL_REMAINING_LAYERS)
1959 num_levels = mt->last_level - start_level + 1;
1960 /* Check for overflow */
1961 assert(start_level + num_levels >= start_level);
1962 assert(start_level + num_levels <= mt->last_level + 1);
1963
1964 return num_levels;
1965 }
1966
1967 static inline uint32_t
1968 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1969 uint32_t start_layer, uint32_t num_layers)
1970 {
1971 assert(level <= mt->last_level);
1972
1973 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1974 assert(start_layer < total_num_layers);
1975 if (num_layers == INTEL_REMAINING_LAYERS)
1976 num_layers = total_num_layers - start_layer;
1977 /* Check for overflow */
1978 assert(start_layer + num_layers >= start_layer);
1979 assert(start_layer + num_layers <= total_num_layers);
1980
1981 return num_layers;
1982 }
1983
1984 bool
1985 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1986 unsigned start_level, unsigned num_levels,
1987 unsigned start_layer, unsigned num_layers)
1988 {
1989 assert(_mesa_is_format_color_format(mt->format));
1990
1991 if (!mt->mcs_buf)
1992 return false;
1993
1994 /* Clamp the level range to fit the miptree */
1995 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1996
1997 for (uint32_t l = 0; l < num_levels; l++) {
1998 const uint32_t level = start_level + l;
1999 const uint32_t level_layers =
2000 miptree_layer_range_length(mt, level, start_layer, num_layers);
2001 for (unsigned a = 0; a < level_layers; a++) {
2002 enum isl_aux_state aux_state =
2003 intel_miptree_get_aux_state(mt, level, start_layer + a);
2004 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2005 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2006 return true;
2007 }
2008 }
2009
2010 return false;
2011 }
2012
2013 static void
2014 intel_miptree_check_color_resolve(const struct brw_context *brw,
2015 const struct intel_mipmap_tree *mt,
2016 unsigned level, unsigned layer)
2017 {
2018 if (!mt->mcs_buf)
2019 return;
2020
2021 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2022 assert(brw->screen->devinfo.gen >= 8 ||
2023 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2024
2025 /* Compression of arrayed msaa surfaces is supported. */
2026 if (mt->surf.samples > 1)
2027 return;
2028
2029 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2030 assert(brw->screen->devinfo.gen >= 8 ||
2031 (layer == 0 &&
2032 mt->surf.logical_level0_px.depth == 1 &&
2033 mt->surf.logical_level0_px.array_len == 1));
2034
2035 (void)level;
2036 (void)layer;
2037 }
2038
2039 static enum blorp_fast_clear_op
2040 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2041 enum isl_aux_usage aux_usage,
2042 bool fast_clear_supported)
2043 {
2044 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2045
2046 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2047
2048 assert(ccs_supported == fast_clear_supported);
2049
2050 switch (aux_state) {
2051 case ISL_AUX_STATE_CLEAR:
2052 case ISL_AUX_STATE_PARTIAL_CLEAR:
2053 if (!ccs_supported)
2054 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2055 else
2056 return BLORP_FAST_CLEAR_OP_NONE;
2057
2058 case ISL_AUX_STATE_PASS_THROUGH:
2059 return BLORP_FAST_CLEAR_OP_NONE;
2060
2061 case ISL_AUX_STATE_RESOLVED:
2062 case ISL_AUX_STATE_AUX_INVALID:
2063 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2064 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2065 break;
2066 }
2067
2068 unreachable("Invalid aux state for CCS_D");
2069 }
2070
2071 static enum blorp_fast_clear_op
2072 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2073 enum isl_aux_usage aux_usage,
2074 bool fast_clear_supported)
2075 {
2076 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2077 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2078 aux_usage == ISL_AUX_USAGE_CCS_D ||
2079 aux_usage == ISL_AUX_USAGE_CCS_E);
2080
2081 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2082 assert(fast_clear_supported);
2083
2084 switch (aux_state) {
2085 case ISL_AUX_STATE_CLEAR:
2086 case ISL_AUX_STATE_PARTIAL_CLEAR:
2087 if (fast_clear_supported)
2088 return BLORP_FAST_CLEAR_OP_NONE;
2089 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2090 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2091 else
2092 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2093
2094 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2095 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2096 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2097 else if (!fast_clear_supported)
2098 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2099 else
2100 return BLORP_FAST_CLEAR_OP_NONE;
2101
2102 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2103 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2104 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2105 else
2106 return BLORP_FAST_CLEAR_OP_NONE;
2107
2108 case ISL_AUX_STATE_PASS_THROUGH:
2109 return BLORP_FAST_CLEAR_OP_NONE;
2110
2111 case ISL_AUX_STATE_RESOLVED:
2112 case ISL_AUX_STATE_AUX_INVALID:
2113 break;
2114 }
2115
2116 unreachable("Invalid aux state for CCS_E");
2117 }
2118
2119 static void
2120 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2121 struct intel_mipmap_tree *mt,
2122 uint32_t level, uint32_t layer,
2123 enum isl_aux_usage aux_usage,
2124 bool fast_clear_supported)
2125 {
2126 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2127
2128 enum blorp_fast_clear_op resolve_op;
2129 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2130 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2131 fast_clear_supported);
2132 } else {
2133 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2134 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2135 fast_clear_supported);
2136 }
2137
2138 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2139 intel_miptree_check_color_resolve(brw, mt, level, layer);
2140 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2141
2142 switch (resolve_op) {
2143 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2144 /* The CCS full resolve operation destroys the CCS and sets it to the
2145 * pass-through state. (You can also think of this as being both a
2146 * resolve and an ambiguate in one operation.)
2147 */
2148 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2149 ISL_AUX_STATE_PASS_THROUGH);
2150 break;
2151
2152 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2153 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2154 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2155 break;
2156
2157 default:
2158 unreachable("Invalid resolve op");
2159 }
2160 }
2161 }
2162
2163 static void
2164 intel_miptree_finish_ccs_write(struct brw_context *brw,
2165 struct intel_mipmap_tree *mt,
2166 uint32_t level, uint32_t layer,
2167 enum isl_aux_usage aux_usage)
2168 {
2169 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2170 aux_usage == ISL_AUX_USAGE_CCS_D ||
2171 aux_usage == ISL_AUX_USAGE_CCS_E);
2172
2173 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2174
2175 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2176 switch (aux_state) {
2177 case ISL_AUX_STATE_CLEAR:
2178 case ISL_AUX_STATE_PARTIAL_CLEAR:
2179 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2180 aux_usage == ISL_AUX_USAGE_CCS_D);
2181
2182 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2183 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2184 ISL_AUX_STATE_COMPRESSED_CLEAR);
2185 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2186 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2187 ISL_AUX_STATE_PARTIAL_CLEAR);
2188 }
2189 break;
2190
2191 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2192 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2193 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2194 break; /* Nothing to do */
2195
2196 case ISL_AUX_STATE_PASS_THROUGH:
2197 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2198 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2199 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2200 } else {
2201 /* Nothing to do */
2202 }
2203 break;
2204
2205 case ISL_AUX_STATE_RESOLVED:
2206 case ISL_AUX_STATE_AUX_INVALID:
2207 unreachable("Invalid aux state for CCS_E");
2208 }
2209 } else {
2210 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2211 /* CCS_D is a bit simpler */
2212 switch (aux_state) {
2213 case ISL_AUX_STATE_CLEAR:
2214 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2215 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2216 ISL_AUX_STATE_PARTIAL_CLEAR);
2217 break;
2218
2219 case ISL_AUX_STATE_PARTIAL_CLEAR:
2220 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2221 break; /* Nothing to do */
2222
2223 case ISL_AUX_STATE_PASS_THROUGH:
2224 /* Nothing to do */
2225 break;
2226
2227 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2228 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2229 case ISL_AUX_STATE_RESOLVED:
2230 case ISL_AUX_STATE_AUX_INVALID:
2231 unreachable("Invalid aux state for CCS_D");
2232 }
2233 }
2234 }
2235
2236 static void
2237 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2238 struct intel_mipmap_tree *mt,
2239 uint32_t layer,
2240 enum isl_aux_usage aux_usage,
2241 bool fast_clear_supported)
2242 {
2243 assert(aux_usage == ISL_AUX_USAGE_MCS);
2244
2245 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2246 case ISL_AUX_STATE_CLEAR:
2247 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2248 if (!fast_clear_supported) {
2249 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2250 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2251 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2252 }
2253 break;
2254
2255 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2256 break; /* Nothing to do */
2257
2258 case ISL_AUX_STATE_RESOLVED:
2259 case ISL_AUX_STATE_PASS_THROUGH:
2260 case ISL_AUX_STATE_AUX_INVALID:
2261 case ISL_AUX_STATE_PARTIAL_CLEAR:
2262 unreachable("Invalid aux state for MCS");
2263 }
2264 }
2265
2266 static void
2267 intel_miptree_finish_mcs_write(struct brw_context *brw,
2268 struct intel_mipmap_tree *mt,
2269 uint32_t layer,
2270 enum isl_aux_usage aux_usage)
2271 {
2272 assert(aux_usage == ISL_AUX_USAGE_MCS);
2273
2274 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2275 case ISL_AUX_STATE_CLEAR:
2276 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2277 ISL_AUX_STATE_COMPRESSED_CLEAR);
2278 break;
2279
2280 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2281 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2282 break; /* Nothing to do */
2283
2284 case ISL_AUX_STATE_RESOLVED:
2285 case ISL_AUX_STATE_PASS_THROUGH:
2286 case ISL_AUX_STATE_AUX_INVALID:
2287 case ISL_AUX_STATE_PARTIAL_CLEAR:
2288 unreachable("Invalid aux state for MCS");
2289 }
2290 }
2291
2292 static void
2293 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2294 struct intel_mipmap_tree *mt,
2295 uint32_t level, uint32_t layer,
2296 enum isl_aux_usage aux_usage,
2297 bool fast_clear_supported)
2298 {
2299 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2300
2301 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2302 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2303 case ISL_AUX_STATE_CLEAR:
2304 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2305 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2306 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2307 break;
2308
2309 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2310 if (aux_usage != ISL_AUX_USAGE_HIZ)
2311 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2312 break;
2313
2314 case ISL_AUX_STATE_PASS_THROUGH:
2315 case ISL_AUX_STATE_RESOLVED:
2316 break;
2317
2318 case ISL_AUX_STATE_AUX_INVALID:
2319 if (aux_usage == ISL_AUX_USAGE_HIZ)
2320 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2321 break;
2322
2323 case ISL_AUX_STATE_PARTIAL_CLEAR:
2324 unreachable("Invalid HiZ state");
2325 }
2326
2327 if (hiz_op != BLORP_HIZ_OP_NONE) {
2328 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2329
2330 switch (hiz_op) {
2331 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2332 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2333 ISL_AUX_STATE_RESOLVED);
2334 break;
2335
2336 case BLORP_HIZ_OP_HIZ_RESOLVE:
2337 /* The HiZ resolve operation is actually an ambiguate */
2338 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2339 ISL_AUX_STATE_PASS_THROUGH);
2340 break;
2341
2342 default:
2343 unreachable("Invalid HiZ op");
2344 }
2345 }
2346 }
2347
2348 static void
2349 intel_miptree_finish_hiz_write(struct brw_context *brw,
2350 struct intel_mipmap_tree *mt,
2351 uint32_t level, uint32_t layer,
2352 enum isl_aux_usage aux_usage)
2353 {
2354 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2355
2356 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2357 case ISL_AUX_STATE_CLEAR:
2358 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2359 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2360 ISL_AUX_STATE_COMPRESSED_CLEAR);
2361 break;
2362
2363 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2364 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2365 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2366 break; /* Nothing to do */
2367
2368 case ISL_AUX_STATE_RESOLVED:
2369 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2370 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2371 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2372 } else {
2373 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2374 ISL_AUX_STATE_AUX_INVALID);
2375 }
2376 break;
2377
2378 case ISL_AUX_STATE_PASS_THROUGH:
2379 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2380 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2381 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2382 }
2383 break;
2384
2385 case ISL_AUX_STATE_AUX_INVALID:
2386 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2387 break;
2388
2389 case ISL_AUX_STATE_PARTIAL_CLEAR:
2390 unreachable("Invalid HiZ state");
2391 }
2392 }
2393
2394 void
2395 intel_miptree_prepare_access(struct brw_context *brw,
2396 struct intel_mipmap_tree *mt,
2397 uint32_t start_level, uint32_t num_levels,
2398 uint32_t start_layer, uint32_t num_layers,
2399 enum isl_aux_usage aux_usage,
2400 bool fast_clear_supported)
2401 {
2402 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2403
2404 switch (mt->aux_usage) {
2405 case ISL_AUX_USAGE_NONE:
2406 /* Nothing to do */
2407 break;
2408
2409 case ISL_AUX_USAGE_MCS:
2410 assert(mt->mcs_buf);
2411 assert(start_level == 0 && num_levels == 1);
2412 const uint32_t level_layers =
2413 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2414 for (uint32_t a = 0; a < level_layers; a++) {
2415 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2416 aux_usage, fast_clear_supported);
2417 }
2418 break;
2419
2420 case ISL_AUX_USAGE_CCS_D:
2421 case ISL_AUX_USAGE_CCS_E:
2422 if (!mt->mcs_buf)
2423 return;
2424
2425 for (uint32_t l = 0; l < num_levels; l++) {
2426 const uint32_t level = start_level + l;
2427 const uint32_t level_layers =
2428 miptree_layer_range_length(mt, level, start_layer, num_layers);
2429 for (uint32_t a = 0; a < level_layers; a++) {
2430 intel_miptree_prepare_ccs_access(brw, mt, level,
2431 start_layer + a,
2432 aux_usage, fast_clear_supported);
2433 }
2434 }
2435 break;
2436
2437 case ISL_AUX_USAGE_HIZ:
2438 assert(mt->hiz_buf);
2439 for (uint32_t l = 0; l < num_levels; l++) {
2440 const uint32_t level = start_level + l;
2441 if (!intel_miptree_level_has_hiz(mt, level))
2442 continue;
2443
2444 const uint32_t level_layers =
2445 miptree_layer_range_length(mt, level, start_layer, num_layers);
2446 for (uint32_t a = 0; a < level_layers; a++) {
2447 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2448 aux_usage, fast_clear_supported);
2449 }
2450 }
2451 break;
2452
2453 default:
2454 unreachable("Invalid aux usage");
2455 }
2456 }
2457
2458 void
2459 intel_miptree_finish_write(struct brw_context *brw,
2460 struct intel_mipmap_tree *mt, uint32_t level,
2461 uint32_t start_layer, uint32_t num_layers,
2462 enum isl_aux_usage aux_usage)
2463 {
2464 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2465
2466 switch (mt->aux_usage) {
2467 case ISL_AUX_USAGE_NONE:
2468 /* Nothing to do */
2469 break;
2470
2471 case ISL_AUX_USAGE_MCS:
2472 assert(mt->mcs_buf);
2473 for (uint32_t a = 0; a < num_layers; a++) {
2474 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2475 aux_usage);
2476 }
2477 break;
2478
2479 case ISL_AUX_USAGE_CCS_D:
2480 case ISL_AUX_USAGE_CCS_E:
2481 if (!mt->mcs_buf)
2482 return;
2483
2484 for (uint32_t a = 0; a < num_layers; a++) {
2485 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2486 aux_usage);
2487 }
2488 break;
2489
2490 case ISL_AUX_USAGE_HIZ:
2491 if (!intel_miptree_level_has_hiz(mt, level))
2492 return;
2493
2494 for (uint32_t a = 0; a < num_layers; a++) {
2495 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2496 aux_usage);
2497 }
2498 break;
2499
2500 default:
2501 unreachable("Invavlid aux usage");
2502 }
2503 }
2504
2505 enum isl_aux_state
2506 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2507 uint32_t level, uint32_t layer)
2508 {
2509 intel_miptree_check_level_layer(mt, level, layer);
2510
2511 if (_mesa_is_format_color_format(mt->format)) {
2512 assert(mt->mcs_buf != NULL);
2513 assert(mt->surf.samples == 1 ||
2514 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2515 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2516 unreachable("Cannot get aux state for stencil");
2517 } else {
2518 assert(intel_miptree_level_has_hiz(mt, level));
2519 }
2520
2521 return mt->aux_state[level][layer];
2522 }
2523
2524 void
2525 intel_miptree_set_aux_state(struct brw_context *brw,
2526 struct intel_mipmap_tree *mt, uint32_t level,
2527 uint32_t start_layer, uint32_t num_layers,
2528 enum isl_aux_state aux_state)
2529 {
2530 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2531
2532 if (_mesa_is_format_color_format(mt->format)) {
2533 assert(mt->mcs_buf != NULL);
2534 assert(mt->surf.samples == 1 ||
2535 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2536 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2537 unreachable("Cannot get aux state for stencil");
2538 } else {
2539 assert(intel_miptree_level_has_hiz(mt, level));
2540 }
2541
2542 for (unsigned a = 0; a < num_layers; a++) {
2543 if (mt->aux_state[level][start_layer + a] != aux_state) {
2544 mt->aux_state[level][start_layer + a] = aux_state;
2545 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2546 }
2547 }
2548 }
2549
2550 /* On Gen9 color buffers may be compressed by the hardware (lossless
2551 * compression). There are, however, format restrictions and care needs to be
2552 * taken that the sampler engine is capable for re-interpreting a buffer with
2553 * format different the buffer was originally written with.
2554 *
2555 * For example, SRGB formats are not compressible and the sampler engine isn't
2556 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2557 * color buffer needs to be resolved so that the sampling surface can be
2558 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2559 * set).
2560 */
2561 static bool
2562 can_texture_with_ccs(struct brw_context *brw,
2563 struct intel_mipmap_tree *mt,
2564 enum isl_format view_format)
2565 {
2566 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2567 return false;
2568
2569 /* TODO: Replace with format_ccs_e_compat_with_miptree for better perf. */
2570 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2571 mt->surf.format, view_format)) {
2572 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2573 isl_format_get_layout(view_format)->name,
2574 _mesa_get_format_name(mt->format));
2575 return false;
2576 }
2577
2578 return true;
2579 }
2580
2581 enum isl_aux_usage
2582 intel_miptree_texture_aux_usage(struct brw_context *brw,
2583 struct intel_mipmap_tree *mt,
2584 enum isl_format view_format)
2585 {
2586 switch (mt->aux_usage) {
2587 case ISL_AUX_USAGE_HIZ:
2588 if (intel_miptree_sample_with_hiz(brw, mt))
2589 return ISL_AUX_USAGE_HIZ;
2590 break;
2591
2592 case ISL_AUX_USAGE_MCS:
2593 return ISL_AUX_USAGE_MCS;
2594
2595 case ISL_AUX_USAGE_CCS_D:
2596 case ISL_AUX_USAGE_CCS_E:
2597 if (!mt->mcs_buf) {
2598 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2599 return ISL_AUX_USAGE_NONE;
2600 }
2601
2602 /* If we don't have any unresolved color, report an aux usage of
2603 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2604 * aux surface and we can save some bandwidth.
2605 */
2606 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2607 0, INTEL_REMAINING_LAYERS))
2608 return ISL_AUX_USAGE_NONE;
2609
2610 if (can_texture_with_ccs(brw, mt, view_format))
2611 return ISL_AUX_USAGE_CCS_E;
2612 break;
2613
2614 default:
2615 break;
2616 }
2617
2618 return ISL_AUX_USAGE_NONE;
2619 }
2620
2621 static bool
2622 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2623 {
2624 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2625 * values so sRGB curve application was a no-op for all fast-clearable
2626 * formats.
2627 *
2628 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2629 * values, the hardware interprets the floats, not as what would be
2630 * returned from the sampler (or written by the shader), but as being
2631 * between format conversion and sRGB curve application. This means that
2632 * we can switch between sRGB and UNORM without having to whack the clear
2633 * color.
2634 */
2635 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2636 }
2637
2638 void
2639 intel_miptree_prepare_texture(struct brw_context *brw,
2640 struct intel_mipmap_tree *mt,
2641 enum isl_format view_format,
2642 uint32_t start_level, uint32_t num_levels,
2643 uint32_t start_layer, uint32_t num_layers,
2644 bool disable_aux)
2645 {
2646 enum isl_aux_usage aux_usage = disable_aux ? ISL_AUX_USAGE_NONE :
2647 intel_miptree_texture_aux_usage(brw, mt, view_format);
2648 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2649
2650 /* Clear color is specified as ints or floats and the conversion is done by
2651 * the sampler. If we have a texture view, we would have to perform the
2652 * clear color conversion manually. Just disable clear color.
2653 */
2654 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2655 clear_supported = false;
2656
2657 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2658 start_layer, num_layers,
2659 aux_usage, clear_supported);
2660 }
2661
2662 void
2663 intel_miptree_prepare_image(struct brw_context *brw,
2664 struct intel_mipmap_tree *mt)
2665 {
2666 /* The data port doesn't understand any compression */
2667 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2668 0, INTEL_REMAINING_LAYERS,
2669 ISL_AUX_USAGE_NONE, false);
2670 }
2671
2672 enum isl_aux_usage
2673 intel_miptree_render_aux_usage(struct brw_context *brw,
2674 struct intel_mipmap_tree *mt,
2675 enum isl_format render_format,
2676 bool blend_enabled)
2677 {
2678 switch (mt->aux_usage) {
2679 case ISL_AUX_USAGE_MCS:
2680 assert(mt->mcs_buf);
2681 return ISL_AUX_USAGE_MCS;
2682
2683 case ISL_AUX_USAGE_CCS_D:
2684 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2685
2686 case ISL_AUX_USAGE_CCS_E: {
2687 /* If the format supports CCS_E and is compatible with the miptree,
2688 * then we can use it.
2689 */
2690 if (format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2691 mt, render_format))
2692 return ISL_AUX_USAGE_CCS_E;
2693
2694 /* Otherwise, we have to fall back to CCS_D */
2695
2696 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2697 * formats. However, there are issues with blending where it doesn't
2698 * properly apply the sRGB curve to the clear color when blending.
2699 */
2700 if (blend_enabled && isl_format_is_srgb(render_format) &&
2701 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2702 return ISL_AUX_USAGE_NONE;
2703
2704 return ISL_AUX_USAGE_CCS_D;
2705 }
2706
2707 default:
2708 return ISL_AUX_USAGE_NONE;
2709 }
2710 }
2711
2712 void
2713 intel_miptree_prepare_render(struct brw_context *brw,
2714 struct intel_mipmap_tree *mt, uint32_t level,
2715 uint32_t start_layer, uint32_t layer_count,
2716 enum isl_format render_format,
2717 bool blend_enabled)
2718 {
2719 enum isl_aux_usage aux_usage =
2720 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2721 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2722 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2723 }
2724
2725 void
2726 intel_miptree_finish_render(struct brw_context *brw,
2727 struct intel_mipmap_tree *mt, uint32_t level,
2728 uint32_t start_layer, uint32_t layer_count,
2729 enum isl_format render_format,
2730 bool blend_enabled)
2731 {
2732 assert(_mesa_is_format_color_format(mt->format));
2733
2734 enum isl_aux_usage aux_usage =
2735 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2736 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2737 aux_usage);
2738 }
2739
2740 void
2741 intel_miptree_prepare_depth(struct brw_context *brw,
2742 struct intel_mipmap_tree *mt, uint32_t level,
2743 uint32_t start_layer, uint32_t layer_count)
2744 {
2745 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2746 mt->aux_usage, mt->hiz_buf != NULL);
2747 }
2748
2749 void
2750 intel_miptree_finish_depth(struct brw_context *brw,
2751 struct intel_mipmap_tree *mt, uint32_t level,
2752 uint32_t start_layer, uint32_t layer_count,
2753 bool depth_written)
2754 {
2755 if (depth_written) {
2756 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2757 mt->hiz_buf != NULL);
2758 }
2759 }
2760
2761 void
2762 intel_miptree_prepare_external(struct brw_context *brw,
2763 struct intel_mipmap_tree *mt)
2764 {
2765 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2766 bool supports_fast_clear = false;
2767
2768 const struct isl_drm_modifier_info *mod_info =
2769 isl_drm_modifier_get_info(mt->drm_modifier);
2770
2771 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2772 /* CCS_E is the only supported aux for external images and it's only
2773 * supported on very simple images.
2774 */
2775 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2776 assert(_mesa_is_format_color_format(mt->format));
2777 assert(mt->first_level == 0 && mt->last_level == 0);
2778 assert(mt->surf.logical_level0_px.depth == 1);
2779 assert(mt->surf.logical_level0_px.array_len == 1);
2780 assert(mt->surf.samples == 1);
2781 assert(mt->mcs_buf != NULL);
2782
2783 aux_usage = mod_info->aux_usage;
2784 supports_fast_clear = mod_info->supports_clear_color;
2785 }
2786
2787 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2788 0, INTEL_REMAINING_LAYERS,
2789 aux_usage, supports_fast_clear);
2790 }
2791
2792 /**
2793 * Make it possible to share the BO backing the given miptree with another
2794 * process or another miptree.
2795 *
2796 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2797 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2798 * ensure that no MCS buffer gets allocated in the future.
2799 *
2800 * HiZ is similarly unsafe with shared buffers.
2801 */
2802 void
2803 intel_miptree_make_shareable(struct brw_context *brw,
2804 struct intel_mipmap_tree *mt)
2805 {
2806 /* MCS buffers are also used for multisample buffers, but we can't resolve
2807 * away a multisample MCS buffer because it's an integral part of how the
2808 * pixel data is stored. Fortunately this code path should never be
2809 * reached for multisample buffers.
2810 */
2811 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2812 mt->surf.samples == 1);
2813
2814 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2815 0, INTEL_REMAINING_LAYERS,
2816 ISL_AUX_USAGE_NONE, false);
2817
2818 if (mt->mcs_buf) {
2819 brw_bo_unreference(mt->mcs_buf->bo);
2820 free(mt->mcs_buf);
2821 mt->mcs_buf = NULL;
2822
2823 /* Any pending MCS/CCS operations are no longer needed. Trying to
2824 * execute any will likely crash due to the missing aux buffer. So let's
2825 * delete all pending ops.
2826 */
2827 free(mt->aux_state);
2828 mt->aux_state = NULL;
2829 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2830 }
2831
2832 if (mt->hiz_buf) {
2833 intel_miptree_aux_buffer_free(mt->hiz_buf);
2834 mt->hiz_buf = NULL;
2835
2836 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2837 mt->level[l].has_hiz = false;
2838 }
2839
2840 /* Any pending HiZ operations are no longer needed. Trying to execute
2841 * any will likely crash due to the missing aux buffer. So let's delete
2842 * all pending ops.
2843 */
2844 free(mt->aux_state);
2845 mt->aux_state = NULL;
2846 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2847 }
2848
2849 mt->aux_usage = ISL_AUX_USAGE_NONE;
2850 mt->supports_fast_clear = false;
2851 }
2852
2853
2854 /**
2855 * \brief Get pointer offset into stencil buffer.
2856 *
2857 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2858 * must decode the tile's layout in software.
2859 *
2860 * See
2861 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2862 * Format.
2863 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2864 *
2865 * Even though the returned offset is always positive, the return type is
2866 * signed due to
2867 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2868 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2869 */
2870 static intptr_t
2871 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2872 {
2873 uint32_t tile_size = 4096;
2874 uint32_t tile_width = 64;
2875 uint32_t tile_height = 64;
2876 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2877
2878 uint32_t tile_x = x / tile_width;
2879 uint32_t tile_y = y / tile_height;
2880
2881 /* The byte's address relative to the tile's base addres. */
2882 uint32_t byte_x = x % tile_width;
2883 uint32_t byte_y = y % tile_height;
2884
2885 uintptr_t u = tile_y * row_size
2886 + tile_x * tile_size
2887 + 512 * (byte_x / 8)
2888 + 64 * (byte_y / 8)
2889 + 32 * ((byte_y / 4) % 2)
2890 + 16 * ((byte_x / 4) % 2)
2891 + 8 * ((byte_y / 2) % 2)
2892 + 4 * ((byte_x / 2) % 2)
2893 + 2 * (byte_y % 2)
2894 + 1 * (byte_x % 2);
2895
2896 if (swizzled) {
2897 /* adjust for bit6 swizzling */
2898 if (((byte_x / 8) % 2) == 1) {
2899 if (((byte_y / 8) % 2) == 0) {
2900 u += 64;
2901 } else {
2902 u -= 64;
2903 }
2904 }
2905 }
2906
2907 return u;
2908 }
2909
2910 void
2911 intel_miptree_updownsample(struct brw_context *brw,
2912 struct intel_mipmap_tree *src,
2913 struct intel_mipmap_tree *dst)
2914 {
2915 unsigned src_w = src->surf.logical_level0_px.width;
2916 unsigned src_h = src->surf.logical_level0_px.height;
2917 unsigned dst_w = dst->surf.logical_level0_px.width;
2918 unsigned dst_h = dst->surf.logical_level0_px.height;
2919
2920 brw_blorp_blit_miptrees(brw,
2921 src, 0 /* level */, 0 /* layer */,
2922 src->format, SWIZZLE_XYZW,
2923 dst, 0 /* level */, 0 /* layer */, dst->format,
2924 0, 0, src_w, src_h,
2925 0, 0, dst_w, dst_h,
2926 GL_NEAREST, false, false /*mirror x, y*/,
2927 false, false);
2928
2929 if (src->stencil_mt) {
2930 src_w = src->stencil_mt->surf.logical_level0_px.width;
2931 src_h = src->stencil_mt->surf.logical_level0_px.height;
2932 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2933 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2934
2935 brw_blorp_blit_miptrees(brw,
2936 src->stencil_mt, 0 /* level */, 0 /* layer */,
2937 src->stencil_mt->format, SWIZZLE_XYZW,
2938 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2939 dst->stencil_mt->format,
2940 0, 0, src_w, src_h,
2941 0, 0, dst_w, dst_h,
2942 GL_NEAREST, false, false /*mirror x, y*/,
2943 false, false /* decode/encode srgb */);
2944 }
2945 }
2946
2947 void
2948 intel_update_r8stencil(struct brw_context *brw,
2949 struct intel_mipmap_tree *mt)
2950 {
2951 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2952
2953 assert(devinfo->gen >= 7);
2954 struct intel_mipmap_tree *src =
2955 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2956 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2957 return;
2958
2959 assert(src->surf.size > 0);
2960
2961 if (!mt->r8stencil_mt) {
2962 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2963 mt->r8stencil_mt = make_surface(
2964 brw,
2965 src->target,
2966 MESA_FORMAT_R_UINT8,
2967 src->first_level, src->last_level,
2968 src->surf.logical_level0_px.width,
2969 src->surf.logical_level0_px.height,
2970 src->surf.dim == ISL_SURF_DIM_3D ?
2971 src->surf.logical_level0_px.depth :
2972 src->surf.logical_level0_px.array_len,
2973 src->surf.samples,
2974 ISL_TILING_Y0_BIT,
2975 ISL_SURF_USAGE_TEXTURE_BIT,
2976 BO_ALLOC_BUSY, 0, NULL);
2977 assert(mt->r8stencil_mt);
2978 }
2979
2980 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2981
2982 for (int level = src->first_level; level <= src->last_level; level++) {
2983 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2984 minify(src->surf.phys_level0_sa.depth, level) :
2985 src->surf.phys_level0_sa.array_len;
2986
2987 for (unsigned layer = 0; layer < depth; layer++) {
2988 brw_blorp_copy_miptrees(brw,
2989 src, level, layer,
2990 dst, level, layer,
2991 0, 0, 0, 0,
2992 minify(src->surf.logical_level0_px.width,
2993 level),
2994 minify(src->surf.logical_level0_px.height,
2995 level));
2996 }
2997 }
2998
2999 brw_render_cache_set_check_flush(brw, dst->bo);
3000 src->r8stencil_needs_update = false;
3001 }
3002
3003 static void *
3004 intel_miptree_map_raw(struct brw_context *brw,
3005 struct intel_mipmap_tree *mt,
3006 GLbitfield mode)
3007 {
3008 struct brw_bo *bo = mt->bo;
3009
3010 if (brw_batch_references(&brw->batch, bo))
3011 intel_batchbuffer_flush(brw);
3012
3013 return brw_bo_map(brw, bo, mode);
3014 }
3015
3016 static void
3017 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3018 {
3019 brw_bo_unmap(mt->bo);
3020 }
3021
3022 static void
3023 intel_miptree_map_gtt(struct brw_context *brw,
3024 struct intel_mipmap_tree *mt,
3025 struct intel_miptree_map *map,
3026 unsigned int level, unsigned int slice)
3027 {
3028 unsigned int bw, bh;
3029 void *base;
3030 unsigned int image_x, image_y;
3031 intptr_t x = map->x;
3032 intptr_t y = map->y;
3033
3034 /* For compressed formats, the stride is the number of bytes per
3035 * row of blocks. intel_miptree_get_image_offset() already does
3036 * the divide.
3037 */
3038 _mesa_get_format_block_size(mt->format, &bw, &bh);
3039 assert(y % bh == 0);
3040 assert(x % bw == 0);
3041 y /= bh;
3042 x /= bw;
3043
3044 base = intel_miptree_map_raw(brw, mt, map->mode);
3045
3046 if (base == NULL)
3047 map->ptr = NULL;
3048 else {
3049 base += mt->offset;
3050
3051 /* Note that in the case of cube maps, the caller must have passed the
3052 * slice number referencing the face.
3053 */
3054 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3055 x += image_x;
3056 y += image_y;
3057
3058 map->stride = mt->surf.row_pitch;
3059 map->ptr = base + y * map->stride + x * mt->cpp;
3060 }
3061
3062 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3063 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3064 map->x, map->y, map->w, map->h,
3065 mt, _mesa_get_format_name(mt->format),
3066 x, y, map->ptr, map->stride);
3067 }
3068
3069 static void
3070 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3071 {
3072 intel_miptree_unmap_raw(mt);
3073 }
3074
3075 static void
3076 intel_miptree_map_blit(struct brw_context *brw,
3077 struct intel_mipmap_tree *mt,
3078 struct intel_miptree_map *map,
3079 unsigned int level, unsigned int slice)
3080 {
3081 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3082 /* first_level */ 0,
3083 /* last_level */ 0,
3084 map->w, map->h, 1,
3085 /* samples */ 1,
3086 MIPTREE_CREATE_LINEAR);
3087
3088 if (!map->linear_mt) {
3089 fprintf(stderr, "Failed to allocate blit temporary\n");
3090 goto fail;
3091 }
3092 map->stride = map->linear_mt->surf.row_pitch;
3093
3094 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3095 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3096 * invalidate is set, since we'll be writing the whole rectangle from our
3097 * temporary buffer back out.
3098 */
3099 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3100 if (!intel_miptree_copy(brw,
3101 mt, level, slice, map->x, map->y,
3102 map->linear_mt, 0, 0, 0, 0,
3103 map->w, map->h)) {
3104 fprintf(stderr, "Failed to blit\n");
3105 goto fail;
3106 }
3107 }
3108
3109 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3110
3111 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3112 map->x, map->y, map->w, map->h,
3113 mt, _mesa_get_format_name(mt->format),
3114 level, slice, map->ptr, map->stride);
3115
3116 return;
3117
3118 fail:
3119 intel_miptree_release(&map->linear_mt);
3120 map->ptr = NULL;
3121 map->stride = 0;
3122 }
3123
3124 static void
3125 intel_miptree_unmap_blit(struct brw_context *brw,
3126 struct intel_mipmap_tree *mt,
3127 struct intel_miptree_map *map,
3128 unsigned int level,
3129 unsigned int slice)
3130 {
3131 struct gl_context *ctx = &brw->ctx;
3132
3133 intel_miptree_unmap_raw(map->linear_mt);
3134
3135 if (map->mode & GL_MAP_WRITE_BIT) {
3136 bool ok = intel_miptree_copy(brw,
3137 map->linear_mt, 0, 0, 0, 0,
3138 mt, level, slice, map->x, map->y,
3139 map->w, map->h);
3140 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3141 }
3142
3143 intel_miptree_release(&map->linear_mt);
3144 }
3145
3146 /**
3147 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3148 */
3149 #if defined(USE_SSE41)
3150 static void
3151 intel_miptree_map_movntdqa(struct brw_context *brw,
3152 struct intel_mipmap_tree *mt,
3153 struct intel_miptree_map *map,
3154 unsigned int level, unsigned int slice)
3155 {
3156 assert(map->mode & GL_MAP_READ_BIT);
3157 assert(!(map->mode & GL_MAP_WRITE_BIT));
3158
3159 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3160 map->x, map->y, map->w, map->h,
3161 mt, _mesa_get_format_name(mt->format),
3162 level, slice, map->ptr, map->stride);
3163
3164 /* Map the original image */
3165 uint32_t image_x;
3166 uint32_t image_y;
3167 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3168 image_x += map->x;
3169 image_y += map->y;
3170
3171 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3172 if (!src)
3173 return;
3174
3175 src += mt->offset;
3176
3177 src += image_y * mt->surf.row_pitch;
3178 src += image_x * mt->cpp;
3179
3180 /* Due to the pixel offsets for the particular image being mapped, our
3181 * src pointer may not be 16-byte aligned. However, if the pitch is
3182 * divisible by 16, then the amount by which it's misaligned will remain
3183 * consistent from row to row.
3184 */
3185 assert((mt->surf.row_pitch % 16) == 0);
3186 const int misalignment = ((uintptr_t) src) & 15;
3187
3188 /* Create an untiled temporary buffer for the mapping. */
3189 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3190
3191 map->stride = ALIGN(misalignment + width_bytes, 16);
3192
3193 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3194 /* Offset the destination so it has the same misalignment as src. */
3195 map->ptr = map->buffer + misalignment;
3196
3197 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3198
3199 for (uint32_t y = 0; y < map->h; y++) {
3200 void *dst_ptr = map->ptr + y * map->stride;
3201 void *src_ptr = src + y * mt->surf.row_pitch;
3202
3203 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3204 }
3205
3206 intel_miptree_unmap_raw(mt);
3207 }
3208
3209 static void
3210 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3211 struct intel_mipmap_tree *mt,
3212 struct intel_miptree_map *map,
3213 unsigned int level,
3214 unsigned int slice)
3215 {
3216 _mesa_align_free(map->buffer);
3217 map->buffer = NULL;
3218 map->ptr = NULL;
3219 }
3220 #endif
3221
3222 static void
3223 intel_miptree_map_s8(struct brw_context *brw,
3224 struct intel_mipmap_tree *mt,
3225 struct intel_miptree_map *map,
3226 unsigned int level, unsigned int slice)
3227 {
3228 map->stride = map->w;
3229 map->buffer = map->ptr = malloc(map->stride * map->h);
3230 if (!map->buffer)
3231 return;
3232
3233 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3234 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3235 * invalidate is set, since we'll be writing the whole rectangle from our
3236 * temporary buffer back out.
3237 */
3238 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3239 uint8_t *untiled_s8_map = map->ptr;
3240 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3241 unsigned int image_x, image_y;
3242
3243 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3244
3245 for (uint32_t y = 0; y < map->h; y++) {
3246 for (uint32_t x = 0; x < map->w; x++) {
3247 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3248 x + image_x + map->x,
3249 y + image_y + map->y,
3250 brw->has_swizzling);
3251 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3252 }
3253 }
3254
3255 intel_miptree_unmap_raw(mt);
3256
3257 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3258 map->x, map->y, map->w, map->h,
3259 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3260 } else {
3261 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3262 map->x, map->y, map->w, map->h,
3263 mt, map->ptr, map->stride);
3264 }
3265 }
3266
3267 static void
3268 intel_miptree_unmap_s8(struct brw_context *brw,
3269 struct intel_mipmap_tree *mt,
3270 struct intel_miptree_map *map,
3271 unsigned int level,
3272 unsigned int slice)
3273 {
3274 if (map->mode & GL_MAP_WRITE_BIT) {
3275 unsigned int image_x, image_y;
3276 uint8_t *untiled_s8_map = map->ptr;
3277 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3278
3279 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3280
3281 for (uint32_t y = 0; y < map->h; y++) {
3282 for (uint32_t x = 0; x < map->w; x++) {
3283 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3284 image_x + x + map->x,
3285 image_y + y + map->y,
3286 brw->has_swizzling);
3287 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3288 }
3289 }
3290
3291 intel_miptree_unmap_raw(mt);
3292 }
3293
3294 free(map->buffer);
3295 }
3296
3297 static void
3298 intel_miptree_map_etc(struct brw_context *brw,
3299 struct intel_mipmap_tree *mt,
3300 struct intel_miptree_map *map,
3301 unsigned int level,
3302 unsigned int slice)
3303 {
3304 assert(mt->etc_format != MESA_FORMAT_NONE);
3305 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3306 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3307 }
3308
3309 assert(map->mode & GL_MAP_WRITE_BIT);
3310 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3311
3312 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3313 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3314 map->w, map->h, 1));
3315 map->ptr = map->buffer;
3316 }
3317
3318 static void
3319 intel_miptree_unmap_etc(struct brw_context *brw,
3320 struct intel_mipmap_tree *mt,
3321 struct intel_miptree_map *map,
3322 unsigned int level,
3323 unsigned int slice)
3324 {
3325 uint32_t image_x;
3326 uint32_t image_y;
3327 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3328
3329 image_x += map->x;
3330 image_y += map->y;
3331
3332 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3333 + image_y * mt->surf.row_pitch
3334 + image_x * mt->cpp;
3335
3336 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3337 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3338 map->ptr, map->stride,
3339 map->w, map->h);
3340 else
3341 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3342 map->ptr, map->stride,
3343 map->w, map->h, mt->etc_format);
3344
3345 intel_miptree_unmap_raw(mt);
3346 free(map->buffer);
3347 }
3348
3349 /**
3350 * Mapping function for packed depth/stencil miptrees backed by real separate
3351 * miptrees for depth and stencil.
3352 *
3353 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3354 * separate from the depth buffer. Yet at the GL API level, we have to expose
3355 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3356 * be able to map that memory for texture storage and glReadPixels-type
3357 * operations. We give Mesa core that access by mallocing a temporary and
3358 * copying the data between the actual backing store and the temporary.
3359 */
3360 static void
3361 intel_miptree_map_depthstencil(struct brw_context *brw,
3362 struct intel_mipmap_tree *mt,
3363 struct intel_miptree_map *map,
3364 unsigned int level, unsigned int slice)
3365 {
3366 struct intel_mipmap_tree *z_mt = mt;
3367 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3368 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3369 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3370
3371 map->stride = map->w * packed_bpp;
3372 map->buffer = map->ptr = malloc(map->stride * map->h);
3373 if (!map->buffer)
3374 return;
3375
3376 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3377 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3378 * invalidate is set, since we'll be writing the whole rectangle from our
3379 * temporary buffer back out.
3380 */
3381 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3382 uint32_t *packed_map = map->ptr;
3383 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3384 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3385 unsigned int s_image_x, s_image_y;
3386 unsigned int z_image_x, z_image_y;
3387
3388 intel_miptree_get_image_offset(s_mt, level, slice,
3389 &s_image_x, &s_image_y);
3390 intel_miptree_get_image_offset(z_mt, level, slice,
3391 &z_image_x, &z_image_y);
3392
3393 for (uint32_t y = 0; y < map->h; y++) {
3394 for (uint32_t x = 0; x < map->w; x++) {
3395 int map_x = map->x + x, map_y = map->y + y;
3396 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3397 map_x + s_image_x,
3398 map_y + s_image_y,
3399 brw->has_swizzling);
3400 ptrdiff_t z_offset = ((map_y + z_image_y) *
3401 (z_mt->surf.row_pitch / 4) +
3402 (map_x + z_image_x));
3403 uint8_t s = s_map[s_offset];
3404 uint32_t z = z_map[z_offset];
3405
3406 if (map_z32f_x24s8) {
3407 packed_map[(y * map->w + x) * 2 + 0] = z;
3408 packed_map[(y * map->w + x) * 2 + 1] = s;
3409 } else {
3410 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3411 }
3412 }
3413 }
3414
3415 intel_miptree_unmap_raw(s_mt);
3416 intel_miptree_unmap_raw(z_mt);
3417
3418 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3419 __func__,
3420 map->x, map->y, map->w, map->h,
3421 z_mt, map->x + z_image_x, map->y + z_image_y,
3422 s_mt, map->x + s_image_x, map->y + s_image_y,
3423 map->ptr, map->stride);
3424 } else {
3425 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3426 map->x, map->y, map->w, map->h,
3427 mt, map->ptr, map->stride);
3428 }
3429 }
3430
3431 static void
3432 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3433 struct intel_mipmap_tree *mt,
3434 struct intel_miptree_map *map,
3435 unsigned int level,
3436 unsigned int slice)
3437 {
3438 struct intel_mipmap_tree *z_mt = mt;
3439 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3440 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3441
3442 if (map->mode & GL_MAP_WRITE_BIT) {
3443 uint32_t *packed_map = map->ptr;
3444 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3445 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3446 unsigned int s_image_x, s_image_y;
3447 unsigned int z_image_x, z_image_y;
3448
3449 intel_miptree_get_image_offset(s_mt, level, slice,
3450 &s_image_x, &s_image_y);
3451 intel_miptree_get_image_offset(z_mt, level, slice,
3452 &z_image_x, &z_image_y);
3453
3454 for (uint32_t y = 0; y < map->h; y++) {
3455 for (uint32_t x = 0; x < map->w; x++) {
3456 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3457 x + s_image_x + map->x,
3458 y + s_image_y + map->y,
3459 brw->has_swizzling);
3460 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3461 (z_mt->surf.row_pitch / 4) +
3462 (x + z_image_x + map->x));
3463
3464 if (map_z32f_x24s8) {
3465 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3466 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3467 } else {
3468 uint32_t packed = packed_map[y * map->w + x];
3469 s_map[s_offset] = packed >> 24;
3470 z_map[z_offset] = packed;
3471 }
3472 }
3473 }
3474
3475 intel_miptree_unmap_raw(s_mt);
3476 intel_miptree_unmap_raw(z_mt);
3477
3478 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3479 __func__,
3480 map->x, map->y, map->w, map->h,
3481 z_mt, _mesa_get_format_name(z_mt->format),
3482 map->x + z_image_x, map->y + z_image_y,
3483 s_mt, map->x + s_image_x, map->y + s_image_y,
3484 map->ptr, map->stride);
3485 }
3486
3487 free(map->buffer);
3488 }
3489
3490 /**
3491 * Create and attach a map to the miptree at (level, slice). Return the
3492 * attached map.
3493 */
3494 static struct intel_miptree_map*
3495 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3496 unsigned int level,
3497 unsigned int slice,
3498 unsigned int x,
3499 unsigned int y,
3500 unsigned int w,
3501 unsigned int h,
3502 GLbitfield mode)
3503 {
3504 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3505
3506 if (!map)
3507 return NULL;
3508
3509 assert(mt->level[level].slice[slice].map == NULL);
3510 mt->level[level].slice[slice].map = map;
3511
3512 map->mode = mode;
3513 map->x = x;
3514 map->y = y;
3515 map->w = w;
3516 map->h = h;
3517
3518 return map;
3519 }
3520
3521 /**
3522 * Release the map at (level, slice).
3523 */
3524 static void
3525 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3526 unsigned int level,
3527 unsigned int slice)
3528 {
3529 struct intel_miptree_map **map;
3530
3531 map = &mt->level[level].slice[slice].map;
3532 free(*map);
3533 *map = NULL;
3534 }
3535
3536 static bool
3537 can_blit_slice(struct intel_mipmap_tree *mt,
3538 unsigned int level, unsigned int slice)
3539 {
3540 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3541 if (mt->surf.row_pitch >= 32768)
3542 return false;
3543
3544 return true;
3545 }
3546
3547 static bool
3548 use_intel_mipree_map_blit(struct brw_context *brw,
3549 struct intel_mipmap_tree *mt,
3550 GLbitfield mode,
3551 unsigned int level,
3552 unsigned int slice)
3553 {
3554 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3555
3556 if (devinfo->has_llc &&
3557 /* It's probably not worth swapping to the blit ring because of
3558 * all the overhead involved.
3559 */
3560 !(mode & GL_MAP_WRITE_BIT) &&
3561 !mt->compressed &&
3562 (mt->surf.tiling == ISL_TILING_X ||
3563 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3564 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3565 /* Fast copy blit on skl+ supports all tiling formats. */
3566 devinfo->gen >= 9) &&
3567 can_blit_slice(mt, level, slice))
3568 return true;
3569
3570 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3571 mt->bo->size >= brw->max_gtt_map_object_size) {
3572 assert(can_blit_slice(mt, level, slice));
3573 return true;
3574 }
3575
3576 return false;
3577 }
3578
3579 /**
3580 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3581 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3582 * arithmetic overflow.
3583 *
3584 * If you call this function and use \a out_stride, then you're doing pointer
3585 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3586 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3587 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3588 * which usually have type uint32_t or GLuint.
3589 */
3590 void
3591 intel_miptree_map(struct brw_context *brw,
3592 struct intel_mipmap_tree *mt,
3593 unsigned int level,
3594 unsigned int slice,
3595 unsigned int x,
3596 unsigned int y,
3597 unsigned int w,
3598 unsigned int h,
3599 GLbitfield mode,
3600 void **out_ptr,
3601 ptrdiff_t *out_stride)
3602 {
3603 struct intel_miptree_map *map;
3604
3605 assert(mt->surf.samples == 1);
3606
3607 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3608 if (!map){
3609 *out_ptr = NULL;
3610 *out_stride = 0;
3611 return;
3612 }
3613
3614 intel_miptree_access_raw(brw, mt, level, slice,
3615 map->mode & GL_MAP_WRITE_BIT);
3616
3617 if (mt->format == MESA_FORMAT_S_UINT8) {
3618 intel_miptree_map_s8(brw, mt, map, level, slice);
3619 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3620 !(mode & BRW_MAP_DIRECT_BIT)) {
3621 intel_miptree_map_etc(brw, mt, map, level, slice);
3622 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3623 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3624 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3625 intel_miptree_map_blit(brw, mt, map, level, slice);
3626 #if defined(USE_SSE41)
3627 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3628 !mt->compressed && cpu_has_sse4_1 &&
3629 (mt->surf.row_pitch % 16 == 0)) {
3630 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3631 #endif
3632 } else {
3633 intel_miptree_map_gtt(brw, mt, map, level, slice);
3634 }
3635
3636 *out_ptr = map->ptr;
3637 *out_stride = map->stride;
3638
3639 if (map->ptr == NULL)
3640 intel_miptree_release_map(mt, level, slice);
3641 }
3642
3643 void
3644 intel_miptree_unmap(struct brw_context *brw,
3645 struct intel_mipmap_tree *mt,
3646 unsigned int level,
3647 unsigned int slice)
3648 {
3649 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3650
3651 assert(mt->surf.samples == 1);
3652
3653 if (!map)
3654 return;
3655
3656 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3657 mt, _mesa_get_format_name(mt->format), level, slice);
3658
3659 if (mt->format == MESA_FORMAT_S_UINT8) {
3660 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3661 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3662 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3663 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3664 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3665 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3666 } else if (map->linear_mt) {
3667 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3668 #if defined(USE_SSE41)
3669 } else if (map->buffer && cpu_has_sse4_1) {
3670 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3671 #endif
3672 } else {
3673 intel_miptree_unmap_gtt(mt);
3674 }
3675
3676 intel_miptree_release_map(mt, level, slice);
3677 }
3678
3679 enum isl_surf_dim
3680 get_isl_surf_dim(GLenum target)
3681 {
3682 switch (target) {
3683 case GL_TEXTURE_1D:
3684 case GL_TEXTURE_1D_ARRAY:
3685 return ISL_SURF_DIM_1D;
3686
3687 case GL_TEXTURE_2D:
3688 case GL_TEXTURE_2D_ARRAY:
3689 case GL_TEXTURE_RECTANGLE:
3690 case GL_TEXTURE_CUBE_MAP:
3691 case GL_TEXTURE_CUBE_MAP_ARRAY:
3692 case GL_TEXTURE_2D_MULTISAMPLE:
3693 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3694 case GL_TEXTURE_EXTERNAL_OES:
3695 return ISL_SURF_DIM_2D;
3696
3697 case GL_TEXTURE_3D:
3698 return ISL_SURF_DIM_3D;
3699 }
3700
3701 unreachable("Invalid texture target");
3702 }
3703
3704 enum isl_dim_layout
3705 get_isl_dim_layout(const struct gen_device_info *devinfo,
3706 enum isl_tiling tiling, GLenum target)
3707 {
3708 switch (target) {
3709 case GL_TEXTURE_1D:
3710 case GL_TEXTURE_1D_ARRAY:
3711 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3712 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3713
3714 case GL_TEXTURE_2D:
3715 case GL_TEXTURE_2D_ARRAY:
3716 case GL_TEXTURE_RECTANGLE:
3717 case GL_TEXTURE_2D_MULTISAMPLE:
3718 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3719 case GL_TEXTURE_EXTERNAL_OES:
3720 return ISL_DIM_LAYOUT_GEN4_2D;
3721
3722 case GL_TEXTURE_CUBE_MAP:
3723 case GL_TEXTURE_CUBE_MAP_ARRAY:
3724 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3725 ISL_DIM_LAYOUT_GEN4_2D);
3726
3727 case GL_TEXTURE_3D:
3728 return (devinfo->gen >= 9 ?
3729 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3730 }
3731
3732 unreachable("Invalid texture target");
3733 }
3734
3735 enum isl_aux_usage
3736 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3737 const struct intel_mipmap_tree *mt)
3738 {
3739 if (mt->hiz_buf)
3740 return ISL_AUX_USAGE_HIZ;
3741
3742 if (!mt->mcs_buf)
3743 return ISL_AUX_USAGE_NONE;
3744
3745 return mt->aux_usage;
3746 }