i965/Gen7: Move decision to allocate MCS surface into intel_mipmap_create
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38
39 #include "brw_blorp.h"
40 #include "brw_context.h"
41
42 #include "main/enums.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static GLenum
52 target_to_target(GLenum target)
53 {
54 switch (target) {
55 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
56 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
57 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
58 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
59 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
60 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
61 return GL_TEXTURE_CUBE_MAP_ARB;
62 default:
63 return target;
64 }
65 }
66
67
68 /**
69 * Determine which MSAA layout should be used by the MSAA surface being
70 * created, based on the chip generation and the surface type.
71 */
72 static enum intel_msaa_layout
73 compute_msaa_layout(struct brw_context *brw, gl_format format, GLenum target)
74 {
75 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
76 if (brw->gen < 7)
77 return INTEL_MSAA_LAYOUT_IMS;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return INTEL_MSAA_LAYOUT_IMS;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (_mesa_get_format_datatype(format) == GL_INT) {
98 /* TODO: is this workaround needed for future chipsets? */
99 assert(brw->gen == 7);
100 return INTEL_MSAA_LAYOUT_UMS;
101 } else {
102 /* For now, if we're going to be texturing from this surface,
103 * force UMS, so that the shader doesn't have to do different things
104 * based on whether there's a multisample control surface needing sampled first.
105 * We can't just blindly read the MCS surface in all cases because:
106 *
107 * From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
108 *
109 * If this field is disabled and the sampling engine <ld_mcs> message
110 * is issued on this surface, the MCS surface may be accessed. Software
111 * must ensure that the surface is defined to avoid GTT errors.
112 */
113 if (target == GL_TEXTURE_2D_MULTISAMPLE ||
114 target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
115 return INTEL_MSAA_LAYOUT_UMS;
116 } else {
117 return INTEL_MSAA_LAYOUT_CMS;
118 }
119 }
120 }
121 }
122
123
124 /**
125 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
126 * scaled-down bitfield representation of the color buffer which is capable of
127 * recording when blocks of the color buffer are equal to the clear value.
128 * This function returns the block size that will be used by the MCS buffer
129 * corresponding to a certain color miptree.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p327):
133 *
134 * The following table describes the RT alignment
135 *
136 * Pixels Lines
137 * TiledY RT CL
138 * bpp
139 * 32 8 4
140 * 64 4 4
141 * 128 2 4
142 * TiledX RT CL
143 * bpp
144 * 32 16 2
145 * 64 8 2
146 * 128 4 2
147 *
148 * This alignment has the following uses:
149 *
150 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
151 * buffer contains 128 blocks horizontally and 256 blocks vertically.
152 *
153 * - For figuring out alignment restrictions for a fast clear operation. Fast
154 * clear operations must always clear aligned multiples of 16 blocks
155 * horizontally and 32 blocks vertically.
156 *
157 * - For scaling down the coordinates sent through the render pipeline during
158 * a fast clear. X coordinates must be scaled down by 8 times the block
159 * width, and Y coordinates by 16 times the block height.
160 *
161 * - For scaling down the coordinates sent through the render pipeline during
162 * a "Render Target Resolve" operation. X coordinates must be scaled down
163 * by half the block width, and Y coordinates by half the block height.
164 */
165 void
166 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
167 struct intel_mipmap_tree *mt,
168 unsigned *width_px, unsigned *height)
169 {
170 switch (mt->region->tiling) {
171 default:
172 assert(!"Non-MSRT MCS requires X or Y tiling");
173 /* In release builds, fall through */
174 case I915_TILING_Y:
175 *width_px = 32 / mt->cpp;
176 *height = 4;
177 break;
178 case I915_TILING_X:
179 *width_px = 64 / mt->cpp;
180 *height = 2;
181 }
182 }
183
184
185 /**
186 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
187 * can be used.
188 *
189 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
190 * beneath the "Fast Color Clear" bullet (p326):
191 *
192 * - Support is limited to tiled render targets.
193 * - Support is for non-mip-mapped and non-array surface types only.
194 *
195 * And then later, on p327:
196 *
197 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
198 * 64bpp, and 128bpp.
199 */
200 bool
201 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
202 struct intel_mipmap_tree *mt)
203 {
204 /* MCS support does not exist prior to Gen7 */
205 if (brw->gen < 7 || brw->gen >= 8)
206 return false;
207
208 /* MCS is only supported for color buffers */
209 switch (_mesa_get_format_base_format(mt->format)) {
210 case GL_DEPTH_COMPONENT:
211 case GL_DEPTH_STENCIL:
212 case GL_STENCIL_INDEX:
213 return false;
214 }
215
216 if (mt->region->tiling != I915_TILING_X &&
217 mt->region->tiling != I915_TILING_Y)
218 return false;
219 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
220 return false;
221 if (mt->first_level != 0 || mt->last_level != 0)
222 return false;
223 if (mt->physical_depth0 != 1)
224 return false;
225
226 /* There's no point in using an MCS buffer if the surface isn't in a
227 * renderable format.
228 */
229 if (!brw->format_supported_as_render_target[mt->format])
230 return false;
231
232 return true;
233 }
234
235
236 /**
237 * @param for_bo Indicates that the caller is
238 * intel_miptree_create_for_bo(). If true, then do not create
239 * \c stencil_mt.
240 */
241 struct intel_mipmap_tree *
242 intel_miptree_create_layout(struct brw_context *brw,
243 GLenum target,
244 gl_format format,
245 GLuint first_level,
246 GLuint last_level,
247 GLuint width0,
248 GLuint height0,
249 GLuint depth0,
250 bool for_bo,
251 GLuint num_samples)
252 {
253 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
254 if (!mt)
255 return NULL;
256
257 DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__,
258 _mesa_lookup_enum_by_nr(target),
259 _mesa_get_format_name(format),
260 first_level, last_level, mt);
261
262 mt->target = target_to_target(target);
263 mt->format = format;
264 mt->first_level = first_level;
265 mt->last_level = last_level;
266 mt->logical_width0 = width0;
267 mt->logical_height0 = height0;
268 mt->logical_depth0 = depth0;
269 mt->mcs_state = INTEL_MCS_STATE_NONE;
270
271 /* The cpp is bytes per (1, blockheight)-sized block for compressed
272 * textures. This is why you'll see divides by blockheight all over
273 */
274 unsigned bw, bh;
275 _mesa_get_format_block_size(format, &bw, &bh);
276 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
277 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
278
279 mt->num_samples = num_samples;
280 mt->compressed = _mesa_is_format_compressed(format);
281 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
282 mt->refcount = 1;
283
284 if (num_samples > 1) {
285 /* Adjust width/height/depth for MSAA */
286 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
287 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
288 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
289 *
290 * "Any of the other messages (sample*, LOD, load4) used with a
291 * (4x) multisampled surface will in-effect sample a surface with
292 * double the height and width as that indicated in the surface
293 * state. Each pixel position on the original-sized surface is
294 * replaced with a 2x2 of samples with the following arrangement:
295 *
296 * sample 0 sample 2
297 * sample 1 sample 3"
298 *
299 * Thus, when sampling from a multisampled texture, it behaves as
300 * though the layout in memory for (x,y,sample) is:
301 *
302 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
303 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
304 *
305 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
306 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
307 *
308 * However, the actual layout of multisampled data in memory is:
309 *
310 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
311 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
312 *
313 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
314 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
315 *
316 * This pattern repeats for each 2x2 pixel block.
317 *
318 * As a result, when calculating the size of our 4-sample buffer for
319 * an odd width or height, we have to align before scaling up because
320 * sample 3 is in that bottom right 2x2 block.
321 */
322 switch (num_samples) {
323 case 4:
324 width0 = ALIGN(width0, 2) * 2;
325 height0 = ALIGN(height0, 2) * 2;
326 break;
327 case 8:
328 width0 = ALIGN(width0, 2) * 4;
329 height0 = ALIGN(height0, 2) * 2;
330 break;
331 default:
332 /* num_samples should already have been quantized to 0, 1, 4, or
333 * 8.
334 */
335 assert(false);
336 }
337 } else {
338 /* Non-interleaved */
339 depth0 *= num_samples;
340 }
341 }
342
343 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
344 * use it elsewhere?
345 */
346 switch (mt->msaa_layout) {
347 case INTEL_MSAA_LAYOUT_NONE:
348 case INTEL_MSAA_LAYOUT_IMS:
349 mt->array_spacing_lod0 = false;
350 break;
351 case INTEL_MSAA_LAYOUT_UMS:
352 case INTEL_MSAA_LAYOUT_CMS:
353 mt->array_spacing_lod0 = true;
354 break;
355 }
356
357 if (target == GL_TEXTURE_CUBE_MAP) {
358 assert(depth0 == 1);
359 depth0 = 6;
360 }
361
362 mt->physical_width0 = width0;
363 mt->physical_height0 = height0;
364 mt->physical_depth0 = depth0;
365
366 if (!for_bo &&
367 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
368 (brw->must_use_separate_stencil ||
369 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
370 mt->stencil_mt = intel_miptree_create(brw,
371 mt->target,
372 MESA_FORMAT_S8,
373 mt->first_level,
374 mt->last_level,
375 mt->logical_width0,
376 mt->logical_height0,
377 mt->logical_depth0,
378 true,
379 num_samples,
380 INTEL_MIPTREE_TILING_ANY);
381 if (!mt->stencil_mt) {
382 intel_miptree_release(&mt);
383 return NULL;
384 }
385
386 /* Fix up the Z miptree format for how we're splitting out separate
387 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
388 */
389 if (mt->format == MESA_FORMAT_S8_Z24) {
390 mt->format = MESA_FORMAT_X8_Z24;
391 } else if (mt->format == MESA_FORMAT_Z32_FLOAT_X24S8) {
392 mt->format = MESA_FORMAT_Z32_FLOAT;
393 mt->cpp = 4;
394 } else {
395 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
396 _mesa_get_format_name(mt->format));
397 }
398 }
399
400 brw_miptree_layout(brw, mt);
401
402 return mt;
403 }
404
405 /**
406 * \brief Helper function for intel_miptree_create().
407 */
408 static uint32_t
409 intel_miptree_choose_tiling(struct brw_context *brw,
410 gl_format format,
411 uint32_t width0,
412 uint32_t num_samples,
413 enum intel_miptree_tiling_mode requested,
414 struct intel_mipmap_tree *mt)
415 {
416 if (format == MESA_FORMAT_S8) {
417 /* The stencil buffer is W tiled. However, we request from the kernel a
418 * non-tiled buffer because the GTT is incapable of W fencing.
419 */
420 return I915_TILING_NONE;
421 }
422
423 /* Some usages may want only one type of tiling, like depth miptrees (Y
424 * tiled), or temporary BOs for uploading data once (linear).
425 */
426 switch (requested) {
427 case INTEL_MIPTREE_TILING_ANY:
428 break;
429 case INTEL_MIPTREE_TILING_Y:
430 return I915_TILING_Y;
431 case INTEL_MIPTREE_TILING_NONE:
432 return I915_TILING_NONE;
433 }
434
435 if (num_samples > 1) {
436 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
437 * Surface"):
438 *
439 * [DevSNB+]: For multi-sample render targets, this field must be
440 * 1. MSRTs can only be tiled.
441 *
442 * Our usual reason for preferring X tiling (fast blits using the
443 * blitting engine) doesn't apply to MSAA, since we'll generally be
444 * downsampling or upsampling when blitting between the MSAA buffer
445 * and another buffer, and the blitting engine doesn't support that.
446 * So use Y tiling, since it makes better use of the cache.
447 */
448 return I915_TILING_Y;
449 }
450
451 GLenum base_format = _mesa_get_format_base_format(format);
452 if (base_format == GL_DEPTH_COMPONENT ||
453 base_format == GL_DEPTH_STENCIL_EXT)
454 return I915_TILING_Y;
455
456 int minimum_pitch = mt->total_width * mt->cpp;
457
458 /* If the width is much smaller than a tile, don't bother tiling. */
459 if (minimum_pitch < 64)
460 return I915_TILING_NONE;
461
462 if (ALIGN(minimum_pitch, 512) >= 32768) {
463 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
464 mt->total_width, mt->total_height);
465 return I915_TILING_NONE;
466 }
467
468 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
469 if (brw->gen < 6)
470 return I915_TILING_X;
471
472 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
473 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
474 * or Linear."
475 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
476 * all the way back to 965, but is explicitly permitted on Gen7.
477 */
478 if (brw->gen != 7 && mt->cpp >= 16)
479 return I915_TILING_X;
480
481 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
482 * messages), on p64, under the heading "Surface Vertical Alignment":
483 *
484 * This field must be set to VALIGN_4 for all tiled Y Render Target
485 * surfaces.
486 *
487 * So if the surface is renderable and uses a vertical alignment of 2,
488 * force it to be X tiled. This is somewhat conservative (it's possible
489 * that the client won't ever render to this surface), but it's difficult
490 * to know that ahead of time. And besides, since we use a vertical
491 * alignment of 4 as often as we can, this shouldn't happen very often.
492 */
493 if (brw->gen == 7 && mt->align_h == 2 &&
494 brw->format_supported_as_render_target[format]) {
495 return I915_TILING_X;
496 }
497
498 return I915_TILING_Y | I915_TILING_X;
499 }
500
501 struct intel_mipmap_tree *
502 intel_miptree_create(struct brw_context *brw,
503 GLenum target,
504 gl_format format,
505 GLuint first_level,
506 GLuint last_level,
507 GLuint width0,
508 GLuint height0,
509 GLuint depth0,
510 bool expect_accelerated_upload,
511 GLuint num_samples,
512 enum intel_miptree_tiling_mode requested_tiling)
513 {
514 struct intel_mipmap_tree *mt;
515 gl_format tex_format = format;
516 gl_format etc_format = MESA_FORMAT_NONE;
517 GLuint total_width, total_height;
518
519 if (!brw->is_baytrail) {
520 switch (format) {
521 case MESA_FORMAT_ETC1_RGB8:
522 format = MESA_FORMAT_RGBX8888_REV;
523 break;
524 case MESA_FORMAT_ETC2_RGB8:
525 format = MESA_FORMAT_RGBX8888_REV;
526 break;
527 case MESA_FORMAT_ETC2_SRGB8:
528 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
529 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
530 format = MESA_FORMAT_SARGB8;
531 break;
532 case MESA_FORMAT_ETC2_RGBA8_EAC:
533 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
534 format = MESA_FORMAT_RGBA8888_REV;
535 break;
536 case MESA_FORMAT_ETC2_R11_EAC:
537 format = MESA_FORMAT_R16;
538 break;
539 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
540 format = MESA_FORMAT_SIGNED_R16;
541 break;
542 case MESA_FORMAT_ETC2_RG11_EAC:
543 format = MESA_FORMAT_GR1616;
544 break;
545 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
546 format = MESA_FORMAT_SIGNED_GR1616;
547 break;
548 default:
549 /* Non ETC1 / ETC2 format */
550 break;
551 }
552 }
553
554 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
555
556 mt = intel_miptree_create_layout(brw, target, format,
557 first_level, last_level, width0,
558 height0, depth0,
559 false, num_samples);
560 /*
561 * pitch == 0 || height == 0 indicates the null texture
562 */
563 if (!mt || !mt->total_width || !mt->total_height) {
564 intel_miptree_release(&mt);
565 return NULL;
566 }
567
568 total_width = mt->total_width;
569 total_height = mt->total_height;
570
571 if (format == MESA_FORMAT_S8) {
572 /* Align to size of W tile, 64x64. */
573 total_width = ALIGN(total_width, 64);
574 total_height = ALIGN(total_height, 64);
575 }
576
577 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
578 num_samples, requested_tiling,
579 mt);
580 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
581
582 mt->etc_format = etc_format;
583 mt->region = intel_region_alloc(brw->intelScreen,
584 y_or_x ? I915_TILING_Y : tiling,
585 mt->cpp,
586 total_width,
587 total_height,
588 expect_accelerated_upload);
589
590 /* If the region is too large to fit in the aperture, we need to use the
591 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
592 * so we need to fall back to X.
593 */
594 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
595 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
596 mt->total_width, mt->total_height);
597 intel_region_release(&mt->region);
598
599 mt->region = intel_region_alloc(brw->intelScreen,
600 I915_TILING_X,
601 mt->cpp,
602 total_width,
603 total_height,
604 expect_accelerated_upload);
605 }
606
607 mt->offset = 0;
608
609 if (!mt->region) {
610 intel_miptree_release(&mt);
611 return NULL;
612 }
613
614
615 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
616 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
617 intel_miptree_release(&mt);
618 return NULL;
619 }
620 }
621
622 /* If this miptree is capable of supporting fast color clears, set
623 * mcs_state appropriately to ensure that fast clears will occur.
624 * Allocation of the MCS miptree will be deferred until the first fast
625 * clear actually occurs.
626 */
627 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
628 mt->mcs_state = INTEL_MCS_STATE_RESOLVED;
629
630 return mt;
631 }
632
633 struct intel_mipmap_tree *
634 intel_miptree_create_for_bo(struct brw_context *brw,
635 drm_intel_bo *bo,
636 gl_format format,
637 uint32_t offset,
638 uint32_t width,
639 uint32_t height,
640 int pitch,
641 uint32_t tiling)
642 {
643 struct intel_mipmap_tree *mt;
644
645 struct intel_region *region = calloc(1, sizeof(*region));
646 if (!region)
647 return NULL;
648
649 /* Nothing will be able to use this miptree with the BO if the offset isn't
650 * aligned.
651 */
652 if (tiling != I915_TILING_NONE)
653 assert(offset % 4096 == 0);
654
655 /* miptrees can't handle negative pitch. If you need flipping of images,
656 * that's outside of the scope of the mt.
657 */
658 assert(pitch >= 0);
659
660 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
661 0, 0,
662 width, height, 1,
663 true, 0 /* num_samples */);
664 if (!mt) {
665 free(region);
666 return mt;
667 }
668
669 region->cpp = mt->cpp;
670 region->width = width;
671 region->height = height;
672 region->pitch = pitch;
673 region->refcount = 1;
674 drm_intel_bo_reference(bo);
675 region->bo = bo;
676 region->tiling = tiling;
677
678 mt->region = region;
679 mt->offset = offset;
680
681 return mt;
682 }
683
684
685 /**
686 * For a singlesample DRI2 buffer, this simply wraps the given region with a miptree.
687 *
688 * For a multisample DRI2 buffer, this wraps the given region with
689 * a singlesample miptree, then creates a multisample miptree into which the
690 * singlesample miptree is embedded as a child.
691 */
692 struct intel_mipmap_tree*
693 intel_miptree_create_for_dri2_buffer(struct brw_context *brw,
694 unsigned dri_attachment,
695 gl_format format,
696 uint32_t num_samples,
697 struct intel_region *region)
698 {
699 struct intel_mipmap_tree *singlesample_mt = NULL;
700 struct intel_mipmap_tree *multisample_mt = NULL;
701
702 /* Only the front and back buffers, which are color buffers, are shared
703 * through DRI2.
704 */
705 assert(dri_attachment == __DRI_BUFFER_BACK_LEFT ||
706 dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
707 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT);
708 assert(_mesa_get_format_base_format(format) == GL_RGB ||
709 _mesa_get_format_base_format(format) == GL_RGBA);
710
711 singlesample_mt = intel_miptree_create_for_bo(brw,
712 region->bo,
713 format,
714 0,
715 region->width,
716 region->height,
717 region->pitch,
718 region->tiling);
719 if (!singlesample_mt)
720 return NULL;
721 singlesample_mt->region->name = region->name;
722
723 /* If this miptree is capable of supporting fast color clears, set
724 * mcs_state appropriately to ensure that fast clears will occur.
725 * Allocation of the MCS miptree will be deferred until the first fast
726 * clear actually occurs.
727 */
728 if (intel_is_non_msrt_mcs_buffer_supported(brw, singlesample_mt))
729 singlesample_mt->mcs_state = INTEL_MCS_STATE_RESOLVED;
730
731 if (num_samples == 0)
732 return singlesample_mt;
733
734 multisample_mt = intel_miptree_create_for_renderbuffer(brw,
735 format,
736 region->width,
737 region->height,
738 num_samples);
739 if (!multisample_mt) {
740 intel_miptree_release(&singlesample_mt);
741 return NULL;
742 }
743
744 multisample_mt->singlesample_mt = singlesample_mt;
745 multisample_mt->need_downsample = false;
746
747 if (brw->is_front_buffer_rendering &&
748 (dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
749 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT)) {
750 intel_miptree_upsample(brw, multisample_mt);
751 }
752
753 return multisample_mt;
754 }
755
756 /**
757 * For a singlesample image buffer, this simply wraps the given region with a miptree.
758 *
759 * For a multisample image buffer, this wraps the given region with
760 * a singlesample miptree, then creates a multisample miptree into which the
761 * singlesample miptree is embedded as a child.
762 */
763 struct intel_mipmap_tree*
764 intel_miptree_create_for_image_buffer(struct brw_context *intel,
765 enum __DRIimageBufferMask buffer_type,
766 gl_format format,
767 uint32_t num_samples,
768 struct intel_region *region)
769 {
770 struct intel_mipmap_tree *singlesample_mt = NULL;
771 struct intel_mipmap_tree *multisample_mt = NULL;
772
773 /* Only the front and back buffers, which are color buffers, are allocated
774 * through the image loader.
775 */
776 assert(_mesa_get_format_base_format(format) == GL_RGB ||
777 _mesa_get_format_base_format(format) == GL_RGBA);
778
779 singlesample_mt = intel_miptree_create_for_bo(intel,
780 region->bo,
781 format,
782 0,
783 region->width,
784 region->height,
785 region->pitch,
786 region->tiling);
787 if (!singlesample_mt)
788 return NULL;
789
790 intel_region_reference(&singlesample_mt->region, region);
791
792 if (num_samples == 0)
793 return singlesample_mt;
794
795 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
796 format,
797 region->width,
798 region->height,
799 num_samples);
800 if (!multisample_mt) {
801 intel_miptree_release(&singlesample_mt);
802 return NULL;
803 }
804
805 multisample_mt->singlesample_mt = singlesample_mt;
806 multisample_mt->need_downsample = false;
807
808 intel_region_reference(&multisample_mt->region, region);
809
810 if (intel->is_front_buffer_rendering && buffer_type == __DRI_IMAGE_BUFFER_FRONT) {
811 intel_miptree_upsample(intel, multisample_mt);
812 }
813
814 return multisample_mt;
815 }
816
817 struct intel_mipmap_tree*
818 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
819 gl_format format,
820 uint32_t width,
821 uint32_t height,
822 uint32_t num_samples)
823 {
824 struct intel_mipmap_tree *mt;
825 uint32_t depth = 1;
826 bool ok;
827
828 mt = intel_miptree_create(brw, GL_TEXTURE_2D, format, 0, 0,
829 width, height, depth, true, num_samples,
830 INTEL_MIPTREE_TILING_ANY);
831 if (!mt)
832 goto fail;
833
834 if (brw_is_hiz_depth_format(brw, format)) {
835 ok = intel_miptree_alloc_hiz(brw, mt);
836 if (!ok)
837 goto fail;
838 }
839
840 return mt;
841
842 fail:
843 intel_miptree_release(&mt);
844 return NULL;
845 }
846
847 void
848 intel_miptree_reference(struct intel_mipmap_tree **dst,
849 struct intel_mipmap_tree *src)
850 {
851 if (*dst == src)
852 return;
853
854 intel_miptree_release(dst);
855
856 if (src) {
857 src->refcount++;
858 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
859 }
860
861 *dst = src;
862 }
863
864
865 void
866 intel_miptree_release(struct intel_mipmap_tree **mt)
867 {
868 if (!*mt)
869 return;
870
871 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
872 if (--(*mt)->refcount <= 0) {
873 GLuint i;
874
875 DBG("%s deleting %p\n", __FUNCTION__, *mt);
876
877 intel_region_release(&((*mt)->region));
878 intel_miptree_release(&(*mt)->stencil_mt);
879 intel_miptree_release(&(*mt)->hiz_mt);
880 intel_miptree_release(&(*mt)->mcs_mt);
881 intel_miptree_release(&(*mt)->singlesample_mt);
882 intel_resolve_map_clear(&(*mt)->hiz_map);
883
884 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
885 free((*mt)->level[i].slice);
886 }
887
888 free(*mt);
889 }
890 *mt = NULL;
891 }
892
893 void
894 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
895 int *width, int *height, int *depth)
896 {
897 switch (image->TexObject->Target) {
898 case GL_TEXTURE_1D_ARRAY:
899 *width = image->Width;
900 *height = 1;
901 *depth = image->Height;
902 break;
903 default:
904 *width = image->Width;
905 *height = image->Height;
906 *depth = image->Depth;
907 break;
908 }
909 }
910
911 /**
912 * Can the image be pulled into a unified mipmap tree? This mirrors
913 * the completeness test in a lot of ways.
914 *
915 * Not sure whether I want to pass gl_texture_image here.
916 */
917 bool
918 intel_miptree_match_image(struct intel_mipmap_tree *mt,
919 struct gl_texture_image *image)
920 {
921 struct intel_texture_image *intelImage = intel_texture_image(image);
922 GLuint level = intelImage->base.Base.Level;
923 int width, height, depth;
924
925 /* glTexImage* choose the texture object based on the target passed in, and
926 * objects can't change targets over their lifetimes, so this should be
927 * true.
928 */
929 assert(target_to_target(image->TexObject->Target) == mt->target);
930
931 gl_format mt_format = mt->format;
932 if (mt->format == MESA_FORMAT_X8_Z24 && mt->stencil_mt)
933 mt_format = MESA_FORMAT_S8_Z24;
934 if (mt->format == MESA_FORMAT_Z32_FLOAT && mt->stencil_mt)
935 mt_format = MESA_FORMAT_Z32_FLOAT_X24S8;
936 if (mt->etc_format != MESA_FORMAT_NONE)
937 mt_format = mt->etc_format;
938
939 if (image->TexFormat != mt_format)
940 return false;
941
942 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
943
944 if (mt->target == GL_TEXTURE_CUBE_MAP)
945 depth = 6;
946
947 /* Test image dimensions against the base level image adjusted for
948 * minification. This will also catch images not present in the
949 * tree, changed targets, etc.
950 */
951 if (mt->target == GL_TEXTURE_2D_MULTISAMPLE ||
952 mt->target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
953 /* nonzero level here is always bogus */
954 assert(level == 0);
955
956 if (width != mt->logical_width0 ||
957 height != mt->logical_height0 ||
958 depth != mt->logical_depth0) {
959 return false;
960 }
961 }
962 else {
963 /* all normal textures, renderbuffers, etc */
964 if (width != mt->level[level].width ||
965 height != mt->level[level].height ||
966 depth != mt->level[level].depth) {
967 return false;
968 }
969 }
970
971 if (image->NumSamples != mt->num_samples)
972 return false;
973
974 return true;
975 }
976
977
978 void
979 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
980 GLuint level,
981 GLuint x, GLuint y,
982 GLuint w, GLuint h, GLuint d)
983 {
984 mt->level[level].width = w;
985 mt->level[level].height = h;
986 mt->level[level].depth = d;
987 mt->level[level].level_x = x;
988 mt->level[level].level_y = y;
989
990 DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__,
991 level, w, h, d, x, y);
992
993 assert(mt->level[level].slice == NULL);
994
995 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
996 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
997 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
998 }
999
1000
1001 void
1002 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1003 GLuint level, GLuint img,
1004 GLuint x, GLuint y)
1005 {
1006 if (img == 0 && level == 0)
1007 assert(x == 0 && y == 0);
1008
1009 assert(img < mt->level[level].depth);
1010
1011 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1012 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1013
1014 DBG("%s level %d img %d pos %d,%d\n",
1015 __FUNCTION__, level, img,
1016 mt->level[level].slice[img].x_offset,
1017 mt->level[level].slice[img].y_offset);
1018 }
1019
1020 void
1021 intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
1022 GLuint level, GLuint slice,
1023 GLuint *x, GLuint *y)
1024 {
1025 assert(slice < mt->level[level].depth);
1026
1027 *x = mt->level[level].slice[slice].x_offset;
1028 *y = mt->level[level].slice[slice].y_offset;
1029 }
1030
1031 /**
1032 * Rendering with tiled buffers requires that the base address of the buffer
1033 * be aligned to a page boundary. For renderbuffers, and sometimes with
1034 * textures, we may want the surface to point at a texture image level that
1035 * isn't at a page boundary.
1036 *
1037 * This function returns an appropriately-aligned base offset
1038 * according to the tiling restrictions, plus any required x/y offset
1039 * from there.
1040 */
1041 uint32_t
1042 intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
1043 GLuint level, GLuint slice,
1044 uint32_t *tile_x,
1045 uint32_t *tile_y)
1046 {
1047 struct intel_region *region = mt->region;
1048 uint32_t x, y;
1049 uint32_t mask_x, mask_y;
1050
1051 intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
1052 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1053
1054 *tile_x = x & mask_x;
1055 *tile_y = y & mask_y;
1056
1057 return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
1058 false);
1059 }
1060
1061 static void
1062 intel_miptree_copy_slice_sw(struct brw_context *brw,
1063 struct intel_mipmap_tree *dst_mt,
1064 struct intel_mipmap_tree *src_mt,
1065 int level,
1066 int slice,
1067 int width,
1068 int height)
1069 {
1070 void *src, *dst;
1071 int src_stride, dst_stride;
1072 int cpp = dst_mt->cpp;
1073
1074 intel_miptree_map(brw, src_mt,
1075 level, slice,
1076 0, 0,
1077 width, height,
1078 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1079 &src, &src_stride);
1080
1081 intel_miptree_map(brw, dst_mt,
1082 level, slice,
1083 0, 0,
1084 width, height,
1085 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1086 BRW_MAP_DIRECT_BIT,
1087 &dst, &dst_stride);
1088
1089 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1090 _mesa_get_format_name(src_mt->format),
1091 src_mt, src, src_stride,
1092 _mesa_get_format_name(dst_mt->format),
1093 dst_mt, dst, dst_stride,
1094 width, height);
1095
1096 int row_size = cpp * width;
1097 if (src_stride == row_size &&
1098 dst_stride == row_size) {
1099 memcpy(dst, src, row_size * height);
1100 } else {
1101 for (int i = 0; i < height; i++) {
1102 memcpy(dst, src, row_size);
1103 dst += dst_stride;
1104 src += src_stride;
1105 }
1106 }
1107
1108 intel_miptree_unmap(brw, dst_mt, level, slice);
1109 intel_miptree_unmap(brw, src_mt, level, slice);
1110
1111 /* Don't forget to copy the stencil data over, too. We could have skipped
1112 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1113 * shuffling the two data sources in/out of temporary storage instead of
1114 * the direct mapping we get this way.
1115 */
1116 if (dst_mt->stencil_mt) {
1117 assert(src_mt->stencil_mt);
1118 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1119 level, slice, width, height);
1120 }
1121 }
1122
1123 static void
1124 intel_miptree_copy_slice(struct brw_context *brw,
1125 struct intel_mipmap_tree *dst_mt,
1126 struct intel_mipmap_tree *src_mt,
1127 int level,
1128 int face,
1129 int depth)
1130
1131 {
1132 gl_format format = src_mt->format;
1133 uint32_t width = src_mt->level[level].width;
1134 uint32_t height = src_mt->level[level].height;
1135 int slice;
1136
1137 if (face > 0)
1138 slice = face;
1139 else
1140 slice = depth;
1141
1142 assert(depth < src_mt->level[level].depth);
1143 assert(src_mt->format == dst_mt->format);
1144
1145 if (dst_mt->compressed) {
1146 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1147 width = ALIGN(width, dst_mt->align_w);
1148 }
1149
1150 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1151 * below won't apply since we can't do the depth's Y tiling or the
1152 * stencil's W tiling in the blitter.
1153 */
1154 if (src_mt->stencil_mt) {
1155 intel_miptree_copy_slice_sw(brw,
1156 dst_mt, src_mt,
1157 level, slice,
1158 width, height);
1159 return;
1160 }
1161
1162 uint32_t dst_x, dst_y, src_x, src_y;
1163 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1164 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1165
1166 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1167 _mesa_get_format_name(src_mt->format),
1168 src_mt, src_x, src_y, src_mt->region->pitch,
1169 _mesa_get_format_name(dst_mt->format),
1170 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1171 width, height);
1172
1173 if (!intel_miptree_blit(brw,
1174 src_mt, level, slice, 0, 0, false,
1175 dst_mt, level, slice, 0, 0, false,
1176 width, height, GL_COPY)) {
1177 perf_debug("miptree validate blit for %s failed\n",
1178 _mesa_get_format_name(format));
1179
1180 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1181 width, height);
1182 }
1183 }
1184
1185 /**
1186 * Copies the image's current data to the given miptree, and associates that
1187 * miptree with the image.
1188 *
1189 * If \c invalidate is true, then the actual image data does not need to be
1190 * copied, but the image still needs to be associated to the new miptree (this
1191 * is set to true if we're about to clear the image).
1192 */
1193 void
1194 intel_miptree_copy_teximage(struct brw_context *brw,
1195 struct intel_texture_image *intelImage,
1196 struct intel_mipmap_tree *dst_mt,
1197 bool invalidate)
1198 {
1199 struct intel_mipmap_tree *src_mt = intelImage->mt;
1200 struct intel_texture_object *intel_obj =
1201 intel_texture_object(intelImage->base.Base.TexObject);
1202 int level = intelImage->base.Base.Level;
1203 int face = intelImage->base.Base.Face;
1204 GLuint depth = intelImage->base.Base.Depth;
1205
1206 if (!invalidate) {
1207 for (int slice = 0; slice < depth; slice++) {
1208 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1209 }
1210 }
1211
1212 intel_miptree_reference(&intelImage->mt, dst_mt);
1213 intel_obj->needs_validate = true;
1214 }
1215
1216 bool
1217 intel_miptree_alloc_mcs(struct brw_context *brw,
1218 struct intel_mipmap_tree *mt,
1219 GLuint num_samples)
1220 {
1221 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1222 assert(mt->mcs_mt == NULL);
1223
1224 /* Choose the correct format for the MCS buffer. All that really matters
1225 * is that we allocate the right buffer size, since we'll always be
1226 * accessing this miptree using MCS-specific hardware mechanisms, which
1227 * infer the correct format based on num_samples.
1228 */
1229 gl_format format;
1230 switch (num_samples) {
1231 case 4:
1232 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1233 * each sample).
1234 */
1235 format = MESA_FORMAT_R8;
1236 break;
1237 case 8:
1238 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1239 * for each sample, plus 8 padding bits).
1240 */
1241 format = MESA_FORMAT_R_UINT32;
1242 break;
1243 default:
1244 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1245 return false;
1246 };
1247
1248 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1249 *
1250 * "The MCS surface must be stored as Tile Y."
1251 */
1252 mt->mcs_state = INTEL_MCS_STATE_MSAA;
1253 mt->mcs_mt = intel_miptree_create(brw,
1254 mt->target,
1255 format,
1256 mt->first_level,
1257 mt->last_level,
1258 mt->logical_width0,
1259 mt->logical_height0,
1260 mt->logical_depth0,
1261 true,
1262 0 /* num_samples */,
1263 INTEL_MIPTREE_TILING_Y);
1264
1265 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1266 *
1267 * When MCS buffer is enabled and bound to MSRT, it is required that it
1268 * is cleared prior to any rendering.
1269 *
1270 * Since we don't use the MCS buffer for any purpose other than rendering,
1271 * it makes sense to just clear it immediately upon allocation.
1272 *
1273 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1274 */
1275 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1276 memset(data, 0xff, mt->mcs_mt->region->bo->size);
1277 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1278
1279 return mt->mcs_mt;
1280 }
1281
1282
1283 bool
1284 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1285 struct intel_mipmap_tree *mt)
1286 {
1287 assert(mt->mcs_mt == NULL);
1288
1289 /* The format of the MCS buffer is opaque to the driver; all that matters
1290 * is that we get its size and pitch right. We'll pretend that the format
1291 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1292 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1293 * the block width and then a further factor of 4. Since an MCS tile
1294 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1295 * we'll need to scale the height down by the block height and then a
1296 * further factor of 8.
1297 */
1298 const gl_format format = MESA_FORMAT_R_UINT32;
1299 unsigned block_width_px;
1300 unsigned block_height;
1301 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1302 unsigned width_divisor = block_width_px * 4;
1303 unsigned height_divisor = block_height * 8;
1304 unsigned mcs_width =
1305 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1306 unsigned mcs_height =
1307 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1308 assert(mt->logical_depth0 == 1);
1309 mt->mcs_mt = intel_miptree_create(brw,
1310 mt->target,
1311 format,
1312 mt->first_level,
1313 mt->last_level,
1314 mcs_width,
1315 mcs_height,
1316 mt->logical_depth0,
1317 true,
1318 0 /* num_samples */,
1319 INTEL_MIPTREE_TILING_Y);
1320
1321 return mt->mcs_mt;
1322 }
1323
1324
1325 /**
1326 * Helper for intel_miptree_alloc_hiz() that sets
1327 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1328 * \c has_hiz was set.
1329 */
1330 static bool
1331 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1332 struct intel_mipmap_tree *mt,
1333 uint32_t level,
1334 uint32_t layer)
1335 {
1336 assert(mt->hiz_mt);
1337
1338 if (brw->is_haswell) {
1339 const struct intel_mipmap_level *l = &mt->level[level];
1340
1341 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1342 * and the height is 4 aligned. This allows our HiZ support
1343 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1344 * we can grow the width & height to allow the HiZ op to
1345 * force the proper size alignments.
1346 */
1347 if (level > 0 && ((l->width & 7) || (l->height & 3))) {
1348 return false;
1349 }
1350 }
1351
1352 mt->level[level].slice[layer].has_hiz = true;
1353 return true;
1354 }
1355
1356
1357
1358 bool
1359 intel_miptree_alloc_hiz(struct brw_context *brw,
1360 struct intel_mipmap_tree *mt)
1361 {
1362 assert(mt->hiz_mt == NULL);
1363 mt->hiz_mt = intel_miptree_create(brw,
1364 mt->target,
1365 mt->format,
1366 mt->first_level,
1367 mt->last_level,
1368 mt->logical_width0,
1369 mt->logical_height0,
1370 mt->logical_depth0,
1371 true,
1372 mt->num_samples,
1373 INTEL_MIPTREE_TILING_ANY);
1374
1375 if (!mt->hiz_mt)
1376 return false;
1377
1378 /* Mark that all slices need a HiZ resolve. */
1379 struct intel_resolve_map *head = &mt->hiz_map;
1380 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1381 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1382 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1383 continue;
1384
1385 head->next = malloc(sizeof(*head->next));
1386 head->next->prev = head;
1387 head->next->next = NULL;
1388 head = head->next;
1389
1390 head->level = level;
1391 head->layer = layer;
1392 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1393 }
1394 }
1395
1396 return true;
1397 }
1398
1399 /**
1400 * Does the miptree slice have hiz enabled?
1401 */
1402 bool
1403 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1404 uint32_t level,
1405 uint32_t layer)
1406 {
1407 intel_miptree_check_level_layer(mt, level, layer);
1408 return mt->level[level].slice[layer].has_hiz;
1409 }
1410
1411 void
1412 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1413 uint32_t level,
1414 uint32_t layer)
1415 {
1416 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1417 return;
1418
1419 intel_resolve_map_set(&mt->hiz_map,
1420 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1421 }
1422
1423
1424 void
1425 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1426 uint32_t level,
1427 uint32_t layer)
1428 {
1429 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1430 return;
1431
1432 intel_resolve_map_set(&mt->hiz_map,
1433 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1434 }
1435
1436 void
1437 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1438 uint32_t level)
1439 {
1440 uint32_t layer;
1441 uint32_t end_layer = mt->level[level].depth;
1442
1443 for (layer = 0; layer < end_layer; layer++) {
1444 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1445 }
1446 }
1447
1448 static bool
1449 intel_miptree_slice_resolve(struct brw_context *brw,
1450 struct intel_mipmap_tree *mt,
1451 uint32_t level,
1452 uint32_t layer,
1453 enum gen6_hiz_op need)
1454 {
1455 intel_miptree_check_level_layer(mt, level, layer);
1456
1457 struct intel_resolve_map *item =
1458 intel_resolve_map_get(&mt->hiz_map, level, layer);
1459
1460 if (!item || item->need != need)
1461 return false;
1462
1463 intel_hiz_exec(brw, mt, level, layer, need);
1464 intel_resolve_map_remove(item);
1465 return true;
1466 }
1467
1468 bool
1469 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1470 struct intel_mipmap_tree *mt,
1471 uint32_t level,
1472 uint32_t layer)
1473 {
1474 return intel_miptree_slice_resolve(brw, mt, level, layer,
1475 GEN6_HIZ_OP_HIZ_RESOLVE);
1476 }
1477
1478 bool
1479 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1480 struct intel_mipmap_tree *mt,
1481 uint32_t level,
1482 uint32_t layer)
1483 {
1484 return intel_miptree_slice_resolve(brw, mt, level, layer,
1485 GEN6_HIZ_OP_DEPTH_RESOLVE);
1486 }
1487
1488 static bool
1489 intel_miptree_all_slices_resolve(struct brw_context *brw,
1490 struct intel_mipmap_tree *mt,
1491 enum gen6_hiz_op need)
1492 {
1493 bool did_resolve = false;
1494 struct intel_resolve_map *i, *next;
1495
1496 for (i = mt->hiz_map.next; i; i = next) {
1497 next = i->next;
1498 if (i->need != need)
1499 continue;
1500
1501 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1502 intel_resolve_map_remove(i);
1503 did_resolve = true;
1504 }
1505
1506 return did_resolve;
1507 }
1508
1509 bool
1510 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1511 struct intel_mipmap_tree *mt)
1512 {
1513 return intel_miptree_all_slices_resolve(brw, mt,
1514 GEN6_HIZ_OP_HIZ_RESOLVE);
1515 }
1516
1517 bool
1518 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1519 struct intel_mipmap_tree *mt)
1520 {
1521 return intel_miptree_all_slices_resolve(brw, mt,
1522 GEN6_HIZ_OP_DEPTH_RESOLVE);
1523 }
1524
1525
1526 void
1527 intel_miptree_resolve_color(struct brw_context *brw,
1528 struct intel_mipmap_tree *mt)
1529 {
1530 switch (mt->mcs_state) {
1531 case INTEL_MCS_STATE_NONE:
1532 case INTEL_MCS_STATE_MSAA:
1533 case INTEL_MCS_STATE_RESOLVED:
1534 /* No resolve needed */
1535 break;
1536 case INTEL_MCS_STATE_UNRESOLVED:
1537 case INTEL_MCS_STATE_CLEAR:
1538 brw_blorp_resolve_color(brw, mt);
1539 break;
1540 }
1541 }
1542
1543
1544 /**
1545 * Make it possible to share the region backing the given miptree with another
1546 * process or another miptree.
1547 *
1548 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1549 * then discard the MCS buffer, if present. We also set the mcs_state to
1550 * INTEL_MCS_STATE_NONE to ensure that no MCS buffer gets allocated in the
1551 * future.
1552 */
1553 void
1554 intel_miptree_make_shareable(struct brw_context *brw,
1555 struct intel_mipmap_tree *mt)
1556 {
1557 /* MCS buffers are also used for multisample buffers, but we can't resolve
1558 * away a multisample MCS buffer because it's an integral part of how the
1559 * pixel data is stored. Fortunately this code path should never be
1560 * reached for multisample buffers.
1561 */
1562 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1563
1564 if (mt->mcs_mt) {
1565 intel_miptree_resolve_color(brw, mt);
1566 intel_miptree_release(&mt->mcs_mt);
1567 mt->mcs_state = INTEL_MCS_STATE_NONE;
1568 }
1569 }
1570
1571
1572 /**
1573 * \brief Get pointer offset into stencil buffer.
1574 *
1575 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1576 * must decode the tile's layout in software.
1577 *
1578 * See
1579 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1580 * Format.
1581 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1582 *
1583 * Even though the returned offset is always positive, the return type is
1584 * signed due to
1585 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1586 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1587 */
1588 static intptr_t
1589 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1590 {
1591 uint32_t tile_size = 4096;
1592 uint32_t tile_width = 64;
1593 uint32_t tile_height = 64;
1594 uint32_t row_size = 64 * stride;
1595
1596 uint32_t tile_x = x / tile_width;
1597 uint32_t tile_y = y / tile_height;
1598
1599 /* The byte's address relative to the tile's base addres. */
1600 uint32_t byte_x = x % tile_width;
1601 uint32_t byte_y = y % tile_height;
1602
1603 uintptr_t u = tile_y * row_size
1604 + tile_x * tile_size
1605 + 512 * (byte_x / 8)
1606 + 64 * (byte_y / 8)
1607 + 32 * ((byte_y / 4) % 2)
1608 + 16 * ((byte_x / 4) % 2)
1609 + 8 * ((byte_y / 2) % 2)
1610 + 4 * ((byte_x / 2) % 2)
1611 + 2 * (byte_y % 2)
1612 + 1 * (byte_x % 2);
1613
1614 if (swizzled) {
1615 /* adjust for bit6 swizzling */
1616 if (((byte_x / 8) % 2) == 1) {
1617 if (((byte_y / 8) % 2) == 0) {
1618 u += 64;
1619 } else {
1620 u -= 64;
1621 }
1622 }
1623 }
1624
1625 return u;
1626 }
1627
1628 static void
1629 intel_miptree_updownsample(struct brw_context *brw,
1630 struct intel_mipmap_tree *src,
1631 struct intel_mipmap_tree *dst,
1632 unsigned width,
1633 unsigned height)
1634 {
1635 int src_x0 = 0;
1636 int src_y0 = 0;
1637 int dst_x0 = 0;
1638 int dst_y0 = 0;
1639
1640 brw_blorp_blit_miptrees(brw,
1641 src, 0 /* level */, 0 /* layer */,
1642 dst, 0 /* level */, 0 /* layer */,
1643 src_x0, src_y0,
1644 width, height,
1645 dst_x0, dst_y0,
1646 width, height,
1647 GL_NEAREST, false, false /*mirror x, y*/);
1648
1649 if (src->stencil_mt) {
1650 brw_blorp_blit_miptrees(brw,
1651 src->stencil_mt, 0 /* level */, 0 /* layer */,
1652 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1653 src_x0, src_y0,
1654 width, height,
1655 dst_x0, dst_y0,
1656 width, height,
1657 GL_NEAREST, false, false /*mirror x, y*/);
1658 }
1659 }
1660
1661 static void
1662 assert_is_flat(struct intel_mipmap_tree *mt)
1663 {
1664 assert(mt->target == GL_TEXTURE_2D);
1665 assert(mt->first_level == 0);
1666 assert(mt->last_level == 0);
1667 }
1668
1669 /**
1670 * \brief Downsample from mt to mt->singlesample_mt.
1671 *
1672 * If the miptree needs no downsample, then skip.
1673 */
1674 void
1675 intel_miptree_downsample(struct brw_context *brw,
1676 struct intel_mipmap_tree *mt)
1677 {
1678 /* Only flat, renderbuffer-like miptrees are supported. */
1679 assert_is_flat(mt);
1680
1681 if (!mt->need_downsample)
1682 return;
1683 intel_miptree_updownsample(brw,
1684 mt, mt->singlesample_mt,
1685 mt->logical_width0,
1686 mt->logical_height0);
1687 mt->need_downsample = false;
1688 }
1689
1690 /**
1691 * \brief Upsample from mt->singlesample_mt to mt.
1692 *
1693 * The upsample is done unconditionally.
1694 */
1695 void
1696 intel_miptree_upsample(struct brw_context *brw,
1697 struct intel_mipmap_tree *mt)
1698 {
1699 /* Only flat, renderbuffer-like miptrees are supported. */
1700 assert_is_flat(mt);
1701 assert(!mt->need_downsample);
1702
1703 intel_miptree_updownsample(brw,
1704 mt->singlesample_mt, mt,
1705 mt->logical_width0,
1706 mt->logical_height0);
1707 }
1708
1709 void *
1710 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1711 {
1712 /* CPU accesses to color buffers don't understand fast color clears, so
1713 * resolve any pending fast color clears before we map.
1714 */
1715 intel_miptree_resolve_color(brw, mt);
1716
1717 drm_intel_bo *bo = mt->region->bo;
1718
1719 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1720 if (drm_intel_bo_busy(bo)) {
1721 perf_debug("Mapping a busy miptree, causing a stall on the GPU.\n");
1722 }
1723 }
1724
1725 intel_batchbuffer_flush(brw);
1726
1727 if (mt->region->tiling != I915_TILING_NONE)
1728 drm_intel_gem_bo_map_gtt(bo);
1729 else
1730 drm_intel_bo_map(bo, true);
1731
1732 return bo->virtual;
1733 }
1734
1735 void
1736 intel_miptree_unmap_raw(struct brw_context *brw,
1737 struct intel_mipmap_tree *mt)
1738 {
1739 drm_intel_bo_unmap(mt->region->bo);
1740 }
1741
1742 static void
1743 intel_miptree_map_gtt(struct brw_context *brw,
1744 struct intel_mipmap_tree *mt,
1745 struct intel_miptree_map *map,
1746 unsigned int level, unsigned int slice)
1747 {
1748 unsigned int bw, bh;
1749 void *base;
1750 unsigned int image_x, image_y;
1751 int x = map->x;
1752 int y = map->y;
1753
1754 /* For compressed formats, the stride is the number of bytes per
1755 * row of blocks. intel_miptree_get_image_offset() already does
1756 * the divide.
1757 */
1758 _mesa_get_format_block_size(mt->format, &bw, &bh);
1759 assert(y % bh == 0);
1760 y /= bh;
1761
1762 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1763
1764 if (base == NULL)
1765 map->ptr = NULL;
1766 else {
1767 /* Note that in the case of cube maps, the caller must have passed the
1768 * slice number referencing the face.
1769 */
1770 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1771 x += image_x;
1772 y += image_y;
1773
1774 map->stride = mt->region->pitch;
1775 map->ptr = base + y * map->stride + x * mt->cpp;
1776 }
1777
1778 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1779 map->x, map->y, map->w, map->h,
1780 mt, _mesa_get_format_name(mt->format),
1781 x, y, map->ptr, map->stride);
1782 }
1783
1784 static void
1785 intel_miptree_unmap_gtt(struct brw_context *brw,
1786 struct intel_mipmap_tree *mt,
1787 struct intel_miptree_map *map,
1788 unsigned int level,
1789 unsigned int slice)
1790 {
1791 intel_miptree_unmap_raw(brw, mt);
1792 }
1793
1794 static void
1795 intel_miptree_map_blit(struct brw_context *brw,
1796 struct intel_mipmap_tree *mt,
1797 struct intel_miptree_map *map,
1798 unsigned int level, unsigned int slice)
1799 {
1800 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1801 0, 0,
1802 map->w, map->h, 1,
1803 false, 0,
1804 INTEL_MIPTREE_TILING_NONE);
1805 if (!map->mt) {
1806 fprintf(stderr, "Failed to allocate blit temporary\n");
1807 goto fail;
1808 }
1809 map->stride = map->mt->region->pitch;
1810
1811 if (!intel_miptree_blit(brw,
1812 mt, level, slice,
1813 map->x, map->y, false,
1814 map->mt, 0, 0,
1815 0, 0, false,
1816 map->w, map->h, GL_COPY)) {
1817 fprintf(stderr, "Failed to blit\n");
1818 goto fail;
1819 }
1820
1821 map->ptr = intel_miptree_map_raw(brw, map->mt);
1822
1823 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1824 map->x, map->y, map->w, map->h,
1825 mt, _mesa_get_format_name(mt->format),
1826 level, slice, map->ptr, map->stride);
1827
1828 return;
1829
1830 fail:
1831 intel_miptree_release(&map->mt);
1832 map->ptr = NULL;
1833 map->stride = 0;
1834 }
1835
1836 static void
1837 intel_miptree_unmap_blit(struct brw_context *brw,
1838 struct intel_mipmap_tree *mt,
1839 struct intel_miptree_map *map,
1840 unsigned int level,
1841 unsigned int slice)
1842 {
1843 struct gl_context *ctx = &brw->ctx;
1844
1845 intel_miptree_unmap_raw(brw, map->mt);
1846
1847 if (map->mode & GL_MAP_WRITE_BIT) {
1848 bool ok = intel_miptree_blit(brw,
1849 map->mt, 0, 0,
1850 0, 0, false,
1851 mt, level, slice,
1852 map->x, map->y, false,
1853 map->w, map->h, GL_COPY);
1854 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1855 }
1856
1857 intel_miptree_release(&map->mt);
1858 }
1859
1860 #ifdef __SSE4_1__
1861 /**
1862 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1863 */
1864 static void
1865 intel_miptree_map_movntdqa(struct brw_context *brw,
1866 struct intel_mipmap_tree *mt,
1867 struct intel_miptree_map *map,
1868 unsigned int level, unsigned int slice)
1869 {
1870 assert(map->mode & GL_MAP_READ_BIT);
1871 assert(!(map->mode & GL_MAP_WRITE_BIT));
1872
1873 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1874 map->x, map->y, map->w, map->h,
1875 mt, _mesa_get_format_name(mt->format),
1876 level, slice, map->ptr, map->stride);
1877
1878 /* Map the original image */
1879 uint32_t image_x;
1880 uint32_t image_y;
1881 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1882 image_x += map->x;
1883 image_y += map->y;
1884
1885 void *src = intel_miptree_map_raw(brw, mt);
1886 if (!src)
1887 return;
1888 src += image_y * mt->region->pitch;
1889 src += image_x * mt->region->cpp;
1890
1891 /* Due to the pixel offsets for the particular image being mapped, our
1892 * src pointer may not be 16-byte aligned. However, if the pitch is
1893 * divisible by 16, then the amount by which it's misaligned will remain
1894 * consistent from row to row.
1895 */
1896 assert((mt->region->pitch % 16) == 0);
1897 const int misalignment = ((uintptr_t) src) & 15;
1898
1899 /* Create an untiled temporary buffer for the mapping. */
1900 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1901
1902 map->stride = ALIGN(misalignment + width_bytes, 16);
1903
1904 map->buffer = malloc(map->stride * map->h);
1905 /* Offset the destination so it has the same misalignment as src. */
1906 map->ptr = map->buffer + misalignment;
1907
1908 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1909
1910 for (uint32_t y = 0; y < map->h; y++) {
1911 void *dst_ptr = map->ptr + y * map->stride;
1912 void *src_ptr = src + y * mt->region->pitch;
1913
1914 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1915 }
1916
1917 intel_miptree_unmap_raw(brw, mt);
1918 }
1919
1920 static void
1921 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1922 struct intel_mipmap_tree *mt,
1923 struct intel_miptree_map *map,
1924 unsigned int level,
1925 unsigned int slice)
1926 {
1927 free(map->buffer);
1928 map->buffer = NULL;
1929 map->ptr = NULL;
1930 }
1931 #endif
1932
1933 static void
1934 intel_miptree_map_s8(struct brw_context *brw,
1935 struct intel_mipmap_tree *mt,
1936 struct intel_miptree_map *map,
1937 unsigned int level, unsigned int slice)
1938 {
1939 map->stride = map->w;
1940 map->buffer = map->ptr = malloc(map->stride * map->h);
1941 if (!map->buffer)
1942 return;
1943
1944 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1945 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1946 * invalidate is set, since we'll be writing the whole rectangle from our
1947 * temporary buffer back out.
1948 */
1949 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1950 uint8_t *untiled_s8_map = map->ptr;
1951 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1952 unsigned int image_x, image_y;
1953
1954 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1955
1956 for (uint32_t y = 0; y < map->h; y++) {
1957 for (uint32_t x = 0; x < map->w; x++) {
1958 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1959 x + image_x + map->x,
1960 y + image_y + map->y,
1961 brw->has_swizzling);
1962 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1963 }
1964 }
1965
1966 intel_miptree_unmap_raw(brw, mt);
1967
1968 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1969 map->x, map->y, map->w, map->h,
1970 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1971 } else {
1972 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1973 map->x, map->y, map->w, map->h,
1974 mt, map->ptr, map->stride);
1975 }
1976 }
1977
1978 static void
1979 intel_miptree_unmap_s8(struct brw_context *brw,
1980 struct intel_mipmap_tree *mt,
1981 struct intel_miptree_map *map,
1982 unsigned int level,
1983 unsigned int slice)
1984 {
1985 if (map->mode & GL_MAP_WRITE_BIT) {
1986 unsigned int image_x, image_y;
1987 uint8_t *untiled_s8_map = map->ptr;
1988 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1989
1990 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1991
1992 for (uint32_t y = 0; y < map->h; y++) {
1993 for (uint32_t x = 0; x < map->w; x++) {
1994 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1995 x + map->x,
1996 y + map->y,
1997 brw->has_swizzling);
1998 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1999 }
2000 }
2001
2002 intel_miptree_unmap_raw(brw, mt);
2003 }
2004
2005 free(map->buffer);
2006 }
2007
2008 static void
2009 intel_miptree_map_etc(struct brw_context *brw,
2010 struct intel_mipmap_tree *mt,
2011 struct intel_miptree_map *map,
2012 unsigned int level,
2013 unsigned int slice)
2014 {
2015 assert(mt->etc_format != MESA_FORMAT_NONE);
2016 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2017 assert(mt->format == MESA_FORMAT_RGBX8888_REV);
2018 }
2019
2020 assert(map->mode & GL_MAP_WRITE_BIT);
2021 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2022
2023 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2024 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2025 map->w, map->h, 1));
2026 map->ptr = map->buffer;
2027 }
2028
2029 static void
2030 intel_miptree_unmap_etc(struct brw_context *brw,
2031 struct intel_mipmap_tree *mt,
2032 struct intel_miptree_map *map,
2033 unsigned int level,
2034 unsigned int slice)
2035 {
2036 uint32_t image_x;
2037 uint32_t image_y;
2038 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2039
2040 image_x += map->x;
2041 image_y += map->y;
2042
2043 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2044 + image_y * mt->region->pitch
2045 + image_x * mt->region->cpp;
2046
2047 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2048 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
2049 map->ptr, map->stride,
2050 map->w, map->h);
2051 else
2052 _mesa_unpack_etc2_format(dst, mt->region->pitch,
2053 map->ptr, map->stride,
2054 map->w, map->h, mt->etc_format);
2055
2056 intel_miptree_unmap_raw(brw, mt);
2057 free(map->buffer);
2058 }
2059
2060 /**
2061 * Mapping function for packed depth/stencil miptrees backed by real separate
2062 * miptrees for depth and stencil.
2063 *
2064 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2065 * separate from the depth buffer. Yet at the GL API level, we have to expose
2066 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2067 * be able to map that memory for texture storage and glReadPixels-type
2068 * operations. We give Mesa core that access by mallocing a temporary and
2069 * copying the data between the actual backing store and the temporary.
2070 */
2071 static void
2072 intel_miptree_map_depthstencil(struct brw_context *brw,
2073 struct intel_mipmap_tree *mt,
2074 struct intel_miptree_map *map,
2075 unsigned int level, unsigned int slice)
2076 {
2077 struct intel_mipmap_tree *z_mt = mt;
2078 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2079 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
2080 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2081
2082 map->stride = map->w * packed_bpp;
2083 map->buffer = map->ptr = malloc(map->stride * map->h);
2084 if (!map->buffer)
2085 return;
2086
2087 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2088 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2089 * invalidate is set, since we'll be writing the whole rectangle from our
2090 * temporary buffer back out.
2091 */
2092 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2093 uint32_t *packed_map = map->ptr;
2094 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2095 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2096 unsigned int s_image_x, s_image_y;
2097 unsigned int z_image_x, z_image_y;
2098
2099 intel_miptree_get_image_offset(s_mt, level, slice,
2100 &s_image_x, &s_image_y);
2101 intel_miptree_get_image_offset(z_mt, level, slice,
2102 &z_image_x, &z_image_y);
2103
2104 for (uint32_t y = 0; y < map->h; y++) {
2105 for (uint32_t x = 0; x < map->w; x++) {
2106 int map_x = map->x + x, map_y = map->y + y;
2107 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2108 map_x + s_image_x,
2109 map_y + s_image_y,
2110 brw->has_swizzling);
2111 ptrdiff_t z_offset = ((map_y + z_image_y) *
2112 (z_mt->region->pitch / 4) +
2113 (map_x + z_image_x));
2114 uint8_t s = s_map[s_offset];
2115 uint32_t z = z_map[z_offset];
2116
2117 if (map_z32f_x24s8) {
2118 packed_map[(y * map->w + x) * 2 + 0] = z;
2119 packed_map[(y * map->w + x) * 2 + 1] = s;
2120 } else {
2121 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2122 }
2123 }
2124 }
2125
2126 intel_miptree_unmap_raw(brw, s_mt);
2127 intel_miptree_unmap_raw(brw, z_mt);
2128
2129 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2130 __FUNCTION__,
2131 map->x, map->y, map->w, map->h,
2132 z_mt, map->x + z_image_x, map->y + z_image_y,
2133 s_mt, map->x + s_image_x, map->y + s_image_y,
2134 map->ptr, map->stride);
2135 } else {
2136 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2137 map->x, map->y, map->w, map->h,
2138 mt, map->ptr, map->stride);
2139 }
2140 }
2141
2142 static void
2143 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2144 struct intel_mipmap_tree *mt,
2145 struct intel_miptree_map *map,
2146 unsigned int level,
2147 unsigned int slice)
2148 {
2149 struct intel_mipmap_tree *z_mt = mt;
2150 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2151 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
2152
2153 if (map->mode & GL_MAP_WRITE_BIT) {
2154 uint32_t *packed_map = map->ptr;
2155 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2156 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2157 unsigned int s_image_x, s_image_y;
2158 unsigned int z_image_x, z_image_y;
2159
2160 intel_miptree_get_image_offset(s_mt, level, slice,
2161 &s_image_x, &s_image_y);
2162 intel_miptree_get_image_offset(z_mt, level, slice,
2163 &z_image_x, &z_image_y);
2164
2165 for (uint32_t y = 0; y < map->h; y++) {
2166 for (uint32_t x = 0; x < map->w; x++) {
2167 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2168 x + s_image_x + map->x,
2169 y + s_image_y + map->y,
2170 brw->has_swizzling);
2171 ptrdiff_t z_offset = ((y + z_image_y) *
2172 (z_mt->region->pitch / 4) +
2173 (x + z_image_x));
2174
2175 if (map_z32f_x24s8) {
2176 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2177 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2178 } else {
2179 uint32_t packed = packed_map[y * map->w + x];
2180 s_map[s_offset] = packed >> 24;
2181 z_map[z_offset] = packed;
2182 }
2183 }
2184 }
2185
2186 intel_miptree_unmap_raw(brw, s_mt);
2187 intel_miptree_unmap_raw(brw, z_mt);
2188
2189 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2190 __FUNCTION__,
2191 map->x, map->y, map->w, map->h,
2192 z_mt, _mesa_get_format_name(z_mt->format),
2193 map->x + z_image_x, map->y + z_image_y,
2194 s_mt, map->x + s_image_x, map->y + s_image_y,
2195 map->ptr, map->stride);
2196 }
2197
2198 free(map->buffer);
2199 }
2200
2201 /**
2202 * Create and attach a map to the miptree at (level, slice). Return the
2203 * attached map.
2204 */
2205 static struct intel_miptree_map*
2206 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2207 unsigned int level,
2208 unsigned int slice,
2209 unsigned int x,
2210 unsigned int y,
2211 unsigned int w,
2212 unsigned int h,
2213 GLbitfield mode)
2214 {
2215 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2216
2217 if (!map)
2218 return NULL;
2219
2220 assert(mt->level[level].slice[slice].map == NULL);
2221 mt->level[level].slice[slice].map = map;
2222
2223 map->mode = mode;
2224 map->x = x;
2225 map->y = y;
2226 map->w = w;
2227 map->h = h;
2228
2229 return map;
2230 }
2231
2232 /**
2233 * Release the map at (level, slice).
2234 */
2235 static void
2236 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2237 unsigned int level,
2238 unsigned int slice)
2239 {
2240 struct intel_miptree_map **map;
2241
2242 map = &mt->level[level].slice[slice].map;
2243 free(*map);
2244 *map = NULL;
2245 }
2246
2247 static void
2248 intel_miptree_map_singlesample(struct brw_context *brw,
2249 struct intel_mipmap_tree *mt,
2250 unsigned int level,
2251 unsigned int slice,
2252 unsigned int x,
2253 unsigned int y,
2254 unsigned int w,
2255 unsigned int h,
2256 GLbitfield mode,
2257 void **out_ptr,
2258 int *out_stride)
2259 {
2260 struct intel_miptree_map *map;
2261
2262 assert(mt->num_samples <= 1);
2263
2264 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2265 if (!map){
2266 *out_ptr = NULL;
2267 *out_stride = 0;
2268 return;
2269 }
2270
2271 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2272 if (map->mode & GL_MAP_WRITE_BIT) {
2273 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2274 }
2275
2276 if (mt->format == MESA_FORMAT_S8) {
2277 intel_miptree_map_s8(brw, mt, map, level, slice);
2278 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2279 !(mode & BRW_MAP_DIRECT_BIT)) {
2280 intel_miptree_map_etc(brw, mt, map, level, slice);
2281 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2282 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2283 }
2284 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2285 else if (brw->has_llc &&
2286 !(mode & GL_MAP_WRITE_BIT) &&
2287 !mt->compressed &&
2288 (mt->region->tiling == I915_TILING_X ||
2289 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2290 mt->region->pitch < 32768) {
2291 intel_miptree_map_blit(brw, mt, map, level, slice);
2292 } else if (mt->region->tiling != I915_TILING_NONE &&
2293 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2294 assert(mt->region->pitch < 32768);
2295 intel_miptree_map_blit(brw, mt, map, level, slice);
2296 #ifdef __SSE4_1__
2297 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed) {
2298 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2299 #endif
2300 } else {
2301 intel_miptree_map_gtt(brw, mt, map, level, slice);
2302 }
2303
2304 *out_ptr = map->ptr;
2305 *out_stride = map->stride;
2306
2307 if (map->ptr == NULL)
2308 intel_miptree_release_map(mt, level, slice);
2309 }
2310
2311 static void
2312 intel_miptree_unmap_singlesample(struct brw_context *brw,
2313 struct intel_mipmap_tree *mt,
2314 unsigned int level,
2315 unsigned int slice)
2316 {
2317 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2318
2319 assert(mt->num_samples <= 1);
2320
2321 if (!map)
2322 return;
2323
2324 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2325 mt, _mesa_get_format_name(mt->format), level, slice);
2326
2327 if (mt->format == MESA_FORMAT_S8) {
2328 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2329 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2330 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2331 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2332 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2333 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2334 } else if (map->mt) {
2335 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2336 #ifdef __SSE4_1__
2337 } else if (map->buffer) {
2338 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2339 #endif
2340 } else {
2341 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2342 }
2343
2344 intel_miptree_release_map(mt, level, slice);
2345 }
2346
2347 static void
2348 intel_miptree_map_multisample(struct brw_context *brw,
2349 struct intel_mipmap_tree *mt,
2350 unsigned int level,
2351 unsigned int slice,
2352 unsigned int x,
2353 unsigned int y,
2354 unsigned int w,
2355 unsigned int h,
2356 GLbitfield mode,
2357 void **out_ptr,
2358 int *out_stride)
2359 {
2360 struct gl_context *ctx = &brw->ctx;
2361 struct intel_miptree_map *map;
2362
2363 assert(mt->num_samples > 1);
2364
2365 /* Only flat, renderbuffer-like miptrees are supported. */
2366 if (mt->target != GL_TEXTURE_2D ||
2367 mt->first_level != 0 ||
2368 mt->last_level != 0) {
2369 _mesa_problem(ctx, "attempt to map a multisample miptree for "
2370 "which (target, first_level, last_level != "
2371 "(GL_TEXTURE_2D, 0, 0)");
2372 goto fail;
2373 }
2374
2375 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2376 if (!map)
2377 goto fail;
2378
2379 if (!mt->singlesample_mt) {
2380 mt->singlesample_mt =
2381 intel_miptree_create_for_renderbuffer(brw,
2382 mt->format,
2383 mt->logical_width0,
2384 mt->logical_height0,
2385 0 /*num_samples*/);
2386 if (!mt->singlesample_mt)
2387 goto fail;
2388
2389 map->singlesample_mt_is_tmp = true;
2390 mt->need_downsample = true;
2391 }
2392
2393 intel_miptree_downsample(brw, mt);
2394 intel_miptree_map_singlesample(brw, mt->singlesample_mt,
2395 level, slice,
2396 x, y, w, h,
2397 mode,
2398 out_ptr, out_stride);
2399 return;
2400
2401 fail:
2402 intel_miptree_release_map(mt, level, slice);
2403 *out_ptr = NULL;
2404 *out_stride = 0;
2405 }
2406
2407 static void
2408 intel_miptree_unmap_multisample(struct brw_context *brw,
2409 struct intel_mipmap_tree *mt,
2410 unsigned int level,
2411 unsigned int slice)
2412 {
2413 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2414
2415 assert(mt->num_samples > 1);
2416
2417 if (!map)
2418 return;
2419
2420 intel_miptree_unmap_singlesample(brw, mt->singlesample_mt, level, slice);
2421
2422 mt->need_downsample = false;
2423 if (map->mode & GL_MAP_WRITE_BIT)
2424 intel_miptree_upsample(brw, mt);
2425
2426 if (map->singlesample_mt_is_tmp)
2427 intel_miptree_release(&mt->singlesample_mt);
2428
2429 intel_miptree_release_map(mt, level, slice);
2430 }
2431
2432 void
2433 intel_miptree_map(struct brw_context *brw,
2434 struct intel_mipmap_tree *mt,
2435 unsigned int level,
2436 unsigned int slice,
2437 unsigned int x,
2438 unsigned int y,
2439 unsigned int w,
2440 unsigned int h,
2441 GLbitfield mode,
2442 void **out_ptr,
2443 int *out_stride)
2444 {
2445 if (mt->num_samples <= 1)
2446 intel_miptree_map_singlesample(brw, mt,
2447 level, slice,
2448 x, y, w, h,
2449 mode,
2450 out_ptr, out_stride);
2451 else
2452 intel_miptree_map_multisample(brw, mt,
2453 level, slice,
2454 x, y, w, h,
2455 mode,
2456 out_ptr, out_stride);
2457 }
2458
2459 void
2460 intel_miptree_unmap(struct brw_context *brw,
2461 struct intel_mipmap_tree *mt,
2462 unsigned int level,
2463 unsigned int slice)
2464 {
2465 if (mt->num_samples <= 1)
2466 intel_miptree_unmap_singlesample(brw, mt, level, slice);
2467 else
2468 intel_miptree_unmap_multisample(brw, mt, level, slice);
2469 }