i965/miptree: Take an isl_format in render_aux_usage
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 static bool
245 intel_miptree_supports_ccs_e(struct brw_context *brw,
246 const struct intel_mipmap_tree *mt)
247 {
248 const struct gen_device_info *devinfo = &brw->screen->devinfo;
249
250 if (devinfo->gen < 9)
251 return false;
252
253 /* For now compression is only enabled for integer formats even though
254 * there exist supported floating point formats also. This is a heuristic
255 * decision based on current public benchmarks. In none of the cases these
256 * formats provided any improvement but a few cases were seen to regress.
257 * Hence these are left to to be enabled in the future when they are known
258 * to improve things.
259 */
260 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
261 return false;
262
263 if (!intel_miptree_supports_ccs(brw, mt))
264 return false;
265
266 /* Many window system buffers are sRGB even if they are never rendered as
267 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
268 * surface is used as sRGB, we fall back to CCS_D.
269 */
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
273 }
274
275 /**
276 * Determine depth format corresponding to a depth+stencil format,
277 * for separate stencil.
278 */
279 mesa_format
280 intel_depth_format_for_depthstencil_format(mesa_format format) {
281 switch (format) {
282 case MESA_FORMAT_Z24_UNORM_S8_UINT:
283 return MESA_FORMAT_Z24_UNORM_X8_UINT;
284 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
285 return MESA_FORMAT_Z_FLOAT32;
286 default:
287 return format;
288 }
289 }
290
291 static bool
292 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
293 unsigned depth0, struct intel_mipmap_level *table)
294 {
295 for (unsigned level = first_level; level <= last_level; level++) {
296 const unsigned d =
297 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
298
299 table[level].slice = calloc(d, sizeof(*table[0].slice));
300 if (!table[level].slice)
301 goto unwind;
302 }
303
304 return true;
305
306 unwind:
307 for (unsigned level = first_level; level <= last_level; level++)
308 free(table[level].slice);
309
310 return false;
311 }
312
313 static bool
314 needs_separate_stencil(const struct brw_context *brw,
315 struct intel_mipmap_tree *mt,
316 mesa_format format)
317 {
318 const struct gen_device_info *devinfo = &brw->screen->devinfo;
319
320 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
321 return false;
322
323 if (devinfo->must_use_separate_stencil)
324 return true;
325
326 return brw->has_separate_stencil &&
327 intel_miptree_supports_hiz(brw, mt);
328 }
329
330 /**
331 * Choose the aux usage for this miptree. This function must be called fairly
332 * late in the miptree create process after we have a tiling.
333 */
334 static void
335 intel_miptree_choose_aux_usage(struct brw_context *brw,
336 struct intel_mipmap_tree *mt)
337 {
338 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
339
340 if (intel_miptree_supports_mcs(brw, mt)) {
341 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
342 mt->aux_usage = ISL_AUX_USAGE_MCS;
343 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
344 intel_miptree_supports_ccs(brw, mt)) {
345 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
346 intel_miptree_supports_ccs_e(brw, mt)) {
347 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
348 } else {
349 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
350 }
351 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
352 intel_miptree_supports_hiz(brw, mt)) {
353 mt->aux_usage = ISL_AUX_USAGE_HIZ;
354 }
355
356 /* We can do fast-clear on all auxiliary surface types that are
357 * allocated through the normal texture creation paths.
358 */
359 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
360 mt->supports_fast_clear = true;
361 }
362
363
364 /**
365 * Choose an appropriate uncompressed format for a requested
366 * compressed format, if unsupported.
367 */
368 mesa_format
369 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
370 {
371 const struct gen_device_info *devinfo = &brw->screen->devinfo;
372
373 /* No need to lower ETC formats on these platforms,
374 * they are supported natively.
375 */
376 if (devinfo->gen >= 8 || devinfo->is_baytrail)
377 return format;
378
379 switch (format) {
380 case MESA_FORMAT_ETC1_RGB8:
381 return MESA_FORMAT_R8G8B8X8_UNORM;
382 case MESA_FORMAT_ETC2_RGB8:
383 return MESA_FORMAT_R8G8B8X8_UNORM;
384 case MESA_FORMAT_ETC2_SRGB8:
385 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
386 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
387 return MESA_FORMAT_B8G8R8A8_SRGB;
388 case MESA_FORMAT_ETC2_RGBA8_EAC:
389 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
390 return MESA_FORMAT_R8G8B8A8_UNORM;
391 case MESA_FORMAT_ETC2_R11_EAC:
392 return MESA_FORMAT_R_UNORM16;
393 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
394 return MESA_FORMAT_R_SNORM16;
395 case MESA_FORMAT_ETC2_RG11_EAC:
396 return MESA_FORMAT_R16G16_UNORM;
397 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
398 return MESA_FORMAT_R16G16_SNORM;
399 default:
400 /* Non ETC1 / ETC2 format */
401 return format;
402 }
403 }
404
405 unsigned
406 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
407 {
408 if (mt->surf.dim == ISL_SURF_DIM_3D)
409 return minify(mt->surf.logical_level0_px.depth, level);
410 else
411 return mt->surf.logical_level0_px.array_len;
412 }
413
414 UNUSED static unsigned
415 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
416 {
417 /* In case of physical dimensions one needs to consider also the layout.
418 * See isl_calc_phys_level0_extent_sa().
419 */
420 if (surf->dim != ISL_SURF_DIM_3D)
421 return surf->phys_level0_sa.array_len;
422
423 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
424 return minify(surf->phys_level0_sa.array_len, level);
425
426 return minify(surf->phys_level0_sa.depth, level);
427 }
428
429 /** \brief Assert that the level and layer are valid for the miptree. */
430 void
431 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
432 uint32_t level,
433 uint32_t layer)
434 {
435 (void) mt;
436 (void) level;
437 (void) layer;
438
439 assert(level >= mt->first_level);
440 assert(level <= mt->last_level);
441 assert(layer < get_num_phys_layers(&mt->surf, level));
442 }
443
444 static enum isl_aux_state **
445 create_aux_state_map(struct intel_mipmap_tree *mt,
446 enum isl_aux_state initial)
447 {
448 const uint32_t levels = mt->last_level + 1;
449
450 uint32_t total_slices = 0;
451 for (uint32_t level = 0; level < levels; level++)
452 total_slices += brw_get_num_logical_layers(mt, level);
453
454 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
455
456 /* We're going to allocate a single chunk of data for both the per-level
457 * reference array and the arrays of aux_state. This makes cleanup
458 * significantly easier.
459 */
460 const size_t total_size = per_level_array_size +
461 total_slices * sizeof(enum isl_aux_state);
462 void *data = malloc(total_size);
463 if (data == NULL)
464 return NULL;
465
466 enum isl_aux_state **per_level_arr = data;
467 enum isl_aux_state *s = data + per_level_array_size;
468 for (uint32_t level = 0; level < levels; level++) {
469 per_level_arr[level] = s;
470 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
471 for (uint32_t a = 0; a < level_layers; a++)
472 *(s++) = initial;
473 }
474 assert((void *)s == data + total_size);
475
476 return per_level_arr;
477 }
478
479 static void
480 free_aux_state_map(enum isl_aux_state **state)
481 {
482 free(state);
483 }
484
485 static bool
486 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
487 enum isl_tiling tiling, unsigned samples)
488 {
489 if (samples > 1)
490 return false;
491
492 if (tiling == ISL_TILING_LINEAR)
493 return false;
494
495 /* If the width is much smaller than a tile, don't bother tiling. */
496 if (row_pitch < 64)
497 return true;
498
499 if (ALIGN(row_pitch, 512) >= 32768) {
500 perf_debug("row pitch %u too large to blit, falling back to untiled",
501 row_pitch);
502 return true;
503 }
504
505 return false;
506 }
507
508 static bool
509 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
510 enum isl_tiling tiling)
511 {
512 const struct gen_device_info *devinfo = &brw->screen->devinfo;
513
514 /* If the BO is too large to fit in the aperture, we need to use the
515 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
516 * handle Y-tiling, so we need to fall back to X.
517 */
518 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
519 tiling == ISL_TILING_Y0)
520 return true;
521
522 return false;
523 }
524
525 static struct intel_mipmap_tree *
526 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
527 unsigned first_level, unsigned last_level,
528 unsigned width0, unsigned height0, unsigned depth0,
529 unsigned num_samples, isl_tiling_flags_t tiling_flags,
530 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
531 unsigned row_pitch, struct brw_bo *bo)
532 {
533 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
534 if (!mt)
535 return NULL;
536
537 if (!create_mapping_table(target, first_level, last_level, depth0,
538 mt->level)) {
539 free(mt);
540 return NULL;
541 }
542
543 mt->refcount = 1;
544
545 if (target == GL_TEXTURE_CUBE_MAP ||
546 target == GL_TEXTURE_CUBE_MAP_ARRAY)
547 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
548
549 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
550 __func__,
551 _mesa_enum_to_string(target),
552 _mesa_get_format_name(format),
553 num_samples, width0, height0, depth0,
554 first_level, last_level, mt);
555
556 struct isl_surf_init_info init_info = {
557 .dim = get_isl_surf_dim(target),
558 .format = translate_tex_format(brw, format, false),
559 .width = width0,
560 .height = height0,
561 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
562 .levels = last_level - first_level + 1,
563 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
564 .samples = num_samples,
565 .row_pitch = row_pitch,
566 .usage = isl_usage_flags,
567 .tiling_flags = tiling_flags,
568 };
569
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572
573 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
574 * on gen7 platforms we also need to create Y-tiled copies of stencil for
575 * texturing since the hardware can't sample from W-tiled surfaces. For
576 * everything else, check for corner cases needing special treatment.
577 */
578 bool is_depth_stencil =
579 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
580 if (!is_depth_stencil) {
581 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
582 mt->surf.tiling, mt->surf.samples)) {
583 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
584 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
585 goto fail;
586 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
587 init_info.tiling_flags = 1u << ISL_TILING_X;
588 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
589 goto fail;
590 }
591 }
592
593 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
594 * the size may not be multiple of row_pitch.
595 * See isl_apply_surface_padding().
596 */
597 if (mt->surf.tiling != ISL_TILING_LINEAR)
598 assert(mt->surf.size % mt->surf.row_pitch == 0);
599
600 if (!bo) {
601 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
602 mt->surf.size,
603 isl_tiling_to_i915_tiling(
604 mt->surf.tiling),
605 mt->surf.row_pitch, alloc_flags);
606 if (!mt->bo)
607 goto fail;
608 } else {
609 mt->bo = bo;
610 }
611
612 mt->first_level = first_level;
613 mt->last_level = last_level;
614 mt->target = target;
615 mt->format = format;
616 mt->aux_state = NULL;
617 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
618 mt->compressed = _mesa_is_format_compressed(format);
619 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
620
621 return mt;
622
623 fail:
624 intel_miptree_release(&mt);
625 return NULL;
626 }
627
628 static bool
629 make_separate_stencil_surface(struct brw_context *brw,
630 struct intel_mipmap_tree *mt)
631 {
632 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
633 0, mt->surf.levels - 1,
634 mt->surf.logical_level0_px.width,
635 mt->surf.logical_level0_px.height,
636 mt->surf.dim == ISL_SURF_DIM_3D ?
637 mt->surf.logical_level0_px.depth :
638 mt->surf.logical_level0_px.array_len,
639 mt->surf.samples, ISL_TILING_W_BIT,
640 ISL_SURF_USAGE_STENCIL_BIT |
641 ISL_SURF_USAGE_TEXTURE_BIT,
642 BO_ALLOC_BUSY, 0, NULL);
643
644 if (!mt->stencil_mt)
645 return false;
646
647 mt->stencil_mt->r8stencil_needs_update = true;
648
649 return true;
650 }
651
652 static struct intel_mipmap_tree *
653 miptree_create(struct brw_context *brw,
654 GLenum target,
655 mesa_format format,
656 GLuint first_level,
657 GLuint last_level,
658 GLuint width0,
659 GLuint height0,
660 GLuint depth0,
661 GLuint num_samples,
662 enum intel_miptree_create_flags flags)
663 {
664 const struct gen_device_info *devinfo = &brw->screen->devinfo;
665
666 if (format == MESA_FORMAT_S_UINT8)
667 return make_surface(brw, target, format, first_level, last_level,
668 width0, height0, depth0, num_samples,
669 ISL_TILING_W_BIT,
670 ISL_SURF_USAGE_STENCIL_BIT |
671 ISL_SURF_USAGE_TEXTURE_BIT,
672 BO_ALLOC_BUSY,
673 0,
674 NULL);
675
676 const GLenum base_format = _mesa_get_format_base_format(format);
677 if ((base_format == GL_DEPTH_COMPONENT ||
678 base_format == GL_DEPTH_STENCIL) &&
679 !(flags & MIPTREE_CREATE_LINEAR)) {
680 /* Fix up the Z miptree format for how we're splitting out separate
681 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
682 */
683 const mesa_format depth_only_format =
684 intel_depth_format_for_depthstencil_format(format);
685 struct intel_mipmap_tree *mt = make_surface(
686 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
687 first_level, last_level,
688 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
689 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
690 BO_ALLOC_BUSY, 0, NULL);
691
692 if (needs_separate_stencil(brw, mt, format) &&
693 !make_separate_stencil_surface(brw, mt)) {
694 intel_miptree_release(&mt);
695 return NULL;
696 }
697
698 if (!(flags & MIPTREE_CREATE_NO_AUX))
699 intel_miptree_choose_aux_usage(brw, mt);
700
701 return mt;
702 }
703
704 mesa_format tex_format = format;
705 mesa_format etc_format = MESA_FORMAT_NONE;
706 uint32_t alloc_flags = 0;
707
708 format = intel_lower_compressed_format(brw, format);
709
710 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
711
712 if (flags & MIPTREE_CREATE_BUSY)
713 alloc_flags |= BO_ALLOC_BUSY;
714
715 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
716 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
717
718 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
719 if (devinfo->gen < 6)
720 tiling_flags &= ~ISL_TILING_Y0_BIT;
721
722 struct intel_mipmap_tree *mt = make_surface(
723 brw, target, format,
724 first_level, last_level,
725 width0, height0, depth0,
726 num_samples, tiling_flags,
727 ISL_SURF_USAGE_RENDER_TARGET_BIT |
728 ISL_SURF_USAGE_TEXTURE_BIT,
729 alloc_flags, 0, NULL);
730 if (!mt)
731 return NULL;
732
733 mt->etc_format = etc_format;
734
735 if (!(flags & MIPTREE_CREATE_NO_AUX))
736 intel_miptree_choose_aux_usage(brw, mt);
737
738 return mt;
739 }
740
741 struct intel_mipmap_tree *
742 intel_miptree_create(struct brw_context *brw,
743 GLenum target,
744 mesa_format format,
745 GLuint first_level,
746 GLuint last_level,
747 GLuint width0,
748 GLuint height0,
749 GLuint depth0,
750 GLuint num_samples,
751 enum intel_miptree_create_flags flags)
752 {
753 assert(num_samples > 0);
754
755 struct intel_mipmap_tree *mt = miptree_create(
756 brw, target, format,
757 first_level, last_level,
758 width0, height0, depth0, num_samples,
759 flags);
760 if (!mt)
761 return NULL;
762
763 mt->offset = 0;
764
765 if (!intel_miptree_alloc_aux(brw, mt)) {
766 intel_miptree_release(&mt);
767 return NULL;
768 }
769
770 return mt;
771 }
772
773 struct intel_mipmap_tree *
774 intel_miptree_create_for_bo(struct brw_context *brw,
775 struct brw_bo *bo,
776 mesa_format format,
777 uint32_t offset,
778 uint32_t width,
779 uint32_t height,
780 uint32_t depth,
781 int pitch,
782 enum intel_miptree_create_flags flags)
783 {
784 const struct gen_device_info *devinfo = &brw->screen->devinfo;
785 struct intel_mipmap_tree *mt;
786 uint32_t tiling, swizzle;
787 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
788 const GLenum base_format = _mesa_get_format_base_format(format);
789
790 if ((base_format == GL_DEPTH_COMPONENT ||
791 base_format == GL_DEPTH_STENCIL)) {
792 const mesa_format depth_only_format =
793 intel_depth_format_for_depthstencil_format(format);
794 mt = make_surface(brw, target,
795 devinfo->gen >= 6 ? depth_only_format : format,
796 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
797 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
798 BO_ALLOC_BUSY, pitch, bo);
799 if (!mt)
800 return NULL;
801
802 brw_bo_reference(bo);
803
804 if (!(flags & MIPTREE_CREATE_NO_AUX))
805 intel_miptree_choose_aux_usage(brw, mt);
806
807 return mt;
808 } else if (format == MESA_FORMAT_S_UINT8) {
809 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
810 0, 0, width, height, depth, 1,
811 ISL_TILING_W_BIT,
812 ISL_SURF_USAGE_STENCIL_BIT |
813 ISL_SURF_USAGE_TEXTURE_BIT,
814 BO_ALLOC_BUSY, pitch, bo);
815 if (!mt)
816 return NULL;
817
818 assert(bo->size >= mt->surf.size);
819
820 brw_bo_reference(bo);
821 return mt;
822 }
823
824 brw_bo_get_tiling(bo, &tiling, &swizzle);
825
826 /* Nothing will be able to use this miptree with the BO if the offset isn't
827 * aligned.
828 */
829 if (tiling != I915_TILING_NONE)
830 assert(offset % 4096 == 0);
831
832 /* miptrees can't handle negative pitch. If you need flipping of images,
833 * that's outside of the scope of the mt.
834 */
835 assert(pitch >= 0);
836
837 /* The BO already has a tiling format and we shouldn't confuse the lower
838 * layers by making it try to find a tiling format again.
839 */
840 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
841
842 mt = make_surface(brw, target, format,
843 0, 0, width, height, depth, 1,
844 1lu << isl_tiling_from_i915_tiling(tiling),
845 ISL_SURF_USAGE_RENDER_TARGET_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 brw_bo_reference(bo);
852 mt->bo = bo;
853 mt->offset = offset;
854
855 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
856 intel_miptree_choose_aux_usage(brw, mt);
857
858 if (!intel_miptree_alloc_aux(brw, mt)) {
859 intel_miptree_release(&mt);
860 return NULL;
861 }
862 }
863
864 return mt;
865 }
866
867 static struct intel_mipmap_tree *
868 miptree_create_for_planar_image(struct brw_context *brw,
869 __DRIimage *image, GLenum target)
870 {
871 const struct intel_image_format *f = image->planar_format;
872 struct intel_mipmap_tree *planar_mt = NULL;
873
874 for (int i = 0; i < f->nplanes; i++) {
875 const int index = f->planes[i].buffer_index;
876 const uint32_t dri_format = f->planes[i].dri_format;
877 const mesa_format format = driImageFormatToGLFormat(dri_format);
878 const uint32_t width = image->width >> f->planes[i].width_shift;
879 const uint32_t height = image->height >> f->planes[i].height_shift;
880
881 /* Disable creation of the texture's aux buffers because the driver
882 * exposes no EGL API to manage them. That is, there is no API for
883 * resolving the aux buffer's content to the main buffer nor for
884 * invalidating the aux buffer's content.
885 */
886 struct intel_mipmap_tree *mt =
887 intel_miptree_create_for_bo(brw, image->bo, format,
888 image->offsets[index],
889 width, height, 1,
890 image->strides[index],
891 MIPTREE_CREATE_NO_AUX);
892 if (mt == NULL)
893 return NULL;
894
895 mt->target = target;
896
897 if (i == 0)
898 planar_mt = mt;
899 else
900 planar_mt->plane[i - 1] = mt;
901 }
902
903 planar_mt->drm_modifier = image->modifier;
904
905 return planar_mt;
906 }
907
908 static bool
909 create_ccs_buf_for_image(struct brw_context *brw,
910 __DRIimage *image,
911 struct intel_mipmap_tree *mt,
912 enum isl_aux_state initial_state)
913 {
914 struct isl_surf temp_ccs_surf;
915
916 /* CCS is only supported for very simple miptrees */
917 assert(image->aux_offset != 0 && image->aux_pitch != 0);
918 assert(image->tile_x == 0 && image->tile_y == 0);
919 assert(mt->surf.samples == 1);
920 assert(mt->surf.levels == 1);
921 assert(mt->surf.logical_level0_px.depth == 1);
922 assert(mt->surf.logical_level0_px.array_len == 1);
923 assert(mt->first_level == 0);
924 assert(mt->last_level == 0);
925
926 /* We shouldn't already have a CCS */
927 assert(!mt->mcs_buf);
928
929 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
930 image->aux_pitch))
931 return false;
932
933 assert(image->aux_offset < image->bo->size);
934 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
935
936 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
937 if (mt->mcs_buf == NULL)
938 return false;
939
940 mt->aux_state = create_aux_state_map(mt, initial_state);
941 if (!mt->aux_state) {
942 free(mt->mcs_buf);
943 mt->mcs_buf = NULL;
944 return false;
945 }
946
947 mt->mcs_buf->bo = image->bo;
948 brw_bo_reference(image->bo);
949
950 mt->mcs_buf->offset = image->aux_offset;
951 mt->mcs_buf->size = image->bo->size - image->aux_offset;
952 mt->mcs_buf->pitch = image->aux_pitch;
953 mt->mcs_buf->qpitch = 0;
954 mt->mcs_buf->surf = temp_ccs_surf;
955
956 return true;
957 }
958
959 struct intel_mipmap_tree *
960 intel_miptree_create_for_dri_image(struct brw_context *brw,
961 __DRIimage *image, GLenum target,
962 mesa_format format,
963 bool is_winsys_image)
964 {
965 if (image->planar_format && image->planar_format->nplanes > 1)
966 return miptree_create_for_planar_image(brw, image, target);
967
968 if (image->planar_format)
969 assert(image->planar_format->planes[0].dri_format == image->dri_format);
970
971 if (!brw->ctx.TextureFormatSupported[format]) {
972 /* The texture storage paths in core Mesa detect if the driver does not
973 * support the user-requested format, and then searches for a
974 * fallback format. The DRIimage code bypasses core Mesa, though. So we
975 * do the fallbacks here for important formats.
976 *
977 * We must support DRM_FOURCC_XBGR8888 textures because the Android
978 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
979 * the Chrome OS compositor consumes as dma_buf EGLImages.
980 */
981 format = _mesa_format_fallback_rgbx_to_rgba(format);
982 }
983
984 if (!brw->ctx.TextureFormatSupported[format])
985 return NULL;
986
987 const struct isl_drm_modifier_info *mod_info =
988 isl_drm_modifier_get_info(image->modifier);
989
990 enum intel_miptree_create_flags mt_create_flags = 0;
991
992 /* If this image comes in from a window system, we have different
993 * requirements than if it comes in via an EGL import operation. Window
994 * system images can use any form of auxiliary compression we wish because
995 * they get "flushed" before being handed off to the window system and we
996 * have the opportunity to do resolves. Non window-system images, on the
997 * other hand, have no resolve point so we can't have aux without a
998 * modifier.
999 */
1000 if (!is_winsys_image)
1001 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1002
1003 /* If we have a modifier which specifies aux, don't create one yet */
1004 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1005 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1006
1007 /* Disable creation of the texture's aux buffers because the driver exposes
1008 * no EGL API to manage them. That is, there is no API for resolving the aux
1009 * buffer's content to the main buffer nor for invalidating the aux buffer's
1010 * content.
1011 */
1012 struct intel_mipmap_tree *mt =
1013 intel_miptree_create_for_bo(brw, image->bo, format,
1014 image->offset, image->width, image->height, 1,
1015 image->pitch, mt_create_flags);
1016 if (mt == NULL)
1017 return NULL;
1018
1019 mt->target = target;
1020 mt->level[0].level_x = image->tile_x;
1021 mt->level[0].level_y = image->tile_y;
1022 mt->drm_modifier = image->modifier;
1023
1024 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1025 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1026 * trouble resolving back to destination image due to alignment issues.
1027 */
1028 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1029 if (!devinfo->has_surface_tile_offset) {
1030 uint32_t draw_x, draw_y;
1031 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1032
1033 if (draw_x != 0 || draw_y != 0) {
1034 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1035 intel_miptree_release(&mt);
1036 return NULL;
1037 }
1038 }
1039
1040 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1041 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1042
1043 mt->aux_usage = mod_info->aux_usage;
1044 /* If we are a window system buffer, then we can support fast-clears
1045 * even if the modifier doesn't support them by doing a partial resolve
1046 * as part of the flush operation.
1047 */
1048 mt->supports_fast_clear =
1049 is_winsys_image || mod_info->supports_clear_color;
1050
1051 /* We don't know the actual state of the surface when we get it but we
1052 * can make a pretty good guess based on the modifier. What we do know
1053 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1054 * a worst case of compression.
1055 */
1056 enum isl_aux_state initial_state =
1057 isl_drm_modifier_get_default_aux_state(image->modifier);
1058
1059 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1060 intel_miptree_release(&mt);
1061 return NULL;
1062 }
1063 }
1064
1065 /* Don't assume coherency for imported EGLimages. We don't know what
1066 * external clients are going to do with it. They may scan it out.
1067 */
1068 image->bo->cache_coherent = false;
1069
1070 return mt;
1071 }
1072
1073 /**
1074 * For a singlesample renderbuffer, this simply wraps the given BO with a
1075 * miptree.
1076 *
1077 * For a multisample renderbuffer, this wraps the window system's
1078 * (singlesample) BO with a singlesample miptree attached to the
1079 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1080 * that will contain the actual rendering (which is lazily resolved to
1081 * irb->singlesample_mt).
1082 */
1083 bool
1084 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1085 struct intel_renderbuffer *irb,
1086 struct intel_mipmap_tree *singlesample_mt,
1087 uint32_t width, uint32_t height,
1088 uint32_t pitch)
1089 {
1090 struct intel_mipmap_tree *multisample_mt = NULL;
1091 struct gl_renderbuffer *rb = &irb->Base.Base;
1092 mesa_format format = rb->Format;
1093 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1094
1095 /* Only the front and back buffers, which are color buffers, are allocated
1096 * through the image loader.
1097 */
1098 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1099 _mesa_get_format_base_format(format) == GL_RGBA);
1100
1101 assert(singlesample_mt);
1102
1103 if (num_samples == 1) {
1104 intel_miptree_release(&irb->mt);
1105 irb->mt = singlesample_mt;
1106
1107 assert(!irb->singlesample_mt);
1108 } else {
1109 intel_miptree_release(&irb->singlesample_mt);
1110 irb->singlesample_mt = singlesample_mt;
1111
1112 if (!irb->mt ||
1113 irb->mt->surf.logical_level0_px.width != width ||
1114 irb->mt->surf.logical_level0_px.height != height) {
1115 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1116 format,
1117 width,
1118 height,
1119 num_samples);
1120 if (!multisample_mt)
1121 goto fail;
1122
1123 irb->need_downsample = false;
1124 intel_miptree_release(&irb->mt);
1125 irb->mt = multisample_mt;
1126 }
1127 }
1128 return true;
1129
1130 fail:
1131 intel_miptree_release(&irb->mt);
1132 return false;
1133 }
1134
1135 struct intel_mipmap_tree*
1136 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1137 mesa_format format,
1138 uint32_t width,
1139 uint32_t height,
1140 uint32_t num_samples)
1141 {
1142 struct intel_mipmap_tree *mt;
1143 uint32_t depth = 1;
1144 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1145
1146 mt = intel_miptree_create(brw, target, format, 0, 0,
1147 width, height, depth, num_samples,
1148 MIPTREE_CREATE_BUSY);
1149 if (!mt)
1150 goto fail;
1151
1152 return mt;
1153
1154 fail:
1155 intel_miptree_release(&mt);
1156 return NULL;
1157 }
1158
1159 void
1160 intel_miptree_reference(struct intel_mipmap_tree **dst,
1161 struct intel_mipmap_tree *src)
1162 {
1163 if (*dst == src)
1164 return;
1165
1166 intel_miptree_release(dst);
1167
1168 if (src) {
1169 src->refcount++;
1170 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1171 }
1172
1173 *dst = src;
1174 }
1175
1176 static void
1177 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1178 {
1179 if (aux_buf == NULL)
1180 return;
1181
1182 brw_bo_unreference(aux_buf->bo);
1183
1184 free(aux_buf);
1185 }
1186
1187 void
1188 intel_miptree_release(struct intel_mipmap_tree **mt)
1189 {
1190 if (!*mt)
1191 return;
1192
1193 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1194 if (--(*mt)->refcount <= 0) {
1195 GLuint i;
1196
1197 DBG("%s deleting %p\n", __func__, *mt);
1198
1199 brw_bo_unreference((*mt)->bo);
1200 intel_miptree_release(&(*mt)->stencil_mt);
1201 intel_miptree_release(&(*mt)->r8stencil_mt);
1202 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1203 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1204 free_aux_state_map((*mt)->aux_state);
1205
1206 intel_miptree_release(&(*mt)->plane[0]);
1207 intel_miptree_release(&(*mt)->plane[1]);
1208
1209 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1210 free((*mt)->level[i].slice);
1211 }
1212
1213 free(*mt);
1214 }
1215 *mt = NULL;
1216 }
1217
1218
1219 void
1220 intel_get_image_dims(struct gl_texture_image *image,
1221 int *width, int *height, int *depth)
1222 {
1223 switch (image->TexObject->Target) {
1224 case GL_TEXTURE_1D_ARRAY:
1225 /* For a 1D Array texture the OpenGL API will treat the image height as
1226 * the number of array slices. For Intel hardware, we treat the 1D array
1227 * as a 2D Array with a height of 1. So, here we want to swap image
1228 * height and depth.
1229 */
1230 assert(image->Depth == 1);
1231 *width = image->Width;
1232 *height = 1;
1233 *depth = image->Height;
1234 break;
1235 case GL_TEXTURE_CUBE_MAP:
1236 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1237 * though we really have 6 slices.
1238 */
1239 assert(image->Depth == 1);
1240 *width = image->Width;
1241 *height = image->Height;
1242 *depth = 6;
1243 break;
1244 default:
1245 *width = image->Width;
1246 *height = image->Height;
1247 *depth = image->Depth;
1248 break;
1249 }
1250 }
1251
1252 /**
1253 * Can the image be pulled into a unified mipmap tree? This mirrors
1254 * the completeness test in a lot of ways.
1255 *
1256 * Not sure whether I want to pass gl_texture_image here.
1257 */
1258 bool
1259 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1260 struct gl_texture_image *image)
1261 {
1262 struct intel_texture_image *intelImage = intel_texture_image(image);
1263 GLuint level = intelImage->base.Base.Level;
1264 int width, height, depth;
1265
1266 /* glTexImage* choose the texture object based on the target passed in, and
1267 * objects can't change targets over their lifetimes, so this should be
1268 * true.
1269 */
1270 assert(image->TexObject->Target == mt->target);
1271
1272 mesa_format mt_format = mt->format;
1273 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1274 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1275 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1276 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1277 if (mt->etc_format != MESA_FORMAT_NONE)
1278 mt_format = mt->etc_format;
1279
1280 if (image->TexFormat != mt_format)
1281 return false;
1282
1283 intel_get_image_dims(image, &width, &height, &depth);
1284
1285 if (mt->target == GL_TEXTURE_CUBE_MAP)
1286 depth = 6;
1287
1288 if (level >= mt->surf.levels)
1289 return false;
1290
1291 const unsigned level_depth =
1292 mt->surf.dim == ISL_SURF_DIM_3D ?
1293 minify(mt->surf.logical_level0_px.depth, level) :
1294 mt->surf.logical_level0_px.array_len;
1295
1296 return width == minify(mt->surf.logical_level0_px.width, level) &&
1297 height == minify(mt->surf.logical_level0_px.height, level) &&
1298 depth == level_depth &&
1299 MAX2(image->NumSamples, 1) == mt->surf.samples;
1300 }
1301
1302 void
1303 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1304 GLuint level, GLuint slice,
1305 GLuint *x, GLuint *y)
1306 {
1307 if (level == 0 && slice == 0) {
1308 *x = mt->level[0].level_x;
1309 *y = mt->level[0].level_y;
1310 return;
1311 }
1312
1313 uint32_t x_offset_sa, y_offset_sa;
1314
1315 /* Miptree itself can have an offset only if it represents a single
1316 * slice in an imported buffer object.
1317 * See intel_miptree_create_for_dri_image().
1318 */
1319 assert(mt->level[0].level_x == 0);
1320 assert(mt->level[0].level_y == 0);
1321
1322 /* Given level is relative to level zero while the miptree may be
1323 * represent just a subset of all levels starting from 'first_level'.
1324 */
1325 assert(level >= mt->first_level);
1326 level -= mt->first_level;
1327
1328 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1329 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1330 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1331 &x_offset_sa, &y_offset_sa);
1332
1333 *x = x_offset_sa;
1334 *y = y_offset_sa;
1335 }
1336
1337
1338 /**
1339 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1340 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1341 * and tile_h is set to 1.
1342 */
1343 void
1344 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1345 uint32_t *tile_w, uint32_t *tile_h)
1346 {
1347 switch (tiling) {
1348 case ISL_TILING_X:
1349 *tile_w = 512;
1350 *tile_h = 8;
1351 break;
1352 case ISL_TILING_Y0:
1353 *tile_w = 128;
1354 *tile_h = 32;
1355 break;
1356 case ISL_TILING_LINEAR:
1357 *tile_w = cpp;
1358 *tile_h = 1;
1359 break;
1360 default:
1361 unreachable("not reached");
1362 }
1363 }
1364
1365
1366 /**
1367 * This function computes masks that may be used to select the bits of the X
1368 * and Y coordinates that indicate the offset within a tile. If the BO is
1369 * untiled, the masks are set to 0.
1370 */
1371 void
1372 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1373 uint32_t *mask_x, uint32_t *mask_y)
1374 {
1375 uint32_t tile_w_bytes, tile_h;
1376
1377 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1378
1379 *mask_x = tile_w_bytes / cpp - 1;
1380 *mask_y = tile_h - 1;
1381 }
1382
1383 /**
1384 * Compute the offset (in bytes) from the start of the BO to the given x
1385 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1386 * multiples of the tile size.
1387 */
1388 uint32_t
1389 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1390 uint32_t x, uint32_t y)
1391 {
1392 int cpp = mt->cpp;
1393 uint32_t pitch = mt->surf.row_pitch;
1394
1395 switch (mt->surf.tiling) {
1396 default:
1397 unreachable("not reached");
1398 case ISL_TILING_LINEAR:
1399 return y * pitch + x * cpp;
1400 case ISL_TILING_X:
1401 assert((x % (512 / cpp)) == 0);
1402 assert((y % 8) == 0);
1403 return y * pitch + x / (512 / cpp) * 4096;
1404 case ISL_TILING_Y0:
1405 assert((x % (128 / cpp)) == 0);
1406 assert((y % 32) == 0);
1407 return y * pitch + x / (128 / cpp) * 4096;
1408 }
1409 }
1410
1411 /**
1412 * Rendering with tiled buffers requires that the base address of the buffer
1413 * be aligned to a page boundary. For renderbuffers, and sometimes with
1414 * textures, we may want the surface to point at a texture image level that
1415 * isn't at a page boundary.
1416 *
1417 * This function returns an appropriately-aligned base offset
1418 * according to the tiling restrictions, plus any required x/y offset
1419 * from there.
1420 */
1421 uint32_t
1422 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1423 GLuint level, GLuint slice,
1424 uint32_t *tile_x,
1425 uint32_t *tile_y)
1426 {
1427 uint32_t x, y;
1428 uint32_t mask_x, mask_y;
1429
1430 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1431 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1432
1433 *tile_x = x & mask_x;
1434 *tile_y = y & mask_y;
1435
1436 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1437 }
1438
1439 static void
1440 intel_miptree_copy_slice_sw(struct brw_context *brw,
1441 struct intel_mipmap_tree *src_mt,
1442 unsigned src_level, unsigned src_layer,
1443 struct intel_mipmap_tree *dst_mt,
1444 unsigned dst_level, unsigned dst_layer,
1445 unsigned width, unsigned height)
1446 {
1447 void *src, *dst;
1448 ptrdiff_t src_stride, dst_stride;
1449 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1450
1451 intel_miptree_map(brw, src_mt,
1452 src_level, src_layer,
1453 0, 0,
1454 width, height,
1455 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1456 &src, &src_stride);
1457
1458 intel_miptree_map(brw, dst_mt,
1459 dst_level, dst_layer,
1460 0, 0,
1461 width, height,
1462 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1463 BRW_MAP_DIRECT_BIT,
1464 &dst, &dst_stride);
1465
1466 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1467 _mesa_get_format_name(src_mt->format),
1468 src_mt, src, src_stride,
1469 _mesa_get_format_name(dst_mt->format),
1470 dst_mt, dst, dst_stride,
1471 width, height);
1472
1473 int row_size = cpp * width;
1474 if (src_stride == row_size &&
1475 dst_stride == row_size) {
1476 memcpy(dst, src, row_size * height);
1477 } else {
1478 for (int i = 0; i < height; i++) {
1479 memcpy(dst, src, row_size);
1480 dst += dst_stride;
1481 src += src_stride;
1482 }
1483 }
1484
1485 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1486 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1487
1488 /* Don't forget to copy the stencil data over, too. We could have skipped
1489 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1490 * shuffling the two data sources in/out of temporary storage instead of
1491 * the direct mapping we get this way.
1492 */
1493 if (dst_mt->stencil_mt) {
1494 assert(src_mt->stencil_mt);
1495 intel_miptree_copy_slice_sw(brw,
1496 src_mt->stencil_mt, src_level, src_layer,
1497 dst_mt->stencil_mt, dst_level, dst_layer,
1498 width, height);
1499 }
1500 }
1501
1502 void
1503 intel_miptree_copy_slice(struct brw_context *brw,
1504 struct intel_mipmap_tree *src_mt,
1505 unsigned src_level, unsigned src_layer,
1506 struct intel_mipmap_tree *dst_mt,
1507 unsigned dst_level, unsigned dst_layer)
1508
1509 {
1510 mesa_format format = src_mt->format;
1511 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1512 src_level - src_mt->first_level);
1513 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1514 src_level - src_mt->first_level);
1515
1516 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1517 src_level - src_mt->first_level));
1518
1519 assert(src_mt->format == dst_mt->format);
1520
1521 if (dst_mt->compressed) {
1522 unsigned int i, j;
1523 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1524 height = ALIGN_NPOT(height, j) / j;
1525 width = ALIGN_NPOT(width, i) / i;
1526 }
1527
1528 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1529 * below won't apply since we can't do the depth's Y tiling or the
1530 * stencil's W tiling in the blitter.
1531 */
1532 if (src_mt->stencil_mt) {
1533 intel_miptree_copy_slice_sw(brw,
1534 src_mt, src_level, src_layer,
1535 dst_mt, dst_level, dst_layer,
1536 width, height);
1537 return;
1538 }
1539
1540 uint32_t dst_x, dst_y, src_x, src_y;
1541 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1542 &dst_x, &dst_y);
1543 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1544 &src_x, &src_y);
1545
1546 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1547 _mesa_get_format_name(src_mt->format),
1548 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1549 _mesa_get_format_name(dst_mt->format),
1550 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1551 width, height);
1552
1553 if (!intel_miptree_blit(brw,
1554 src_mt, src_level, src_layer, 0, 0, false,
1555 dst_mt, dst_level, dst_layer, 0, 0, false,
1556 width, height, GL_COPY)) {
1557 perf_debug("miptree validate blit for %s failed\n",
1558 _mesa_get_format_name(format));
1559
1560 intel_miptree_copy_slice_sw(brw,
1561 src_mt, src_level, src_layer,
1562 dst_mt, dst_level, dst_layer,
1563 width, height);
1564 }
1565 }
1566
1567 /**
1568 * Copies the image's current data to the given miptree, and associates that
1569 * miptree with the image.
1570 */
1571 void
1572 intel_miptree_copy_teximage(struct brw_context *brw,
1573 struct intel_texture_image *intelImage,
1574 struct intel_mipmap_tree *dst_mt)
1575 {
1576 struct intel_mipmap_tree *src_mt = intelImage->mt;
1577 struct intel_texture_object *intel_obj =
1578 intel_texture_object(intelImage->base.Base.TexObject);
1579 int level = intelImage->base.Base.Level;
1580 const unsigned face = intelImage->base.Base.Face;
1581 unsigned start_layer, end_layer;
1582
1583 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1584 assert(face == 0);
1585 assert(intelImage->base.Base.Height);
1586 start_layer = 0;
1587 end_layer = intelImage->base.Base.Height - 1;
1588 } else if (face > 0) {
1589 start_layer = face;
1590 end_layer = face;
1591 } else {
1592 assert(intelImage->base.Base.Depth);
1593 start_layer = 0;
1594 end_layer = intelImage->base.Base.Depth - 1;
1595 }
1596
1597 for (unsigned i = start_layer; i <= end_layer; i++) {
1598 intel_miptree_copy_slice(brw,
1599 src_mt, level, i,
1600 dst_mt, level, i);
1601 }
1602
1603 intel_miptree_reference(&intelImage->mt, dst_mt);
1604 intel_obj->needs_validate = true;
1605 }
1606
1607 static void
1608 intel_miptree_init_mcs(struct brw_context *brw,
1609 struct intel_mipmap_tree *mt,
1610 int init_value)
1611 {
1612 assert(mt->mcs_buf != NULL);
1613
1614 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1615 *
1616 * When MCS buffer is enabled and bound to MSRT, it is required that it
1617 * is cleared prior to any rendering.
1618 *
1619 * Since we don't use the MCS buffer for any purpose other than rendering,
1620 * it makes sense to just clear it immediately upon allocation.
1621 *
1622 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1623 */
1624 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1625 if (unlikely(map == NULL)) {
1626 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1627 brw_bo_unreference(mt->mcs_buf->bo);
1628 free(mt->mcs_buf);
1629 return;
1630 }
1631 void *data = map;
1632 memset(data, init_value, mt->mcs_buf->size);
1633 brw_bo_unmap(mt->mcs_buf->bo);
1634 }
1635
1636 static struct intel_miptree_aux_buffer *
1637 intel_alloc_aux_buffer(struct brw_context *brw,
1638 const char *name,
1639 const struct isl_surf *aux_surf,
1640 uint32_t alloc_flags,
1641 struct intel_mipmap_tree *mt)
1642 {
1643 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1644 if (!buf)
1645 return false;
1646
1647 buf->size = aux_surf->size;
1648 buf->pitch = aux_surf->row_pitch;
1649 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1650
1651 /* ISL has stricter set of alignment rules then the drm allocator.
1652 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1653 * trying to recalculate based on different format block sizes.
1654 */
1655 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1656 I915_TILING_Y, buf->pitch, alloc_flags);
1657 if (!buf->bo) {
1658 free(buf);
1659 return NULL;
1660 }
1661
1662 buf->surf = *aux_surf;
1663
1664 return buf;
1665 }
1666
1667 static bool
1668 intel_miptree_alloc_mcs(struct brw_context *brw,
1669 struct intel_mipmap_tree *mt,
1670 GLuint num_samples)
1671 {
1672 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1673 assert(mt->mcs_buf == NULL);
1674 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1675
1676 /* Multisampled miptrees are only supported for single level. */
1677 assert(mt->first_level == 0);
1678 enum isl_aux_state **aux_state =
1679 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1680 if (!aux_state)
1681 return false;
1682
1683 struct isl_surf temp_mcs_surf;
1684
1685 MAYBE_UNUSED bool ok =
1686 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1687 assert(ok);
1688
1689 /* Buffer needs to be initialised requiring the buffer to be immediately
1690 * mapped to cpu space for writing. Therefore do not use the gpu access
1691 * flag which can cause an unnecessary delay if the backing pages happened
1692 * to be just used by the GPU.
1693 */
1694 const uint32_t alloc_flags = 0;
1695 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1696 &temp_mcs_surf, alloc_flags, mt);
1697 if (!mt->mcs_buf) {
1698 free(aux_state);
1699 return false;
1700 }
1701
1702 mt->aux_state = aux_state;
1703
1704 intel_miptree_init_mcs(brw, mt, 0xFF);
1705
1706 return true;
1707 }
1708
1709 bool
1710 intel_miptree_alloc_ccs(struct brw_context *brw,
1711 struct intel_mipmap_tree *mt)
1712 {
1713 assert(mt->mcs_buf == NULL);
1714 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1715 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1716
1717 struct isl_surf temp_ccs_surf;
1718
1719 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1720 return false;
1721
1722 assert(temp_ccs_surf.size &&
1723 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1724
1725 enum isl_aux_state **aux_state =
1726 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1727 if (!aux_state)
1728 return false;
1729
1730 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1731 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1732 *
1733 * "If Software wants to enable Color Compression without Fast clear,
1734 * Software needs to initialize MCS with zeros."
1735 *
1736 * A CCS value of 0 indicates that the corresponding block is in the
1737 * pass-through state which is what we want.
1738 *
1739 * For CCS_D, on the other hand, we don't care as we're about to perform a
1740 * fast-clear operation. In that case, being hot in caches more useful.
1741 */
1742 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1743 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1744 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1745 &temp_ccs_surf, alloc_flags, mt);
1746 if (!mt->mcs_buf) {
1747 free(aux_state);
1748 return false;
1749 }
1750
1751 mt->aux_state = aux_state;
1752
1753 return true;
1754 }
1755
1756 /**
1757 * Helper for intel_miptree_alloc_hiz() that sets
1758 * \c mt->level[level].has_hiz. Return true if and only if
1759 * \c has_hiz was set.
1760 */
1761 static bool
1762 intel_miptree_level_enable_hiz(struct brw_context *brw,
1763 struct intel_mipmap_tree *mt,
1764 uint32_t level)
1765 {
1766 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1767
1768 assert(mt->hiz_buf);
1769 assert(mt->surf.size > 0);
1770
1771 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1772 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1773 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1774
1775 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1776 * and the height is 4 aligned. This allows our HiZ support
1777 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1778 * we can grow the width & height to allow the HiZ op to
1779 * force the proper size alignments.
1780 */
1781 if (level > 0 && ((width & 7) || (height & 3))) {
1782 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1783 return false;
1784 }
1785 }
1786
1787 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1788 mt->level[level].has_hiz = true;
1789 return true;
1790 }
1791
1792 bool
1793 intel_miptree_alloc_hiz(struct brw_context *brw,
1794 struct intel_mipmap_tree *mt)
1795 {
1796 assert(mt->hiz_buf == NULL);
1797 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1798
1799 enum isl_aux_state **aux_state =
1800 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1801 if (!aux_state)
1802 return false;
1803
1804 struct isl_surf temp_hiz_surf;
1805
1806 MAYBE_UNUSED bool ok =
1807 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1808 assert(ok);
1809
1810 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1811 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1812 &temp_hiz_surf, alloc_flags, mt);
1813
1814 if (!mt->hiz_buf) {
1815 free(aux_state);
1816 return false;
1817 }
1818
1819 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1820 intel_miptree_level_enable_hiz(brw, mt, level);
1821
1822 mt->aux_state = aux_state;
1823
1824 return true;
1825 }
1826
1827
1828 /**
1829 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1830 *
1831 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1832 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1833 * compress clear color so we wait until an actual fast-clear to allocate it.
1834 */
1835 static bool
1836 intel_miptree_alloc_aux(struct brw_context *brw,
1837 struct intel_mipmap_tree *mt)
1838 {
1839 switch (mt->aux_usage) {
1840 case ISL_AUX_USAGE_NONE:
1841 return true;
1842
1843 case ISL_AUX_USAGE_HIZ:
1844 assert(!_mesa_is_format_color_format(mt->format));
1845 if (!intel_miptree_alloc_hiz(brw, mt))
1846 return false;
1847 return true;
1848
1849 case ISL_AUX_USAGE_MCS:
1850 assert(_mesa_is_format_color_format(mt->format));
1851 assert(mt->surf.samples > 1);
1852 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1853 return false;
1854 return true;
1855
1856 case ISL_AUX_USAGE_CCS_D:
1857 /* Since CCS_D can only compress clear color so we wait until an actual
1858 * fast-clear to allocate it.
1859 */
1860 return true;
1861
1862 case ISL_AUX_USAGE_CCS_E:
1863 assert(_mesa_is_format_color_format(mt->format));
1864 assert(mt->surf.samples == 1);
1865 if (!intel_miptree_alloc_ccs(brw, mt))
1866 return false;
1867 return true;
1868 }
1869
1870 unreachable("Invalid aux usage");
1871 }
1872
1873
1874 /**
1875 * Can the miptree sample using the hiz buffer?
1876 */
1877 bool
1878 intel_miptree_sample_with_hiz(struct brw_context *brw,
1879 struct intel_mipmap_tree *mt)
1880 {
1881 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1882
1883 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1884 * so keep things conservative for now and never enable it unless we're SKL+.
1885 */
1886 if (devinfo->gen < 9) {
1887 return false;
1888 }
1889
1890 if (!mt->hiz_buf) {
1891 return false;
1892 }
1893
1894 /* It seems the hardware won't fallback to the depth buffer if some of the
1895 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1896 * of the texture to be HiZ enabled.
1897 */
1898 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1899 if (!intel_miptree_level_has_hiz(mt, level))
1900 return false;
1901 }
1902
1903 /* If compressed multisampling is enabled, then we use it for the auxiliary
1904 * buffer instead.
1905 *
1906 * From the BDW PRM (Volume 2d: Command Reference: Structures
1907 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1908 *
1909 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1910 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1911 *
1912 * There is no such blurb for 1D textures, but there is sufficient evidence
1913 * that this is broken on SKL+.
1914 */
1915 return (mt->surf.samples == 1 &&
1916 mt->target != GL_TEXTURE_3D &&
1917 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1918 }
1919
1920 /**
1921 * Does the miptree slice have hiz enabled?
1922 */
1923 bool
1924 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1925 {
1926 intel_miptree_check_level_layer(mt, level, 0);
1927 return mt->level[level].has_hiz;
1928 }
1929
1930 static inline uint32_t
1931 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1932 uint32_t start_level, uint32_t num_levels)
1933 {
1934 assert(start_level >= mt->first_level);
1935 assert(start_level <= mt->last_level);
1936
1937 if (num_levels == INTEL_REMAINING_LAYERS)
1938 num_levels = mt->last_level - start_level + 1;
1939 /* Check for overflow */
1940 assert(start_level + num_levels >= start_level);
1941 assert(start_level + num_levels <= mt->last_level + 1);
1942
1943 return num_levels;
1944 }
1945
1946 static inline uint32_t
1947 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1948 uint32_t start_layer, uint32_t num_layers)
1949 {
1950 assert(level <= mt->last_level);
1951
1952 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1953 assert(start_layer < total_num_layers);
1954 if (num_layers == INTEL_REMAINING_LAYERS)
1955 num_layers = total_num_layers - start_layer;
1956 /* Check for overflow */
1957 assert(start_layer + num_layers >= start_layer);
1958 assert(start_layer + num_layers <= total_num_layers);
1959
1960 return num_layers;
1961 }
1962
1963 bool
1964 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1965 unsigned start_level, unsigned num_levels,
1966 unsigned start_layer, unsigned num_layers)
1967 {
1968 assert(_mesa_is_format_color_format(mt->format));
1969
1970 if (!mt->mcs_buf)
1971 return false;
1972
1973 /* Clamp the level range to fit the miptree */
1974 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1975
1976 for (uint32_t l = 0; l < num_levels; l++) {
1977 const uint32_t level = start_level + l;
1978 const uint32_t level_layers =
1979 miptree_layer_range_length(mt, level, start_layer, num_layers);
1980 for (unsigned a = 0; a < level_layers; a++) {
1981 enum isl_aux_state aux_state =
1982 intel_miptree_get_aux_state(mt, level, start_layer + a);
1983 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1984 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1985 return true;
1986 }
1987 }
1988
1989 return false;
1990 }
1991
1992 static void
1993 intel_miptree_check_color_resolve(const struct brw_context *brw,
1994 const struct intel_mipmap_tree *mt,
1995 unsigned level, unsigned layer)
1996 {
1997 if (!mt->mcs_buf)
1998 return;
1999
2000 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2001 assert(brw->screen->devinfo.gen >= 8 ||
2002 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2003
2004 /* Compression of arrayed msaa surfaces is supported. */
2005 if (mt->surf.samples > 1)
2006 return;
2007
2008 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2009 assert(brw->screen->devinfo.gen >= 8 ||
2010 (layer == 0 &&
2011 mt->surf.logical_level0_px.depth == 1 &&
2012 mt->surf.logical_level0_px.array_len == 1));
2013
2014 (void)level;
2015 (void)layer;
2016 }
2017
2018 static enum blorp_fast_clear_op
2019 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2020 enum isl_aux_usage aux_usage,
2021 bool fast_clear_supported)
2022 {
2023 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2024
2025 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2026
2027 assert(ccs_supported == fast_clear_supported);
2028
2029 switch (aux_state) {
2030 case ISL_AUX_STATE_CLEAR:
2031 case ISL_AUX_STATE_PARTIAL_CLEAR:
2032 if (!ccs_supported)
2033 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2034 else
2035 return BLORP_FAST_CLEAR_OP_NONE;
2036
2037 case ISL_AUX_STATE_PASS_THROUGH:
2038 return BLORP_FAST_CLEAR_OP_NONE;
2039
2040 case ISL_AUX_STATE_RESOLVED:
2041 case ISL_AUX_STATE_AUX_INVALID:
2042 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2043 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2044 break;
2045 }
2046
2047 unreachable("Invalid aux state for CCS_D");
2048 }
2049
2050 static enum blorp_fast_clear_op
2051 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2052 enum isl_aux_usage aux_usage,
2053 bool fast_clear_supported)
2054 {
2055 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2056 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2057 aux_usage == ISL_AUX_USAGE_CCS_D ||
2058 aux_usage == ISL_AUX_USAGE_CCS_E);
2059
2060 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2061 assert(fast_clear_supported);
2062
2063 switch (aux_state) {
2064 case ISL_AUX_STATE_CLEAR:
2065 case ISL_AUX_STATE_PARTIAL_CLEAR:
2066 if (fast_clear_supported)
2067 return BLORP_FAST_CLEAR_OP_NONE;
2068 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2069 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2070 else
2071 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2072
2073 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2074 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2075 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2076 else if (!fast_clear_supported)
2077 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2078 else
2079 return BLORP_FAST_CLEAR_OP_NONE;
2080
2081 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2082 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2083 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2084 else
2085 return BLORP_FAST_CLEAR_OP_NONE;
2086
2087 case ISL_AUX_STATE_PASS_THROUGH:
2088 return BLORP_FAST_CLEAR_OP_NONE;
2089
2090 case ISL_AUX_STATE_RESOLVED:
2091 case ISL_AUX_STATE_AUX_INVALID:
2092 break;
2093 }
2094
2095 unreachable("Invalid aux state for CCS_E");
2096 }
2097
2098 static void
2099 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2100 struct intel_mipmap_tree *mt,
2101 uint32_t level, uint32_t layer,
2102 enum isl_aux_usage aux_usage,
2103 bool fast_clear_supported)
2104 {
2105 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2106
2107 enum blorp_fast_clear_op resolve_op;
2108 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2109 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2110 fast_clear_supported);
2111 } else {
2112 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2113 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2114 fast_clear_supported);
2115 }
2116
2117 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2118 intel_miptree_check_color_resolve(brw, mt, level, layer);
2119 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2120
2121 switch (resolve_op) {
2122 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2123 /* The CCS full resolve operation destroys the CCS and sets it to the
2124 * pass-through state. (You can also think of this as being both a
2125 * resolve and an ambiguate in one operation.)
2126 */
2127 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2128 ISL_AUX_STATE_PASS_THROUGH);
2129 break;
2130
2131 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2132 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2133 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2134 break;
2135
2136 default:
2137 unreachable("Invalid resolve op");
2138 }
2139 }
2140 }
2141
2142 static void
2143 intel_miptree_finish_ccs_write(struct brw_context *brw,
2144 struct intel_mipmap_tree *mt,
2145 uint32_t level, uint32_t layer,
2146 enum isl_aux_usage aux_usage)
2147 {
2148 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2149 aux_usage == ISL_AUX_USAGE_CCS_D ||
2150 aux_usage == ISL_AUX_USAGE_CCS_E);
2151
2152 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2153
2154 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2155 switch (aux_state) {
2156 case ISL_AUX_STATE_CLEAR:
2157 case ISL_AUX_STATE_PARTIAL_CLEAR:
2158 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2159 aux_usage == ISL_AUX_USAGE_CCS_D);
2160
2161 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2162 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2163 ISL_AUX_STATE_COMPRESSED_CLEAR);
2164 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2165 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2166 ISL_AUX_STATE_PARTIAL_CLEAR);
2167 }
2168 break;
2169
2170 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2171 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2172 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2173 break; /* Nothing to do */
2174
2175 case ISL_AUX_STATE_PASS_THROUGH:
2176 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2177 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2178 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2179 } else {
2180 /* Nothing to do */
2181 }
2182 break;
2183
2184 case ISL_AUX_STATE_RESOLVED:
2185 case ISL_AUX_STATE_AUX_INVALID:
2186 unreachable("Invalid aux state for CCS_E");
2187 }
2188 } else {
2189 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2190 /* CCS_D is a bit simpler */
2191 switch (aux_state) {
2192 case ISL_AUX_STATE_CLEAR:
2193 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2194 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2195 ISL_AUX_STATE_PARTIAL_CLEAR);
2196 break;
2197
2198 case ISL_AUX_STATE_PARTIAL_CLEAR:
2199 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2200 break; /* Nothing to do */
2201
2202 case ISL_AUX_STATE_PASS_THROUGH:
2203 /* Nothing to do */
2204 break;
2205
2206 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2207 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2208 case ISL_AUX_STATE_RESOLVED:
2209 case ISL_AUX_STATE_AUX_INVALID:
2210 unreachable("Invalid aux state for CCS_D");
2211 }
2212 }
2213 }
2214
2215 static void
2216 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2217 struct intel_mipmap_tree *mt,
2218 uint32_t layer,
2219 enum isl_aux_usage aux_usage,
2220 bool fast_clear_supported)
2221 {
2222 assert(aux_usage == ISL_AUX_USAGE_MCS);
2223
2224 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2225 case ISL_AUX_STATE_CLEAR:
2226 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2227 if (!fast_clear_supported) {
2228 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2229 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2230 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2231 }
2232 break;
2233
2234 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2235 break; /* Nothing to do */
2236
2237 case ISL_AUX_STATE_RESOLVED:
2238 case ISL_AUX_STATE_PASS_THROUGH:
2239 case ISL_AUX_STATE_AUX_INVALID:
2240 case ISL_AUX_STATE_PARTIAL_CLEAR:
2241 unreachable("Invalid aux state for MCS");
2242 }
2243 }
2244
2245 static void
2246 intel_miptree_finish_mcs_write(struct brw_context *brw,
2247 struct intel_mipmap_tree *mt,
2248 uint32_t layer,
2249 enum isl_aux_usage aux_usage)
2250 {
2251 assert(aux_usage == ISL_AUX_USAGE_MCS);
2252
2253 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2254 case ISL_AUX_STATE_CLEAR:
2255 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2256 ISL_AUX_STATE_COMPRESSED_CLEAR);
2257 break;
2258
2259 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2260 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2261 break; /* Nothing to do */
2262
2263 case ISL_AUX_STATE_RESOLVED:
2264 case ISL_AUX_STATE_PASS_THROUGH:
2265 case ISL_AUX_STATE_AUX_INVALID:
2266 case ISL_AUX_STATE_PARTIAL_CLEAR:
2267 unreachable("Invalid aux state for MCS");
2268 }
2269 }
2270
2271 static void
2272 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2273 struct intel_mipmap_tree *mt,
2274 uint32_t level, uint32_t layer,
2275 enum isl_aux_usage aux_usage,
2276 bool fast_clear_supported)
2277 {
2278 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2279
2280 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2281 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2282 case ISL_AUX_STATE_CLEAR:
2283 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2284 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2285 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2286 break;
2287
2288 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2289 if (aux_usage != ISL_AUX_USAGE_HIZ)
2290 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2291 break;
2292
2293 case ISL_AUX_STATE_PASS_THROUGH:
2294 case ISL_AUX_STATE_RESOLVED:
2295 break;
2296
2297 case ISL_AUX_STATE_AUX_INVALID:
2298 if (aux_usage == ISL_AUX_USAGE_HIZ)
2299 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2300 break;
2301
2302 case ISL_AUX_STATE_PARTIAL_CLEAR:
2303 unreachable("Invalid HiZ state");
2304 }
2305
2306 if (hiz_op != BLORP_HIZ_OP_NONE) {
2307 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2308
2309 switch (hiz_op) {
2310 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2311 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2312 ISL_AUX_STATE_RESOLVED);
2313 break;
2314
2315 case BLORP_HIZ_OP_HIZ_RESOLVE:
2316 /* The HiZ resolve operation is actually an ambiguate */
2317 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2318 ISL_AUX_STATE_PASS_THROUGH);
2319 break;
2320
2321 default:
2322 unreachable("Invalid HiZ op");
2323 }
2324 }
2325 }
2326
2327 static void
2328 intel_miptree_finish_hiz_write(struct brw_context *brw,
2329 struct intel_mipmap_tree *mt,
2330 uint32_t level, uint32_t layer,
2331 enum isl_aux_usage aux_usage)
2332 {
2333 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2334
2335 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2336 case ISL_AUX_STATE_CLEAR:
2337 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2338 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2339 ISL_AUX_STATE_COMPRESSED_CLEAR);
2340 break;
2341
2342 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2343 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2344 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2345 break; /* Nothing to do */
2346
2347 case ISL_AUX_STATE_RESOLVED:
2348 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2349 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2350 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2351 } else {
2352 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2353 ISL_AUX_STATE_AUX_INVALID);
2354 }
2355 break;
2356
2357 case ISL_AUX_STATE_PASS_THROUGH:
2358 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2359 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2360 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2361 }
2362 break;
2363
2364 case ISL_AUX_STATE_AUX_INVALID:
2365 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2366 break;
2367
2368 case ISL_AUX_STATE_PARTIAL_CLEAR:
2369 unreachable("Invalid HiZ state");
2370 }
2371 }
2372
2373 void
2374 intel_miptree_prepare_access(struct brw_context *brw,
2375 struct intel_mipmap_tree *mt,
2376 uint32_t start_level, uint32_t num_levels,
2377 uint32_t start_layer, uint32_t num_layers,
2378 enum isl_aux_usage aux_usage,
2379 bool fast_clear_supported)
2380 {
2381 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2382
2383 switch (mt->aux_usage) {
2384 case ISL_AUX_USAGE_NONE:
2385 /* Nothing to do */
2386 break;
2387
2388 case ISL_AUX_USAGE_MCS:
2389 assert(mt->mcs_buf);
2390 assert(start_level == 0 && num_levels == 1);
2391 const uint32_t level_layers =
2392 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2393 for (uint32_t a = 0; a < level_layers; a++) {
2394 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2395 aux_usage, fast_clear_supported);
2396 }
2397 break;
2398
2399 case ISL_AUX_USAGE_CCS_D:
2400 case ISL_AUX_USAGE_CCS_E:
2401 if (!mt->mcs_buf)
2402 return;
2403
2404 for (uint32_t l = 0; l < num_levels; l++) {
2405 const uint32_t level = start_level + l;
2406 const uint32_t level_layers =
2407 miptree_layer_range_length(mt, level, start_layer, num_layers);
2408 for (uint32_t a = 0; a < level_layers; a++) {
2409 intel_miptree_prepare_ccs_access(brw, mt, level,
2410 start_layer + a,
2411 aux_usage, fast_clear_supported);
2412 }
2413 }
2414 break;
2415
2416 case ISL_AUX_USAGE_HIZ:
2417 assert(mt->hiz_buf);
2418 for (uint32_t l = 0; l < num_levels; l++) {
2419 const uint32_t level = start_level + l;
2420 if (!intel_miptree_level_has_hiz(mt, level))
2421 continue;
2422
2423 const uint32_t level_layers =
2424 miptree_layer_range_length(mt, level, start_layer, num_layers);
2425 for (uint32_t a = 0; a < level_layers; a++) {
2426 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2427 aux_usage, fast_clear_supported);
2428 }
2429 }
2430 break;
2431
2432 default:
2433 unreachable("Invalid aux usage");
2434 }
2435 }
2436
2437 void
2438 intel_miptree_finish_write(struct brw_context *brw,
2439 struct intel_mipmap_tree *mt, uint32_t level,
2440 uint32_t start_layer, uint32_t num_layers,
2441 enum isl_aux_usage aux_usage)
2442 {
2443 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2444
2445 switch (mt->aux_usage) {
2446 case ISL_AUX_USAGE_NONE:
2447 /* Nothing to do */
2448 break;
2449
2450 case ISL_AUX_USAGE_MCS:
2451 assert(mt->mcs_buf);
2452 for (uint32_t a = 0; a < num_layers; a++) {
2453 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2454 aux_usage);
2455 }
2456 break;
2457
2458 case ISL_AUX_USAGE_CCS_D:
2459 case ISL_AUX_USAGE_CCS_E:
2460 if (!mt->mcs_buf)
2461 return;
2462
2463 for (uint32_t a = 0; a < num_layers; a++) {
2464 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2465 aux_usage);
2466 }
2467 break;
2468
2469 case ISL_AUX_USAGE_HIZ:
2470 if (!intel_miptree_level_has_hiz(mt, level))
2471 return;
2472
2473 for (uint32_t a = 0; a < num_layers; a++) {
2474 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2475 aux_usage);
2476 }
2477 break;
2478
2479 default:
2480 unreachable("Invavlid aux usage");
2481 }
2482 }
2483
2484 enum isl_aux_state
2485 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2486 uint32_t level, uint32_t layer)
2487 {
2488 intel_miptree_check_level_layer(mt, level, layer);
2489
2490 if (_mesa_is_format_color_format(mt->format)) {
2491 assert(mt->mcs_buf != NULL);
2492 assert(mt->surf.samples == 1 ||
2493 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2494 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2495 unreachable("Cannot get aux state for stencil");
2496 } else {
2497 assert(intel_miptree_level_has_hiz(mt, level));
2498 }
2499
2500 return mt->aux_state[level][layer];
2501 }
2502
2503 void
2504 intel_miptree_set_aux_state(struct brw_context *brw,
2505 struct intel_mipmap_tree *mt, uint32_t level,
2506 uint32_t start_layer, uint32_t num_layers,
2507 enum isl_aux_state aux_state)
2508 {
2509 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2510
2511 if (_mesa_is_format_color_format(mt->format)) {
2512 assert(mt->mcs_buf != NULL);
2513 assert(mt->surf.samples == 1 ||
2514 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2515 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2516 unreachable("Cannot get aux state for stencil");
2517 } else {
2518 assert(intel_miptree_level_has_hiz(mt, level));
2519 }
2520
2521 for (unsigned a = 0; a < num_layers; a++) {
2522 if (mt->aux_state[level][start_layer + a] != aux_state) {
2523 mt->aux_state[level][start_layer + a] = aux_state;
2524 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2525 }
2526 }
2527 }
2528
2529 /* On Gen9 color buffers may be compressed by the hardware (lossless
2530 * compression). There are, however, format restrictions and care needs to be
2531 * taken that the sampler engine is capable for re-interpreting a buffer with
2532 * format different the buffer was originally written with.
2533 *
2534 * For example, SRGB formats are not compressible and the sampler engine isn't
2535 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2536 * color buffer needs to be resolved so that the sampling surface can be
2537 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2538 * set).
2539 */
2540 static bool
2541 can_texture_with_ccs(struct brw_context *brw,
2542 struct intel_mipmap_tree *mt,
2543 enum isl_format view_format)
2544 {
2545 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2546 return false;
2547
2548 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2549 mt->surf.format, view_format)) {
2550 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2551 isl_format_get_layout(view_format)->name,
2552 _mesa_get_format_name(mt->format));
2553 return false;
2554 }
2555
2556 return true;
2557 }
2558
2559 enum isl_aux_usage
2560 intel_miptree_texture_aux_usage(struct brw_context *brw,
2561 struct intel_mipmap_tree *mt,
2562 enum isl_format view_format)
2563 {
2564 switch (mt->aux_usage) {
2565 case ISL_AUX_USAGE_HIZ:
2566 if (intel_miptree_sample_with_hiz(brw, mt))
2567 return ISL_AUX_USAGE_HIZ;
2568 break;
2569
2570 case ISL_AUX_USAGE_MCS:
2571 return ISL_AUX_USAGE_MCS;
2572
2573 case ISL_AUX_USAGE_CCS_D:
2574 case ISL_AUX_USAGE_CCS_E:
2575 if (!mt->mcs_buf) {
2576 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2577 return ISL_AUX_USAGE_NONE;
2578 }
2579
2580 /* If we don't have any unresolved color, report an aux usage of
2581 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2582 * aux surface and we can save some bandwidth.
2583 */
2584 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2585 0, INTEL_REMAINING_LAYERS))
2586 return ISL_AUX_USAGE_NONE;
2587
2588 if (can_texture_with_ccs(brw, mt, view_format))
2589 return ISL_AUX_USAGE_CCS_E;
2590 break;
2591
2592 default:
2593 break;
2594 }
2595
2596 return ISL_AUX_USAGE_NONE;
2597 }
2598
2599 static bool
2600 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2601 {
2602 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2603 * values so sRGB curve application was a no-op for all fast-clearable
2604 * formats.
2605 *
2606 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2607 * values, the hardware interprets the floats, not as what would be
2608 * returned from the sampler (or written by the shader), but as being
2609 * between format conversion and sRGB curve application. This means that
2610 * we can switch between sRGB and UNORM without having to whack the clear
2611 * color.
2612 */
2613 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2614 }
2615
2616 void
2617 intel_miptree_prepare_texture(struct brw_context *brw,
2618 struct intel_mipmap_tree *mt,
2619 enum isl_format view_format,
2620 uint32_t start_level, uint32_t num_levels,
2621 uint32_t start_layer, uint32_t num_layers,
2622 bool disable_aux)
2623 {
2624 enum isl_aux_usage aux_usage = disable_aux ? ISL_AUX_USAGE_NONE :
2625 intel_miptree_texture_aux_usage(brw, mt, view_format);
2626 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2627
2628 /* Clear color is specified as ints or floats and the conversion is done by
2629 * the sampler. If we have a texture view, we would have to perform the
2630 * clear color conversion manually. Just disable clear color.
2631 */
2632 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2633 clear_supported = false;
2634
2635 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2636 start_layer, num_layers,
2637 aux_usage, clear_supported);
2638 }
2639
2640 void
2641 intel_miptree_prepare_image(struct brw_context *brw,
2642 struct intel_mipmap_tree *mt)
2643 {
2644 /* The data port doesn't understand any compression */
2645 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2646 0, INTEL_REMAINING_LAYERS,
2647 ISL_AUX_USAGE_NONE, false);
2648 }
2649
2650 enum isl_aux_usage
2651 intel_miptree_render_aux_usage(struct brw_context *brw,
2652 struct intel_mipmap_tree *mt,
2653 enum isl_format render_format,
2654 bool blend_enabled)
2655 {
2656 switch (mt->aux_usage) {
2657 case ISL_AUX_USAGE_MCS:
2658 assert(mt->mcs_buf);
2659 return ISL_AUX_USAGE_MCS;
2660
2661 case ISL_AUX_USAGE_CCS_D:
2662 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2663
2664 case ISL_AUX_USAGE_CCS_E: {
2665 /* If the format supports CCS_E, then we can just use it */
2666 if (isl_format_supports_ccs_e(&brw->screen->devinfo, render_format))
2667 return ISL_AUX_USAGE_CCS_E;
2668
2669 /* Otherwise, we have to fall back to CCS_D */
2670
2671 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2672 * formats. However, there are issues with blending where it doesn't
2673 * properly apply the sRGB curve to the clear color when blending.
2674 */
2675 if (blend_enabled && isl_format_is_srgb(render_format) &&
2676 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2677 return ISL_AUX_USAGE_NONE;
2678
2679 return ISL_AUX_USAGE_CCS_D;
2680 }
2681
2682 default:
2683 return ISL_AUX_USAGE_NONE;
2684 }
2685 }
2686
2687 void
2688 intel_miptree_prepare_render(struct brw_context *brw,
2689 struct intel_mipmap_tree *mt, uint32_t level,
2690 uint32_t start_layer, uint32_t layer_count,
2691 enum isl_format render_format,
2692 bool blend_enabled)
2693 {
2694 enum isl_aux_usage aux_usage =
2695 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2696 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2697 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2698 }
2699
2700 void
2701 intel_miptree_finish_render(struct brw_context *brw,
2702 struct intel_mipmap_tree *mt, uint32_t level,
2703 uint32_t start_layer, uint32_t layer_count,
2704 enum isl_format render_format,
2705 bool blend_enabled)
2706 {
2707 assert(_mesa_is_format_color_format(mt->format));
2708
2709 enum isl_aux_usage aux_usage =
2710 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2711 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2712 aux_usage);
2713 }
2714
2715 void
2716 intel_miptree_prepare_depth(struct brw_context *brw,
2717 struct intel_mipmap_tree *mt, uint32_t level,
2718 uint32_t start_layer, uint32_t layer_count)
2719 {
2720 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2721 mt->aux_usage, mt->hiz_buf != NULL);
2722 }
2723
2724 void
2725 intel_miptree_finish_depth(struct brw_context *brw,
2726 struct intel_mipmap_tree *mt, uint32_t level,
2727 uint32_t start_layer, uint32_t layer_count,
2728 bool depth_written)
2729 {
2730 if (depth_written) {
2731 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2732 mt->hiz_buf != NULL);
2733 }
2734 }
2735
2736 void
2737 intel_miptree_prepare_external(struct brw_context *brw,
2738 struct intel_mipmap_tree *mt)
2739 {
2740 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2741 bool supports_fast_clear = false;
2742
2743 const struct isl_drm_modifier_info *mod_info =
2744 isl_drm_modifier_get_info(mt->drm_modifier);
2745
2746 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2747 /* CCS_E is the only supported aux for external images and it's only
2748 * supported on very simple images.
2749 */
2750 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2751 assert(_mesa_is_format_color_format(mt->format));
2752 assert(mt->first_level == 0 && mt->last_level == 0);
2753 assert(mt->surf.logical_level0_px.depth == 1);
2754 assert(mt->surf.logical_level0_px.array_len == 1);
2755 assert(mt->surf.samples == 1);
2756 assert(mt->mcs_buf != NULL);
2757
2758 aux_usage = mod_info->aux_usage;
2759 supports_fast_clear = mod_info->supports_clear_color;
2760 }
2761
2762 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2763 0, INTEL_REMAINING_LAYERS,
2764 aux_usage, supports_fast_clear);
2765 }
2766
2767 /**
2768 * Make it possible to share the BO backing the given miptree with another
2769 * process or another miptree.
2770 *
2771 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2772 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2773 * ensure that no MCS buffer gets allocated in the future.
2774 *
2775 * HiZ is similarly unsafe with shared buffers.
2776 */
2777 void
2778 intel_miptree_make_shareable(struct brw_context *brw,
2779 struct intel_mipmap_tree *mt)
2780 {
2781 /* MCS buffers are also used for multisample buffers, but we can't resolve
2782 * away a multisample MCS buffer because it's an integral part of how the
2783 * pixel data is stored. Fortunately this code path should never be
2784 * reached for multisample buffers.
2785 */
2786 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2787 mt->surf.samples == 1);
2788
2789 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2790 0, INTEL_REMAINING_LAYERS,
2791 ISL_AUX_USAGE_NONE, false);
2792
2793 if (mt->mcs_buf) {
2794 brw_bo_unreference(mt->mcs_buf->bo);
2795 free(mt->mcs_buf);
2796 mt->mcs_buf = NULL;
2797
2798 /* Any pending MCS/CCS operations are no longer needed. Trying to
2799 * execute any will likely crash due to the missing aux buffer. So let's
2800 * delete all pending ops.
2801 */
2802 free(mt->aux_state);
2803 mt->aux_state = NULL;
2804 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2805 }
2806
2807 if (mt->hiz_buf) {
2808 intel_miptree_aux_buffer_free(mt->hiz_buf);
2809 mt->hiz_buf = NULL;
2810
2811 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2812 mt->level[l].has_hiz = false;
2813 }
2814
2815 /* Any pending HiZ operations are no longer needed. Trying to execute
2816 * any will likely crash due to the missing aux buffer. So let's delete
2817 * all pending ops.
2818 */
2819 free(mt->aux_state);
2820 mt->aux_state = NULL;
2821 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2822 }
2823
2824 mt->aux_usage = ISL_AUX_USAGE_NONE;
2825 mt->supports_fast_clear = false;
2826 }
2827
2828
2829 /**
2830 * \brief Get pointer offset into stencil buffer.
2831 *
2832 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2833 * must decode the tile's layout in software.
2834 *
2835 * See
2836 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2837 * Format.
2838 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2839 *
2840 * Even though the returned offset is always positive, the return type is
2841 * signed due to
2842 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2843 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2844 */
2845 static intptr_t
2846 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2847 {
2848 uint32_t tile_size = 4096;
2849 uint32_t tile_width = 64;
2850 uint32_t tile_height = 64;
2851 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2852
2853 uint32_t tile_x = x / tile_width;
2854 uint32_t tile_y = y / tile_height;
2855
2856 /* The byte's address relative to the tile's base addres. */
2857 uint32_t byte_x = x % tile_width;
2858 uint32_t byte_y = y % tile_height;
2859
2860 uintptr_t u = tile_y * row_size
2861 + tile_x * tile_size
2862 + 512 * (byte_x / 8)
2863 + 64 * (byte_y / 8)
2864 + 32 * ((byte_y / 4) % 2)
2865 + 16 * ((byte_x / 4) % 2)
2866 + 8 * ((byte_y / 2) % 2)
2867 + 4 * ((byte_x / 2) % 2)
2868 + 2 * (byte_y % 2)
2869 + 1 * (byte_x % 2);
2870
2871 if (swizzled) {
2872 /* adjust for bit6 swizzling */
2873 if (((byte_x / 8) % 2) == 1) {
2874 if (((byte_y / 8) % 2) == 0) {
2875 u += 64;
2876 } else {
2877 u -= 64;
2878 }
2879 }
2880 }
2881
2882 return u;
2883 }
2884
2885 void
2886 intel_miptree_updownsample(struct brw_context *brw,
2887 struct intel_mipmap_tree *src,
2888 struct intel_mipmap_tree *dst)
2889 {
2890 unsigned src_w = src->surf.logical_level0_px.width;
2891 unsigned src_h = src->surf.logical_level0_px.height;
2892 unsigned dst_w = dst->surf.logical_level0_px.width;
2893 unsigned dst_h = dst->surf.logical_level0_px.height;
2894
2895 brw_blorp_blit_miptrees(brw,
2896 src, 0 /* level */, 0 /* layer */,
2897 src->format, SWIZZLE_XYZW,
2898 dst, 0 /* level */, 0 /* layer */, dst->format,
2899 0, 0, src_w, src_h,
2900 0, 0, dst_w, dst_h,
2901 GL_NEAREST, false, false /*mirror x, y*/,
2902 false, false);
2903
2904 if (src->stencil_mt) {
2905 src_w = src->stencil_mt->surf.logical_level0_px.width;
2906 src_h = src->stencil_mt->surf.logical_level0_px.height;
2907 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2908 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2909
2910 brw_blorp_blit_miptrees(brw,
2911 src->stencil_mt, 0 /* level */, 0 /* layer */,
2912 src->stencil_mt->format, SWIZZLE_XYZW,
2913 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2914 dst->stencil_mt->format,
2915 0, 0, src_w, src_h,
2916 0, 0, dst_w, dst_h,
2917 GL_NEAREST, false, false /*mirror x, y*/,
2918 false, false /* decode/encode srgb */);
2919 }
2920 }
2921
2922 void
2923 intel_update_r8stencil(struct brw_context *brw,
2924 struct intel_mipmap_tree *mt)
2925 {
2926 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2927
2928 assert(devinfo->gen >= 7);
2929 struct intel_mipmap_tree *src =
2930 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2931 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2932 return;
2933
2934 assert(src->surf.size > 0);
2935
2936 if (!mt->r8stencil_mt) {
2937 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2938 mt->r8stencil_mt = make_surface(
2939 brw,
2940 src->target,
2941 MESA_FORMAT_R_UINT8,
2942 src->first_level, src->last_level,
2943 src->surf.logical_level0_px.width,
2944 src->surf.logical_level0_px.height,
2945 src->surf.dim == ISL_SURF_DIM_3D ?
2946 src->surf.logical_level0_px.depth :
2947 src->surf.logical_level0_px.array_len,
2948 src->surf.samples,
2949 ISL_TILING_Y0_BIT,
2950 ISL_SURF_USAGE_TEXTURE_BIT,
2951 BO_ALLOC_BUSY, 0, NULL);
2952 assert(mt->r8stencil_mt);
2953 }
2954
2955 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2956
2957 for (int level = src->first_level; level <= src->last_level; level++) {
2958 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2959 minify(src->surf.phys_level0_sa.depth, level) :
2960 src->surf.phys_level0_sa.array_len;
2961
2962 for (unsigned layer = 0; layer < depth; layer++) {
2963 brw_blorp_copy_miptrees(brw,
2964 src, level, layer,
2965 dst, level, layer,
2966 0, 0, 0, 0,
2967 minify(src->surf.logical_level0_px.width,
2968 level),
2969 minify(src->surf.logical_level0_px.height,
2970 level));
2971 }
2972 }
2973
2974 brw_render_cache_set_check_flush(brw, dst->bo);
2975 src->r8stencil_needs_update = false;
2976 }
2977
2978 static void *
2979 intel_miptree_map_raw(struct brw_context *brw,
2980 struct intel_mipmap_tree *mt,
2981 GLbitfield mode)
2982 {
2983 struct brw_bo *bo = mt->bo;
2984
2985 if (brw_batch_references(&brw->batch, bo))
2986 intel_batchbuffer_flush(brw);
2987
2988 return brw_bo_map(brw, bo, mode);
2989 }
2990
2991 static void
2992 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2993 {
2994 brw_bo_unmap(mt->bo);
2995 }
2996
2997 static void
2998 intel_miptree_map_gtt(struct brw_context *brw,
2999 struct intel_mipmap_tree *mt,
3000 struct intel_miptree_map *map,
3001 unsigned int level, unsigned int slice)
3002 {
3003 unsigned int bw, bh;
3004 void *base;
3005 unsigned int image_x, image_y;
3006 intptr_t x = map->x;
3007 intptr_t y = map->y;
3008
3009 /* For compressed formats, the stride is the number of bytes per
3010 * row of blocks. intel_miptree_get_image_offset() already does
3011 * the divide.
3012 */
3013 _mesa_get_format_block_size(mt->format, &bw, &bh);
3014 assert(y % bh == 0);
3015 assert(x % bw == 0);
3016 y /= bh;
3017 x /= bw;
3018
3019 base = intel_miptree_map_raw(brw, mt, map->mode);
3020
3021 if (base == NULL)
3022 map->ptr = NULL;
3023 else {
3024 base += mt->offset;
3025
3026 /* Note that in the case of cube maps, the caller must have passed the
3027 * slice number referencing the face.
3028 */
3029 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3030 x += image_x;
3031 y += image_y;
3032
3033 map->stride = mt->surf.row_pitch;
3034 map->ptr = base + y * map->stride + x * mt->cpp;
3035 }
3036
3037 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3038 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3039 map->x, map->y, map->w, map->h,
3040 mt, _mesa_get_format_name(mt->format),
3041 x, y, map->ptr, map->stride);
3042 }
3043
3044 static void
3045 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3046 {
3047 intel_miptree_unmap_raw(mt);
3048 }
3049
3050 static void
3051 intel_miptree_map_blit(struct brw_context *brw,
3052 struct intel_mipmap_tree *mt,
3053 struct intel_miptree_map *map,
3054 unsigned int level, unsigned int slice)
3055 {
3056 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3057 /* first_level */ 0,
3058 /* last_level */ 0,
3059 map->w, map->h, 1,
3060 /* samples */ 1,
3061 MIPTREE_CREATE_LINEAR);
3062
3063 if (!map->linear_mt) {
3064 fprintf(stderr, "Failed to allocate blit temporary\n");
3065 goto fail;
3066 }
3067 map->stride = map->linear_mt->surf.row_pitch;
3068
3069 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3070 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3071 * invalidate is set, since we'll be writing the whole rectangle from our
3072 * temporary buffer back out.
3073 */
3074 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3075 if (!intel_miptree_copy(brw,
3076 mt, level, slice, map->x, map->y,
3077 map->linear_mt, 0, 0, 0, 0,
3078 map->w, map->h)) {
3079 fprintf(stderr, "Failed to blit\n");
3080 goto fail;
3081 }
3082 }
3083
3084 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3085
3086 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3087 map->x, map->y, map->w, map->h,
3088 mt, _mesa_get_format_name(mt->format),
3089 level, slice, map->ptr, map->stride);
3090
3091 return;
3092
3093 fail:
3094 intel_miptree_release(&map->linear_mt);
3095 map->ptr = NULL;
3096 map->stride = 0;
3097 }
3098
3099 static void
3100 intel_miptree_unmap_blit(struct brw_context *brw,
3101 struct intel_mipmap_tree *mt,
3102 struct intel_miptree_map *map,
3103 unsigned int level,
3104 unsigned int slice)
3105 {
3106 struct gl_context *ctx = &brw->ctx;
3107
3108 intel_miptree_unmap_raw(map->linear_mt);
3109
3110 if (map->mode & GL_MAP_WRITE_BIT) {
3111 bool ok = intel_miptree_copy(brw,
3112 map->linear_mt, 0, 0, 0, 0,
3113 mt, level, slice, map->x, map->y,
3114 map->w, map->h);
3115 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3116 }
3117
3118 intel_miptree_release(&map->linear_mt);
3119 }
3120
3121 /**
3122 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3123 */
3124 #if defined(USE_SSE41)
3125 static void
3126 intel_miptree_map_movntdqa(struct brw_context *brw,
3127 struct intel_mipmap_tree *mt,
3128 struct intel_miptree_map *map,
3129 unsigned int level, unsigned int slice)
3130 {
3131 assert(map->mode & GL_MAP_READ_BIT);
3132 assert(!(map->mode & GL_MAP_WRITE_BIT));
3133
3134 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3135 map->x, map->y, map->w, map->h,
3136 mt, _mesa_get_format_name(mt->format),
3137 level, slice, map->ptr, map->stride);
3138
3139 /* Map the original image */
3140 uint32_t image_x;
3141 uint32_t image_y;
3142 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3143 image_x += map->x;
3144 image_y += map->y;
3145
3146 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3147 if (!src)
3148 return;
3149
3150 src += mt->offset;
3151
3152 src += image_y * mt->surf.row_pitch;
3153 src += image_x * mt->cpp;
3154
3155 /* Due to the pixel offsets for the particular image being mapped, our
3156 * src pointer may not be 16-byte aligned. However, if the pitch is
3157 * divisible by 16, then the amount by which it's misaligned will remain
3158 * consistent from row to row.
3159 */
3160 assert((mt->surf.row_pitch % 16) == 0);
3161 const int misalignment = ((uintptr_t) src) & 15;
3162
3163 /* Create an untiled temporary buffer for the mapping. */
3164 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3165
3166 map->stride = ALIGN(misalignment + width_bytes, 16);
3167
3168 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3169 /* Offset the destination so it has the same misalignment as src. */
3170 map->ptr = map->buffer + misalignment;
3171
3172 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3173
3174 for (uint32_t y = 0; y < map->h; y++) {
3175 void *dst_ptr = map->ptr + y * map->stride;
3176 void *src_ptr = src + y * mt->surf.row_pitch;
3177
3178 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3179 }
3180
3181 intel_miptree_unmap_raw(mt);
3182 }
3183
3184 static void
3185 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3186 struct intel_mipmap_tree *mt,
3187 struct intel_miptree_map *map,
3188 unsigned int level,
3189 unsigned int slice)
3190 {
3191 _mesa_align_free(map->buffer);
3192 map->buffer = NULL;
3193 map->ptr = NULL;
3194 }
3195 #endif
3196
3197 static void
3198 intel_miptree_map_s8(struct brw_context *brw,
3199 struct intel_mipmap_tree *mt,
3200 struct intel_miptree_map *map,
3201 unsigned int level, unsigned int slice)
3202 {
3203 map->stride = map->w;
3204 map->buffer = map->ptr = malloc(map->stride * map->h);
3205 if (!map->buffer)
3206 return;
3207
3208 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3209 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3210 * invalidate is set, since we'll be writing the whole rectangle from our
3211 * temporary buffer back out.
3212 */
3213 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3214 uint8_t *untiled_s8_map = map->ptr;
3215 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3216 unsigned int image_x, image_y;
3217
3218 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3219
3220 for (uint32_t y = 0; y < map->h; y++) {
3221 for (uint32_t x = 0; x < map->w; x++) {
3222 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3223 x + image_x + map->x,
3224 y + image_y + map->y,
3225 brw->has_swizzling);
3226 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3227 }
3228 }
3229
3230 intel_miptree_unmap_raw(mt);
3231
3232 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3233 map->x, map->y, map->w, map->h,
3234 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3235 } else {
3236 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3237 map->x, map->y, map->w, map->h,
3238 mt, map->ptr, map->stride);
3239 }
3240 }
3241
3242 static void
3243 intel_miptree_unmap_s8(struct brw_context *brw,
3244 struct intel_mipmap_tree *mt,
3245 struct intel_miptree_map *map,
3246 unsigned int level,
3247 unsigned int slice)
3248 {
3249 if (map->mode & GL_MAP_WRITE_BIT) {
3250 unsigned int image_x, image_y;
3251 uint8_t *untiled_s8_map = map->ptr;
3252 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3253
3254 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3255
3256 for (uint32_t y = 0; y < map->h; y++) {
3257 for (uint32_t x = 0; x < map->w; x++) {
3258 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3259 image_x + x + map->x,
3260 image_y + y + map->y,
3261 brw->has_swizzling);
3262 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3263 }
3264 }
3265
3266 intel_miptree_unmap_raw(mt);
3267 }
3268
3269 free(map->buffer);
3270 }
3271
3272 static void
3273 intel_miptree_map_etc(struct brw_context *brw,
3274 struct intel_mipmap_tree *mt,
3275 struct intel_miptree_map *map,
3276 unsigned int level,
3277 unsigned int slice)
3278 {
3279 assert(mt->etc_format != MESA_FORMAT_NONE);
3280 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3281 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3282 }
3283
3284 assert(map->mode & GL_MAP_WRITE_BIT);
3285 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3286
3287 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3288 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3289 map->w, map->h, 1));
3290 map->ptr = map->buffer;
3291 }
3292
3293 static void
3294 intel_miptree_unmap_etc(struct brw_context *brw,
3295 struct intel_mipmap_tree *mt,
3296 struct intel_miptree_map *map,
3297 unsigned int level,
3298 unsigned int slice)
3299 {
3300 uint32_t image_x;
3301 uint32_t image_y;
3302 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3303
3304 image_x += map->x;
3305 image_y += map->y;
3306
3307 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3308 + image_y * mt->surf.row_pitch
3309 + image_x * mt->cpp;
3310
3311 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3312 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3313 map->ptr, map->stride,
3314 map->w, map->h);
3315 else
3316 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3317 map->ptr, map->stride,
3318 map->w, map->h, mt->etc_format);
3319
3320 intel_miptree_unmap_raw(mt);
3321 free(map->buffer);
3322 }
3323
3324 /**
3325 * Mapping function for packed depth/stencil miptrees backed by real separate
3326 * miptrees for depth and stencil.
3327 *
3328 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3329 * separate from the depth buffer. Yet at the GL API level, we have to expose
3330 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3331 * be able to map that memory for texture storage and glReadPixels-type
3332 * operations. We give Mesa core that access by mallocing a temporary and
3333 * copying the data between the actual backing store and the temporary.
3334 */
3335 static void
3336 intel_miptree_map_depthstencil(struct brw_context *brw,
3337 struct intel_mipmap_tree *mt,
3338 struct intel_miptree_map *map,
3339 unsigned int level, unsigned int slice)
3340 {
3341 struct intel_mipmap_tree *z_mt = mt;
3342 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3343 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3344 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3345
3346 map->stride = map->w * packed_bpp;
3347 map->buffer = map->ptr = malloc(map->stride * map->h);
3348 if (!map->buffer)
3349 return;
3350
3351 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3352 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3353 * invalidate is set, since we'll be writing the whole rectangle from our
3354 * temporary buffer back out.
3355 */
3356 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3357 uint32_t *packed_map = map->ptr;
3358 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3359 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3360 unsigned int s_image_x, s_image_y;
3361 unsigned int z_image_x, z_image_y;
3362
3363 intel_miptree_get_image_offset(s_mt, level, slice,
3364 &s_image_x, &s_image_y);
3365 intel_miptree_get_image_offset(z_mt, level, slice,
3366 &z_image_x, &z_image_y);
3367
3368 for (uint32_t y = 0; y < map->h; y++) {
3369 for (uint32_t x = 0; x < map->w; x++) {
3370 int map_x = map->x + x, map_y = map->y + y;
3371 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3372 map_x + s_image_x,
3373 map_y + s_image_y,
3374 brw->has_swizzling);
3375 ptrdiff_t z_offset = ((map_y + z_image_y) *
3376 (z_mt->surf.row_pitch / 4) +
3377 (map_x + z_image_x));
3378 uint8_t s = s_map[s_offset];
3379 uint32_t z = z_map[z_offset];
3380
3381 if (map_z32f_x24s8) {
3382 packed_map[(y * map->w + x) * 2 + 0] = z;
3383 packed_map[(y * map->w + x) * 2 + 1] = s;
3384 } else {
3385 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3386 }
3387 }
3388 }
3389
3390 intel_miptree_unmap_raw(s_mt);
3391 intel_miptree_unmap_raw(z_mt);
3392
3393 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3394 __func__,
3395 map->x, map->y, map->w, map->h,
3396 z_mt, map->x + z_image_x, map->y + z_image_y,
3397 s_mt, map->x + s_image_x, map->y + s_image_y,
3398 map->ptr, map->stride);
3399 } else {
3400 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3401 map->x, map->y, map->w, map->h,
3402 mt, map->ptr, map->stride);
3403 }
3404 }
3405
3406 static void
3407 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3408 struct intel_mipmap_tree *mt,
3409 struct intel_miptree_map *map,
3410 unsigned int level,
3411 unsigned int slice)
3412 {
3413 struct intel_mipmap_tree *z_mt = mt;
3414 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3415 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3416
3417 if (map->mode & GL_MAP_WRITE_BIT) {
3418 uint32_t *packed_map = map->ptr;
3419 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3420 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3421 unsigned int s_image_x, s_image_y;
3422 unsigned int z_image_x, z_image_y;
3423
3424 intel_miptree_get_image_offset(s_mt, level, slice,
3425 &s_image_x, &s_image_y);
3426 intel_miptree_get_image_offset(z_mt, level, slice,
3427 &z_image_x, &z_image_y);
3428
3429 for (uint32_t y = 0; y < map->h; y++) {
3430 for (uint32_t x = 0; x < map->w; x++) {
3431 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3432 x + s_image_x + map->x,
3433 y + s_image_y + map->y,
3434 brw->has_swizzling);
3435 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3436 (z_mt->surf.row_pitch / 4) +
3437 (x + z_image_x + map->x));
3438
3439 if (map_z32f_x24s8) {
3440 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3441 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3442 } else {
3443 uint32_t packed = packed_map[y * map->w + x];
3444 s_map[s_offset] = packed >> 24;
3445 z_map[z_offset] = packed;
3446 }
3447 }
3448 }
3449
3450 intel_miptree_unmap_raw(s_mt);
3451 intel_miptree_unmap_raw(z_mt);
3452
3453 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3454 __func__,
3455 map->x, map->y, map->w, map->h,
3456 z_mt, _mesa_get_format_name(z_mt->format),
3457 map->x + z_image_x, map->y + z_image_y,
3458 s_mt, map->x + s_image_x, map->y + s_image_y,
3459 map->ptr, map->stride);
3460 }
3461
3462 free(map->buffer);
3463 }
3464
3465 /**
3466 * Create and attach a map to the miptree at (level, slice). Return the
3467 * attached map.
3468 */
3469 static struct intel_miptree_map*
3470 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3471 unsigned int level,
3472 unsigned int slice,
3473 unsigned int x,
3474 unsigned int y,
3475 unsigned int w,
3476 unsigned int h,
3477 GLbitfield mode)
3478 {
3479 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3480
3481 if (!map)
3482 return NULL;
3483
3484 assert(mt->level[level].slice[slice].map == NULL);
3485 mt->level[level].slice[slice].map = map;
3486
3487 map->mode = mode;
3488 map->x = x;
3489 map->y = y;
3490 map->w = w;
3491 map->h = h;
3492
3493 return map;
3494 }
3495
3496 /**
3497 * Release the map at (level, slice).
3498 */
3499 static void
3500 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3501 unsigned int level,
3502 unsigned int slice)
3503 {
3504 struct intel_miptree_map **map;
3505
3506 map = &mt->level[level].slice[slice].map;
3507 free(*map);
3508 *map = NULL;
3509 }
3510
3511 static bool
3512 can_blit_slice(struct intel_mipmap_tree *mt,
3513 unsigned int level, unsigned int slice)
3514 {
3515 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3516 if (mt->surf.row_pitch >= 32768)
3517 return false;
3518
3519 return true;
3520 }
3521
3522 static bool
3523 use_intel_mipree_map_blit(struct brw_context *brw,
3524 struct intel_mipmap_tree *mt,
3525 GLbitfield mode,
3526 unsigned int level,
3527 unsigned int slice)
3528 {
3529 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3530
3531 if (devinfo->has_llc &&
3532 /* It's probably not worth swapping to the blit ring because of
3533 * all the overhead involved.
3534 */
3535 !(mode & GL_MAP_WRITE_BIT) &&
3536 !mt->compressed &&
3537 (mt->surf.tiling == ISL_TILING_X ||
3538 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3539 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3540 /* Fast copy blit on skl+ supports all tiling formats. */
3541 devinfo->gen >= 9) &&
3542 can_blit_slice(mt, level, slice))
3543 return true;
3544
3545 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3546 mt->bo->size >= brw->max_gtt_map_object_size) {
3547 assert(can_blit_slice(mt, level, slice));
3548 return true;
3549 }
3550
3551 return false;
3552 }
3553
3554 /**
3555 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3556 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3557 * arithmetic overflow.
3558 *
3559 * If you call this function and use \a out_stride, then you're doing pointer
3560 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3561 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3562 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3563 * which usually have type uint32_t or GLuint.
3564 */
3565 void
3566 intel_miptree_map(struct brw_context *brw,
3567 struct intel_mipmap_tree *mt,
3568 unsigned int level,
3569 unsigned int slice,
3570 unsigned int x,
3571 unsigned int y,
3572 unsigned int w,
3573 unsigned int h,
3574 GLbitfield mode,
3575 void **out_ptr,
3576 ptrdiff_t *out_stride)
3577 {
3578 struct intel_miptree_map *map;
3579
3580 assert(mt->surf.samples == 1);
3581
3582 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3583 if (!map){
3584 *out_ptr = NULL;
3585 *out_stride = 0;
3586 return;
3587 }
3588
3589 intel_miptree_access_raw(brw, mt, level, slice,
3590 map->mode & GL_MAP_WRITE_BIT);
3591
3592 if (mt->format == MESA_FORMAT_S_UINT8) {
3593 intel_miptree_map_s8(brw, mt, map, level, slice);
3594 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3595 !(mode & BRW_MAP_DIRECT_BIT)) {
3596 intel_miptree_map_etc(brw, mt, map, level, slice);
3597 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3598 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3599 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3600 intel_miptree_map_blit(brw, mt, map, level, slice);
3601 #if defined(USE_SSE41)
3602 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3603 !mt->compressed && cpu_has_sse4_1 &&
3604 (mt->surf.row_pitch % 16 == 0)) {
3605 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3606 #endif
3607 } else {
3608 intel_miptree_map_gtt(brw, mt, map, level, slice);
3609 }
3610
3611 *out_ptr = map->ptr;
3612 *out_stride = map->stride;
3613
3614 if (map->ptr == NULL)
3615 intel_miptree_release_map(mt, level, slice);
3616 }
3617
3618 void
3619 intel_miptree_unmap(struct brw_context *brw,
3620 struct intel_mipmap_tree *mt,
3621 unsigned int level,
3622 unsigned int slice)
3623 {
3624 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3625
3626 assert(mt->surf.samples == 1);
3627
3628 if (!map)
3629 return;
3630
3631 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3632 mt, _mesa_get_format_name(mt->format), level, slice);
3633
3634 if (mt->format == MESA_FORMAT_S_UINT8) {
3635 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3636 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3637 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3638 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3639 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3640 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3641 } else if (map->linear_mt) {
3642 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3643 #if defined(USE_SSE41)
3644 } else if (map->buffer && cpu_has_sse4_1) {
3645 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3646 #endif
3647 } else {
3648 intel_miptree_unmap_gtt(mt);
3649 }
3650
3651 intel_miptree_release_map(mt, level, slice);
3652 }
3653
3654 enum isl_surf_dim
3655 get_isl_surf_dim(GLenum target)
3656 {
3657 switch (target) {
3658 case GL_TEXTURE_1D:
3659 case GL_TEXTURE_1D_ARRAY:
3660 return ISL_SURF_DIM_1D;
3661
3662 case GL_TEXTURE_2D:
3663 case GL_TEXTURE_2D_ARRAY:
3664 case GL_TEXTURE_RECTANGLE:
3665 case GL_TEXTURE_CUBE_MAP:
3666 case GL_TEXTURE_CUBE_MAP_ARRAY:
3667 case GL_TEXTURE_2D_MULTISAMPLE:
3668 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3669 case GL_TEXTURE_EXTERNAL_OES:
3670 return ISL_SURF_DIM_2D;
3671
3672 case GL_TEXTURE_3D:
3673 return ISL_SURF_DIM_3D;
3674 }
3675
3676 unreachable("Invalid texture target");
3677 }
3678
3679 enum isl_dim_layout
3680 get_isl_dim_layout(const struct gen_device_info *devinfo,
3681 enum isl_tiling tiling, GLenum target)
3682 {
3683 switch (target) {
3684 case GL_TEXTURE_1D:
3685 case GL_TEXTURE_1D_ARRAY:
3686 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3687 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3688
3689 case GL_TEXTURE_2D:
3690 case GL_TEXTURE_2D_ARRAY:
3691 case GL_TEXTURE_RECTANGLE:
3692 case GL_TEXTURE_2D_MULTISAMPLE:
3693 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3694 case GL_TEXTURE_EXTERNAL_OES:
3695 return ISL_DIM_LAYOUT_GEN4_2D;
3696
3697 case GL_TEXTURE_CUBE_MAP:
3698 case GL_TEXTURE_CUBE_MAP_ARRAY:
3699 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3700 ISL_DIM_LAYOUT_GEN4_2D);
3701
3702 case GL_TEXTURE_3D:
3703 return (devinfo->gen >= 9 ?
3704 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3705 }
3706
3707 unreachable("Invalid texture target");
3708 }
3709
3710 enum isl_aux_usage
3711 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3712 const struct intel_mipmap_tree *mt)
3713 {
3714 if (mt->hiz_buf)
3715 return ISL_AUX_USAGE_HIZ;
3716
3717 if (!mt->mcs_buf)
3718 return ISL_AUX_USAGE_NONE;
3719
3720 return mt->aux_usage;
3721 }