cc51176a3e808c5891be7561a2f676a73268e613
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 if (blt_pitch >= 32768) {
523 perf_debug("blt pitch %u too large to blit, falling back to untiled",
524 blt_pitch);
525 return true;
526 }
527
528 return false;
529 }
530
531 static bool
532 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
533 enum isl_tiling tiling)
534 {
535 const struct gen_device_info *devinfo = &brw->screen->devinfo;
536
537 /* If the BO is too large to fit in the aperture, we need to use the
538 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
539 * handle Y-tiling, so we need to fall back to X.
540 */
541 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
542 tiling == ISL_TILING_Y0)
543 return true;
544
545 return false;
546 }
547
548 static struct intel_mipmap_tree *
549 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
550 unsigned first_level, unsigned last_level,
551 unsigned width0, unsigned height0, unsigned depth0,
552 unsigned num_samples, isl_tiling_flags_t tiling_flags,
553 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
554 unsigned row_pitch, struct brw_bo *bo)
555 {
556 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
557 if (!mt)
558 return NULL;
559
560 if (!create_mapping_table(target, first_level, last_level, depth0,
561 mt->level)) {
562 free(mt);
563 return NULL;
564 }
565
566 mt->refcount = 1;
567
568 if (target == GL_TEXTURE_CUBE_MAP ||
569 target == GL_TEXTURE_CUBE_MAP_ARRAY)
570 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
571
572 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
573 __func__,
574 _mesa_enum_to_string(target),
575 _mesa_get_format_name(format),
576 num_samples, width0, height0, depth0,
577 first_level, last_level, mt);
578
579 struct isl_surf_init_info init_info = {
580 .dim = get_isl_surf_dim(target),
581 .format = translate_tex_format(brw, format, false),
582 .width = width0,
583 .height = height0,
584 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
585 .levels = last_level - first_level + 1,
586 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
587 .samples = num_samples,
588 .row_pitch = row_pitch,
589 .usage = isl_usage_flags,
590 .tiling_flags = tiling_flags,
591 };
592
593 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
594 goto fail;
595
596 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
597 * on gen7 platforms we also need to create Y-tiled copies of stencil for
598 * texturing since the hardware can't sample from W-tiled surfaces. For
599 * everything else, check for corner cases needing special treatment.
600 */
601 bool is_depth_stencil =
602 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
603 if (!is_depth_stencil) {
604 if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
605 mt->surf.tiling, mt->surf.samples)) {
606 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
607 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
608 goto fail;
609 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
610 init_info.tiling_flags = 1u << ISL_TILING_X;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 }
614 }
615
616 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
617 * the size may not be multiple of row_pitch.
618 * See isl_apply_surface_padding().
619 */
620 if (mt->surf.tiling != ISL_TILING_LINEAR)
621 assert(mt->surf.size % mt->surf.row_pitch == 0);
622
623 if (!bo) {
624 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
625 mt->surf.size,
626 BRW_MEMZONE_OTHER,
627 isl_tiling_to_i915_tiling(
628 mt->surf.tiling),
629 mt->surf.row_pitch, alloc_flags);
630 if (!mt->bo)
631 goto fail;
632 } else {
633 mt->bo = bo;
634 }
635
636 mt->first_level = first_level;
637 mt->last_level = last_level;
638 mt->target = target;
639 mt->format = format;
640 mt->aux_state = NULL;
641 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
642 mt->compressed = _mesa_is_format_compressed(format);
643 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
644
645 return mt;
646
647 fail:
648 intel_miptree_release(&mt);
649 return NULL;
650 }
651
652 static bool
653 make_separate_stencil_surface(struct brw_context *brw,
654 struct intel_mipmap_tree *mt)
655 {
656 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
657 0, mt->surf.levels - 1,
658 mt->surf.logical_level0_px.width,
659 mt->surf.logical_level0_px.height,
660 mt->surf.dim == ISL_SURF_DIM_3D ?
661 mt->surf.logical_level0_px.depth :
662 mt->surf.logical_level0_px.array_len,
663 mt->surf.samples, ISL_TILING_W_BIT,
664 ISL_SURF_USAGE_STENCIL_BIT |
665 ISL_SURF_USAGE_TEXTURE_BIT,
666 BO_ALLOC_BUSY, 0, NULL);
667
668 if (!mt->stencil_mt)
669 return false;
670
671 mt->stencil_mt->r8stencil_needs_update = true;
672
673 return true;
674 }
675
676 static struct intel_mipmap_tree *
677 miptree_create(struct brw_context *brw,
678 GLenum target,
679 mesa_format format,
680 GLuint first_level,
681 GLuint last_level,
682 GLuint width0,
683 GLuint height0,
684 GLuint depth0,
685 GLuint num_samples,
686 enum intel_miptree_create_flags flags)
687 {
688 const struct gen_device_info *devinfo = &brw->screen->devinfo;
689
690 if (format == MESA_FORMAT_S_UINT8)
691 return make_surface(brw, target, format, first_level, last_level,
692 width0, height0, depth0, num_samples,
693 ISL_TILING_W_BIT,
694 ISL_SURF_USAGE_STENCIL_BIT |
695 ISL_SURF_USAGE_TEXTURE_BIT,
696 BO_ALLOC_BUSY,
697 0,
698 NULL);
699
700 const GLenum base_format = _mesa_get_format_base_format(format);
701 if ((base_format == GL_DEPTH_COMPONENT ||
702 base_format == GL_DEPTH_STENCIL) &&
703 !(flags & MIPTREE_CREATE_LINEAR)) {
704 /* Fix up the Z miptree format for how we're splitting out separate
705 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
706 */
707 const mesa_format depth_only_format =
708 intel_depth_format_for_depthstencil_format(format);
709 struct intel_mipmap_tree *mt = make_surface(
710 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
711 first_level, last_level,
712 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
713 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
714 BO_ALLOC_BUSY, 0, NULL);
715
716 if (needs_separate_stencil(brw, mt, format) &&
717 !make_separate_stencil_surface(brw, mt)) {
718 intel_miptree_release(&mt);
719 return NULL;
720 }
721
722 if (!(flags & MIPTREE_CREATE_NO_AUX))
723 intel_miptree_choose_aux_usage(brw, mt);
724
725 return mt;
726 }
727
728 mesa_format tex_format = format;
729 mesa_format etc_format = MESA_FORMAT_NONE;
730 uint32_t alloc_flags = 0;
731
732 format = intel_lower_compressed_format(brw, format);
733
734 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
735
736 if (flags & MIPTREE_CREATE_BUSY)
737 alloc_flags |= BO_ALLOC_BUSY;
738
739 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
740 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
741
742 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
743 if (devinfo->gen < 6)
744 tiling_flags &= ~ISL_TILING_Y0_BIT;
745
746 struct intel_mipmap_tree *mt = make_surface(
747 brw, target, format,
748 first_level, last_level,
749 width0, height0, depth0,
750 num_samples, tiling_flags,
751 ISL_SURF_USAGE_RENDER_TARGET_BIT |
752 ISL_SURF_USAGE_TEXTURE_BIT,
753 alloc_flags, 0, NULL);
754 if (!mt)
755 return NULL;
756
757 mt->etc_format = etc_format;
758
759 if (!(flags & MIPTREE_CREATE_NO_AUX))
760 intel_miptree_choose_aux_usage(brw, mt);
761
762 return mt;
763 }
764
765 struct intel_mipmap_tree *
766 intel_miptree_create(struct brw_context *brw,
767 GLenum target,
768 mesa_format format,
769 GLuint first_level,
770 GLuint last_level,
771 GLuint width0,
772 GLuint height0,
773 GLuint depth0,
774 GLuint num_samples,
775 enum intel_miptree_create_flags flags)
776 {
777 assert(num_samples > 0);
778
779 struct intel_mipmap_tree *mt = miptree_create(
780 brw, target, format,
781 first_level, last_level,
782 width0, height0, depth0, num_samples,
783 flags);
784 if (!mt)
785 return NULL;
786
787 mt->offset = 0;
788
789 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
790 * compress clear color so we wait until an actual fast-clear to allocate
791 * it.
792 */
793 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
794 !intel_miptree_alloc_aux(brw, mt)) {
795 intel_miptree_release(&mt);
796 return NULL;
797 }
798
799 return mt;
800 }
801
802 struct intel_mipmap_tree *
803 intel_miptree_create_for_bo(struct brw_context *brw,
804 struct brw_bo *bo,
805 mesa_format format,
806 uint32_t offset,
807 uint32_t width,
808 uint32_t height,
809 uint32_t depth,
810 int pitch,
811 enum isl_tiling tiling,
812 enum intel_miptree_create_flags flags)
813 {
814 const struct gen_device_info *devinfo = &brw->screen->devinfo;
815 struct intel_mipmap_tree *mt;
816 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
817 const GLenum base_format = _mesa_get_format_base_format(format);
818
819 if ((base_format == GL_DEPTH_COMPONENT ||
820 base_format == GL_DEPTH_STENCIL)) {
821 const mesa_format depth_only_format =
822 intel_depth_format_for_depthstencil_format(format);
823 mt = make_surface(brw, target,
824 devinfo->gen >= 6 ? depth_only_format : format,
825 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
826 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
827 0, pitch, bo);
828 if (!mt)
829 return NULL;
830
831 brw_bo_reference(bo);
832
833 if (!(flags & MIPTREE_CREATE_NO_AUX))
834 intel_miptree_choose_aux_usage(brw, mt);
835
836 return mt;
837 } else if (format == MESA_FORMAT_S_UINT8) {
838 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
839 0, 0, width, height, depth, 1,
840 ISL_TILING_W_BIT,
841 ISL_SURF_USAGE_STENCIL_BIT |
842 ISL_SURF_USAGE_TEXTURE_BIT,
843 0, pitch, bo);
844 if (!mt)
845 return NULL;
846
847 assert(bo->size >= mt->surf.size);
848
849 brw_bo_reference(bo);
850 return mt;
851 }
852
853 /* Nothing will be able to use this miptree with the BO if the offset isn't
854 * aligned.
855 */
856 if (tiling != ISL_TILING_LINEAR)
857 assert(offset % 4096 == 0);
858
859 /* miptrees can't handle negative pitch. If you need flipping of images,
860 * that's outside of the scope of the mt.
861 */
862 assert(pitch >= 0);
863
864 /* The BO already has a tiling format and we shouldn't confuse the lower
865 * layers by making it try to find a tiling format again.
866 */
867 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
868
869 mt = make_surface(brw, target, format,
870 0, 0, width, height, depth, 1,
871 1lu << tiling,
872 ISL_SURF_USAGE_RENDER_TARGET_BIT |
873 ISL_SURF_USAGE_TEXTURE_BIT,
874 0, pitch, bo);
875 if (!mt)
876 return NULL;
877
878 brw_bo_reference(bo);
879 mt->bo = bo;
880 mt->offset = offset;
881
882 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
883 intel_miptree_choose_aux_usage(brw, mt);
884
885 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
886 * only compress clear color so we wait until an actual fast-clear to
887 * allocate it.
888 */
889 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
890 !intel_miptree_alloc_aux(brw, mt)) {
891 intel_miptree_release(&mt);
892 return NULL;
893 }
894 }
895
896 return mt;
897 }
898
899 static struct intel_mipmap_tree *
900 miptree_create_for_planar_image(struct brw_context *brw,
901 __DRIimage *image, GLenum target,
902 enum isl_tiling tiling)
903 {
904 const struct intel_image_format *f = image->planar_format;
905 struct intel_mipmap_tree *planar_mt = NULL;
906
907 for (int i = 0; i < f->nplanes; i++) {
908 const int index = f->planes[i].buffer_index;
909 const uint32_t dri_format = f->planes[i].dri_format;
910 const mesa_format format = driImageFormatToGLFormat(dri_format);
911 const uint32_t width = image->width >> f->planes[i].width_shift;
912 const uint32_t height = image->height >> f->planes[i].height_shift;
913
914 /* Disable creation of the texture's aux buffers because the driver
915 * exposes no EGL API to manage them. That is, there is no API for
916 * resolving the aux buffer's content to the main buffer nor for
917 * invalidating the aux buffer's content.
918 */
919 struct intel_mipmap_tree *mt =
920 intel_miptree_create_for_bo(brw, image->bo, format,
921 image->offsets[index],
922 width, height, 1,
923 image->strides[index],
924 tiling,
925 MIPTREE_CREATE_NO_AUX);
926 if (mt == NULL) {
927 intel_miptree_release(&planar_mt);
928 return NULL;
929 }
930
931 mt->target = target;
932
933 if (i == 0)
934 planar_mt = mt;
935 else
936 planar_mt->plane[i - 1] = mt;
937 }
938
939 planar_mt->drm_modifier = image->modifier;
940
941 return planar_mt;
942 }
943
944 static bool
945 create_ccs_buf_for_image(struct brw_context *brw,
946 __DRIimage *image,
947 struct intel_mipmap_tree *mt,
948 enum isl_aux_state initial_state)
949 {
950 struct isl_surf temp_ccs_surf;
951
952 /* CCS is only supported for very simple miptrees */
953 assert(image->aux_offset != 0 && image->aux_pitch != 0);
954 assert(image->tile_x == 0 && image->tile_y == 0);
955 assert(mt->surf.samples == 1);
956 assert(mt->surf.levels == 1);
957 assert(mt->surf.logical_level0_px.depth == 1);
958 assert(mt->surf.logical_level0_px.array_len == 1);
959 assert(mt->first_level == 0);
960 assert(mt->last_level == 0);
961
962 /* We shouldn't already have a CCS */
963 assert(!mt->aux_buf);
964
965 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
966 image->aux_pitch))
967 return false;
968
969 assert(image->aux_offset < image->bo->size);
970 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
971
972 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
973 if (mt->aux_buf == NULL)
974 return false;
975
976 mt->aux_state = create_aux_state_map(mt, initial_state);
977 if (!mt->aux_state) {
978 free(mt->aux_buf);
979 mt->aux_buf = NULL;
980 return false;
981 }
982
983 /* On gen10+ we start using an extra space in the aux buffer to store the
984 * indirect clear color. However, if we imported an image from the window
985 * system with CCS, we don't have the extra space at the end of the aux
986 * buffer. So create a new bo here that will store that clear color.
987 */
988 if (brw->isl_dev.ss.clear_color_state_size > 0) {
989 mt->aux_buf->clear_color_bo =
990 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
991 brw->isl_dev.ss.clear_color_state_size,
992 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
993 BO_ALLOC_ZEROED);
994 if (!mt->aux_buf->clear_color_bo) {
995 free(mt->aux_buf);
996 mt->aux_buf = NULL;
997 return false;
998 }
999 }
1000
1001 mt->aux_buf->bo = image->bo;
1002 brw_bo_reference(image->bo);
1003
1004 mt->aux_buf->offset = image->aux_offset;
1005 mt->aux_buf->surf = temp_ccs_surf;
1006
1007 return true;
1008 }
1009
1010 struct intel_mipmap_tree *
1011 intel_miptree_create_for_dri_image(struct brw_context *brw,
1012 __DRIimage *image, GLenum target,
1013 mesa_format format,
1014 bool allow_internal_aux)
1015 {
1016 uint32_t bo_tiling, bo_swizzle;
1017 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1018
1019 const struct isl_drm_modifier_info *mod_info =
1020 isl_drm_modifier_get_info(image->modifier);
1021
1022 const enum isl_tiling tiling =
1023 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1024
1025 if (image->planar_format && image->planar_format->nplanes > 1)
1026 return miptree_create_for_planar_image(brw, image, target, tiling);
1027
1028 if (image->planar_format)
1029 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1030
1031 if (!brw->ctx.TextureFormatSupported[format]) {
1032 /* The texture storage paths in core Mesa detect if the driver does not
1033 * support the user-requested format, and then searches for a
1034 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1035 * do the fallbacks here for important formats.
1036 *
1037 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1038 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1039 * the Chrome OS compositor consumes as dma_buf EGLImages.
1040 */
1041 format = _mesa_format_fallback_rgbx_to_rgba(format);
1042 }
1043
1044 if (!brw->ctx.TextureFormatSupported[format])
1045 return NULL;
1046
1047 enum intel_miptree_create_flags mt_create_flags = 0;
1048
1049 /* If this image comes in from a window system, we have different
1050 * requirements than if it comes in via an EGL import operation. Window
1051 * system images can use any form of auxiliary compression we wish because
1052 * they get "flushed" before being handed off to the window system and we
1053 * have the opportunity to do resolves. Non window-system images, on the
1054 * other hand, have no resolve point so we can't have aux without a
1055 * modifier.
1056 */
1057 if (!allow_internal_aux)
1058 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1059
1060 /* If we have a modifier which specifies aux, don't create one yet */
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1062 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1063
1064 /* Disable creation of the texture's aux buffers because the driver exposes
1065 * no EGL API to manage them. That is, there is no API for resolving the aux
1066 * buffer's content to the main buffer nor for invalidating the aux buffer's
1067 * content.
1068 */
1069 struct intel_mipmap_tree *mt =
1070 intel_miptree_create_for_bo(brw, image->bo, format,
1071 image->offset, image->width, image->height, 1,
1072 image->pitch, tiling, mt_create_flags);
1073 if (mt == NULL)
1074 return NULL;
1075
1076 mt->target = target;
1077 mt->level[0].level_x = image->tile_x;
1078 mt->level[0].level_y = image->tile_y;
1079 mt->drm_modifier = image->modifier;
1080
1081 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1082 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1083 * trouble resolving back to destination image due to alignment issues.
1084 */
1085 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1086 if (!devinfo->has_surface_tile_offset) {
1087 uint32_t draw_x, draw_y;
1088 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1089
1090 if (draw_x != 0 || draw_y != 0) {
1091 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1092 intel_miptree_release(&mt);
1093 return NULL;
1094 }
1095 }
1096
1097 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1098 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1099
1100 mt->aux_usage = mod_info->aux_usage;
1101 /* If we are a window system buffer, then we can support fast-clears
1102 * even if the modifier doesn't support them by doing a partial resolve
1103 * as part of the flush operation.
1104 */
1105 mt->supports_fast_clear =
1106 allow_internal_aux || mod_info->supports_clear_color;
1107
1108 /* We don't know the actual state of the surface when we get it but we
1109 * can make a pretty good guess based on the modifier. What we do know
1110 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1111 * a worst case of compression.
1112 */
1113 enum isl_aux_state initial_state =
1114 isl_drm_modifier_get_default_aux_state(image->modifier);
1115
1116 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1117 intel_miptree_release(&mt);
1118 return NULL;
1119 }
1120 }
1121
1122 /* Don't assume coherency for imported EGLimages. We don't know what
1123 * external clients are going to do with it. They may scan it out.
1124 */
1125 image->bo->cache_coherent = false;
1126
1127 return mt;
1128 }
1129
1130 /**
1131 * For a singlesample renderbuffer, this simply wraps the given BO with a
1132 * miptree.
1133 *
1134 * For a multisample renderbuffer, this wraps the window system's
1135 * (singlesample) BO with a singlesample miptree attached to the
1136 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1137 * that will contain the actual rendering (which is lazily resolved to
1138 * irb->singlesample_mt).
1139 */
1140 bool
1141 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1142 struct intel_renderbuffer *irb,
1143 struct intel_mipmap_tree *singlesample_mt,
1144 uint32_t width, uint32_t height,
1145 uint32_t pitch)
1146 {
1147 struct intel_mipmap_tree *multisample_mt = NULL;
1148 struct gl_renderbuffer *rb = &irb->Base.Base;
1149 mesa_format format = rb->Format;
1150 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1151
1152 /* Only the front and back buffers, which are color buffers, are allocated
1153 * through the image loader.
1154 */
1155 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1156 _mesa_get_format_base_format(format) == GL_RGBA);
1157
1158 assert(singlesample_mt);
1159
1160 if (num_samples == 1) {
1161 intel_miptree_release(&irb->mt);
1162 irb->mt = singlesample_mt;
1163
1164 assert(!irb->singlesample_mt);
1165 } else {
1166 intel_miptree_release(&irb->singlesample_mt);
1167 irb->singlesample_mt = singlesample_mt;
1168
1169 if (!irb->mt ||
1170 irb->mt->surf.logical_level0_px.width != width ||
1171 irb->mt->surf.logical_level0_px.height != height) {
1172 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1173 format,
1174 width,
1175 height,
1176 num_samples);
1177 if (!multisample_mt)
1178 goto fail;
1179
1180 irb->need_downsample = false;
1181 intel_miptree_release(&irb->mt);
1182 irb->mt = multisample_mt;
1183 }
1184 }
1185 return true;
1186
1187 fail:
1188 intel_miptree_release(&irb->mt);
1189 return false;
1190 }
1191
1192 struct intel_mipmap_tree*
1193 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1194 mesa_format format,
1195 uint32_t width,
1196 uint32_t height,
1197 uint32_t num_samples)
1198 {
1199 struct intel_mipmap_tree *mt;
1200 uint32_t depth = 1;
1201 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1202
1203 mt = intel_miptree_create(brw, target, format, 0, 0,
1204 width, height, depth, num_samples,
1205 MIPTREE_CREATE_BUSY);
1206 if (!mt)
1207 goto fail;
1208
1209 return mt;
1210
1211 fail:
1212 intel_miptree_release(&mt);
1213 return NULL;
1214 }
1215
1216 void
1217 intel_miptree_reference(struct intel_mipmap_tree **dst,
1218 struct intel_mipmap_tree *src)
1219 {
1220 if (*dst == src)
1221 return;
1222
1223 intel_miptree_release(dst);
1224
1225 if (src) {
1226 src->refcount++;
1227 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1228 }
1229
1230 *dst = src;
1231 }
1232
1233 static void
1234 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1235 {
1236 if (aux_buf == NULL)
1237 return;
1238
1239 brw_bo_unreference(aux_buf->bo);
1240 brw_bo_unreference(aux_buf->clear_color_bo);
1241
1242 free(aux_buf);
1243 }
1244
1245 void
1246 intel_miptree_release(struct intel_mipmap_tree **mt)
1247 {
1248 if (!*mt)
1249 return;
1250
1251 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1252 if (--(*mt)->refcount <= 0) {
1253 GLuint i;
1254
1255 DBG("%s deleting %p\n", __func__, *mt);
1256
1257 brw_bo_unreference((*mt)->bo);
1258 intel_miptree_release(&(*mt)->stencil_mt);
1259 intel_miptree_release(&(*mt)->r8stencil_mt);
1260 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1261 free_aux_state_map((*mt)->aux_state);
1262
1263 intel_miptree_release(&(*mt)->plane[0]);
1264 intel_miptree_release(&(*mt)->plane[1]);
1265
1266 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1267 free((*mt)->level[i].slice);
1268 }
1269
1270 free(*mt);
1271 }
1272 *mt = NULL;
1273 }
1274
1275
1276 void
1277 intel_get_image_dims(struct gl_texture_image *image,
1278 int *width, int *height, int *depth)
1279 {
1280 switch (image->TexObject->Target) {
1281 case GL_TEXTURE_1D_ARRAY:
1282 /* For a 1D Array texture the OpenGL API will treat the image height as
1283 * the number of array slices. For Intel hardware, we treat the 1D array
1284 * as a 2D Array with a height of 1. So, here we want to swap image
1285 * height and depth.
1286 */
1287 assert(image->Depth == 1);
1288 *width = image->Width;
1289 *height = 1;
1290 *depth = image->Height;
1291 break;
1292 case GL_TEXTURE_CUBE_MAP:
1293 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1294 * though we really have 6 slices.
1295 */
1296 assert(image->Depth == 1);
1297 *width = image->Width;
1298 *height = image->Height;
1299 *depth = 6;
1300 break;
1301 default:
1302 *width = image->Width;
1303 *height = image->Height;
1304 *depth = image->Depth;
1305 break;
1306 }
1307 }
1308
1309 /**
1310 * Can the image be pulled into a unified mipmap tree? This mirrors
1311 * the completeness test in a lot of ways.
1312 *
1313 * Not sure whether I want to pass gl_texture_image here.
1314 */
1315 bool
1316 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1317 struct gl_texture_image *image)
1318 {
1319 struct intel_texture_image *intelImage = intel_texture_image(image);
1320 GLuint level = intelImage->base.Base.Level;
1321 int width, height, depth;
1322
1323 /* glTexImage* choose the texture object based on the target passed in, and
1324 * objects can't change targets over their lifetimes, so this should be
1325 * true.
1326 */
1327 assert(image->TexObject->Target == mt->target);
1328
1329 mesa_format mt_format = mt->format;
1330 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1331 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1332 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1333 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1334 if (mt->etc_format != MESA_FORMAT_NONE)
1335 mt_format = mt->etc_format;
1336
1337 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1338 _mesa_get_srgb_format_linear(mt_format))
1339 return false;
1340
1341 intel_get_image_dims(image, &width, &height, &depth);
1342
1343 if (mt->target == GL_TEXTURE_CUBE_MAP)
1344 depth = 6;
1345
1346 if (level >= mt->surf.levels)
1347 return false;
1348
1349 const unsigned level_depth =
1350 mt->surf.dim == ISL_SURF_DIM_3D ?
1351 minify(mt->surf.logical_level0_px.depth, level) :
1352 mt->surf.logical_level0_px.array_len;
1353
1354 return width == minify(mt->surf.logical_level0_px.width, level) &&
1355 height == minify(mt->surf.logical_level0_px.height, level) &&
1356 depth == level_depth &&
1357 MAX2(image->NumSamples, 1) == mt->surf.samples;
1358 }
1359
1360 void
1361 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1362 GLuint level, GLuint slice,
1363 GLuint *x, GLuint *y)
1364 {
1365 if (level == 0 && slice == 0) {
1366 *x = mt->level[0].level_x;
1367 *y = mt->level[0].level_y;
1368 return;
1369 }
1370
1371 uint32_t x_offset_sa, y_offset_sa;
1372
1373 /* Miptree itself can have an offset only if it represents a single
1374 * slice in an imported buffer object.
1375 * See intel_miptree_create_for_dri_image().
1376 */
1377 assert(mt->level[0].level_x == 0);
1378 assert(mt->level[0].level_y == 0);
1379
1380 /* Given level is relative to level zero while the miptree may be
1381 * represent just a subset of all levels starting from 'first_level'.
1382 */
1383 assert(level >= mt->first_level);
1384 level -= mt->first_level;
1385
1386 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1387 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1388 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1389 &x_offset_sa, &y_offset_sa);
1390
1391 *x = x_offset_sa;
1392 *y = y_offset_sa;
1393 }
1394
1395
1396 /**
1397 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1398 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1399 * and tile_h is set to 1.
1400 */
1401 void
1402 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1403 uint32_t *tile_w, uint32_t *tile_h)
1404 {
1405 switch (tiling) {
1406 case ISL_TILING_X:
1407 *tile_w = 512;
1408 *tile_h = 8;
1409 break;
1410 case ISL_TILING_Y0:
1411 *tile_w = 128;
1412 *tile_h = 32;
1413 break;
1414 case ISL_TILING_LINEAR:
1415 *tile_w = cpp;
1416 *tile_h = 1;
1417 break;
1418 default:
1419 unreachable("not reached");
1420 }
1421 }
1422
1423
1424 /**
1425 * This function computes masks that may be used to select the bits of the X
1426 * and Y coordinates that indicate the offset within a tile. If the BO is
1427 * untiled, the masks are set to 0.
1428 */
1429 void
1430 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1431 uint32_t *mask_x, uint32_t *mask_y)
1432 {
1433 uint32_t tile_w_bytes, tile_h;
1434
1435 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1436
1437 *mask_x = tile_w_bytes / cpp - 1;
1438 *mask_y = tile_h - 1;
1439 }
1440
1441 /**
1442 * Compute the offset (in bytes) from the start of the BO to the given x
1443 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1444 * multiples of the tile size.
1445 */
1446 uint32_t
1447 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1448 uint32_t x, uint32_t y)
1449 {
1450 int cpp = mt->cpp;
1451 uint32_t pitch = mt->surf.row_pitch;
1452
1453 switch (mt->surf.tiling) {
1454 default:
1455 unreachable("not reached");
1456 case ISL_TILING_LINEAR:
1457 return y * pitch + x * cpp;
1458 case ISL_TILING_X:
1459 assert((x % (512 / cpp)) == 0);
1460 assert((y % 8) == 0);
1461 return y * pitch + x / (512 / cpp) * 4096;
1462 case ISL_TILING_Y0:
1463 assert((x % (128 / cpp)) == 0);
1464 assert((y % 32) == 0);
1465 return y * pitch + x / (128 / cpp) * 4096;
1466 }
1467 }
1468
1469 /**
1470 * Rendering with tiled buffers requires that the base address of the buffer
1471 * be aligned to a page boundary. For renderbuffers, and sometimes with
1472 * textures, we may want the surface to point at a texture image level that
1473 * isn't at a page boundary.
1474 *
1475 * This function returns an appropriately-aligned base offset
1476 * according to the tiling restrictions, plus any required x/y offset
1477 * from there.
1478 */
1479 uint32_t
1480 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1481 GLuint level, GLuint slice,
1482 uint32_t *tile_x,
1483 uint32_t *tile_y)
1484 {
1485 uint32_t x, y;
1486 uint32_t mask_x, mask_y;
1487
1488 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1489 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1490
1491 *tile_x = x & mask_x;
1492 *tile_y = y & mask_y;
1493
1494 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1495 }
1496
1497 static void
1498 intel_miptree_copy_slice_sw(struct brw_context *brw,
1499 struct intel_mipmap_tree *src_mt,
1500 unsigned src_level, unsigned src_layer,
1501 struct intel_mipmap_tree *dst_mt,
1502 unsigned dst_level, unsigned dst_layer,
1503 unsigned width, unsigned height)
1504 {
1505 void *src, *dst;
1506 ptrdiff_t src_stride, dst_stride;
1507 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1508
1509 intel_miptree_map(brw, src_mt,
1510 src_level, src_layer,
1511 0, 0,
1512 width, height,
1513 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1514 &src, &src_stride);
1515
1516 intel_miptree_map(brw, dst_mt,
1517 dst_level, dst_layer,
1518 0, 0,
1519 width, height,
1520 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1521 BRW_MAP_DIRECT_BIT,
1522 &dst, &dst_stride);
1523
1524 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1525 _mesa_get_format_name(src_mt->format),
1526 src_mt, src, src_stride,
1527 _mesa_get_format_name(dst_mt->format),
1528 dst_mt, dst, dst_stride,
1529 width, height);
1530
1531 int row_size = cpp * width;
1532 if (src_stride == row_size &&
1533 dst_stride == row_size) {
1534 memcpy(dst, src, row_size * height);
1535 } else {
1536 for (int i = 0; i < height; i++) {
1537 memcpy(dst, src, row_size);
1538 dst += dst_stride;
1539 src += src_stride;
1540 }
1541 }
1542
1543 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1544 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1545
1546 /* Don't forget to copy the stencil data over, too. We could have skipped
1547 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1548 * shuffling the two data sources in/out of temporary storage instead of
1549 * the direct mapping we get this way.
1550 */
1551 if (dst_mt->stencil_mt) {
1552 assert(src_mt->stencil_mt);
1553 intel_miptree_copy_slice_sw(brw,
1554 src_mt->stencil_mt, src_level, src_layer,
1555 dst_mt->stencil_mt, dst_level, dst_layer,
1556 width, height);
1557 }
1558 }
1559
1560 void
1561 intel_miptree_copy_slice(struct brw_context *brw,
1562 struct intel_mipmap_tree *src_mt,
1563 unsigned src_level, unsigned src_layer,
1564 struct intel_mipmap_tree *dst_mt,
1565 unsigned dst_level, unsigned dst_layer)
1566
1567 {
1568 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1569 mesa_format format = src_mt->format;
1570 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1571 src_level - src_mt->first_level);
1572 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1573 src_level - src_mt->first_level);
1574
1575 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1576 src_level - src_mt->first_level));
1577
1578 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1579 _mesa_get_srgb_format_linear(dst_mt->format));
1580
1581 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1582 _mesa_get_format_name(src_mt->format),
1583 src_mt, src_level, src_layer,
1584 _mesa_get_format_name(dst_mt->format),
1585 dst_mt, dst_level, dst_layer,
1586 width, height);
1587
1588 if (devinfo->gen >= 6) {
1589 /* On gen6 and above, we just use blorp. It's faster than the blitter
1590 * and can handle everything without software fallbacks.
1591 */
1592 brw_blorp_copy_miptrees(brw,
1593 src_mt, src_level, src_layer,
1594 dst_mt, dst_level, dst_layer,
1595 0, 0, 0, 0, width, height);
1596
1597 if (src_mt->stencil_mt) {
1598 assert(dst_mt->stencil_mt);
1599 brw_blorp_copy_miptrees(brw,
1600 src_mt->stencil_mt, src_level, src_layer,
1601 dst_mt->stencil_mt, dst_level, dst_layer,
1602 0, 0, 0, 0, width, height);
1603 }
1604 return;
1605 }
1606
1607 if (dst_mt->compressed) {
1608 unsigned int i, j;
1609 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1610 height = ALIGN_NPOT(height, j) / j;
1611 width = ALIGN_NPOT(width, i) / i;
1612 }
1613
1614 /* Gen4-5 doesn't support separate stencil */
1615 assert(!src_mt->stencil_mt);
1616
1617 uint32_t dst_x, dst_y, src_x, src_y;
1618 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1619 &dst_x, &dst_y);
1620 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1621 &src_x, &src_y);
1622
1623 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1624 _mesa_get_format_name(src_mt->format),
1625 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1626 _mesa_get_format_name(dst_mt->format),
1627 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1628 width, height);
1629
1630 if (!intel_miptree_blit(brw,
1631 src_mt, src_level, src_layer, 0, 0, false,
1632 dst_mt, dst_level, dst_layer, 0, 0, false,
1633 width, height, COLOR_LOGICOP_COPY)) {
1634 perf_debug("miptree validate blit for %s failed\n",
1635 _mesa_get_format_name(format));
1636
1637 intel_miptree_copy_slice_sw(brw,
1638 src_mt, src_level, src_layer,
1639 dst_mt, dst_level, dst_layer,
1640 width, height);
1641 }
1642 }
1643
1644 /**
1645 * Copies the image's current data to the given miptree, and associates that
1646 * miptree with the image.
1647 */
1648 void
1649 intel_miptree_copy_teximage(struct brw_context *brw,
1650 struct intel_texture_image *intelImage,
1651 struct intel_mipmap_tree *dst_mt)
1652 {
1653 struct intel_mipmap_tree *src_mt = intelImage->mt;
1654 struct intel_texture_object *intel_obj =
1655 intel_texture_object(intelImage->base.Base.TexObject);
1656 int level = intelImage->base.Base.Level;
1657 const unsigned face = intelImage->base.Base.Face;
1658 unsigned start_layer, end_layer;
1659
1660 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1661 assert(face == 0);
1662 assert(intelImage->base.Base.Height);
1663 start_layer = 0;
1664 end_layer = intelImage->base.Base.Height - 1;
1665 } else if (face > 0) {
1666 start_layer = face;
1667 end_layer = face;
1668 } else {
1669 assert(intelImage->base.Base.Depth);
1670 start_layer = 0;
1671 end_layer = intelImage->base.Base.Depth - 1;
1672 }
1673
1674 for (unsigned i = start_layer; i <= end_layer; i++) {
1675 intel_miptree_copy_slice(brw,
1676 src_mt, level, i,
1677 dst_mt, level, i);
1678 }
1679
1680 intel_miptree_reference(&intelImage->mt, dst_mt);
1681 intel_obj->needs_validate = true;
1682 }
1683
1684 static struct intel_miptree_aux_buffer *
1685 intel_alloc_aux_buffer(struct brw_context *brw,
1686 const struct isl_surf *aux_surf,
1687 bool wants_memset,
1688 uint8_t memset_value)
1689 {
1690 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1691 if (!buf)
1692 return false;
1693
1694 uint64_t size = aux_surf->size;
1695
1696 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1697 if (has_indirect_clear) {
1698 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1699 * will set a pointer to a dword somewhere that contains the color. So,
1700 * allocate the space for the clear color value here on the aux buffer.
1701 */
1702 buf->clear_color_offset = size;
1703 size += brw->isl_dev.ss.clear_color_state_size;
1704 }
1705
1706 /* If the buffer needs to be initialised (requiring the buffer to be
1707 * immediately mapped to cpu space for writing), do not use the gpu access
1708 * flag which can cause an unnecessary delay if the backing pages happened
1709 * to be just used by the GPU.
1710 */
1711 const bool alloc_zeroed = wants_memset && memset_value == 0;
1712 const bool needs_memset =
1713 !alloc_zeroed && (wants_memset || has_indirect_clear);
1714 const uint32_t alloc_flags =
1715 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1716
1717 /* ISL has stricter set of alignment rules then the drm allocator.
1718 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1719 * trying to recalculate based on different format block sizes.
1720 */
1721 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1722 BRW_MEMZONE_OTHER, I915_TILING_Y,
1723 aux_surf->row_pitch, alloc_flags);
1724 if (!buf->bo) {
1725 free(buf);
1726 return NULL;
1727 }
1728
1729 /* Initialize the bo to the desired value */
1730 if (needs_memset) {
1731 assert(!(alloc_flags & BO_ALLOC_BUSY));
1732
1733 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1734 if (map == NULL) {
1735 intel_miptree_aux_buffer_free(buf);
1736 return NULL;
1737 }
1738
1739 /* Memset the aux_surf portion of the BO. */
1740 if (wants_memset)
1741 memset(map, memset_value, aux_surf->size);
1742
1743 /* Zero the indirect clear color to match ::fast_clear_color. */
1744 if (has_indirect_clear) {
1745 memset((char *)map + buf->clear_color_offset, 0,
1746 brw->isl_dev.ss.clear_color_state_size);
1747 }
1748
1749 brw_bo_unmap(buf->bo);
1750 }
1751
1752 if (has_indirect_clear) {
1753 buf->clear_color_bo = buf->bo;
1754 brw_bo_reference(buf->clear_color_bo);
1755 }
1756
1757 buf->surf = *aux_surf;
1758
1759 return buf;
1760 }
1761
1762
1763 /**
1764 * Helper for intel_miptree_alloc_aux() that sets
1765 * \c mt->level[level].has_hiz. Return true if and only if
1766 * \c has_hiz was set.
1767 */
1768 static bool
1769 intel_miptree_level_enable_hiz(struct brw_context *brw,
1770 struct intel_mipmap_tree *mt,
1771 uint32_t level)
1772 {
1773 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1774
1775 assert(mt->aux_buf);
1776 assert(mt->surf.size > 0);
1777
1778 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1779 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1780 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1781
1782 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1783 * and the height is 4 aligned. This allows our HiZ support
1784 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1785 * we can grow the width & height to allow the HiZ op to
1786 * force the proper size alignments.
1787 */
1788 if (level > 0 && ((width & 7) || (height & 3))) {
1789 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1790 return false;
1791 }
1792 }
1793
1794 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1795 mt->level[level].has_hiz = true;
1796 return true;
1797 }
1798
1799
1800 /**
1801 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1802 *
1803 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1804 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1805 * compress clear color so we wait until an actual fast-clear to allocate it.
1806 */
1807 bool
1808 intel_miptree_alloc_aux(struct brw_context *brw,
1809 struct intel_mipmap_tree *mt)
1810 {
1811 assert(mt->aux_buf == NULL);
1812
1813 /* Get the aux buf allocation parameters for this miptree. */
1814 enum isl_aux_state initial_state;
1815 uint8_t memset_value;
1816 struct isl_surf aux_surf;
1817 MAYBE_UNUSED bool aux_surf_ok;
1818
1819 switch (mt->aux_usage) {
1820 case ISL_AUX_USAGE_NONE:
1821 aux_surf.size = 0;
1822 aux_surf_ok = true;
1823 break;
1824 case ISL_AUX_USAGE_HIZ:
1825 initial_state = ISL_AUX_STATE_AUX_INVALID;
1826 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1827 break;
1828 case ISL_AUX_USAGE_MCS:
1829 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1830 *
1831 * When MCS buffer is enabled and bound to MSRT, it is required that
1832 * it is cleared prior to any rendering.
1833 *
1834 * Since we don't use the MCS buffer for any purpose other than
1835 * rendering, it makes sense to just clear it immediately upon
1836 * allocation.
1837 *
1838 * Note: the clear value for MCS buffers is all 1's, so we memset to
1839 * 0xff.
1840 */
1841 initial_state = ISL_AUX_STATE_CLEAR;
1842 memset_value = 0xFF;
1843 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1844 break;
1845 case ISL_AUX_USAGE_CCS_D:
1846 case ISL_AUX_USAGE_CCS_E:
1847 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1848 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1849 * Target(s)":
1850 *
1851 * "If Software wants to enable Color Compression without Fast
1852 * clear, Software needs to initialize MCS with zeros."
1853 *
1854 * A CCS value of 0 indicates that the corresponding block is in the
1855 * pass-through state which is what we want.
1856 *
1857 * For CCS_D, do the same thing. On gen9+, this avoids having any
1858 * undefined bits in the aux buffer.
1859 */
1860 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1861 memset_value = 0;
1862 aux_surf_ok =
1863 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1864 break;
1865 }
1866
1867 /* We should have a valid aux_surf. */
1868 assert(aux_surf_ok);
1869
1870 /* No work is needed for a zero-sized auxiliary buffer. */
1871 if (aux_surf.size == 0)
1872 return true;
1873
1874 /* Create the aux_state for the auxiliary buffer. */
1875 mt->aux_state = create_aux_state_map(mt, initial_state);
1876 if (mt->aux_state == NULL)
1877 return false;
1878
1879 /* Allocate the auxiliary buffer. */
1880 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1881 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1882 memset_value);
1883 if (mt->aux_buf == NULL) {
1884 free_aux_state_map(mt->aux_state);
1885 mt->aux_state = NULL;
1886 return false;
1887 }
1888
1889 /* Perform aux_usage-specific initialization. */
1890 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1891 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1892 intel_miptree_level_enable_hiz(brw, mt, level);
1893 }
1894
1895 return true;
1896 }
1897
1898
1899 /**
1900 * Can the miptree sample using the hiz buffer?
1901 */
1902 bool
1903 intel_miptree_sample_with_hiz(struct brw_context *brw,
1904 struct intel_mipmap_tree *mt)
1905 {
1906 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1907
1908 if (!devinfo->has_sample_with_hiz) {
1909 return false;
1910 }
1911
1912 if (!mt->aux_buf) {
1913 return false;
1914 }
1915
1916 /* It seems the hardware won't fallback to the depth buffer if some of the
1917 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1918 * of the texture to be HiZ enabled.
1919 */
1920 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1921 if (!intel_miptree_level_has_hiz(mt, level))
1922 return false;
1923 }
1924
1925 /* If compressed multisampling is enabled, then we use it for the auxiliary
1926 * buffer instead.
1927 *
1928 * From the BDW PRM (Volume 2d: Command Reference: Structures
1929 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1930 *
1931 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1932 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1933 *
1934 * There is no such blurb for 1D textures, but there is sufficient evidence
1935 * that this is broken on SKL+.
1936 */
1937 return (mt->surf.samples == 1 &&
1938 mt->target != GL_TEXTURE_3D &&
1939 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1940 }
1941
1942 /**
1943 * Does the miptree slice have hiz enabled?
1944 */
1945 bool
1946 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1947 {
1948 intel_miptree_check_level_layer(mt, level, 0);
1949 return mt->level[level].has_hiz;
1950 }
1951
1952 static inline uint32_t
1953 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1954 uint32_t start_level, uint32_t num_levels)
1955 {
1956 assert(start_level >= mt->first_level);
1957 assert(start_level <= mt->last_level);
1958
1959 if (num_levels == INTEL_REMAINING_LAYERS)
1960 num_levels = mt->last_level - start_level + 1;
1961 /* Check for overflow */
1962 assert(start_level + num_levels >= start_level);
1963 assert(start_level + num_levels <= mt->last_level + 1);
1964
1965 return num_levels;
1966 }
1967
1968 static inline uint32_t
1969 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1970 uint32_t start_layer, uint32_t num_layers)
1971 {
1972 assert(level <= mt->last_level);
1973
1974 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1975 assert(start_layer < total_num_layers);
1976 if (num_layers == INTEL_REMAINING_LAYERS)
1977 num_layers = total_num_layers - start_layer;
1978 /* Check for overflow */
1979 assert(start_layer + num_layers >= start_layer);
1980 assert(start_layer + num_layers <= total_num_layers);
1981
1982 return num_layers;
1983 }
1984
1985 bool
1986 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1987 unsigned start_level, unsigned num_levels,
1988 unsigned start_layer, unsigned num_layers)
1989 {
1990 assert(_mesa_is_format_color_format(mt->format));
1991
1992 if (!mt->aux_buf)
1993 return false;
1994
1995 /* Clamp the level range to fit the miptree */
1996 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1997
1998 for (uint32_t l = 0; l < num_levels; l++) {
1999 const uint32_t level = start_level + l;
2000 const uint32_t level_layers =
2001 miptree_layer_range_length(mt, level, start_layer, num_layers);
2002 for (unsigned a = 0; a < level_layers; a++) {
2003 enum isl_aux_state aux_state =
2004 intel_miptree_get_aux_state(mt, level, start_layer + a);
2005 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2006 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2007 return true;
2008 }
2009 }
2010
2011 return false;
2012 }
2013
2014 static void
2015 intel_miptree_check_color_resolve(const struct brw_context *brw,
2016 const struct intel_mipmap_tree *mt,
2017 unsigned level, unsigned layer)
2018 {
2019 if (!mt->aux_buf)
2020 return;
2021
2022 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2023 assert(brw->screen->devinfo.gen >= 8 ||
2024 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2025
2026 /* Compression of arrayed msaa surfaces is supported. */
2027 if (mt->surf.samples > 1)
2028 return;
2029
2030 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2031 assert(brw->screen->devinfo.gen >= 8 ||
2032 (layer == 0 &&
2033 mt->surf.logical_level0_px.depth == 1 &&
2034 mt->surf.logical_level0_px.array_len == 1));
2035
2036 (void)level;
2037 (void)layer;
2038 }
2039
2040 static enum isl_aux_op
2041 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2042 enum isl_aux_usage aux_usage,
2043 bool fast_clear_supported)
2044 {
2045 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2046
2047 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2048
2049 assert(ccs_supported == fast_clear_supported);
2050
2051 switch (aux_state) {
2052 case ISL_AUX_STATE_CLEAR:
2053 case ISL_AUX_STATE_PARTIAL_CLEAR:
2054 if (!ccs_supported)
2055 return ISL_AUX_OP_FULL_RESOLVE;
2056 else
2057 return ISL_AUX_OP_NONE;
2058
2059 case ISL_AUX_STATE_PASS_THROUGH:
2060 return ISL_AUX_OP_NONE;
2061
2062 case ISL_AUX_STATE_RESOLVED:
2063 case ISL_AUX_STATE_AUX_INVALID:
2064 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2065 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2066 break;
2067 }
2068
2069 unreachable("Invalid aux state for CCS_D");
2070 }
2071
2072 static enum isl_aux_op
2073 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2074 enum isl_aux_usage aux_usage,
2075 bool fast_clear_supported)
2076 {
2077 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2078 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2079 aux_usage == ISL_AUX_USAGE_CCS_D ||
2080 aux_usage == ISL_AUX_USAGE_CCS_E);
2081
2082 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2083 assert(fast_clear_supported);
2084
2085 switch (aux_state) {
2086 case ISL_AUX_STATE_CLEAR:
2087 case ISL_AUX_STATE_PARTIAL_CLEAR:
2088 if (fast_clear_supported)
2089 return ISL_AUX_OP_NONE;
2090 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2091 return ISL_AUX_OP_PARTIAL_RESOLVE;
2092 else
2093 return ISL_AUX_OP_FULL_RESOLVE;
2094
2095 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2096 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2097 return ISL_AUX_OP_FULL_RESOLVE;
2098 else if (!fast_clear_supported)
2099 return ISL_AUX_OP_PARTIAL_RESOLVE;
2100 else
2101 return ISL_AUX_OP_NONE;
2102
2103 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2104 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2105 return ISL_AUX_OP_FULL_RESOLVE;
2106 else
2107 return ISL_AUX_OP_NONE;
2108
2109 case ISL_AUX_STATE_PASS_THROUGH:
2110 return ISL_AUX_OP_NONE;
2111
2112 case ISL_AUX_STATE_RESOLVED:
2113 case ISL_AUX_STATE_AUX_INVALID:
2114 break;
2115 }
2116
2117 unreachable("Invalid aux state for CCS_E");
2118 }
2119
2120 static void
2121 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2122 struct intel_mipmap_tree *mt,
2123 uint32_t level, uint32_t layer,
2124 enum isl_aux_usage aux_usage,
2125 bool fast_clear_supported)
2126 {
2127 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2128
2129 enum isl_aux_op resolve_op;
2130 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2131 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2132 fast_clear_supported);
2133 } else {
2134 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2135 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2136 fast_clear_supported);
2137 }
2138
2139 if (resolve_op != ISL_AUX_OP_NONE) {
2140 intel_miptree_check_color_resolve(brw, mt, level, layer);
2141 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2142
2143 switch (resolve_op) {
2144 case ISL_AUX_OP_FULL_RESOLVE:
2145 /* The CCS full resolve operation destroys the CCS and sets it to the
2146 * pass-through state. (You can also think of this as being both a
2147 * resolve and an ambiguate in one operation.)
2148 */
2149 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2150 ISL_AUX_STATE_PASS_THROUGH);
2151 break;
2152
2153 case ISL_AUX_OP_PARTIAL_RESOLVE:
2154 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2155 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2156 break;
2157
2158 default:
2159 unreachable("Invalid resolve op");
2160 }
2161 }
2162 }
2163
2164 static void
2165 intel_miptree_finish_ccs_write(struct brw_context *brw,
2166 struct intel_mipmap_tree *mt,
2167 uint32_t level, uint32_t layer,
2168 enum isl_aux_usage aux_usage)
2169 {
2170 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2171 aux_usage == ISL_AUX_USAGE_CCS_D ||
2172 aux_usage == ISL_AUX_USAGE_CCS_E);
2173
2174 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2175
2176 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2177 switch (aux_state) {
2178 case ISL_AUX_STATE_CLEAR:
2179 case ISL_AUX_STATE_PARTIAL_CLEAR:
2180 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2181 aux_usage == ISL_AUX_USAGE_CCS_D);
2182
2183 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2184 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2185 ISL_AUX_STATE_COMPRESSED_CLEAR);
2186 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2187 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2188 ISL_AUX_STATE_PARTIAL_CLEAR);
2189 }
2190 break;
2191
2192 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2193 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2194 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2195 break; /* Nothing to do */
2196
2197 case ISL_AUX_STATE_PASS_THROUGH:
2198 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2199 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2200 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2201 } else {
2202 /* Nothing to do */
2203 }
2204 break;
2205
2206 case ISL_AUX_STATE_RESOLVED:
2207 case ISL_AUX_STATE_AUX_INVALID:
2208 unreachable("Invalid aux state for CCS_E");
2209 }
2210 } else {
2211 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2212 /* CCS_D is a bit simpler */
2213 switch (aux_state) {
2214 case ISL_AUX_STATE_CLEAR:
2215 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2216 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2217 ISL_AUX_STATE_PARTIAL_CLEAR);
2218 break;
2219
2220 case ISL_AUX_STATE_PARTIAL_CLEAR:
2221 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2222 break; /* Nothing to do */
2223
2224 case ISL_AUX_STATE_PASS_THROUGH:
2225 /* Nothing to do */
2226 break;
2227
2228 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2229 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2230 case ISL_AUX_STATE_RESOLVED:
2231 case ISL_AUX_STATE_AUX_INVALID:
2232 unreachable("Invalid aux state for CCS_D");
2233 }
2234 }
2235 }
2236
2237 static void
2238 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2239 struct intel_mipmap_tree *mt,
2240 uint32_t layer,
2241 enum isl_aux_usage aux_usage,
2242 bool fast_clear_supported)
2243 {
2244 assert(aux_usage == ISL_AUX_USAGE_MCS);
2245
2246 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2247 case ISL_AUX_STATE_CLEAR:
2248 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2249 if (!fast_clear_supported) {
2250 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2251 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2252 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2253 }
2254 break;
2255
2256 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2257 break; /* Nothing to do */
2258
2259 case ISL_AUX_STATE_RESOLVED:
2260 case ISL_AUX_STATE_PASS_THROUGH:
2261 case ISL_AUX_STATE_AUX_INVALID:
2262 case ISL_AUX_STATE_PARTIAL_CLEAR:
2263 unreachable("Invalid aux state for MCS");
2264 }
2265 }
2266
2267 static void
2268 intel_miptree_finish_mcs_write(struct brw_context *brw,
2269 struct intel_mipmap_tree *mt,
2270 uint32_t layer,
2271 enum isl_aux_usage aux_usage)
2272 {
2273 assert(aux_usage == ISL_AUX_USAGE_MCS);
2274
2275 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2276 case ISL_AUX_STATE_CLEAR:
2277 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2278 ISL_AUX_STATE_COMPRESSED_CLEAR);
2279 break;
2280
2281 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2282 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2283 break; /* Nothing to do */
2284
2285 case ISL_AUX_STATE_RESOLVED:
2286 case ISL_AUX_STATE_PASS_THROUGH:
2287 case ISL_AUX_STATE_AUX_INVALID:
2288 case ISL_AUX_STATE_PARTIAL_CLEAR:
2289 unreachable("Invalid aux state for MCS");
2290 }
2291 }
2292
2293 static void
2294 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2295 struct intel_mipmap_tree *mt,
2296 uint32_t level, uint32_t layer,
2297 enum isl_aux_usage aux_usage,
2298 bool fast_clear_supported)
2299 {
2300 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2301
2302 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2303 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2304 case ISL_AUX_STATE_CLEAR:
2305 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2306 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2307 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2308 break;
2309
2310 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2311 if (aux_usage != ISL_AUX_USAGE_HIZ)
2312 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2313 break;
2314
2315 case ISL_AUX_STATE_PASS_THROUGH:
2316 case ISL_AUX_STATE_RESOLVED:
2317 break;
2318
2319 case ISL_AUX_STATE_AUX_INVALID:
2320 if (aux_usage == ISL_AUX_USAGE_HIZ)
2321 hiz_op = ISL_AUX_OP_AMBIGUATE;
2322 break;
2323
2324 case ISL_AUX_STATE_PARTIAL_CLEAR:
2325 unreachable("Invalid HiZ state");
2326 }
2327
2328 if (hiz_op != ISL_AUX_OP_NONE) {
2329 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2330
2331 switch (hiz_op) {
2332 case ISL_AUX_OP_FULL_RESOLVE:
2333 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2334 ISL_AUX_STATE_RESOLVED);
2335 break;
2336
2337 case ISL_AUX_OP_AMBIGUATE:
2338 /* The HiZ resolve operation is actually an ambiguate */
2339 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2340 ISL_AUX_STATE_PASS_THROUGH);
2341 break;
2342
2343 default:
2344 unreachable("Invalid HiZ op");
2345 }
2346 }
2347 }
2348
2349 static void
2350 intel_miptree_finish_hiz_write(struct brw_context *brw,
2351 struct intel_mipmap_tree *mt,
2352 uint32_t level, uint32_t layer,
2353 enum isl_aux_usage aux_usage)
2354 {
2355 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2356
2357 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2358 case ISL_AUX_STATE_CLEAR:
2359 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2360 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2361 ISL_AUX_STATE_COMPRESSED_CLEAR);
2362 break;
2363
2364 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2365 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2366 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2367 break; /* Nothing to do */
2368
2369 case ISL_AUX_STATE_RESOLVED:
2370 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2371 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2372 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2373 } else {
2374 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2375 ISL_AUX_STATE_AUX_INVALID);
2376 }
2377 break;
2378
2379 case ISL_AUX_STATE_PASS_THROUGH:
2380 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2381 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2382 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2383 }
2384 break;
2385
2386 case ISL_AUX_STATE_AUX_INVALID:
2387 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2388 break;
2389
2390 case ISL_AUX_STATE_PARTIAL_CLEAR:
2391 unreachable("Invalid HiZ state");
2392 }
2393 }
2394
2395 void
2396 intel_miptree_prepare_access(struct brw_context *brw,
2397 struct intel_mipmap_tree *mt,
2398 uint32_t start_level, uint32_t num_levels,
2399 uint32_t start_layer, uint32_t num_layers,
2400 enum isl_aux_usage aux_usage,
2401 bool fast_clear_supported)
2402 {
2403 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2404
2405 switch (mt->aux_usage) {
2406 case ISL_AUX_USAGE_NONE:
2407 /* Nothing to do */
2408 break;
2409
2410 case ISL_AUX_USAGE_MCS:
2411 assert(mt->aux_buf);
2412 assert(start_level == 0 && num_levels == 1);
2413 const uint32_t level_layers =
2414 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2415 for (uint32_t a = 0; a < level_layers; a++) {
2416 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2417 aux_usage, fast_clear_supported);
2418 }
2419 break;
2420
2421 case ISL_AUX_USAGE_CCS_D:
2422 case ISL_AUX_USAGE_CCS_E:
2423 if (!mt->aux_buf)
2424 return;
2425
2426 for (uint32_t l = 0; l < num_levels; l++) {
2427 const uint32_t level = start_level + l;
2428 const uint32_t level_layers =
2429 miptree_layer_range_length(mt, level, start_layer, num_layers);
2430 for (uint32_t a = 0; a < level_layers; a++) {
2431 intel_miptree_prepare_ccs_access(brw, mt, level,
2432 start_layer + a,
2433 aux_usage, fast_clear_supported);
2434 }
2435 }
2436 break;
2437
2438 case ISL_AUX_USAGE_HIZ:
2439 assert(mt->aux_buf);
2440 for (uint32_t l = 0; l < num_levels; l++) {
2441 const uint32_t level = start_level + l;
2442 if (!intel_miptree_level_has_hiz(mt, level))
2443 continue;
2444
2445 const uint32_t level_layers =
2446 miptree_layer_range_length(mt, level, start_layer, num_layers);
2447 for (uint32_t a = 0; a < level_layers; a++) {
2448 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2449 aux_usage, fast_clear_supported);
2450 }
2451 }
2452 break;
2453
2454 default:
2455 unreachable("Invalid aux usage");
2456 }
2457 }
2458
2459 void
2460 intel_miptree_finish_write(struct brw_context *brw,
2461 struct intel_mipmap_tree *mt, uint32_t level,
2462 uint32_t start_layer, uint32_t num_layers,
2463 enum isl_aux_usage aux_usage)
2464 {
2465 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2466
2467 switch (mt->aux_usage) {
2468 case ISL_AUX_USAGE_NONE:
2469 /* Nothing to do */
2470 break;
2471
2472 case ISL_AUX_USAGE_MCS:
2473 assert(mt->aux_buf);
2474 for (uint32_t a = 0; a < num_layers; a++) {
2475 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2476 aux_usage);
2477 }
2478 break;
2479
2480 case ISL_AUX_USAGE_CCS_D:
2481 case ISL_AUX_USAGE_CCS_E:
2482 if (!mt->aux_buf)
2483 return;
2484
2485 for (uint32_t a = 0; a < num_layers; a++) {
2486 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2487 aux_usage);
2488 }
2489 break;
2490
2491 case ISL_AUX_USAGE_HIZ:
2492 if (!intel_miptree_level_has_hiz(mt, level))
2493 return;
2494
2495 for (uint32_t a = 0; a < num_layers; a++) {
2496 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2497 aux_usage);
2498 }
2499 break;
2500
2501 default:
2502 unreachable("Invavlid aux usage");
2503 }
2504 }
2505
2506 enum isl_aux_state
2507 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2508 uint32_t level, uint32_t layer)
2509 {
2510 intel_miptree_check_level_layer(mt, level, layer);
2511
2512 if (_mesa_is_format_color_format(mt->format)) {
2513 assert(mt->aux_buf != NULL);
2514 assert(mt->surf.samples == 1 ||
2515 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2516 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2517 unreachable("Cannot get aux state for stencil");
2518 } else {
2519 assert(intel_miptree_level_has_hiz(mt, level));
2520 }
2521
2522 return mt->aux_state[level][layer];
2523 }
2524
2525 void
2526 intel_miptree_set_aux_state(struct brw_context *brw,
2527 struct intel_mipmap_tree *mt, uint32_t level,
2528 uint32_t start_layer, uint32_t num_layers,
2529 enum isl_aux_state aux_state)
2530 {
2531 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2532
2533 if (_mesa_is_format_color_format(mt->format)) {
2534 assert(mt->aux_buf != NULL);
2535 assert(mt->surf.samples == 1 ||
2536 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2537 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2538 unreachable("Cannot get aux state for stencil");
2539 } else {
2540 assert(intel_miptree_level_has_hiz(mt, level));
2541 }
2542
2543 for (unsigned a = 0; a < num_layers; a++) {
2544 if (mt->aux_state[level][start_layer + a] != aux_state) {
2545 mt->aux_state[level][start_layer + a] = aux_state;
2546 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2547 }
2548 }
2549 }
2550
2551 /* On Gen9 color buffers may be compressed by the hardware (lossless
2552 * compression). There are, however, format restrictions and care needs to be
2553 * taken that the sampler engine is capable for re-interpreting a buffer with
2554 * format different the buffer was originally written with.
2555 *
2556 * For example, SRGB formats are not compressible and the sampler engine isn't
2557 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2558 * color buffer needs to be resolved so that the sampling surface can be
2559 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2560 * set).
2561 */
2562 static bool
2563 can_texture_with_ccs(struct brw_context *brw,
2564 struct intel_mipmap_tree *mt,
2565 enum isl_format view_format)
2566 {
2567 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2568 return false;
2569
2570 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2571 mt, view_format)) {
2572 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2573 isl_format_get_layout(view_format)->name,
2574 _mesa_get_format_name(mt->format));
2575 return false;
2576 }
2577
2578 return true;
2579 }
2580
2581 enum isl_aux_usage
2582 intel_miptree_texture_aux_usage(struct brw_context *brw,
2583 struct intel_mipmap_tree *mt,
2584 enum isl_format view_format)
2585 {
2586 switch (mt->aux_usage) {
2587 case ISL_AUX_USAGE_HIZ:
2588 if (intel_miptree_sample_with_hiz(brw, mt))
2589 return ISL_AUX_USAGE_HIZ;
2590 break;
2591
2592 case ISL_AUX_USAGE_MCS:
2593 return ISL_AUX_USAGE_MCS;
2594
2595 case ISL_AUX_USAGE_CCS_D:
2596 case ISL_AUX_USAGE_CCS_E:
2597 if (!mt->aux_buf) {
2598 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2599 return ISL_AUX_USAGE_NONE;
2600 }
2601
2602 /* If we don't have any unresolved color, report an aux usage of
2603 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2604 * aux surface and we can save some bandwidth.
2605 */
2606 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2607 0, INTEL_REMAINING_LAYERS))
2608 return ISL_AUX_USAGE_NONE;
2609
2610 if (can_texture_with_ccs(brw, mt, view_format))
2611 return ISL_AUX_USAGE_CCS_E;
2612 break;
2613
2614 default:
2615 break;
2616 }
2617
2618 return ISL_AUX_USAGE_NONE;
2619 }
2620
2621 static bool
2622 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2623 {
2624 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2625 * values so sRGB curve application was a no-op for all fast-clearable
2626 * formats.
2627 *
2628 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2629 * values, the hardware interprets the floats, not as what would be
2630 * returned from the sampler (or written by the shader), but as being
2631 * between format conversion and sRGB curve application. This means that
2632 * we can switch between sRGB and UNORM without having to whack the clear
2633 * color.
2634 */
2635 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2636 }
2637
2638 void
2639 intel_miptree_prepare_texture(struct brw_context *brw,
2640 struct intel_mipmap_tree *mt,
2641 enum isl_format view_format,
2642 uint32_t start_level, uint32_t num_levels,
2643 uint32_t start_layer, uint32_t num_layers)
2644 {
2645 enum isl_aux_usage aux_usage =
2646 intel_miptree_texture_aux_usage(brw, mt, view_format);
2647 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2648
2649 /* Clear color is specified as ints or floats and the conversion is done by
2650 * the sampler. If we have a texture view, we would have to perform the
2651 * clear color conversion manually. Just disable clear color.
2652 */
2653 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2654 clear_supported = false;
2655
2656 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2657 start_layer, num_layers,
2658 aux_usage, clear_supported);
2659 }
2660
2661 void
2662 intel_miptree_prepare_image(struct brw_context *brw,
2663 struct intel_mipmap_tree *mt)
2664 {
2665 /* The data port doesn't understand any compression */
2666 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2667 0, INTEL_REMAINING_LAYERS,
2668 ISL_AUX_USAGE_NONE, false);
2669 }
2670
2671 enum isl_aux_usage
2672 intel_miptree_render_aux_usage(struct brw_context *brw,
2673 struct intel_mipmap_tree *mt,
2674 enum isl_format render_format,
2675 bool blend_enabled,
2676 bool draw_aux_disabled)
2677 {
2678 struct gen_device_info *devinfo = &brw->screen->devinfo;
2679
2680 if (draw_aux_disabled)
2681 return ISL_AUX_USAGE_NONE;
2682
2683 switch (mt->aux_usage) {
2684 case ISL_AUX_USAGE_MCS:
2685 assert(mt->aux_buf);
2686 return ISL_AUX_USAGE_MCS;
2687
2688 case ISL_AUX_USAGE_CCS_D:
2689 case ISL_AUX_USAGE_CCS_E:
2690 if (!mt->aux_buf) {
2691 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2692 return ISL_AUX_USAGE_NONE;
2693 }
2694
2695 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2696 * formats. However, there are issues with blending where it doesn't
2697 * properly apply the sRGB curve to the clear color when blending.
2698 */
2699 if (devinfo->gen >= 9 && blend_enabled &&
2700 isl_format_is_srgb(render_format) &&
2701 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2702 return ISL_AUX_USAGE_NONE;
2703
2704 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2705 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2706 mt, render_format))
2707 return ISL_AUX_USAGE_CCS_E;
2708
2709 /* Otherwise, we have to fall back to CCS_D */
2710 return ISL_AUX_USAGE_CCS_D;
2711
2712 default:
2713 return ISL_AUX_USAGE_NONE;
2714 }
2715 }
2716
2717 void
2718 intel_miptree_prepare_render(struct brw_context *brw,
2719 struct intel_mipmap_tree *mt, uint32_t level,
2720 uint32_t start_layer, uint32_t layer_count,
2721 enum isl_aux_usage aux_usage)
2722 {
2723 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2724 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2725 }
2726
2727 void
2728 intel_miptree_finish_render(struct brw_context *brw,
2729 struct intel_mipmap_tree *mt, uint32_t level,
2730 uint32_t start_layer, uint32_t layer_count,
2731 enum isl_aux_usage aux_usage)
2732 {
2733 assert(_mesa_is_format_color_format(mt->format));
2734
2735 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2736 aux_usage);
2737 }
2738
2739 void
2740 intel_miptree_prepare_depth(struct brw_context *brw,
2741 struct intel_mipmap_tree *mt, uint32_t level,
2742 uint32_t start_layer, uint32_t layer_count)
2743 {
2744 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2745 mt->aux_usage, mt->aux_buf != NULL);
2746 }
2747
2748 void
2749 intel_miptree_finish_depth(struct brw_context *brw,
2750 struct intel_mipmap_tree *mt, uint32_t level,
2751 uint32_t start_layer, uint32_t layer_count,
2752 bool depth_written)
2753 {
2754 if (depth_written) {
2755 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2756 mt->aux_buf != NULL);
2757 }
2758 }
2759
2760 void
2761 intel_miptree_prepare_external(struct brw_context *brw,
2762 struct intel_mipmap_tree *mt)
2763 {
2764 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2765 bool supports_fast_clear = false;
2766
2767 const struct isl_drm_modifier_info *mod_info =
2768 isl_drm_modifier_get_info(mt->drm_modifier);
2769
2770 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2771 /* CCS_E is the only supported aux for external images and it's only
2772 * supported on very simple images.
2773 */
2774 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2775 assert(_mesa_is_format_color_format(mt->format));
2776 assert(mt->first_level == 0 && mt->last_level == 0);
2777 assert(mt->surf.logical_level0_px.depth == 1);
2778 assert(mt->surf.logical_level0_px.array_len == 1);
2779 assert(mt->surf.samples == 1);
2780 assert(mt->aux_buf != NULL);
2781
2782 aux_usage = mod_info->aux_usage;
2783 supports_fast_clear = mod_info->supports_clear_color;
2784 }
2785
2786 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2787 0, INTEL_REMAINING_LAYERS,
2788 aux_usage, supports_fast_clear);
2789 }
2790
2791 void
2792 intel_miptree_finish_external(struct brw_context *brw,
2793 struct intel_mipmap_tree *mt)
2794 {
2795 if (!mt->aux_buf)
2796 return;
2797
2798 /* We don't know the actual aux state of the aux surface. The previous
2799 * owner could have given it to us in a number of different states.
2800 * Because we don't know the aux state, we reset the aux state to the
2801 * least common denominator of possible valid states.
2802 */
2803 enum isl_aux_state default_aux_state =
2804 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2805 assert(mt->last_level == mt->first_level);
2806 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2807 default_aux_state);
2808 }
2809
2810 /**
2811 * Make it possible to share the BO backing the given miptree with another
2812 * process or another miptree.
2813 *
2814 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2815 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2816 * ensure that no MCS buffer gets allocated in the future.
2817 *
2818 * HiZ is similarly unsafe with shared buffers.
2819 */
2820 void
2821 intel_miptree_make_shareable(struct brw_context *brw,
2822 struct intel_mipmap_tree *mt)
2823 {
2824 /* MCS buffers are also used for multisample buffers, but we can't resolve
2825 * away a multisample MCS buffer because it's an integral part of how the
2826 * pixel data is stored. Fortunately this code path should never be
2827 * reached for multisample buffers.
2828 */
2829 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2830 mt->surf.samples == 1);
2831
2832 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2833 0, INTEL_REMAINING_LAYERS,
2834 ISL_AUX_USAGE_NONE, false);
2835
2836 if (mt->aux_buf) {
2837 intel_miptree_aux_buffer_free(mt->aux_buf);
2838 mt->aux_buf = NULL;
2839
2840 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2841 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2842 mt->level[l].has_hiz = false;
2843 }
2844
2845 free(mt->aux_state);
2846 mt->aux_state = NULL;
2847 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2848 }
2849
2850 mt->aux_usage = ISL_AUX_USAGE_NONE;
2851 mt->supports_fast_clear = false;
2852 }
2853
2854
2855 /**
2856 * \brief Get pointer offset into stencil buffer.
2857 *
2858 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2859 * must decode the tile's layout in software.
2860 *
2861 * See
2862 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2863 * Format.
2864 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2865 *
2866 * Even though the returned offset is always positive, the return type is
2867 * signed due to
2868 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2869 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2870 */
2871 static intptr_t
2872 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2873 {
2874 uint32_t tile_size = 4096;
2875 uint32_t tile_width = 64;
2876 uint32_t tile_height = 64;
2877 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2878
2879 uint32_t tile_x = x / tile_width;
2880 uint32_t tile_y = y / tile_height;
2881
2882 /* The byte's address relative to the tile's base addres. */
2883 uint32_t byte_x = x % tile_width;
2884 uint32_t byte_y = y % tile_height;
2885
2886 uintptr_t u = tile_y * row_size
2887 + tile_x * tile_size
2888 + 512 * (byte_x / 8)
2889 + 64 * (byte_y / 8)
2890 + 32 * ((byte_y / 4) % 2)
2891 + 16 * ((byte_x / 4) % 2)
2892 + 8 * ((byte_y / 2) % 2)
2893 + 4 * ((byte_x / 2) % 2)
2894 + 2 * (byte_y % 2)
2895 + 1 * (byte_x % 2);
2896
2897 if (swizzled) {
2898 /* adjust for bit6 swizzling */
2899 if (((byte_x / 8) % 2) == 1) {
2900 if (((byte_y / 8) % 2) == 0) {
2901 u += 64;
2902 } else {
2903 u -= 64;
2904 }
2905 }
2906 }
2907
2908 return u;
2909 }
2910
2911 void
2912 intel_miptree_updownsample(struct brw_context *brw,
2913 struct intel_mipmap_tree *src,
2914 struct intel_mipmap_tree *dst)
2915 {
2916 unsigned src_w = src->surf.logical_level0_px.width;
2917 unsigned src_h = src->surf.logical_level0_px.height;
2918 unsigned dst_w = dst->surf.logical_level0_px.width;
2919 unsigned dst_h = dst->surf.logical_level0_px.height;
2920
2921 brw_blorp_blit_miptrees(brw,
2922 src, 0 /* level */, 0 /* layer */,
2923 src->format, SWIZZLE_XYZW,
2924 dst, 0 /* level */, 0 /* layer */, dst->format,
2925 0, 0, src_w, src_h,
2926 0, 0, dst_w, dst_h,
2927 GL_NEAREST, false, false /*mirror x, y*/,
2928 false, false);
2929
2930 if (src->stencil_mt) {
2931 src_w = src->stencil_mt->surf.logical_level0_px.width;
2932 src_h = src->stencil_mt->surf.logical_level0_px.height;
2933 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2934 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2935
2936 brw_blorp_blit_miptrees(brw,
2937 src->stencil_mt, 0 /* level */, 0 /* layer */,
2938 src->stencil_mt->format, SWIZZLE_XYZW,
2939 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2940 dst->stencil_mt->format,
2941 0, 0, src_w, src_h,
2942 0, 0, dst_w, dst_h,
2943 GL_NEAREST, false, false /*mirror x, y*/,
2944 false, false /* decode/encode srgb */);
2945 }
2946 }
2947
2948 void
2949 intel_update_r8stencil(struct brw_context *brw,
2950 struct intel_mipmap_tree *mt)
2951 {
2952 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2953
2954 assert(devinfo->gen >= 7);
2955 struct intel_mipmap_tree *src =
2956 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2957 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2958 return;
2959
2960 assert(src->surf.size > 0);
2961
2962 if (!mt->r8stencil_mt) {
2963 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2964 mt->r8stencil_mt = make_surface(
2965 brw,
2966 src->target,
2967 MESA_FORMAT_R_UINT8,
2968 src->first_level, src->last_level,
2969 src->surf.logical_level0_px.width,
2970 src->surf.logical_level0_px.height,
2971 src->surf.dim == ISL_SURF_DIM_3D ?
2972 src->surf.logical_level0_px.depth :
2973 src->surf.logical_level0_px.array_len,
2974 src->surf.samples,
2975 ISL_TILING_Y0_BIT,
2976 ISL_SURF_USAGE_TEXTURE_BIT,
2977 BO_ALLOC_BUSY, 0, NULL);
2978 assert(mt->r8stencil_mt);
2979 }
2980
2981 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2982
2983 for (int level = src->first_level; level <= src->last_level; level++) {
2984 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2985 minify(src->surf.phys_level0_sa.depth, level) :
2986 src->surf.phys_level0_sa.array_len;
2987
2988 for (unsigned layer = 0; layer < depth; layer++) {
2989 brw_blorp_copy_miptrees(brw,
2990 src, level, layer,
2991 dst, level, layer,
2992 0, 0, 0, 0,
2993 minify(src->surf.logical_level0_px.width,
2994 level),
2995 minify(src->surf.logical_level0_px.height,
2996 level));
2997 }
2998 }
2999
3000 brw_cache_flush_for_read(brw, dst->bo);
3001 src->r8stencil_needs_update = false;
3002 }
3003
3004 static void *
3005 intel_miptree_map_raw(struct brw_context *brw,
3006 struct intel_mipmap_tree *mt,
3007 GLbitfield mode)
3008 {
3009 struct brw_bo *bo = mt->bo;
3010
3011 if (brw_batch_references(&brw->batch, bo))
3012 intel_batchbuffer_flush(brw);
3013
3014 return brw_bo_map(brw, bo, mode);
3015 }
3016
3017 static void
3018 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3019 {
3020 brw_bo_unmap(mt->bo);
3021 }
3022
3023 static void
3024 intel_miptree_unmap_gtt(struct brw_context *brw,
3025 struct intel_mipmap_tree *mt,
3026 struct intel_miptree_map *map,
3027 unsigned int level, unsigned int slice)
3028 {
3029 intel_miptree_unmap_raw(mt);
3030 }
3031
3032 static void
3033 intel_miptree_map_gtt(struct brw_context *brw,
3034 struct intel_mipmap_tree *mt,
3035 struct intel_miptree_map *map,
3036 unsigned int level, unsigned int slice)
3037 {
3038 unsigned int bw, bh;
3039 void *base;
3040 unsigned int image_x, image_y;
3041 intptr_t x = map->x;
3042 intptr_t y = map->y;
3043
3044 /* For compressed formats, the stride is the number of bytes per
3045 * row of blocks. intel_miptree_get_image_offset() already does
3046 * the divide.
3047 */
3048 _mesa_get_format_block_size(mt->format, &bw, &bh);
3049 assert(y % bh == 0);
3050 assert(x % bw == 0);
3051 y /= bh;
3052 x /= bw;
3053
3054 intel_miptree_access_raw(brw, mt, level, slice,
3055 map->mode & GL_MAP_WRITE_BIT);
3056
3057 base = intel_miptree_map_raw(brw, mt, map->mode);
3058
3059 if (base == NULL)
3060 map->ptr = NULL;
3061 else {
3062 base += mt->offset;
3063
3064 /* Note that in the case of cube maps, the caller must have passed the
3065 * slice number referencing the face.
3066 */
3067 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3068 x += image_x;
3069 y += image_y;
3070
3071 map->stride = mt->surf.row_pitch;
3072 map->ptr = base + y * map->stride + x * mt->cpp;
3073 }
3074
3075 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3076 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3077 map->x, map->y, map->w, map->h,
3078 mt, _mesa_get_format_name(mt->format),
3079 x, y, map->ptr, map->stride);
3080
3081 map->unmap = intel_miptree_unmap_gtt;
3082 }
3083
3084 static void
3085 intel_miptree_unmap_blit(struct brw_context *brw,
3086 struct intel_mipmap_tree *mt,
3087 struct intel_miptree_map *map,
3088 unsigned int level,
3089 unsigned int slice)
3090 {
3091 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3092 struct gl_context *ctx = &brw->ctx;
3093
3094 intel_miptree_unmap_raw(map->linear_mt);
3095
3096 if (map->mode & GL_MAP_WRITE_BIT) {
3097 if (devinfo->gen >= 6) {
3098 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
3099 mt, level, slice,
3100 0, 0, map->x, map->y, map->w, map->h);
3101 } else {
3102 bool ok = intel_miptree_copy(brw,
3103 map->linear_mt, 0, 0, 0, 0,
3104 mt, level, slice, map->x, map->y,
3105 map->w, map->h);
3106 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3107 }
3108 }
3109
3110 intel_miptree_release(&map->linear_mt);
3111 }
3112
3113 static void
3114 intel_miptree_map_blit(struct brw_context *brw,
3115 struct intel_mipmap_tree *mt,
3116 struct intel_miptree_map *map,
3117 unsigned int level, unsigned int slice)
3118 {
3119 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3120 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3121 /* first_level */ 0,
3122 /* last_level */ 0,
3123 map->w, map->h, 1,
3124 /* samples */ 1,
3125 MIPTREE_CREATE_LINEAR);
3126
3127 if (!map->linear_mt) {
3128 fprintf(stderr, "Failed to allocate blit temporary\n");
3129 goto fail;
3130 }
3131 map->stride = map->linear_mt->surf.row_pitch;
3132
3133 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3134 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3135 * invalidate is set, since we'll be writing the whole rectangle from our
3136 * temporary buffer back out.
3137 */
3138 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3139 if (devinfo->gen >= 6) {
3140 brw_blorp_copy_miptrees(brw, mt, level, slice,
3141 map->linear_mt, 0, 0,
3142 map->x, map->y, 0, 0, map->w, map->h);
3143 } else {
3144 if (!intel_miptree_copy(brw,
3145 mt, level, slice, map->x, map->y,
3146 map->linear_mt, 0, 0, 0, 0,
3147 map->w, map->h)) {
3148 fprintf(stderr, "Failed to blit\n");
3149 goto fail;
3150 }
3151 }
3152 }
3153
3154 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3155
3156 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3157 map->x, map->y, map->w, map->h,
3158 mt, _mesa_get_format_name(mt->format),
3159 level, slice, map->ptr, map->stride);
3160
3161 map->unmap = intel_miptree_unmap_blit;
3162 return;
3163
3164 fail:
3165 intel_miptree_release(&map->linear_mt);
3166 map->ptr = NULL;
3167 map->stride = 0;
3168 }
3169
3170 /**
3171 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3172 */
3173 #if defined(USE_SSE41)
3174 static void
3175 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3176 struct intel_mipmap_tree *mt,
3177 struct intel_miptree_map *map,
3178 unsigned int level,
3179 unsigned int slice)
3180 {
3181 _mesa_align_free(map->buffer);
3182 map->buffer = NULL;
3183 map->ptr = NULL;
3184 }
3185
3186 static void
3187 intel_miptree_map_movntdqa(struct brw_context *brw,
3188 struct intel_mipmap_tree *mt,
3189 struct intel_miptree_map *map,
3190 unsigned int level, unsigned int slice)
3191 {
3192 assert(map->mode & GL_MAP_READ_BIT);
3193 assert(!(map->mode & GL_MAP_WRITE_BIT));
3194
3195 intel_miptree_access_raw(brw, mt, level, slice, false);
3196
3197 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3198 map->x, map->y, map->w, map->h,
3199 mt, _mesa_get_format_name(mt->format),
3200 level, slice, map->ptr, map->stride);
3201
3202 /* Map the original image */
3203 uint32_t image_x;
3204 uint32_t image_y;
3205 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3206 image_x += map->x;
3207 image_y += map->y;
3208
3209 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3210 if (!src)
3211 return;
3212
3213 src += mt->offset;
3214
3215 src += image_y * mt->surf.row_pitch;
3216 src += image_x * mt->cpp;
3217
3218 /* Due to the pixel offsets for the particular image being mapped, our
3219 * src pointer may not be 16-byte aligned. However, if the pitch is
3220 * divisible by 16, then the amount by which it's misaligned will remain
3221 * consistent from row to row.
3222 */
3223 assert((mt->surf.row_pitch % 16) == 0);
3224 const int misalignment = ((uintptr_t) src) & 15;
3225
3226 /* Create an untiled temporary buffer for the mapping. */
3227 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3228
3229 map->stride = ALIGN(misalignment + width_bytes, 16);
3230
3231 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3232 /* Offset the destination so it has the same misalignment as src. */
3233 map->ptr = map->buffer + misalignment;
3234
3235 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3236
3237 for (uint32_t y = 0; y < map->h; y++) {
3238 void *dst_ptr = map->ptr + y * map->stride;
3239 void *src_ptr = src + y * mt->surf.row_pitch;
3240
3241 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3242 }
3243
3244 intel_miptree_unmap_raw(mt);
3245
3246 map->unmap = intel_miptree_unmap_movntdqa;
3247 }
3248 #endif
3249
3250 static void
3251 intel_miptree_unmap_s8(struct brw_context *brw,
3252 struct intel_mipmap_tree *mt,
3253 struct intel_miptree_map *map,
3254 unsigned int level,
3255 unsigned int slice)
3256 {
3257 if (map->mode & GL_MAP_WRITE_BIT) {
3258 unsigned int image_x, image_y;
3259 uint8_t *untiled_s8_map = map->ptr;
3260 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3261
3262 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3263
3264 for (uint32_t y = 0; y < map->h; y++) {
3265 for (uint32_t x = 0; x < map->w; x++) {
3266 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3267 image_x + x + map->x,
3268 image_y + y + map->y,
3269 brw->has_swizzling);
3270 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3271 }
3272 }
3273
3274 intel_miptree_unmap_raw(mt);
3275 }
3276
3277 free(map->buffer);
3278 }
3279
3280 static void
3281 intel_miptree_map_s8(struct brw_context *brw,
3282 struct intel_mipmap_tree *mt,
3283 struct intel_miptree_map *map,
3284 unsigned int level, unsigned int slice)
3285 {
3286 map->stride = map->w;
3287 map->buffer = map->ptr = malloc(map->stride * map->h);
3288 if (!map->buffer)
3289 return;
3290
3291 intel_miptree_access_raw(brw, mt, level, slice,
3292 map->mode & GL_MAP_WRITE_BIT);
3293
3294 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3295 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3296 * invalidate is set, since we'll be writing the whole rectangle from our
3297 * temporary buffer back out.
3298 */
3299 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3300 uint8_t *untiled_s8_map = map->ptr;
3301 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3302 unsigned int image_x, image_y;
3303
3304 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3305
3306 for (uint32_t y = 0; y < map->h; y++) {
3307 for (uint32_t x = 0; x < map->w; x++) {
3308 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3309 x + image_x + map->x,
3310 y + image_y + map->y,
3311 brw->has_swizzling);
3312 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3313 }
3314 }
3315
3316 intel_miptree_unmap_raw(mt);
3317
3318 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3319 map->x, map->y, map->w, map->h,
3320 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3321 } else {
3322 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3323 map->x, map->y, map->w, map->h,
3324 mt, map->ptr, map->stride);
3325 }
3326
3327 map->unmap = intel_miptree_unmap_s8;
3328 }
3329
3330 static void
3331 intel_miptree_unmap_etc(struct brw_context *brw,
3332 struct intel_mipmap_tree *mt,
3333 struct intel_miptree_map *map,
3334 unsigned int level,
3335 unsigned int slice)
3336 {
3337 uint32_t image_x;
3338 uint32_t image_y;
3339 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3340
3341 image_x += map->x;
3342 image_y += map->y;
3343
3344 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3345 + image_y * mt->surf.row_pitch
3346 + image_x * mt->cpp;
3347
3348 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3349 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3350 map->ptr, map->stride,
3351 map->w, map->h);
3352 else
3353 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3354 map->ptr, map->stride,
3355 map->w, map->h, mt->etc_format, true);
3356
3357 intel_miptree_unmap_raw(mt);
3358 free(map->buffer);
3359 }
3360
3361 static void
3362 intel_miptree_map_etc(struct brw_context *brw,
3363 struct intel_mipmap_tree *mt,
3364 struct intel_miptree_map *map,
3365 unsigned int level,
3366 unsigned int slice)
3367 {
3368 assert(mt->etc_format != MESA_FORMAT_NONE);
3369 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3370 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3371 }
3372
3373 assert(map->mode & GL_MAP_WRITE_BIT);
3374 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3375
3376 intel_miptree_access_raw(brw, mt, level, slice, true);
3377
3378 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3379 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3380 map->w, map->h, 1));
3381 map->ptr = map->buffer;
3382 map->unmap = intel_miptree_unmap_etc;
3383 }
3384
3385 /**
3386 * Mapping functions for packed depth/stencil miptrees backed by real separate
3387 * miptrees for depth and stencil.
3388 *
3389 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3390 * separate from the depth buffer. Yet at the GL API level, we have to expose
3391 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3392 * be able to map that memory for texture storage and glReadPixels-type
3393 * operations. We give Mesa core that access by mallocing a temporary and
3394 * copying the data between the actual backing store and the temporary.
3395 */
3396 static void
3397 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3398 struct intel_mipmap_tree *mt,
3399 struct intel_miptree_map *map,
3400 unsigned int level,
3401 unsigned int slice)
3402 {
3403 struct intel_mipmap_tree *z_mt = mt;
3404 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3405 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3406
3407 if (map->mode & GL_MAP_WRITE_BIT) {
3408 uint32_t *packed_map = map->ptr;
3409 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3410 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3411 unsigned int s_image_x, s_image_y;
3412 unsigned int z_image_x, z_image_y;
3413
3414 intel_miptree_get_image_offset(s_mt, level, slice,
3415 &s_image_x, &s_image_y);
3416 intel_miptree_get_image_offset(z_mt, level, slice,
3417 &z_image_x, &z_image_y);
3418
3419 for (uint32_t y = 0; y < map->h; y++) {
3420 for (uint32_t x = 0; x < map->w; x++) {
3421 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3422 x + s_image_x + map->x,
3423 y + s_image_y + map->y,
3424 brw->has_swizzling);
3425 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3426 (z_mt->surf.row_pitch / 4) +
3427 (x + z_image_x + map->x));
3428
3429 if (map_z32f_x24s8) {
3430 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3431 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3432 } else {
3433 uint32_t packed = packed_map[y * map->w + x];
3434 s_map[s_offset] = packed >> 24;
3435 z_map[z_offset] = packed;
3436 }
3437 }
3438 }
3439
3440 intel_miptree_unmap_raw(s_mt);
3441 intel_miptree_unmap_raw(z_mt);
3442
3443 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3444 __func__,
3445 map->x, map->y, map->w, map->h,
3446 z_mt, _mesa_get_format_name(z_mt->format),
3447 map->x + z_image_x, map->y + z_image_y,
3448 s_mt, map->x + s_image_x, map->y + s_image_y,
3449 map->ptr, map->stride);
3450 }
3451
3452 free(map->buffer);
3453 }
3454
3455 static void
3456 intel_miptree_map_depthstencil(struct brw_context *brw,
3457 struct intel_mipmap_tree *mt,
3458 struct intel_miptree_map *map,
3459 unsigned int level, unsigned int slice)
3460 {
3461 struct intel_mipmap_tree *z_mt = mt;
3462 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3463 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3464 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3465
3466 map->stride = map->w * packed_bpp;
3467 map->buffer = map->ptr = malloc(map->stride * map->h);
3468 if (!map->buffer)
3469 return;
3470
3471 intel_miptree_access_raw(brw, mt, level, slice,
3472 map->mode & GL_MAP_WRITE_BIT);
3473
3474 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3475 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3476 * invalidate is set, since we'll be writing the whole rectangle from our
3477 * temporary buffer back out.
3478 */
3479 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3480 uint32_t *packed_map = map->ptr;
3481 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3482 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3483 unsigned int s_image_x, s_image_y;
3484 unsigned int z_image_x, z_image_y;
3485
3486 intel_miptree_get_image_offset(s_mt, level, slice,
3487 &s_image_x, &s_image_y);
3488 intel_miptree_get_image_offset(z_mt, level, slice,
3489 &z_image_x, &z_image_y);
3490
3491 for (uint32_t y = 0; y < map->h; y++) {
3492 for (uint32_t x = 0; x < map->w; x++) {
3493 int map_x = map->x + x, map_y = map->y + y;
3494 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3495 map_x + s_image_x,
3496 map_y + s_image_y,
3497 brw->has_swizzling);
3498 ptrdiff_t z_offset = ((map_y + z_image_y) *
3499 (z_mt->surf.row_pitch / 4) +
3500 (map_x + z_image_x));
3501 uint8_t s = s_map[s_offset];
3502 uint32_t z = z_map[z_offset];
3503
3504 if (map_z32f_x24s8) {
3505 packed_map[(y * map->w + x) * 2 + 0] = z;
3506 packed_map[(y * map->w + x) * 2 + 1] = s;
3507 } else {
3508 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3509 }
3510 }
3511 }
3512
3513 intel_miptree_unmap_raw(s_mt);
3514 intel_miptree_unmap_raw(z_mt);
3515
3516 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3517 __func__,
3518 map->x, map->y, map->w, map->h,
3519 z_mt, map->x + z_image_x, map->y + z_image_y,
3520 s_mt, map->x + s_image_x, map->y + s_image_y,
3521 map->ptr, map->stride);
3522 } else {
3523 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3524 map->x, map->y, map->w, map->h,
3525 mt, map->ptr, map->stride);
3526 }
3527
3528 map->unmap = intel_miptree_unmap_depthstencil;
3529 }
3530
3531 /**
3532 * Create and attach a map to the miptree at (level, slice). Return the
3533 * attached map.
3534 */
3535 static struct intel_miptree_map*
3536 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3537 unsigned int level,
3538 unsigned int slice,
3539 unsigned int x,
3540 unsigned int y,
3541 unsigned int w,
3542 unsigned int h,
3543 GLbitfield mode)
3544 {
3545 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3546
3547 if (!map)
3548 return NULL;
3549
3550 assert(mt->level[level].slice[slice].map == NULL);
3551 mt->level[level].slice[slice].map = map;
3552
3553 map->mode = mode;
3554 map->x = x;
3555 map->y = y;
3556 map->w = w;
3557 map->h = h;
3558
3559 return map;
3560 }
3561
3562 /**
3563 * Release the map at (level, slice).
3564 */
3565 static void
3566 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3567 unsigned int level,
3568 unsigned int slice)
3569 {
3570 struct intel_miptree_map **map;
3571
3572 map = &mt->level[level].slice[slice].map;
3573 free(*map);
3574 *map = NULL;
3575 }
3576
3577 static bool
3578 can_blit_slice(struct intel_mipmap_tree *mt,
3579 unsigned int level, unsigned int slice)
3580 {
3581 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3582 if (intel_miptree_blt_pitch(mt) >= 32768)
3583 return false;
3584
3585 return true;
3586 }
3587
3588 static bool
3589 use_intel_mipree_map_blit(struct brw_context *brw,
3590 struct intel_mipmap_tree *mt,
3591 GLbitfield mode,
3592 unsigned int level,
3593 unsigned int slice)
3594 {
3595 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3596
3597 if (devinfo->has_llc &&
3598 /* It's probably not worth swapping to the blit ring because of
3599 * all the overhead involved.
3600 */
3601 !(mode & GL_MAP_WRITE_BIT) &&
3602 !mt->compressed &&
3603 (mt->surf.tiling == ISL_TILING_X ||
3604 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3605 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3606 /* Fast copy blit on skl+ supports all tiling formats. */
3607 devinfo->gen >= 9) &&
3608 can_blit_slice(mt, level, slice))
3609 return true;
3610
3611 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3612 mt->bo->size >= brw->max_gtt_map_object_size) {
3613 assert(can_blit_slice(mt, level, slice));
3614 return true;
3615 }
3616
3617 return false;
3618 }
3619
3620 /**
3621 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3622 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3623 * arithmetic overflow.
3624 *
3625 * If you call this function and use \a out_stride, then you're doing pointer
3626 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3627 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3628 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3629 * which usually have type uint32_t or GLuint.
3630 */
3631 void
3632 intel_miptree_map(struct brw_context *brw,
3633 struct intel_mipmap_tree *mt,
3634 unsigned int level,
3635 unsigned int slice,
3636 unsigned int x,
3637 unsigned int y,
3638 unsigned int w,
3639 unsigned int h,
3640 GLbitfield mode,
3641 void **out_ptr,
3642 ptrdiff_t *out_stride)
3643 {
3644 struct intel_miptree_map *map;
3645
3646 assert(mt->surf.samples == 1);
3647
3648 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3649 if (!map){
3650 *out_ptr = NULL;
3651 *out_stride = 0;
3652 return;
3653 }
3654
3655 if (mt->format == MESA_FORMAT_S_UINT8) {
3656 intel_miptree_map_s8(brw, mt, map, level, slice);
3657 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3658 !(mode & BRW_MAP_DIRECT_BIT)) {
3659 intel_miptree_map_etc(brw, mt, map, level, slice);
3660 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3661 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3662 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3663 intel_miptree_map_blit(brw, mt, map, level, slice);
3664 #if defined(USE_SSE41)
3665 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3666 !mt->compressed && cpu_has_sse4_1 &&
3667 (mt->surf.row_pitch % 16 == 0)) {
3668 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3669 #endif
3670 } else {
3671 intel_miptree_map_gtt(brw, mt, map, level, slice);
3672 }
3673
3674 *out_ptr = map->ptr;
3675 *out_stride = map->stride;
3676
3677 if (map->ptr == NULL)
3678 intel_miptree_release_map(mt, level, slice);
3679 }
3680
3681 void
3682 intel_miptree_unmap(struct brw_context *brw,
3683 struct intel_mipmap_tree *mt,
3684 unsigned int level,
3685 unsigned int slice)
3686 {
3687 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3688
3689 assert(mt->surf.samples == 1);
3690
3691 if (!map)
3692 return;
3693
3694 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3695 mt, _mesa_get_format_name(mt->format), level, slice);
3696
3697 if (map->unmap)
3698 map->unmap(brw, mt, map, level, slice);
3699
3700 intel_miptree_release_map(mt, level, slice);
3701 }
3702
3703 enum isl_surf_dim
3704 get_isl_surf_dim(GLenum target)
3705 {
3706 switch (target) {
3707 case GL_TEXTURE_1D:
3708 case GL_TEXTURE_1D_ARRAY:
3709 return ISL_SURF_DIM_1D;
3710
3711 case GL_TEXTURE_2D:
3712 case GL_TEXTURE_2D_ARRAY:
3713 case GL_TEXTURE_RECTANGLE:
3714 case GL_TEXTURE_CUBE_MAP:
3715 case GL_TEXTURE_CUBE_MAP_ARRAY:
3716 case GL_TEXTURE_2D_MULTISAMPLE:
3717 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3718 case GL_TEXTURE_EXTERNAL_OES:
3719 return ISL_SURF_DIM_2D;
3720
3721 case GL_TEXTURE_3D:
3722 return ISL_SURF_DIM_3D;
3723 }
3724
3725 unreachable("Invalid texture target");
3726 }
3727
3728 enum isl_dim_layout
3729 get_isl_dim_layout(const struct gen_device_info *devinfo,
3730 enum isl_tiling tiling, GLenum target)
3731 {
3732 switch (target) {
3733 case GL_TEXTURE_1D:
3734 case GL_TEXTURE_1D_ARRAY:
3735 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3736 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3737
3738 case GL_TEXTURE_2D:
3739 case GL_TEXTURE_2D_ARRAY:
3740 case GL_TEXTURE_RECTANGLE:
3741 case GL_TEXTURE_2D_MULTISAMPLE:
3742 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3743 case GL_TEXTURE_EXTERNAL_OES:
3744 return ISL_DIM_LAYOUT_GEN4_2D;
3745
3746 case GL_TEXTURE_CUBE_MAP:
3747 case GL_TEXTURE_CUBE_MAP_ARRAY:
3748 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3749 ISL_DIM_LAYOUT_GEN4_2D);
3750
3751 case GL_TEXTURE_3D:
3752 return (devinfo->gen >= 9 ?
3753 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3754 }
3755
3756 unreachable("Invalid texture target");
3757 }
3758
3759 bool
3760 intel_miptree_set_clear_color(struct brw_context *brw,
3761 struct intel_mipmap_tree *mt,
3762 union isl_color_value clear_color)
3763 {
3764 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3765 mt->fast_clear_color = clear_color;
3766 if (mt->aux_buf->clear_color_bo) {
3767 /* We can't update the clear color while the hardware is still using
3768 * the previous one for a resolve or sampling from it. Make sure that
3769 * there are no pending commands at this point.
3770 */
3771 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3772 for (int i = 0; i < 4; i++) {
3773 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3774 mt->aux_buf->clear_color_offset + i * 4,
3775 mt->fast_clear_color.u32[i]);
3776 }
3777 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3778 }
3779 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3780 return true;
3781 }
3782 return false;
3783 }
3784
3785 union isl_color_value
3786 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3787 const struct intel_mipmap_tree *mt,
3788 enum isl_format view_format, bool sampling,
3789 struct brw_bo **clear_color_bo,
3790 uint32_t *clear_color_offset)
3791 {
3792 assert(mt->aux_buf);
3793
3794 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3795 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3796 * we switch to using the inline clear color and do the sRGB color
3797 * conversion process defined in the OpenGL spec. The red, green, and
3798 * blue channels take part in gamma correction, while the alpha channel
3799 * is unchanged.
3800 */
3801 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3802 for (unsigned i = 0; i < 3; i++) {
3803 srgb_decoded_value.f32[i] =
3804 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3805 }
3806 *clear_color_bo = 0;
3807 *clear_color_offset = 0;
3808 return srgb_decoded_value;
3809 } else {
3810 *clear_color_bo = mt->aux_buf->clear_color_bo;
3811 *clear_color_offset = mt->aux_buf->clear_color_offset;
3812 return mt->fast_clear_color;
3813 }
3814 }