i965: Make intel_miptree_prepare_texture() take level/layer arguments.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 static bool
245 intel_miptree_supports_ccs_e(struct brw_context *brw,
246 const struct intel_mipmap_tree *mt)
247 {
248 const struct gen_device_info *devinfo = &brw->screen->devinfo;
249
250 if (devinfo->gen < 9)
251 return false;
252
253 /* For now compression is only enabled for integer formats even though
254 * there exist supported floating point formats also. This is a heuristic
255 * decision based on current public benchmarks. In none of the cases these
256 * formats provided any improvement but a few cases were seen to regress.
257 * Hence these are left to to be enabled in the future when they are known
258 * to improve things.
259 */
260 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
261 return false;
262
263 if (!intel_miptree_supports_ccs(brw, mt))
264 return false;
265
266 /* Many window system buffers are sRGB even if they are never rendered as
267 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
268 * surface is used as sRGB, we fall back to CCS_D.
269 */
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
273 }
274
275 /**
276 * Determine depth format corresponding to a depth+stencil format,
277 * for separate stencil.
278 */
279 mesa_format
280 intel_depth_format_for_depthstencil_format(mesa_format format) {
281 switch (format) {
282 case MESA_FORMAT_Z24_UNORM_S8_UINT:
283 return MESA_FORMAT_Z24_UNORM_X8_UINT;
284 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
285 return MESA_FORMAT_Z_FLOAT32;
286 default:
287 return format;
288 }
289 }
290
291 static bool
292 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
293 unsigned depth0, struct intel_mipmap_level *table)
294 {
295 for (unsigned level = first_level; level <= last_level; level++) {
296 const unsigned d =
297 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
298
299 table[level].slice = calloc(d, sizeof(*table[0].slice));
300 if (!table[level].slice)
301 goto unwind;
302 }
303
304 return true;
305
306 unwind:
307 for (unsigned level = first_level; level <= last_level; level++)
308 free(table[level].slice);
309
310 return false;
311 }
312
313 static bool
314 needs_separate_stencil(const struct brw_context *brw,
315 struct intel_mipmap_tree *mt,
316 mesa_format format)
317 {
318 const struct gen_device_info *devinfo = &brw->screen->devinfo;
319
320 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
321 return false;
322
323 if (devinfo->must_use_separate_stencil)
324 return true;
325
326 return brw->has_separate_stencil &&
327 intel_miptree_supports_hiz(brw, mt);
328 }
329
330 /**
331 * Choose the aux usage for this miptree. This function must be called fairly
332 * late in the miptree create process after we have a tiling.
333 */
334 static void
335 intel_miptree_choose_aux_usage(struct brw_context *brw,
336 struct intel_mipmap_tree *mt)
337 {
338 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
339
340 if (intel_miptree_supports_mcs(brw, mt)) {
341 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
342 mt->aux_usage = ISL_AUX_USAGE_MCS;
343 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
344 intel_miptree_supports_ccs(brw, mt)) {
345 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
346 intel_miptree_supports_ccs_e(brw, mt)) {
347 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
348 } else {
349 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
350 }
351 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
352 intel_miptree_supports_hiz(brw, mt)) {
353 mt->aux_usage = ISL_AUX_USAGE_HIZ;
354 }
355
356 /* We can do fast-clear on all auxiliary surface types that are
357 * allocated through the normal texture creation paths.
358 */
359 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
360 mt->supports_fast_clear = true;
361 }
362
363
364 /**
365 * Choose an appropriate uncompressed format for a requested
366 * compressed format, if unsupported.
367 */
368 mesa_format
369 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
370 {
371 const struct gen_device_info *devinfo = &brw->screen->devinfo;
372
373 /* No need to lower ETC formats on these platforms,
374 * they are supported natively.
375 */
376 if (devinfo->gen >= 8 || devinfo->is_baytrail)
377 return format;
378
379 switch (format) {
380 case MESA_FORMAT_ETC1_RGB8:
381 return MESA_FORMAT_R8G8B8X8_UNORM;
382 case MESA_FORMAT_ETC2_RGB8:
383 return MESA_FORMAT_R8G8B8X8_UNORM;
384 case MESA_FORMAT_ETC2_SRGB8:
385 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
386 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
387 return MESA_FORMAT_B8G8R8A8_SRGB;
388 case MESA_FORMAT_ETC2_RGBA8_EAC:
389 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
390 return MESA_FORMAT_R8G8B8A8_UNORM;
391 case MESA_FORMAT_ETC2_R11_EAC:
392 return MESA_FORMAT_R_UNORM16;
393 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
394 return MESA_FORMAT_R_SNORM16;
395 case MESA_FORMAT_ETC2_RG11_EAC:
396 return MESA_FORMAT_R16G16_UNORM;
397 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
398 return MESA_FORMAT_R16G16_SNORM;
399 default:
400 /* Non ETC1 / ETC2 format */
401 return format;
402 }
403 }
404
405 unsigned
406 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
407 {
408 if (mt->surf.dim == ISL_SURF_DIM_3D)
409 return minify(mt->surf.logical_level0_px.depth, level);
410 else
411 return mt->surf.logical_level0_px.array_len;
412 }
413
414 UNUSED static unsigned
415 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
416 {
417 /* In case of physical dimensions one needs to consider also the layout.
418 * See isl_calc_phys_level0_extent_sa().
419 */
420 if (surf->dim != ISL_SURF_DIM_3D)
421 return surf->phys_level0_sa.array_len;
422
423 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
424 return minify(surf->phys_level0_sa.array_len, level);
425
426 return minify(surf->phys_level0_sa.depth, level);
427 }
428
429 /** \brief Assert that the level and layer are valid for the miptree. */
430 void
431 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
432 uint32_t level,
433 uint32_t layer)
434 {
435 (void) mt;
436 (void) level;
437 (void) layer;
438
439 assert(level >= mt->first_level);
440 assert(level <= mt->last_level);
441 assert(layer < get_num_phys_layers(&mt->surf, level));
442 }
443
444 static enum isl_aux_state **
445 create_aux_state_map(struct intel_mipmap_tree *mt,
446 enum isl_aux_state initial)
447 {
448 const uint32_t levels = mt->last_level + 1;
449
450 uint32_t total_slices = 0;
451 for (uint32_t level = 0; level < levels; level++)
452 total_slices += brw_get_num_logical_layers(mt, level);
453
454 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
455
456 /* We're going to allocate a single chunk of data for both the per-level
457 * reference array and the arrays of aux_state. This makes cleanup
458 * significantly easier.
459 */
460 const size_t total_size = per_level_array_size +
461 total_slices * sizeof(enum isl_aux_state);
462 void *data = malloc(total_size);
463 if (data == NULL)
464 return NULL;
465
466 enum isl_aux_state **per_level_arr = data;
467 enum isl_aux_state *s = data + per_level_array_size;
468 for (uint32_t level = 0; level < levels; level++) {
469 per_level_arr[level] = s;
470 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
471 for (uint32_t a = 0; a < level_layers; a++)
472 *(s++) = initial;
473 }
474 assert((void *)s == data + total_size);
475
476 return per_level_arr;
477 }
478
479 static void
480 free_aux_state_map(enum isl_aux_state **state)
481 {
482 free(state);
483 }
484
485 static bool
486 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
487 enum isl_tiling tiling, unsigned samples)
488 {
489 if (samples > 1)
490 return false;
491
492 if (tiling == ISL_TILING_LINEAR)
493 return false;
494
495 /* If the width is much smaller than a tile, don't bother tiling. */
496 if (row_pitch < 64)
497 return true;
498
499 if (ALIGN(row_pitch, 512) >= 32768) {
500 perf_debug("row pitch %u too large to blit, falling back to untiled",
501 row_pitch);
502 return true;
503 }
504
505 return false;
506 }
507
508 static bool
509 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
510 enum isl_tiling tiling)
511 {
512 const struct gen_device_info *devinfo = &brw->screen->devinfo;
513
514 /* If the BO is too large to fit in the aperture, we need to use the
515 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
516 * handle Y-tiling, so we need to fall back to X.
517 */
518 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
519 tiling == ISL_TILING_Y0)
520 return true;
521
522 return false;
523 }
524
525 static struct intel_mipmap_tree *
526 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
527 unsigned first_level, unsigned last_level,
528 unsigned width0, unsigned height0, unsigned depth0,
529 unsigned num_samples, isl_tiling_flags_t tiling_flags,
530 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
531 unsigned row_pitch, struct brw_bo *bo)
532 {
533 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
534 if (!mt)
535 return NULL;
536
537 if (!create_mapping_table(target, first_level, last_level, depth0,
538 mt->level)) {
539 free(mt);
540 return NULL;
541 }
542
543 mt->refcount = 1;
544
545 if (target == GL_TEXTURE_CUBE_MAP ||
546 target == GL_TEXTURE_CUBE_MAP_ARRAY)
547 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
548
549 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
550 __func__,
551 _mesa_enum_to_string(target),
552 _mesa_get_format_name(format),
553 num_samples, width0, height0, depth0,
554 first_level, last_level, mt);
555
556 struct isl_surf_init_info init_info = {
557 .dim = get_isl_surf_dim(target),
558 .format = translate_tex_format(brw, format, false),
559 .width = width0,
560 .height = height0,
561 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
562 .levels = last_level - first_level + 1,
563 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
564 .samples = num_samples,
565 .row_pitch = row_pitch,
566 .usage = isl_usage_flags,
567 .tiling_flags = tiling_flags,
568 };
569
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572
573 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
574 * on gen7 platforms we also need to create Y-tiled copies of stencil for
575 * texturing since the hardware can't sample from W-tiled surfaces. For
576 * everything else, check for corner cases needing special treatment.
577 */
578 bool is_depth_stencil =
579 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
580 if (!is_depth_stencil) {
581 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
582 mt->surf.tiling, mt->surf.samples)) {
583 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
584 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
585 goto fail;
586 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
587 init_info.tiling_flags = 1u << ISL_TILING_X;
588 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
589 goto fail;
590 }
591 }
592
593 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
594 * the size may not be multiple of row_pitch.
595 * See isl_apply_surface_padding().
596 */
597 if (mt->surf.tiling != ISL_TILING_LINEAR)
598 assert(mt->surf.size % mt->surf.row_pitch == 0);
599
600 if (!bo) {
601 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
602 mt->surf.size,
603 isl_tiling_to_i915_tiling(
604 mt->surf.tiling),
605 mt->surf.row_pitch, alloc_flags);
606 if (!mt->bo)
607 goto fail;
608 } else {
609 mt->bo = bo;
610 }
611
612 mt->first_level = first_level;
613 mt->last_level = last_level;
614 mt->target = target;
615 mt->format = format;
616 mt->aux_state = NULL;
617 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
618 mt->compressed = _mesa_is_format_compressed(format);
619 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
620
621 return mt;
622
623 fail:
624 intel_miptree_release(&mt);
625 return NULL;
626 }
627
628 static bool
629 make_separate_stencil_surface(struct brw_context *brw,
630 struct intel_mipmap_tree *mt)
631 {
632 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
633 0, mt->surf.levels - 1,
634 mt->surf.logical_level0_px.width,
635 mt->surf.logical_level0_px.height,
636 mt->surf.dim == ISL_SURF_DIM_3D ?
637 mt->surf.logical_level0_px.depth :
638 mt->surf.logical_level0_px.array_len,
639 mt->surf.samples, ISL_TILING_W_BIT,
640 ISL_SURF_USAGE_STENCIL_BIT |
641 ISL_SURF_USAGE_TEXTURE_BIT,
642 BO_ALLOC_BUSY, 0, NULL);
643
644 if (!mt->stencil_mt)
645 return false;
646
647 mt->stencil_mt->r8stencil_needs_update = true;
648
649 return true;
650 }
651
652 static struct intel_mipmap_tree *
653 miptree_create(struct brw_context *brw,
654 GLenum target,
655 mesa_format format,
656 GLuint first_level,
657 GLuint last_level,
658 GLuint width0,
659 GLuint height0,
660 GLuint depth0,
661 GLuint num_samples,
662 enum intel_miptree_create_flags flags)
663 {
664 const struct gen_device_info *devinfo = &brw->screen->devinfo;
665
666 if (format == MESA_FORMAT_S_UINT8)
667 return make_surface(brw, target, format, first_level, last_level,
668 width0, height0, depth0, num_samples,
669 ISL_TILING_W_BIT,
670 ISL_SURF_USAGE_STENCIL_BIT |
671 ISL_SURF_USAGE_TEXTURE_BIT,
672 BO_ALLOC_BUSY,
673 0,
674 NULL);
675
676 const GLenum base_format = _mesa_get_format_base_format(format);
677 if ((base_format == GL_DEPTH_COMPONENT ||
678 base_format == GL_DEPTH_STENCIL) &&
679 !(flags & MIPTREE_CREATE_LINEAR)) {
680 /* Fix up the Z miptree format for how we're splitting out separate
681 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
682 */
683 const mesa_format depth_only_format =
684 intel_depth_format_for_depthstencil_format(format);
685 struct intel_mipmap_tree *mt = make_surface(
686 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
687 first_level, last_level,
688 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
689 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
690 BO_ALLOC_BUSY, 0, NULL);
691
692 if (needs_separate_stencil(brw, mt, format) &&
693 !make_separate_stencil_surface(brw, mt)) {
694 intel_miptree_release(&mt);
695 return NULL;
696 }
697
698 if (!(flags & MIPTREE_CREATE_NO_AUX))
699 intel_miptree_choose_aux_usage(brw, mt);
700
701 return mt;
702 }
703
704 mesa_format tex_format = format;
705 mesa_format etc_format = MESA_FORMAT_NONE;
706 uint32_t alloc_flags = 0;
707
708 format = intel_lower_compressed_format(brw, format);
709
710 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
711
712 if (flags & MIPTREE_CREATE_BUSY)
713 alloc_flags |= BO_ALLOC_BUSY;
714
715 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
716 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
717
718 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
719 if (devinfo->gen < 6)
720 tiling_flags &= ~ISL_TILING_Y0_BIT;
721
722 struct intel_mipmap_tree *mt = make_surface(
723 brw, target, format,
724 first_level, last_level,
725 width0, height0, depth0,
726 num_samples, tiling_flags,
727 ISL_SURF_USAGE_RENDER_TARGET_BIT |
728 ISL_SURF_USAGE_TEXTURE_BIT,
729 alloc_flags, 0, NULL);
730 if (!mt)
731 return NULL;
732
733 mt->etc_format = etc_format;
734
735 if (!(flags & MIPTREE_CREATE_NO_AUX))
736 intel_miptree_choose_aux_usage(brw, mt);
737
738 return mt;
739 }
740
741 struct intel_mipmap_tree *
742 intel_miptree_create(struct brw_context *brw,
743 GLenum target,
744 mesa_format format,
745 GLuint first_level,
746 GLuint last_level,
747 GLuint width0,
748 GLuint height0,
749 GLuint depth0,
750 GLuint num_samples,
751 enum intel_miptree_create_flags flags)
752 {
753 assert(num_samples > 0);
754
755 struct intel_mipmap_tree *mt = miptree_create(
756 brw, target, format,
757 first_level, last_level,
758 width0, height0, depth0, num_samples,
759 flags);
760 if (!mt)
761 return NULL;
762
763 mt->offset = 0;
764
765 if (!intel_miptree_alloc_aux(brw, mt)) {
766 intel_miptree_release(&mt);
767 return NULL;
768 }
769
770 return mt;
771 }
772
773 struct intel_mipmap_tree *
774 intel_miptree_create_for_bo(struct brw_context *brw,
775 struct brw_bo *bo,
776 mesa_format format,
777 uint32_t offset,
778 uint32_t width,
779 uint32_t height,
780 uint32_t depth,
781 int pitch,
782 enum intel_miptree_create_flags flags)
783 {
784 const struct gen_device_info *devinfo = &brw->screen->devinfo;
785 struct intel_mipmap_tree *mt;
786 uint32_t tiling, swizzle;
787 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
788 const GLenum base_format = _mesa_get_format_base_format(format);
789
790 if ((base_format == GL_DEPTH_COMPONENT ||
791 base_format == GL_DEPTH_STENCIL)) {
792 const mesa_format depth_only_format =
793 intel_depth_format_for_depthstencil_format(format);
794 mt = make_surface(brw, target,
795 devinfo->gen >= 6 ? depth_only_format : format,
796 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
797 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
798 BO_ALLOC_BUSY, pitch, bo);
799 if (!mt)
800 return NULL;
801
802 brw_bo_reference(bo);
803
804 if (!(flags & MIPTREE_CREATE_NO_AUX))
805 intel_miptree_choose_aux_usage(brw, mt);
806
807 return mt;
808 } else if (format == MESA_FORMAT_S_UINT8) {
809 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
810 0, 0, width, height, depth, 1,
811 ISL_TILING_W_BIT,
812 ISL_SURF_USAGE_STENCIL_BIT |
813 ISL_SURF_USAGE_TEXTURE_BIT,
814 BO_ALLOC_BUSY, pitch, bo);
815 if (!mt)
816 return NULL;
817
818 assert(bo->size >= mt->surf.size);
819
820 brw_bo_reference(bo);
821 return mt;
822 }
823
824 brw_bo_get_tiling(bo, &tiling, &swizzle);
825
826 /* Nothing will be able to use this miptree with the BO if the offset isn't
827 * aligned.
828 */
829 if (tiling != I915_TILING_NONE)
830 assert(offset % 4096 == 0);
831
832 /* miptrees can't handle negative pitch. If you need flipping of images,
833 * that's outside of the scope of the mt.
834 */
835 assert(pitch >= 0);
836
837 /* The BO already has a tiling format and we shouldn't confuse the lower
838 * layers by making it try to find a tiling format again.
839 */
840 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
841
842 mt = make_surface(brw, target, format,
843 0, 0, width, height, depth, 1,
844 1lu << isl_tiling_from_i915_tiling(tiling),
845 ISL_SURF_USAGE_RENDER_TARGET_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 brw_bo_reference(bo);
852 mt->bo = bo;
853 mt->offset = offset;
854
855 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
856 intel_miptree_choose_aux_usage(brw, mt);
857
858 if (!intel_miptree_alloc_aux(brw, mt)) {
859 intel_miptree_release(&mt);
860 return NULL;
861 }
862 }
863
864 return mt;
865 }
866
867 static struct intel_mipmap_tree *
868 miptree_create_for_planar_image(struct brw_context *brw,
869 __DRIimage *image, GLenum target)
870 {
871 const struct intel_image_format *f = image->planar_format;
872 struct intel_mipmap_tree *planar_mt = NULL;
873
874 for (int i = 0; i < f->nplanes; i++) {
875 const int index = f->planes[i].buffer_index;
876 const uint32_t dri_format = f->planes[i].dri_format;
877 const mesa_format format = driImageFormatToGLFormat(dri_format);
878 const uint32_t width = image->width >> f->planes[i].width_shift;
879 const uint32_t height = image->height >> f->planes[i].height_shift;
880
881 /* Disable creation of the texture's aux buffers because the driver
882 * exposes no EGL API to manage them. That is, there is no API for
883 * resolving the aux buffer's content to the main buffer nor for
884 * invalidating the aux buffer's content.
885 */
886 struct intel_mipmap_tree *mt =
887 intel_miptree_create_for_bo(brw, image->bo, format,
888 image->offsets[index],
889 width, height, 1,
890 image->strides[index],
891 MIPTREE_CREATE_NO_AUX);
892 if (mt == NULL)
893 return NULL;
894
895 mt->target = target;
896
897 if (i == 0)
898 planar_mt = mt;
899 else
900 planar_mt->plane[i - 1] = mt;
901 }
902
903 planar_mt->drm_modifier = image->modifier;
904
905 return planar_mt;
906 }
907
908 static bool
909 create_ccs_buf_for_image(struct brw_context *brw,
910 __DRIimage *image,
911 struct intel_mipmap_tree *mt,
912 enum isl_aux_state initial_state)
913 {
914 struct isl_surf temp_ccs_surf;
915
916 /* CCS is only supported for very simple miptrees */
917 assert(image->aux_offset != 0 && image->aux_pitch != 0);
918 assert(image->tile_x == 0 && image->tile_y == 0);
919 assert(mt->surf.samples == 1);
920 assert(mt->surf.levels == 1);
921 assert(mt->surf.logical_level0_px.depth == 1);
922 assert(mt->surf.logical_level0_px.array_len == 1);
923 assert(mt->first_level == 0);
924 assert(mt->last_level == 0);
925
926 /* We shouldn't already have a CCS */
927 assert(!mt->mcs_buf);
928
929 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
930 image->aux_pitch))
931 return false;
932
933 assert(image->aux_offset < image->bo->size);
934 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
935
936 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
937 if (mt->mcs_buf == NULL)
938 return false;
939
940 mt->aux_state = create_aux_state_map(mt, initial_state);
941 if (!mt->aux_state) {
942 free(mt->mcs_buf);
943 mt->mcs_buf = NULL;
944 return false;
945 }
946
947 mt->mcs_buf->bo = image->bo;
948 brw_bo_reference(image->bo);
949
950 mt->mcs_buf->offset = image->aux_offset;
951 mt->mcs_buf->size = image->bo->size - image->aux_offset;
952 mt->mcs_buf->pitch = image->aux_pitch;
953 mt->mcs_buf->qpitch = 0;
954 mt->mcs_buf->surf = temp_ccs_surf;
955
956 return true;
957 }
958
959 struct intel_mipmap_tree *
960 intel_miptree_create_for_dri_image(struct brw_context *brw,
961 __DRIimage *image, GLenum target,
962 mesa_format format,
963 bool is_winsys_image)
964 {
965 if (image->planar_format && image->planar_format->nplanes > 1)
966 return miptree_create_for_planar_image(brw, image, target);
967
968 if (image->planar_format)
969 assert(image->planar_format->planes[0].dri_format == image->dri_format);
970
971 if (!brw->ctx.TextureFormatSupported[format]) {
972 /* The texture storage paths in core Mesa detect if the driver does not
973 * support the user-requested format, and then searches for a
974 * fallback format. The DRIimage code bypasses core Mesa, though. So we
975 * do the fallbacks here for important formats.
976 *
977 * We must support DRM_FOURCC_XBGR8888 textures because the Android
978 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
979 * the Chrome OS compositor consumes as dma_buf EGLImages.
980 */
981 format = _mesa_format_fallback_rgbx_to_rgba(format);
982 }
983
984 if (!brw->ctx.TextureFormatSupported[format])
985 return NULL;
986
987 const struct isl_drm_modifier_info *mod_info =
988 isl_drm_modifier_get_info(image->modifier);
989
990 enum intel_miptree_create_flags mt_create_flags = 0;
991
992 /* If this image comes in from a window system, we have different
993 * requirements than if it comes in via an EGL import operation. Window
994 * system images can use any form of auxiliary compression we wish because
995 * they get "flushed" before being handed off to the window system and we
996 * have the opportunity to do resolves. Non window-system images, on the
997 * other hand, have no resolve point so we can't have aux without a
998 * modifier.
999 */
1000 if (!is_winsys_image)
1001 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1002
1003 /* If we have a modifier which specifies aux, don't create one yet */
1004 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1005 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1006
1007 /* Disable creation of the texture's aux buffers because the driver exposes
1008 * no EGL API to manage them. That is, there is no API for resolving the aux
1009 * buffer's content to the main buffer nor for invalidating the aux buffer's
1010 * content.
1011 */
1012 struct intel_mipmap_tree *mt =
1013 intel_miptree_create_for_bo(brw, image->bo, format,
1014 image->offset, image->width, image->height, 1,
1015 image->pitch, mt_create_flags);
1016 if (mt == NULL)
1017 return NULL;
1018
1019 mt->target = target;
1020 mt->level[0].level_x = image->tile_x;
1021 mt->level[0].level_y = image->tile_y;
1022 mt->drm_modifier = image->modifier;
1023
1024 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1025 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1026 * trouble resolving back to destination image due to alignment issues.
1027 */
1028 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1029 if (!devinfo->has_surface_tile_offset) {
1030 uint32_t draw_x, draw_y;
1031 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1032
1033 if (draw_x != 0 || draw_y != 0) {
1034 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1035 intel_miptree_release(&mt);
1036 return NULL;
1037 }
1038 }
1039
1040 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1041 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1042
1043 mt->aux_usage = mod_info->aux_usage;
1044 /* If we are a window system buffer, then we can support fast-clears
1045 * even if the modifier doesn't support them by doing a partial resolve
1046 * as part of the flush operation.
1047 */
1048 mt->supports_fast_clear =
1049 is_winsys_image || mod_info->supports_clear_color;
1050
1051 /* We don't know the actual state of the surface when we get it but we
1052 * can make a pretty good guess based on the modifier. What we do know
1053 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1054 * a worst case of compression.
1055 */
1056 enum isl_aux_state initial_state =
1057 isl_drm_modifier_get_default_aux_state(image->modifier);
1058
1059 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1060 intel_miptree_release(&mt);
1061 return NULL;
1062 }
1063 }
1064
1065 /* Don't assume coherency for imported EGLimages. We don't know what
1066 * external clients are going to do with it. They may scan it out.
1067 */
1068 image->bo->cache_coherent = false;
1069
1070 return mt;
1071 }
1072
1073 /**
1074 * For a singlesample renderbuffer, this simply wraps the given BO with a
1075 * miptree.
1076 *
1077 * For a multisample renderbuffer, this wraps the window system's
1078 * (singlesample) BO with a singlesample miptree attached to the
1079 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1080 * that will contain the actual rendering (which is lazily resolved to
1081 * irb->singlesample_mt).
1082 */
1083 bool
1084 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1085 struct intel_renderbuffer *irb,
1086 struct intel_mipmap_tree *singlesample_mt,
1087 uint32_t width, uint32_t height,
1088 uint32_t pitch)
1089 {
1090 struct intel_mipmap_tree *multisample_mt = NULL;
1091 struct gl_renderbuffer *rb = &irb->Base.Base;
1092 mesa_format format = rb->Format;
1093 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1094
1095 /* Only the front and back buffers, which are color buffers, are allocated
1096 * through the image loader.
1097 */
1098 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1099 _mesa_get_format_base_format(format) == GL_RGBA);
1100
1101 assert(singlesample_mt);
1102
1103 if (num_samples == 1) {
1104 intel_miptree_release(&irb->mt);
1105 irb->mt = singlesample_mt;
1106
1107 assert(!irb->singlesample_mt);
1108 } else {
1109 intel_miptree_release(&irb->singlesample_mt);
1110 irb->singlesample_mt = singlesample_mt;
1111
1112 if (!irb->mt ||
1113 irb->mt->surf.logical_level0_px.width != width ||
1114 irb->mt->surf.logical_level0_px.height != height) {
1115 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1116 format,
1117 width,
1118 height,
1119 num_samples);
1120 if (!multisample_mt)
1121 goto fail;
1122
1123 irb->need_downsample = false;
1124 intel_miptree_release(&irb->mt);
1125 irb->mt = multisample_mt;
1126 }
1127 }
1128 return true;
1129
1130 fail:
1131 intel_miptree_release(&irb->mt);
1132 return false;
1133 }
1134
1135 struct intel_mipmap_tree*
1136 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1137 mesa_format format,
1138 uint32_t width,
1139 uint32_t height,
1140 uint32_t num_samples)
1141 {
1142 struct intel_mipmap_tree *mt;
1143 uint32_t depth = 1;
1144 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1145
1146 mt = intel_miptree_create(brw, target, format, 0, 0,
1147 width, height, depth, num_samples,
1148 MIPTREE_CREATE_BUSY);
1149 if (!mt)
1150 goto fail;
1151
1152 return mt;
1153
1154 fail:
1155 intel_miptree_release(&mt);
1156 return NULL;
1157 }
1158
1159 void
1160 intel_miptree_reference(struct intel_mipmap_tree **dst,
1161 struct intel_mipmap_tree *src)
1162 {
1163 if (*dst == src)
1164 return;
1165
1166 intel_miptree_release(dst);
1167
1168 if (src) {
1169 src->refcount++;
1170 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1171 }
1172
1173 *dst = src;
1174 }
1175
1176 static void
1177 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1178 {
1179 if (aux_buf == NULL)
1180 return;
1181
1182 brw_bo_unreference(aux_buf->bo);
1183
1184 free(aux_buf);
1185 }
1186
1187 void
1188 intel_miptree_release(struct intel_mipmap_tree **mt)
1189 {
1190 if (!*mt)
1191 return;
1192
1193 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1194 if (--(*mt)->refcount <= 0) {
1195 GLuint i;
1196
1197 DBG("%s deleting %p\n", __func__, *mt);
1198
1199 brw_bo_unreference((*mt)->bo);
1200 intel_miptree_release(&(*mt)->stencil_mt);
1201 intel_miptree_release(&(*mt)->r8stencil_mt);
1202 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1203 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1204 free_aux_state_map((*mt)->aux_state);
1205
1206 intel_miptree_release(&(*mt)->plane[0]);
1207 intel_miptree_release(&(*mt)->plane[1]);
1208
1209 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1210 free((*mt)->level[i].slice);
1211 }
1212
1213 free(*mt);
1214 }
1215 *mt = NULL;
1216 }
1217
1218
1219 void
1220 intel_get_image_dims(struct gl_texture_image *image,
1221 int *width, int *height, int *depth)
1222 {
1223 switch (image->TexObject->Target) {
1224 case GL_TEXTURE_1D_ARRAY:
1225 /* For a 1D Array texture the OpenGL API will treat the image height as
1226 * the number of array slices. For Intel hardware, we treat the 1D array
1227 * as a 2D Array with a height of 1. So, here we want to swap image
1228 * height and depth.
1229 */
1230 assert(image->Depth == 1);
1231 *width = image->Width;
1232 *height = 1;
1233 *depth = image->Height;
1234 break;
1235 case GL_TEXTURE_CUBE_MAP:
1236 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1237 * though we really have 6 slices.
1238 */
1239 assert(image->Depth == 1);
1240 *width = image->Width;
1241 *height = image->Height;
1242 *depth = 6;
1243 break;
1244 default:
1245 *width = image->Width;
1246 *height = image->Height;
1247 *depth = image->Depth;
1248 break;
1249 }
1250 }
1251
1252 /**
1253 * Can the image be pulled into a unified mipmap tree? This mirrors
1254 * the completeness test in a lot of ways.
1255 *
1256 * Not sure whether I want to pass gl_texture_image here.
1257 */
1258 bool
1259 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1260 struct gl_texture_image *image)
1261 {
1262 struct intel_texture_image *intelImage = intel_texture_image(image);
1263 GLuint level = intelImage->base.Base.Level;
1264 int width, height, depth;
1265
1266 /* glTexImage* choose the texture object based on the target passed in, and
1267 * objects can't change targets over their lifetimes, so this should be
1268 * true.
1269 */
1270 assert(image->TexObject->Target == mt->target);
1271
1272 mesa_format mt_format = mt->format;
1273 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1274 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1275 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1276 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1277 if (mt->etc_format != MESA_FORMAT_NONE)
1278 mt_format = mt->etc_format;
1279
1280 if (image->TexFormat != mt_format)
1281 return false;
1282
1283 intel_get_image_dims(image, &width, &height, &depth);
1284
1285 if (mt->target == GL_TEXTURE_CUBE_MAP)
1286 depth = 6;
1287
1288 if (level >= mt->surf.levels)
1289 return false;
1290
1291 const unsigned level_depth =
1292 mt->surf.dim == ISL_SURF_DIM_3D ?
1293 minify(mt->surf.logical_level0_px.depth, level) :
1294 mt->surf.logical_level0_px.array_len;
1295
1296 return width == minify(mt->surf.logical_level0_px.width, level) &&
1297 height == minify(mt->surf.logical_level0_px.height, level) &&
1298 depth == level_depth &&
1299 MAX2(image->NumSamples, 1) == mt->surf.samples;
1300 }
1301
1302 void
1303 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1304 GLuint level, GLuint slice,
1305 GLuint *x, GLuint *y)
1306 {
1307 if (level == 0 && slice == 0) {
1308 *x = mt->level[0].level_x;
1309 *y = mt->level[0].level_y;
1310 return;
1311 }
1312
1313 uint32_t x_offset_sa, y_offset_sa;
1314
1315 /* Miptree itself can have an offset only if it represents a single
1316 * slice in an imported buffer object.
1317 * See intel_miptree_create_for_dri_image().
1318 */
1319 assert(mt->level[0].level_x == 0);
1320 assert(mt->level[0].level_y == 0);
1321
1322 /* Given level is relative to level zero while the miptree may be
1323 * represent just a subset of all levels starting from 'first_level'.
1324 */
1325 assert(level >= mt->first_level);
1326 level -= mt->first_level;
1327
1328 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1329 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1330 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1331 &x_offset_sa, &y_offset_sa);
1332
1333 *x = x_offset_sa;
1334 *y = y_offset_sa;
1335 }
1336
1337
1338 /**
1339 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1340 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1341 * and tile_h is set to 1.
1342 */
1343 void
1344 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1345 uint32_t *tile_w, uint32_t *tile_h)
1346 {
1347 switch (tiling) {
1348 case ISL_TILING_X:
1349 *tile_w = 512;
1350 *tile_h = 8;
1351 break;
1352 case ISL_TILING_Y0:
1353 *tile_w = 128;
1354 *tile_h = 32;
1355 break;
1356 case ISL_TILING_LINEAR:
1357 *tile_w = cpp;
1358 *tile_h = 1;
1359 break;
1360 default:
1361 unreachable("not reached");
1362 }
1363 }
1364
1365
1366 /**
1367 * This function computes masks that may be used to select the bits of the X
1368 * and Y coordinates that indicate the offset within a tile. If the BO is
1369 * untiled, the masks are set to 0.
1370 */
1371 void
1372 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1373 uint32_t *mask_x, uint32_t *mask_y)
1374 {
1375 uint32_t tile_w_bytes, tile_h;
1376
1377 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1378
1379 *mask_x = tile_w_bytes / cpp - 1;
1380 *mask_y = tile_h - 1;
1381 }
1382
1383 /**
1384 * Compute the offset (in bytes) from the start of the BO to the given x
1385 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1386 * multiples of the tile size.
1387 */
1388 uint32_t
1389 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1390 uint32_t x, uint32_t y)
1391 {
1392 int cpp = mt->cpp;
1393 uint32_t pitch = mt->surf.row_pitch;
1394
1395 switch (mt->surf.tiling) {
1396 default:
1397 unreachable("not reached");
1398 case ISL_TILING_LINEAR:
1399 return y * pitch + x * cpp;
1400 case ISL_TILING_X:
1401 assert((x % (512 / cpp)) == 0);
1402 assert((y % 8) == 0);
1403 return y * pitch + x / (512 / cpp) * 4096;
1404 case ISL_TILING_Y0:
1405 assert((x % (128 / cpp)) == 0);
1406 assert((y % 32) == 0);
1407 return y * pitch + x / (128 / cpp) * 4096;
1408 }
1409 }
1410
1411 /**
1412 * Rendering with tiled buffers requires that the base address of the buffer
1413 * be aligned to a page boundary. For renderbuffers, and sometimes with
1414 * textures, we may want the surface to point at a texture image level that
1415 * isn't at a page boundary.
1416 *
1417 * This function returns an appropriately-aligned base offset
1418 * according to the tiling restrictions, plus any required x/y offset
1419 * from there.
1420 */
1421 uint32_t
1422 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1423 GLuint level, GLuint slice,
1424 uint32_t *tile_x,
1425 uint32_t *tile_y)
1426 {
1427 uint32_t x, y;
1428 uint32_t mask_x, mask_y;
1429
1430 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1431 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1432
1433 *tile_x = x & mask_x;
1434 *tile_y = y & mask_y;
1435
1436 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1437 }
1438
1439 static void
1440 intel_miptree_copy_slice_sw(struct brw_context *brw,
1441 struct intel_mipmap_tree *src_mt,
1442 unsigned src_level, unsigned src_layer,
1443 struct intel_mipmap_tree *dst_mt,
1444 unsigned dst_level, unsigned dst_layer,
1445 unsigned width, unsigned height)
1446 {
1447 void *src, *dst;
1448 ptrdiff_t src_stride, dst_stride;
1449 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1450
1451 intel_miptree_map(brw, src_mt,
1452 src_level, src_layer,
1453 0, 0,
1454 width, height,
1455 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1456 &src, &src_stride);
1457
1458 intel_miptree_map(brw, dst_mt,
1459 dst_level, dst_layer,
1460 0, 0,
1461 width, height,
1462 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1463 BRW_MAP_DIRECT_BIT,
1464 &dst, &dst_stride);
1465
1466 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1467 _mesa_get_format_name(src_mt->format),
1468 src_mt, src, src_stride,
1469 _mesa_get_format_name(dst_mt->format),
1470 dst_mt, dst, dst_stride,
1471 width, height);
1472
1473 int row_size = cpp * width;
1474 if (src_stride == row_size &&
1475 dst_stride == row_size) {
1476 memcpy(dst, src, row_size * height);
1477 } else {
1478 for (int i = 0; i < height; i++) {
1479 memcpy(dst, src, row_size);
1480 dst += dst_stride;
1481 src += src_stride;
1482 }
1483 }
1484
1485 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1486 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1487
1488 /* Don't forget to copy the stencil data over, too. We could have skipped
1489 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1490 * shuffling the two data sources in/out of temporary storage instead of
1491 * the direct mapping we get this way.
1492 */
1493 if (dst_mt->stencil_mt) {
1494 assert(src_mt->stencil_mt);
1495 intel_miptree_copy_slice_sw(brw,
1496 src_mt->stencil_mt, src_level, src_layer,
1497 dst_mt->stencil_mt, dst_level, dst_layer,
1498 width, height);
1499 }
1500 }
1501
1502 void
1503 intel_miptree_copy_slice(struct brw_context *brw,
1504 struct intel_mipmap_tree *src_mt,
1505 unsigned src_level, unsigned src_layer,
1506 struct intel_mipmap_tree *dst_mt,
1507 unsigned dst_level, unsigned dst_layer)
1508
1509 {
1510 mesa_format format = src_mt->format;
1511 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1512 src_level - src_mt->first_level);
1513 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1514 src_level - src_mt->first_level);
1515
1516 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1517 src_level - src_mt->first_level));
1518
1519 assert(src_mt->format == dst_mt->format);
1520
1521 if (dst_mt->compressed) {
1522 unsigned int i, j;
1523 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1524 height = ALIGN_NPOT(height, j) / j;
1525 width = ALIGN_NPOT(width, i) / i;
1526 }
1527
1528 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1529 * below won't apply since we can't do the depth's Y tiling or the
1530 * stencil's W tiling in the blitter.
1531 */
1532 if (src_mt->stencil_mt) {
1533 intel_miptree_copy_slice_sw(brw,
1534 src_mt, src_level, src_layer,
1535 dst_mt, dst_level, dst_layer,
1536 width, height);
1537 return;
1538 }
1539
1540 uint32_t dst_x, dst_y, src_x, src_y;
1541 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1542 &dst_x, &dst_y);
1543 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1544 &src_x, &src_y);
1545
1546 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1547 _mesa_get_format_name(src_mt->format),
1548 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1549 _mesa_get_format_name(dst_mt->format),
1550 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1551 width, height);
1552
1553 if (!intel_miptree_blit(brw,
1554 src_mt, src_level, src_layer, 0, 0, false,
1555 dst_mt, dst_level, dst_layer, 0, 0, false,
1556 width, height, GL_COPY)) {
1557 perf_debug("miptree validate blit for %s failed\n",
1558 _mesa_get_format_name(format));
1559
1560 intel_miptree_copy_slice_sw(brw,
1561 src_mt, src_level, src_layer,
1562 dst_mt, dst_level, dst_layer,
1563 width, height);
1564 }
1565 }
1566
1567 /**
1568 * Copies the image's current data to the given miptree, and associates that
1569 * miptree with the image.
1570 */
1571 void
1572 intel_miptree_copy_teximage(struct brw_context *brw,
1573 struct intel_texture_image *intelImage,
1574 struct intel_mipmap_tree *dst_mt)
1575 {
1576 struct intel_mipmap_tree *src_mt = intelImage->mt;
1577 struct intel_texture_object *intel_obj =
1578 intel_texture_object(intelImage->base.Base.TexObject);
1579 int level = intelImage->base.Base.Level;
1580 const unsigned face = intelImage->base.Base.Face;
1581 unsigned start_layer, end_layer;
1582
1583 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1584 assert(face == 0);
1585 assert(intelImage->base.Base.Height);
1586 start_layer = 0;
1587 end_layer = intelImage->base.Base.Height - 1;
1588 } else if (face > 0) {
1589 start_layer = face;
1590 end_layer = face;
1591 } else {
1592 assert(intelImage->base.Base.Depth);
1593 start_layer = 0;
1594 end_layer = intelImage->base.Base.Depth - 1;
1595 }
1596
1597 for (unsigned i = start_layer; i <= end_layer; i++) {
1598 intel_miptree_copy_slice(brw,
1599 src_mt, level, i,
1600 dst_mt, level, i);
1601 }
1602
1603 intel_miptree_reference(&intelImage->mt, dst_mt);
1604 intel_obj->needs_validate = true;
1605 }
1606
1607 static void
1608 intel_miptree_init_mcs(struct brw_context *brw,
1609 struct intel_mipmap_tree *mt,
1610 int init_value)
1611 {
1612 assert(mt->mcs_buf != NULL);
1613
1614 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1615 *
1616 * When MCS buffer is enabled and bound to MSRT, it is required that it
1617 * is cleared prior to any rendering.
1618 *
1619 * Since we don't use the MCS buffer for any purpose other than rendering,
1620 * it makes sense to just clear it immediately upon allocation.
1621 *
1622 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1623 */
1624 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1625 if (unlikely(map == NULL)) {
1626 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1627 brw_bo_unreference(mt->mcs_buf->bo);
1628 free(mt->mcs_buf);
1629 return;
1630 }
1631 void *data = map;
1632 memset(data, init_value, mt->mcs_buf->size);
1633 brw_bo_unmap(mt->mcs_buf->bo);
1634 }
1635
1636 static struct intel_miptree_aux_buffer *
1637 intel_alloc_aux_buffer(struct brw_context *brw,
1638 const char *name,
1639 const struct isl_surf *aux_surf,
1640 uint32_t alloc_flags,
1641 struct intel_mipmap_tree *mt)
1642 {
1643 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1644 if (!buf)
1645 return false;
1646
1647 buf->size = aux_surf->size;
1648 buf->pitch = aux_surf->row_pitch;
1649 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1650
1651 /* ISL has stricter set of alignment rules then the drm allocator.
1652 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1653 * trying to recalculate based on different format block sizes.
1654 */
1655 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1656 I915_TILING_Y, buf->pitch, alloc_flags);
1657 if (!buf->bo) {
1658 free(buf);
1659 return NULL;
1660 }
1661
1662 buf->surf = *aux_surf;
1663
1664 return buf;
1665 }
1666
1667 static bool
1668 intel_miptree_alloc_mcs(struct brw_context *brw,
1669 struct intel_mipmap_tree *mt,
1670 GLuint num_samples)
1671 {
1672 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1673
1674 assert(devinfo->gen >= 7); /* MCS only used on Gen7+ */
1675 assert(mt->mcs_buf == NULL);
1676 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1677
1678 /* Multisampled miptrees are only supported for single level. */
1679 assert(mt->first_level == 0);
1680 enum isl_aux_state **aux_state =
1681 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1682 if (!aux_state)
1683 return false;
1684
1685 struct isl_surf temp_mcs_surf;
1686
1687 MAYBE_UNUSED bool ok =
1688 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1689 assert(ok);
1690
1691 /* Buffer needs to be initialised requiring the buffer to be immediately
1692 * mapped to cpu space for writing. Therefore do not use the gpu access
1693 * flag which can cause an unnecessary delay if the backing pages happened
1694 * to be just used by the GPU.
1695 */
1696 const uint32_t alloc_flags = 0;
1697 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1698 &temp_mcs_surf, alloc_flags, mt);
1699 if (!mt->mcs_buf) {
1700 free(aux_state);
1701 return false;
1702 }
1703
1704 mt->aux_state = aux_state;
1705
1706 intel_miptree_init_mcs(brw, mt, 0xFF);
1707
1708 return true;
1709 }
1710
1711 bool
1712 intel_miptree_alloc_ccs(struct brw_context *brw,
1713 struct intel_mipmap_tree *mt)
1714 {
1715 assert(mt->mcs_buf == NULL);
1716 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1717 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1718
1719 struct isl_surf temp_ccs_surf;
1720
1721 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1722 return false;
1723
1724 assert(temp_ccs_surf.size &&
1725 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1726
1727 enum isl_aux_state **aux_state =
1728 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1729 if (!aux_state)
1730 return false;
1731
1732 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1733 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1734 *
1735 * "If Software wants to enable Color Compression without Fast clear,
1736 * Software needs to initialize MCS with zeros."
1737 *
1738 * A CCS value of 0 indicates that the corresponding block is in the
1739 * pass-through state which is what we want.
1740 *
1741 * For CCS_D, on the other hand, we don't care as we're about to perform a
1742 * fast-clear operation. In that case, being hot in caches more useful.
1743 */
1744 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1745 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1746 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1747 &temp_ccs_surf, alloc_flags, mt);
1748 if (!mt->mcs_buf) {
1749 free(aux_state);
1750 return false;
1751 }
1752
1753 mt->aux_state = aux_state;
1754
1755 return true;
1756 }
1757
1758 /**
1759 * Helper for intel_miptree_alloc_hiz() that sets
1760 * \c mt->level[level].has_hiz. Return true if and only if
1761 * \c has_hiz was set.
1762 */
1763 static bool
1764 intel_miptree_level_enable_hiz(struct brw_context *brw,
1765 struct intel_mipmap_tree *mt,
1766 uint32_t level)
1767 {
1768 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1769
1770 assert(mt->hiz_buf);
1771 assert(mt->surf.size > 0);
1772
1773 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1774 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1775 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1776
1777 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1778 * and the height is 4 aligned. This allows our HiZ support
1779 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1780 * we can grow the width & height to allow the HiZ op to
1781 * force the proper size alignments.
1782 */
1783 if (level > 0 && ((width & 7) || (height & 3))) {
1784 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1785 return false;
1786 }
1787 }
1788
1789 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1790 mt->level[level].has_hiz = true;
1791 return true;
1792 }
1793
1794 bool
1795 intel_miptree_alloc_hiz(struct brw_context *brw,
1796 struct intel_mipmap_tree *mt)
1797 {
1798 assert(mt->hiz_buf == NULL);
1799 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1800
1801 enum isl_aux_state **aux_state =
1802 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1803 if (!aux_state)
1804 return false;
1805
1806 struct isl_surf temp_hiz_surf;
1807
1808 MAYBE_UNUSED bool ok =
1809 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1810 assert(ok);
1811
1812 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1813 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1814 &temp_hiz_surf, alloc_flags, mt);
1815
1816 if (!mt->hiz_buf) {
1817 free(aux_state);
1818 return false;
1819 }
1820
1821 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1822 intel_miptree_level_enable_hiz(brw, mt, level);
1823
1824 mt->aux_state = aux_state;
1825
1826 return true;
1827 }
1828
1829
1830 /**
1831 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1832 *
1833 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1834 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1835 * compress clear color so we wait until an actual fast-clear to allocate it.
1836 */
1837 static bool
1838 intel_miptree_alloc_aux(struct brw_context *brw,
1839 struct intel_mipmap_tree *mt)
1840 {
1841 switch (mt->aux_usage) {
1842 case ISL_AUX_USAGE_NONE:
1843 return true;
1844
1845 case ISL_AUX_USAGE_HIZ:
1846 assert(!_mesa_is_format_color_format(mt->format));
1847 if (!intel_miptree_alloc_hiz(brw, mt))
1848 return false;
1849 return true;
1850
1851 case ISL_AUX_USAGE_MCS:
1852 assert(_mesa_is_format_color_format(mt->format));
1853 assert(mt->surf.samples > 1);
1854 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1855 return false;
1856 return true;
1857
1858 case ISL_AUX_USAGE_CCS_D:
1859 /* Since CCS_D can only compress clear color so we wait until an actual
1860 * fast-clear to allocate it.
1861 */
1862 return true;
1863
1864 case ISL_AUX_USAGE_CCS_E:
1865 assert(_mesa_is_format_color_format(mt->format));
1866 assert(mt->surf.samples == 1);
1867 if (!intel_miptree_alloc_ccs(brw, mt))
1868 return false;
1869 return true;
1870 }
1871
1872 unreachable("Invalid aux usage");
1873 }
1874
1875
1876 /**
1877 * Can the miptree sample using the hiz buffer?
1878 */
1879 bool
1880 intel_miptree_sample_with_hiz(struct brw_context *brw,
1881 struct intel_mipmap_tree *mt)
1882 {
1883 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1884
1885 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1886 * so keep things conservative for now and never enable it unless we're SKL+.
1887 */
1888 if (devinfo->gen < 9) {
1889 return false;
1890 }
1891
1892 if (!mt->hiz_buf) {
1893 return false;
1894 }
1895
1896 /* It seems the hardware won't fallback to the depth buffer if some of the
1897 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1898 * of the texture to be HiZ enabled.
1899 */
1900 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1901 if (!intel_miptree_level_has_hiz(mt, level))
1902 return false;
1903 }
1904
1905 /* If compressed multisampling is enabled, then we use it for the auxiliary
1906 * buffer instead.
1907 *
1908 * From the BDW PRM (Volume 2d: Command Reference: Structures
1909 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1910 *
1911 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1912 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1913 *
1914 * There is no such blurb for 1D textures, but there is sufficient evidence
1915 * that this is broken on SKL+.
1916 */
1917 return (mt->surf.samples == 1 &&
1918 mt->target != GL_TEXTURE_3D &&
1919 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1920 }
1921
1922 /**
1923 * Does the miptree slice have hiz enabled?
1924 */
1925 bool
1926 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1927 {
1928 intel_miptree_check_level_layer(mt, level, 0);
1929 return mt->level[level].has_hiz;
1930 }
1931
1932 static inline uint32_t
1933 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1934 uint32_t start_level, uint32_t num_levels)
1935 {
1936 assert(start_level >= mt->first_level);
1937 assert(start_level <= mt->last_level);
1938
1939 if (num_levels == INTEL_REMAINING_LAYERS)
1940 num_levels = mt->last_level - start_level + 1;
1941 /* Check for overflow */
1942 assert(start_level + num_levels >= start_level);
1943 assert(start_level + num_levels <= mt->last_level + 1);
1944
1945 return num_levels;
1946 }
1947
1948 static inline uint32_t
1949 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1950 uint32_t start_layer, uint32_t num_layers)
1951 {
1952 assert(level <= mt->last_level);
1953
1954 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1955 assert(start_layer < total_num_layers);
1956 if (num_layers == INTEL_REMAINING_LAYERS)
1957 num_layers = total_num_layers - start_layer;
1958 /* Check for overflow */
1959 assert(start_layer + num_layers >= start_layer);
1960 assert(start_layer + num_layers <= total_num_layers);
1961
1962 return num_layers;
1963 }
1964
1965 bool
1966 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1967 unsigned start_level, unsigned num_levels,
1968 unsigned start_layer, unsigned num_layers)
1969 {
1970 assert(_mesa_is_format_color_format(mt->format));
1971
1972 if (!mt->mcs_buf)
1973 return false;
1974
1975 /* Clamp the level range to fit the miptree */
1976 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1977
1978 for (uint32_t l = 0; l < num_levels; l++) {
1979 const uint32_t level = start_level + l;
1980 const uint32_t level_layers =
1981 miptree_layer_range_length(mt, level, start_layer, num_layers);
1982 for (unsigned a = 0; a < level_layers; a++) {
1983 enum isl_aux_state aux_state =
1984 intel_miptree_get_aux_state(mt, level, start_layer + a);
1985 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1986 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1987 return true;
1988 }
1989 }
1990
1991 return false;
1992 }
1993
1994 static void
1995 intel_miptree_check_color_resolve(const struct brw_context *brw,
1996 const struct intel_mipmap_tree *mt,
1997 unsigned level, unsigned layer)
1998 {
1999 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2000
2001 if (!mt->mcs_buf)
2002 return;
2003
2004 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2005 assert(devinfo->gen >= 8 ||
2006 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2007
2008 /* Compression of arrayed msaa surfaces is supported. */
2009 if (mt->surf.samples > 1)
2010 return;
2011
2012 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2013 assert(devinfo->gen >= 8 ||
2014 (layer == 0 &&
2015 mt->surf.logical_level0_px.depth == 1 &&
2016 mt->surf.logical_level0_px.array_len == 1));
2017
2018 (void)level;
2019 (void)layer;
2020 }
2021
2022 static enum blorp_fast_clear_op
2023 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2024 enum isl_aux_usage aux_usage,
2025 bool fast_clear_supported)
2026 {
2027 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2028
2029 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2030
2031 assert(ccs_supported == fast_clear_supported);
2032
2033 switch (aux_state) {
2034 case ISL_AUX_STATE_CLEAR:
2035 case ISL_AUX_STATE_PARTIAL_CLEAR:
2036 if (!ccs_supported)
2037 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2038 else
2039 return BLORP_FAST_CLEAR_OP_NONE;
2040
2041 case ISL_AUX_STATE_PASS_THROUGH:
2042 return BLORP_FAST_CLEAR_OP_NONE;
2043
2044 case ISL_AUX_STATE_RESOLVED:
2045 case ISL_AUX_STATE_AUX_INVALID:
2046 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2047 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2048 break;
2049 }
2050
2051 unreachable("Invalid aux state for CCS_D");
2052 }
2053
2054 static enum blorp_fast_clear_op
2055 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2056 enum isl_aux_usage aux_usage,
2057 bool fast_clear_supported)
2058 {
2059 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2060 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2061 aux_usage == ISL_AUX_USAGE_CCS_D ||
2062 aux_usage == ISL_AUX_USAGE_CCS_E);
2063
2064 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2065 assert(fast_clear_supported);
2066
2067 switch (aux_state) {
2068 case ISL_AUX_STATE_CLEAR:
2069 case ISL_AUX_STATE_PARTIAL_CLEAR:
2070 if (fast_clear_supported)
2071 return BLORP_FAST_CLEAR_OP_NONE;
2072 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2073 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2074 else
2075 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2076
2077 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2078 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2079 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2080 else if (!fast_clear_supported)
2081 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2082 else
2083 return BLORP_FAST_CLEAR_OP_NONE;
2084
2085 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2086 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2087 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2088 else
2089 return BLORP_FAST_CLEAR_OP_NONE;
2090
2091 case ISL_AUX_STATE_PASS_THROUGH:
2092 return BLORP_FAST_CLEAR_OP_NONE;
2093
2094 case ISL_AUX_STATE_RESOLVED:
2095 case ISL_AUX_STATE_AUX_INVALID:
2096 break;
2097 }
2098
2099 unreachable("Invalid aux state for CCS_E");
2100 }
2101
2102 static void
2103 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2104 struct intel_mipmap_tree *mt,
2105 uint32_t level, uint32_t layer,
2106 enum isl_aux_usage aux_usage,
2107 bool fast_clear_supported)
2108 {
2109 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2110
2111 enum blorp_fast_clear_op resolve_op;
2112 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2113 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2114 fast_clear_supported);
2115 } else {
2116 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2117 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2118 fast_clear_supported);
2119 }
2120
2121 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2122 intel_miptree_check_color_resolve(brw, mt, level, layer);
2123 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2124
2125 switch (resolve_op) {
2126 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2127 /* The CCS full resolve operation destroys the CCS and sets it to the
2128 * pass-through state. (You can also think of this as being both a
2129 * resolve and an ambiguate in one operation.)
2130 */
2131 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2132 ISL_AUX_STATE_PASS_THROUGH);
2133 break;
2134
2135 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2136 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2137 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2138 break;
2139
2140 default:
2141 unreachable("Invalid resolve op");
2142 }
2143 }
2144 }
2145
2146 static void
2147 intel_miptree_finish_ccs_write(struct brw_context *brw,
2148 struct intel_mipmap_tree *mt,
2149 uint32_t level, uint32_t layer,
2150 enum isl_aux_usage aux_usage)
2151 {
2152 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2153 aux_usage == ISL_AUX_USAGE_CCS_D ||
2154 aux_usage == ISL_AUX_USAGE_CCS_E);
2155
2156 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2157
2158 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2159 switch (aux_state) {
2160 case ISL_AUX_STATE_CLEAR:
2161 case ISL_AUX_STATE_PARTIAL_CLEAR:
2162 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2163 aux_usage == ISL_AUX_USAGE_CCS_D);
2164
2165 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2166 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2167 ISL_AUX_STATE_COMPRESSED_CLEAR);
2168 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2169 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2170 ISL_AUX_STATE_PARTIAL_CLEAR);
2171 }
2172 break;
2173
2174 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2175 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2176 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2177 break; /* Nothing to do */
2178
2179 case ISL_AUX_STATE_PASS_THROUGH:
2180 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2181 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2182 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2183 } else {
2184 /* Nothing to do */
2185 }
2186 break;
2187
2188 case ISL_AUX_STATE_RESOLVED:
2189 case ISL_AUX_STATE_AUX_INVALID:
2190 unreachable("Invalid aux state for CCS_E");
2191 }
2192 } else {
2193 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2194 /* CCS_D is a bit simpler */
2195 switch (aux_state) {
2196 case ISL_AUX_STATE_CLEAR:
2197 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2198 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2199 ISL_AUX_STATE_PARTIAL_CLEAR);
2200 break;
2201
2202 case ISL_AUX_STATE_PARTIAL_CLEAR:
2203 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2204 break; /* Nothing to do */
2205
2206 case ISL_AUX_STATE_PASS_THROUGH:
2207 /* Nothing to do */
2208 break;
2209
2210 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2211 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2212 case ISL_AUX_STATE_RESOLVED:
2213 case ISL_AUX_STATE_AUX_INVALID:
2214 unreachable("Invalid aux state for CCS_D");
2215 }
2216 }
2217 }
2218
2219 static void
2220 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2221 struct intel_mipmap_tree *mt,
2222 uint32_t layer,
2223 enum isl_aux_usage aux_usage,
2224 bool fast_clear_supported)
2225 {
2226 assert(aux_usage == ISL_AUX_USAGE_MCS);
2227
2228 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2229 case ISL_AUX_STATE_CLEAR:
2230 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2231 if (!fast_clear_supported) {
2232 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2233 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2234 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2235 }
2236 break;
2237
2238 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2239 break; /* Nothing to do */
2240
2241 case ISL_AUX_STATE_RESOLVED:
2242 case ISL_AUX_STATE_PASS_THROUGH:
2243 case ISL_AUX_STATE_AUX_INVALID:
2244 case ISL_AUX_STATE_PARTIAL_CLEAR:
2245 unreachable("Invalid aux state for MCS");
2246 }
2247 }
2248
2249 static void
2250 intel_miptree_finish_mcs_write(struct brw_context *brw,
2251 struct intel_mipmap_tree *mt,
2252 uint32_t layer,
2253 enum isl_aux_usage aux_usage)
2254 {
2255 assert(aux_usage == ISL_AUX_USAGE_MCS);
2256
2257 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2258 case ISL_AUX_STATE_CLEAR:
2259 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2260 ISL_AUX_STATE_COMPRESSED_CLEAR);
2261 break;
2262
2263 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2264 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2265 break; /* Nothing to do */
2266
2267 case ISL_AUX_STATE_RESOLVED:
2268 case ISL_AUX_STATE_PASS_THROUGH:
2269 case ISL_AUX_STATE_AUX_INVALID:
2270 case ISL_AUX_STATE_PARTIAL_CLEAR:
2271 unreachable("Invalid aux state for MCS");
2272 }
2273 }
2274
2275 static void
2276 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2277 struct intel_mipmap_tree *mt,
2278 uint32_t level, uint32_t layer,
2279 enum isl_aux_usage aux_usage,
2280 bool fast_clear_supported)
2281 {
2282 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2283
2284 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2285 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2286 case ISL_AUX_STATE_CLEAR:
2287 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2288 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2289 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2290 break;
2291
2292 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2293 if (aux_usage != ISL_AUX_USAGE_HIZ)
2294 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2295 break;
2296
2297 case ISL_AUX_STATE_PASS_THROUGH:
2298 case ISL_AUX_STATE_RESOLVED:
2299 break;
2300
2301 case ISL_AUX_STATE_AUX_INVALID:
2302 if (aux_usage == ISL_AUX_USAGE_HIZ)
2303 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2304 break;
2305
2306 case ISL_AUX_STATE_PARTIAL_CLEAR:
2307 unreachable("Invalid HiZ state");
2308 }
2309
2310 if (hiz_op != BLORP_HIZ_OP_NONE) {
2311 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2312
2313 switch (hiz_op) {
2314 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2315 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2316 ISL_AUX_STATE_RESOLVED);
2317 break;
2318
2319 case BLORP_HIZ_OP_HIZ_RESOLVE:
2320 /* The HiZ resolve operation is actually an ambiguate */
2321 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2322 ISL_AUX_STATE_PASS_THROUGH);
2323 break;
2324
2325 default:
2326 unreachable("Invalid HiZ op");
2327 }
2328 }
2329 }
2330
2331 static void
2332 intel_miptree_finish_hiz_write(struct brw_context *brw,
2333 struct intel_mipmap_tree *mt,
2334 uint32_t level, uint32_t layer,
2335 enum isl_aux_usage aux_usage)
2336 {
2337 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2338
2339 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2340 case ISL_AUX_STATE_CLEAR:
2341 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2342 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2343 ISL_AUX_STATE_COMPRESSED_CLEAR);
2344 break;
2345
2346 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2347 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2348 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2349 break; /* Nothing to do */
2350
2351 case ISL_AUX_STATE_RESOLVED:
2352 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2353 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2354 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2355 } else {
2356 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2357 ISL_AUX_STATE_AUX_INVALID);
2358 }
2359 break;
2360
2361 case ISL_AUX_STATE_PASS_THROUGH:
2362 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2365 }
2366 break;
2367
2368 case ISL_AUX_STATE_AUX_INVALID:
2369 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2370 break;
2371
2372 case ISL_AUX_STATE_PARTIAL_CLEAR:
2373 unreachable("Invalid HiZ state");
2374 }
2375 }
2376
2377 void
2378 intel_miptree_prepare_access(struct brw_context *brw,
2379 struct intel_mipmap_tree *mt,
2380 uint32_t start_level, uint32_t num_levels,
2381 uint32_t start_layer, uint32_t num_layers,
2382 enum isl_aux_usage aux_usage,
2383 bool fast_clear_supported)
2384 {
2385 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2386
2387 switch (mt->aux_usage) {
2388 case ISL_AUX_USAGE_NONE:
2389 /* Nothing to do */
2390 break;
2391
2392 case ISL_AUX_USAGE_MCS:
2393 assert(mt->mcs_buf);
2394 assert(start_level == 0 && num_levels == 1);
2395 const uint32_t level_layers =
2396 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2397 for (uint32_t a = 0; a < level_layers; a++) {
2398 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2399 aux_usage, fast_clear_supported);
2400 }
2401 break;
2402
2403 case ISL_AUX_USAGE_CCS_D:
2404 case ISL_AUX_USAGE_CCS_E:
2405 if (!mt->mcs_buf)
2406 return;
2407
2408 for (uint32_t l = 0; l < num_levels; l++) {
2409 const uint32_t level = start_level + l;
2410 const uint32_t level_layers =
2411 miptree_layer_range_length(mt, level, start_layer, num_layers);
2412 for (uint32_t a = 0; a < level_layers; a++) {
2413 intel_miptree_prepare_ccs_access(brw, mt, level,
2414 start_layer + a,
2415 aux_usage, fast_clear_supported);
2416 }
2417 }
2418 break;
2419
2420 case ISL_AUX_USAGE_HIZ:
2421 assert(mt->hiz_buf);
2422 for (uint32_t l = 0; l < num_levels; l++) {
2423 const uint32_t level = start_level + l;
2424 if (!intel_miptree_level_has_hiz(mt, level))
2425 continue;
2426
2427 const uint32_t level_layers =
2428 miptree_layer_range_length(mt, level, start_layer, num_layers);
2429 for (uint32_t a = 0; a < level_layers; a++) {
2430 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2431 aux_usage, fast_clear_supported);
2432 }
2433 }
2434 break;
2435
2436 default:
2437 unreachable("Invalid aux usage");
2438 }
2439 }
2440
2441 void
2442 intel_miptree_finish_write(struct brw_context *brw,
2443 struct intel_mipmap_tree *mt, uint32_t level,
2444 uint32_t start_layer, uint32_t num_layers,
2445 enum isl_aux_usage aux_usage)
2446 {
2447 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2448
2449 switch (mt->aux_usage) {
2450 case ISL_AUX_USAGE_NONE:
2451 /* Nothing to do */
2452 break;
2453
2454 case ISL_AUX_USAGE_MCS:
2455 assert(mt->mcs_buf);
2456 for (uint32_t a = 0; a < num_layers; a++) {
2457 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2458 aux_usage);
2459 }
2460 break;
2461
2462 case ISL_AUX_USAGE_CCS_D:
2463 case ISL_AUX_USAGE_CCS_E:
2464 if (!mt->mcs_buf)
2465 return;
2466
2467 for (uint32_t a = 0; a < num_layers; a++) {
2468 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2469 aux_usage);
2470 }
2471 break;
2472
2473 case ISL_AUX_USAGE_HIZ:
2474 if (!intel_miptree_level_has_hiz(mt, level))
2475 return;
2476
2477 for (uint32_t a = 0; a < num_layers; a++) {
2478 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2479 aux_usage);
2480 }
2481 break;
2482
2483 default:
2484 unreachable("Invavlid aux usage");
2485 }
2486 }
2487
2488 enum isl_aux_state
2489 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2490 uint32_t level, uint32_t layer)
2491 {
2492 intel_miptree_check_level_layer(mt, level, layer);
2493
2494 if (_mesa_is_format_color_format(mt->format)) {
2495 assert(mt->mcs_buf != NULL);
2496 assert(mt->surf.samples == 1 ||
2497 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2498 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2499 unreachable("Cannot get aux state for stencil");
2500 } else {
2501 assert(intel_miptree_level_has_hiz(mt, level));
2502 }
2503
2504 return mt->aux_state[level][layer];
2505 }
2506
2507 void
2508 intel_miptree_set_aux_state(struct brw_context *brw,
2509 struct intel_mipmap_tree *mt, uint32_t level,
2510 uint32_t start_layer, uint32_t num_layers,
2511 enum isl_aux_state aux_state)
2512 {
2513 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2514
2515 if (_mesa_is_format_color_format(mt->format)) {
2516 assert(mt->mcs_buf != NULL);
2517 assert(mt->surf.samples == 1 ||
2518 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2519 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2520 unreachable("Cannot get aux state for stencil");
2521 } else {
2522 assert(intel_miptree_level_has_hiz(mt, level));
2523 }
2524
2525 for (unsigned a = 0; a < num_layers; a++) {
2526 if (mt->aux_state[level][start_layer + a] != aux_state) {
2527 mt->aux_state[level][start_layer + a] = aux_state;
2528 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2529 }
2530 }
2531 }
2532
2533 /* On Gen9 color buffers may be compressed by the hardware (lossless
2534 * compression). There are, however, format restrictions and care needs to be
2535 * taken that the sampler engine is capable for re-interpreting a buffer with
2536 * format different the buffer was originally written with.
2537 *
2538 * For example, SRGB formats are not compressible and the sampler engine isn't
2539 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2540 * color buffer needs to be resolved so that the sampling surface can be
2541 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2542 * set).
2543 */
2544 static bool
2545 can_texture_with_ccs(struct brw_context *brw,
2546 struct intel_mipmap_tree *mt,
2547 enum isl_format view_format)
2548 {
2549 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2550 return false;
2551
2552 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2553 mt->surf.format, view_format)) {
2554 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2555 isl_format_get_layout(view_format)->name,
2556 _mesa_get_format_name(mt->format));
2557 return false;
2558 }
2559
2560 return true;
2561 }
2562
2563 enum isl_aux_usage
2564 intel_miptree_texture_aux_usage(struct brw_context *brw,
2565 struct intel_mipmap_tree *mt,
2566 enum isl_format view_format)
2567 {
2568 switch (mt->aux_usage) {
2569 case ISL_AUX_USAGE_HIZ:
2570 if (intel_miptree_sample_with_hiz(brw, mt))
2571 return ISL_AUX_USAGE_HIZ;
2572 break;
2573
2574 case ISL_AUX_USAGE_MCS:
2575 return ISL_AUX_USAGE_MCS;
2576
2577 case ISL_AUX_USAGE_CCS_D:
2578 case ISL_AUX_USAGE_CCS_E:
2579 if (!mt->mcs_buf) {
2580 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2581 return ISL_AUX_USAGE_NONE;
2582 }
2583
2584 /* If we don't have any unresolved color, report an aux usage of
2585 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2586 * aux surface and we can save some bandwidth.
2587 */
2588 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2589 0, INTEL_REMAINING_LAYERS))
2590 return ISL_AUX_USAGE_NONE;
2591
2592 if (can_texture_with_ccs(brw, mt, view_format))
2593 return ISL_AUX_USAGE_CCS_E;
2594 break;
2595
2596 default:
2597 break;
2598 }
2599
2600 return ISL_AUX_USAGE_NONE;
2601 }
2602
2603 static bool
2604 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2605 {
2606 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2607 * values so sRGB curve application was a no-op for all fast-clearable
2608 * formats.
2609 *
2610 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2611 * values, the hardware interprets the floats, not as what would be
2612 * returned from the sampler (or written by the shader), but as being
2613 * between format conversion and sRGB curve application. This means that
2614 * we can switch between sRGB and UNORM without having to whack the clear
2615 * color.
2616 */
2617 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2618 }
2619
2620 void
2621 intel_miptree_prepare_texture(struct brw_context *brw,
2622 struct intel_mipmap_tree *mt,
2623 enum isl_format view_format,
2624 uint32_t start_level, uint32_t num_levels,
2625 uint32_t start_layer, uint32_t num_layers,
2626 bool disable_aux)
2627 {
2628 enum isl_aux_usage aux_usage = disable_aux ? ISL_AUX_USAGE_NONE :
2629 intel_miptree_texture_aux_usage(brw, mt, view_format);
2630 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2631
2632 /* Clear color is specified as ints or floats and the conversion is done by
2633 * the sampler. If we have a texture view, we would have to perform the
2634 * clear color conversion manually. Just disable clear color.
2635 */
2636 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2637 clear_supported = false;
2638
2639 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2640 start_layer, num_layers,
2641 aux_usage, clear_supported);
2642 }
2643
2644 void
2645 intel_miptree_prepare_image(struct brw_context *brw,
2646 struct intel_mipmap_tree *mt)
2647 {
2648 /* The data port doesn't understand any compression */
2649 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2650 0, INTEL_REMAINING_LAYERS,
2651 ISL_AUX_USAGE_NONE, false);
2652 }
2653
2654 void
2655 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2656 struct intel_mipmap_tree *mt, uint32_t level,
2657 uint32_t start_layer, uint32_t num_layers)
2658 {
2659 /* This is only used for non-coherent framebuffer fetch, so we don't
2660 * need to worry about CCS_E and can simply pass 'false' below.
2661 */
2662 assert(brw->screen->devinfo.gen < 9);
2663
2664 intel_miptree_prepare_texture(brw, mt, mt->surf.format, level, 1,
2665 start_layer, num_layers, false);
2666 }
2667
2668 enum isl_aux_usage
2669 intel_miptree_render_aux_usage(struct brw_context *brw,
2670 struct intel_mipmap_tree *mt,
2671 bool srgb_enabled, bool blend_enabled)
2672 {
2673 switch (mt->aux_usage) {
2674 case ISL_AUX_USAGE_MCS:
2675 assert(mt->mcs_buf);
2676 return ISL_AUX_USAGE_MCS;
2677
2678 case ISL_AUX_USAGE_CCS_D:
2679 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2680
2681 case ISL_AUX_USAGE_CCS_E: {
2682 mesa_format mesa_format =
2683 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2684 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2685
2686 /* If the format supports CCS_E, then we can just use it */
2687 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2688 return ISL_AUX_USAGE_CCS_E;
2689
2690 /* Otherwise, we have to fall back to CCS_D */
2691
2692 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2693 * formats. However, there are issues with blending where it doesn't
2694 * properly apply the sRGB curve to the clear color when blending.
2695 */
2696 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2697 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2698 return ISL_AUX_USAGE_NONE;
2699
2700 return ISL_AUX_USAGE_CCS_D;
2701 }
2702
2703 default:
2704 return ISL_AUX_USAGE_NONE;
2705 }
2706 }
2707
2708 void
2709 intel_miptree_prepare_render(struct brw_context *brw,
2710 struct intel_mipmap_tree *mt, uint32_t level,
2711 uint32_t start_layer, uint32_t layer_count,
2712 bool srgb_enabled, bool blend_enabled)
2713 {
2714 enum isl_aux_usage aux_usage =
2715 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2716 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2717 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2718 }
2719
2720 void
2721 intel_miptree_finish_render(struct brw_context *brw,
2722 struct intel_mipmap_tree *mt, uint32_t level,
2723 uint32_t start_layer, uint32_t layer_count,
2724 bool srgb_enabled, bool blend_enabled)
2725 {
2726 assert(_mesa_is_format_color_format(mt->format));
2727
2728 enum isl_aux_usage aux_usage =
2729 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2730 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2731 aux_usage);
2732 }
2733
2734 void
2735 intel_miptree_prepare_depth(struct brw_context *brw,
2736 struct intel_mipmap_tree *mt, uint32_t level,
2737 uint32_t start_layer, uint32_t layer_count)
2738 {
2739 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2740 mt->aux_usage, mt->hiz_buf != NULL);
2741 }
2742
2743 void
2744 intel_miptree_finish_depth(struct brw_context *brw,
2745 struct intel_mipmap_tree *mt, uint32_t level,
2746 uint32_t start_layer, uint32_t layer_count,
2747 bool depth_written)
2748 {
2749 if (depth_written) {
2750 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2751 mt->hiz_buf != NULL);
2752 }
2753 }
2754
2755 void
2756 intel_miptree_prepare_external(struct brw_context *brw,
2757 struct intel_mipmap_tree *mt)
2758 {
2759 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2760 bool supports_fast_clear = false;
2761
2762 const struct isl_drm_modifier_info *mod_info =
2763 isl_drm_modifier_get_info(mt->drm_modifier);
2764
2765 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2766 /* CCS_E is the only supported aux for external images and it's only
2767 * supported on very simple images.
2768 */
2769 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2770 assert(_mesa_is_format_color_format(mt->format));
2771 assert(mt->first_level == 0 && mt->last_level == 0);
2772 assert(mt->surf.logical_level0_px.depth == 1);
2773 assert(mt->surf.logical_level0_px.array_len == 1);
2774 assert(mt->surf.samples == 1);
2775 assert(mt->mcs_buf != NULL);
2776
2777 aux_usage = mod_info->aux_usage;
2778 supports_fast_clear = mod_info->supports_clear_color;
2779 }
2780
2781 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2782 0, INTEL_REMAINING_LAYERS,
2783 aux_usage, supports_fast_clear);
2784 }
2785
2786 /**
2787 * Make it possible to share the BO backing the given miptree with another
2788 * process or another miptree.
2789 *
2790 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2791 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2792 * ensure that no MCS buffer gets allocated in the future.
2793 *
2794 * HiZ is similarly unsafe with shared buffers.
2795 */
2796 void
2797 intel_miptree_make_shareable(struct brw_context *brw,
2798 struct intel_mipmap_tree *mt)
2799 {
2800 /* MCS buffers are also used for multisample buffers, but we can't resolve
2801 * away a multisample MCS buffer because it's an integral part of how the
2802 * pixel data is stored. Fortunately this code path should never be
2803 * reached for multisample buffers.
2804 */
2805 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2806 mt->surf.samples == 1);
2807
2808 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2809 0, INTEL_REMAINING_LAYERS,
2810 ISL_AUX_USAGE_NONE, false);
2811
2812 if (mt->mcs_buf) {
2813 brw_bo_unreference(mt->mcs_buf->bo);
2814 free(mt->mcs_buf);
2815 mt->mcs_buf = NULL;
2816
2817 /* Any pending MCS/CCS operations are no longer needed. Trying to
2818 * execute any will likely crash due to the missing aux buffer. So let's
2819 * delete all pending ops.
2820 */
2821 free(mt->aux_state);
2822 mt->aux_state = NULL;
2823 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2824 }
2825
2826 if (mt->hiz_buf) {
2827 intel_miptree_aux_buffer_free(mt->hiz_buf);
2828 mt->hiz_buf = NULL;
2829
2830 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2831 mt->level[l].has_hiz = false;
2832 }
2833
2834 /* Any pending HiZ operations are no longer needed. Trying to execute
2835 * any will likely crash due to the missing aux buffer. So let's delete
2836 * all pending ops.
2837 */
2838 free(mt->aux_state);
2839 mt->aux_state = NULL;
2840 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2841 }
2842
2843 mt->aux_usage = ISL_AUX_USAGE_NONE;
2844 mt->supports_fast_clear = false;
2845 }
2846
2847
2848 /**
2849 * \brief Get pointer offset into stencil buffer.
2850 *
2851 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2852 * must decode the tile's layout in software.
2853 *
2854 * See
2855 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2856 * Format.
2857 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2858 *
2859 * Even though the returned offset is always positive, the return type is
2860 * signed due to
2861 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2862 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2863 */
2864 static intptr_t
2865 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2866 {
2867 uint32_t tile_size = 4096;
2868 uint32_t tile_width = 64;
2869 uint32_t tile_height = 64;
2870 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2871
2872 uint32_t tile_x = x / tile_width;
2873 uint32_t tile_y = y / tile_height;
2874
2875 /* The byte's address relative to the tile's base addres. */
2876 uint32_t byte_x = x % tile_width;
2877 uint32_t byte_y = y % tile_height;
2878
2879 uintptr_t u = tile_y * row_size
2880 + tile_x * tile_size
2881 + 512 * (byte_x / 8)
2882 + 64 * (byte_y / 8)
2883 + 32 * ((byte_y / 4) % 2)
2884 + 16 * ((byte_x / 4) % 2)
2885 + 8 * ((byte_y / 2) % 2)
2886 + 4 * ((byte_x / 2) % 2)
2887 + 2 * (byte_y % 2)
2888 + 1 * (byte_x % 2);
2889
2890 if (swizzled) {
2891 /* adjust for bit6 swizzling */
2892 if (((byte_x / 8) % 2) == 1) {
2893 if (((byte_y / 8) % 2) == 0) {
2894 u += 64;
2895 } else {
2896 u -= 64;
2897 }
2898 }
2899 }
2900
2901 return u;
2902 }
2903
2904 void
2905 intel_miptree_updownsample(struct brw_context *brw,
2906 struct intel_mipmap_tree *src,
2907 struct intel_mipmap_tree *dst)
2908 {
2909 unsigned src_w = src->surf.logical_level0_px.width;
2910 unsigned src_h = src->surf.logical_level0_px.height;
2911 unsigned dst_w = dst->surf.logical_level0_px.width;
2912 unsigned dst_h = dst->surf.logical_level0_px.height;
2913
2914 brw_blorp_blit_miptrees(brw,
2915 src, 0 /* level */, 0 /* layer */,
2916 src->format, SWIZZLE_XYZW,
2917 dst, 0 /* level */, 0 /* layer */, dst->format,
2918 0, 0, src_w, src_h,
2919 0, 0, dst_w, dst_h,
2920 GL_NEAREST, false, false /*mirror x, y*/,
2921 false, false);
2922
2923 if (src->stencil_mt) {
2924 src_w = src->stencil_mt->surf.logical_level0_px.width;
2925 src_h = src->stencil_mt->surf.logical_level0_px.height;
2926 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2927 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2928
2929 brw_blorp_blit_miptrees(brw,
2930 src->stencil_mt, 0 /* level */, 0 /* layer */,
2931 src->stencil_mt->format, SWIZZLE_XYZW,
2932 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2933 dst->stencil_mt->format,
2934 0, 0, src_w, src_h,
2935 0, 0, dst_w, dst_h,
2936 GL_NEAREST, false, false /*mirror x, y*/,
2937 false, false /* decode/encode srgb */);
2938 }
2939 }
2940
2941 void
2942 intel_update_r8stencil(struct brw_context *brw,
2943 struct intel_mipmap_tree *mt)
2944 {
2945 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2946
2947 assert(devinfo->gen >= 7);
2948 struct intel_mipmap_tree *src =
2949 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2950 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2951 return;
2952
2953 assert(src->surf.size > 0);
2954
2955 if (!mt->r8stencil_mt) {
2956 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2957 mt->r8stencil_mt = make_surface(
2958 brw,
2959 src->target,
2960 MESA_FORMAT_R_UINT8,
2961 src->first_level, src->last_level,
2962 src->surf.logical_level0_px.width,
2963 src->surf.logical_level0_px.height,
2964 src->surf.dim == ISL_SURF_DIM_3D ?
2965 src->surf.logical_level0_px.depth :
2966 src->surf.logical_level0_px.array_len,
2967 src->surf.samples,
2968 ISL_TILING_Y0_BIT,
2969 ISL_SURF_USAGE_TEXTURE_BIT,
2970 BO_ALLOC_BUSY, 0, NULL);
2971 assert(mt->r8stencil_mt);
2972 }
2973
2974 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2975
2976 for (int level = src->first_level; level <= src->last_level; level++) {
2977 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2978 minify(src->surf.phys_level0_sa.depth, level) :
2979 src->surf.phys_level0_sa.array_len;
2980
2981 for (unsigned layer = 0; layer < depth; layer++) {
2982 brw_blorp_copy_miptrees(brw,
2983 src, level, layer,
2984 dst, level, layer,
2985 0, 0, 0, 0,
2986 minify(src->surf.logical_level0_px.width,
2987 level),
2988 minify(src->surf.logical_level0_px.height,
2989 level));
2990 }
2991 }
2992
2993 brw_render_cache_set_check_flush(brw, dst->bo);
2994 src->r8stencil_needs_update = false;
2995 }
2996
2997 static void *
2998 intel_miptree_map_raw(struct brw_context *brw,
2999 struct intel_mipmap_tree *mt,
3000 GLbitfield mode)
3001 {
3002 struct brw_bo *bo = mt->bo;
3003
3004 if (brw_batch_references(&brw->batch, bo))
3005 intel_batchbuffer_flush(brw);
3006
3007 return brw_bo_map(brw, bo, mode);
3008 }
3009
3010 static void
3011 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3012 {
3013 brw_bo_unmap(mt->bo);
3014 }
3015
3016 static void
3017 intel_miptree_map_gtt(struct brw_context *brw,
3018 struct intel_mipmap_tree *mt,
3019 struct intel_miptree_map *map,
3020 unsigned int level, unsigned int slice)
3021 {
3022 unsigned int bw, bh;
3023 void *base;
3024 unsigned int image_x, image_y;
3025 intptr_t x = map->x;
3026 intptr_t y = map->y;
3027
3028 /* For compressed formats, the stride is the number of bytes per
3029 * row of blocks. intel_miptree_get_image_offset() already does
3030 * the divide.
3031 */
3032 _mesa_get_format_block_size(mt->format, &bw, &bh);
3033 assert(y % bh == 0);
3034 assert(x % bw == 0);
3035 y /= bh;
3036 x /= bw;
3037
3038 base = intel_miptree_map_raw(brw, mt, map->mode);
3039
3040 if (base == NULL)
3041 map->ptr = NULL;
3042 else {
3043 base += mt->offset;
3044
3045 /* Note that in the case of cube maps, the caller must have passed the
3046 * slice number referencing the face.
3047 */
3048 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3049 x += image_x;
3050 y += image_y;
3051
3052 map->stride = mt->surf.row_pitch;
3053 map->ptr = base + y * map->stride + x * mt->cpp;
3054 }
3055
3056 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3057 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3058 map->x, map->y, map->w, map->h,
3059 mt, _mesa_get_format_name(mt->format),
3060 x, y, map->ptr, map->stride);
3061 }
3062
3063 static void
3064 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3065 {
3066 intel_miptree_unmap_raw(mt);
3067 }
3068
3069 static void
3070 intel_miptree_map_blit(struct brw_context *brw,
3071 struct intel_mipmap_tree *mt,
3072 struct intel_miptree_map *map,
3073 unsigned int level, unsigned int slice)
3074 {
3075 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3076 /* first_level */ 0,
3077 /* last_level */ 0,
3078 map->w, map->h, 1,
3079 /* samples */ 1,
3080 MIPTREE_CREATE_LINEAR);
3081
3082 if (!map->linear_mt) {
3083 fprintf(stderr, "Failed to allocate blit temporary\n");
3084 goto fail;
3085 }
3086 map->stride = map->linear_mt->surf.row_pitch;
3087
3088 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3089 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3090 * invalidate is set, since we'll be writing the whole rectangle from our
3091 * temporary buffer back out.
3092 */
3093 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3094 if (!intel_miptree_copy(brw,
3095 mt, level, slice, map->x, map->y,
3096 map->linear_mt, 0, 0, 0, 0,
3097 map->w, map->h)) {
3098 fprintf(stderr, "Failed to blit\n");
3099 goto fail;
3100 }
3101 }
3102
3103 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3104
3105 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3106 map->x, map->y, map->w, map->h,
3107 mt, _mesa_get_format_name(mt->format),
3108 level, slice, map->ptr, map->stride);
3109
3110 return;
3111
3112 fail:
3113 intel_miptree_release(&map->linear_mt);
3114 map->ptr = NULL;
3115 map->stride = 0;
3116 }
3117
3118 static void
3119 intel_miptree_unmap_blit(struct brw_context *brw,
3120 struct intel_mipmap_tree *mt,
3121 struct intel_miptree_map *map,
3122 unsigned int level,
3123 unsigned int slice)
3124 {
3125 struct gl_context *ctx = &brw->ctx;
3126
3127 intel_miptree_unmap_raw(map->linear_mt);
3128
3129 if (map->mode & GL_MAP_WRITE_BIT) {
3130 bool ok = intel_miptree_copy(brw,
3131 map->linear_mt, 0, 0, 0, 0,
3132 mt, level, slice, map->x, map->y,
3133 map->w, map->h);
3134 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3135 }
3136
3137 intel_miptree_release(&map->linear_mt);
3138 }
3139
3140 /**
3141 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3142 */
3143 #if defined(USE_SSE41)
3144 static void
3145 intel_miptree_map_movntdqa(struct brw_context *brw,
3146 struct intel_mipmap_tree *mt,
3147 struct intel_miptree_map *map,
3148 unsigned int level, unsigned int slice)
3149 {
3150 assert(map->mode & GL_MAP_READ_BIT);
3151 assert(!(map->mode & GL_MAP_WRITE_BIT));
3152
3153 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3154 map->x, map->y, map->w, map->h,
3155 mt, _mesa_get_format_name(mt->format),
3156 level, slice, map->ptr, map->stride);
3157
3158 /* Map the original image */
3159 uint32_t image_x;
3160 uint32_t image_y;
3161 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3162 image_x += map->x;
3163 image_y += map->y;
3164
3165 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3166 if (!src)
3167 return;
3168
3169 src += mt->offset;
3170
3171 src += image_y * mt->surf.row_pitch;
3172 src += image_x * mt->cpp;
3173
3174 /* Due to the pixel offsets for the particular image being mapped, our
3175 * src pointer may not be 16-byte aligned. However, if the pitch is
3176 * divisible by 16, then the amount by which it's misaligned will remain
3177 * consistent from row to row.
3178 */
3179 assert((mt->surf.row_pitch % 16) == 0);
3180 const int misalignment = ((uintptr_t) src) & 15;
3181
3182 /* Create an untiled temporary buffer for the mapping. */
3183 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3184
3185 map->stride = ALIGN(misalignment + width_bytes, 16);
3186
3187 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3188 /* Offset the destination so it has the same misalignment as src. */
3189 map->ptr = map->buffer + misalignment;
3190
3191 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3192
3193 for (uint32_t y = 0; y < map->h; y++) {
3194 void *dst_ptr = map->ptr + y * map->stride;
3195 void *src_ptr = src + y * mt->surf.row_pitch;
3196
3197 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3198 }
3199
3200 intel_miptree_unmap_raw(mt);
3201 }
3202
3203 static void
3204 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3205 struct intel_mipmap_tree *mt,
3206 struct intel_miptree_map *map,
3207 unsigned int level,
3208 unsigned int slice)
3209 {
3210 _mesa_align_free(map->buffer);
3211 map->buffer = NULL;
3212 map->ptr = NULL;
3213 }
3214 #endif
3215
3216 static void
3217 intel_miptree_map_s8(struct brw_context *brw,
3218 struct intel_mipmap_tree *mt,
3219 struct intel_miptree_map *map,
3220 unsigned int level, unsigned int slice)
3221 {
3222 map->stride = map->w;
3223 map->buffer = map->ptr = malloc(map->stride * map->h);
3224 if (!map->buffer)
3225 return;
3226
3227 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3228 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3229 * invalidate is set, since we'll be writing the whole rectangle from our
3230 * temporary buffer back out.
3231 */
3232 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3233 uint8_t *untiled_s8_map = map->ptr;
3234 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3235 unsigned int image_x, image_y;
3236
3237 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3238
3239 for (uint32_t y = 0; y < map->h; y++) {
3240 for (uint32_t x = 0; x < map->w; x++) {
3241 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3242 x + image_x + map->x,
3243 y + image_y + map->y,
3244 brw->has_swizzling);
3245 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3246 }
3247 }
3248
3249 intel_miptree_unmap_raw(mt);
3250
3251 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3252 map->x, map->y, map->w, map->h,
3253 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3254 } else {
3255 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3256 map->x, map->y, map->w, map->h,
3257 mt, map->ptr, map->stride);
3258 }
3259 }
3260
3261 static void
3262 intel_miptree_unmap_s8(struct brw_context *brw,
3263 struct intel_mipmap_tree *mt,
3264 struct intel_miptree_map *map,
3265 unsigned int level,
3266 unsigned int slice)
3267 {
3268 if (map->mode & GL_MAP_WRITE_BIT) {
3269 unsigned int image_x, image_y;
3270 uint8_t *untiled_s8_map = map->ptr;
3271 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3272
3273 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3274
3275 for (uint32_t y = 0; y < map->h; y++) {
3276 for (uint32_t x = 0; x < map->w; x++) {
3277 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3278 image_x + x + map->x,
3279 image_y + y + map->y,
3280 brw->has_swizzling);
3281 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3282 }
3283 }
3284
3285 intel_miptree_unmap_raw(mt);
3286 }
3287
3288 free(map->buffer);
3289 }
3290
3291 static void
3292 intel_miptree_map_etc(struct brw_context *brw,
3293 struct intel_mipmap_tree *mt,
3294 struct intel_miptree_map *map,
3295 unsigned int level,
3296 unsigned int slice)
3297 {
3298 assert(mt->etc_format != MESA_FORMAT_NONE);
3299 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3300 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3301 }
3302
3303 assert(map->mode & GL_MAP_WRITE_BIT);
3304 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3305
3306 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3307 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3308 map->w, map->h, 1));
3309 map->ptr = map->buffer;
3310 }
3311
3312 static void
3313 intel_miptree_unmap_etc(struct brw_context *brw,
3314 struct intel_mipmap_tree *mt,
3315 struct intel_miptree_map *map,
3316 unsigned int level,
3317 unsigned int slice)
3318 {
3319 uint32_t image_x;
3320 uint32_t image_y;
3321 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3322
3323 image_x += map->x;
3324 image_y += map->y;
3325
3326 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3327 + image_y * mt->surf.row_pitch
3328 + image_x * mt->cpp;
3329
3330 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3331 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3332 map->ptr, map->stride,
3333 map->w, map->h);
3334 else
3335 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3336 map->ptr, map->stride,
3337 map->w, map->h, mt->etc_format);
3338
3339 intel_miptree_unmap_raw(mt);
3340 free(map->buffer);
3341 }
3342
3343 /**
3344 * Mapping function for packed depth/stencil miptrees backed by real separate
3345 * miptrees for depth and stencil.
3346 *
3347 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3348 * separate from the depth buffer. Yet at the GL API level, we have to expose
3349 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3350 * be able to map that memory for texture storage and glReadPixels-type
3351 * operations. We give Mesa core that access by mallocing a temporary and
3352 * copying the data between the actual backing store and the temporary.
3353 */
3354 static void
3355 intel_miptree_map_depthstencil(struct brw_context *brw,
3356 struct intel_mipmap_tree *mt,
3357 struct intel_miptree_map *map,
3358 unsigned int level, unsigned int slice)
3359 {
3360 struct intel_mipmap_tree *z_mt = mt;
3361 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3362 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3363 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3364
3365 map->stride = map->w * packed_bpp;
3366 map->buffer = map->ptr = malloc(map->stride * map->h);
3367 if (!map->buffer)
3368 return;
3369
3370 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3371 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3372 * invalidate is set, since we'll be writing the whole rectangle from our
3373 * temporary buffer back out.
3374 */
3375 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3376 uint32_t *packed_map = map->ptr;
3377 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3378 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3379 unsigned int s_image_x, s_image_y;
3380 unsigned int z_image_x, z_image_y;
3381
3382 intel_miptree_get_image_offset(s_mt, level, slice,
3383 &s_image_x, &s_image_y);
3384 intel_miptree_get_image_offset(z_mt, level, slice,
3385 &z_image_x, &z_image_y);
3386
3387 for (uint32_t y = 0; y < map->h; y++) {
3388 for (uint32_t x = 0; x < map->w; x++) {
3389 int map_x = map->x + x, map_y = map->y + y;
3390 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3391 map_x + s_image_x,
3392 map_y + s_image_y,
3393 brw->has_swizzling);
3394 ptrdiff_t z_offset = ((map_y + z_image_y) *
3395 (z_mt->surf.row_pitch / 4) +
3396 (map_x + z_image_x));
3397 uint8_t s = s_map[s_offset];
3398 uint32_t z = z_map[z_offset];
3399
3400 if (map_z32f_x24s8) {
3401 packed_map[(y * map->w + x) * 2 + 0] = z;
3402 packed_map[(y * map->w + x) * 2 + 1] = s;
3403 } else {
3404 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3405 }
3406 }
3407 }
3408
3409 intel_miptree_unmap_raw(s_mt);
3410 intel_miptree_unmap_raw(z_mt);
3411
3412 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3413 __func__,
3414 map->x, map->y, map->w, map->h,
3415 z_mt, map->x + z_image_x, map->y + z_image_y,
3416 s_mt, map->x + s_image_x, map->y + s_image_y,
3417 map->ptr, map->stride);
3418 } else {
3419 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3420 map->x, map->y, map->w, map->h,
3421 mt, map->ptr, map->stride);
3422 }
3423 }
3424
3425 static void
3426 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3427 struct intel_mipmap_tree *mt,
3428 struct intel_miptree_map *map,
3429 unsigned int level,
3430 unsigned int slice)
3431 {
3432 struct intel_mipmap_tree *z_mt = mt;
3433 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3434 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3435
3436 if (map->mode & GL_MAP_WRITE_BIT) {
3437 uint32_t *packed_map = map->ptr;
3438 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3439 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3440 unsigned int s_image_x, s_image_y;
3441 unsigned int z_image_x, z_image_y;
3442
3443 intel_miptree_get_image_offset(s_mt, level, slice,
3444 &s_image_x, &s_image_y);
3445 intel_miptree_get_image_offset(z_mt, level, slice,
3446 &z_image_x, &z_image_y);
3447
3448 for (uint32_t y = 0; y < map->h; y++) {
3449 for (uint32_t x = 0; x < map->w; x++) {
3450 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3451 x + s_image_x + map->x,
3452 y + s_image_y + map->y,
3453 brw->has_swizzling);
3454 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3455 (z_mt->surf.row_pitch / 4) +
3456 (x + z_image_x + map->x));
3457
3458 if (map_z32f_x24s8) {
3459 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3460 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3461 } else {
3462 uint32_t packed = packed_map[y * map->w + x];
3463 s_map[s_offset] = packed >> 24;
3464 z_map[z_offset] = packed;
3465 }
3466 }
3467 }
3468
3469 intel_miptree_unmap_raw(s_mt);
3470 intel_miptree_unmap_raw(z_mt);
3471
3472 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3473 __func__,
3474 map->x, map->y, map->w, map->h,
3475 z_mt, _mesa_get_format_name(z_mt->format),
3476 map->x + z_image_x, map->y + z_image_y,
3477 s_mt, map->x + s_image_x, map->y + s_image_y,
3478 map->ptr, map->stride);
3479 }
3480
3481 free(map->buffer);
3482 }
3483
3484 /**
3485 * Create and attach a map to the miptree at (level, slice). Return the
3486 * attached map.
3487 */
3488 static struct intel_miptree_map*
3489 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3490 unsigned int level,
3491 unsigned int slice,
3492 unsigned int x,
3493 unsigned int y,
3494 unsigned int w,
3495 unsigned int h,
3496 GLbitfield mode)
3497 {
3498 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3499
3500 if (!map)
3501 return NULL;
3502
3503 assert(mt->level[level].slice[slice].map == NULL);
3504 mt->level[level].slice[slice].map = map;
3505
3506 map->mode = mode;
3507 map->x = x;
3508 map->y = y;
3509 map->w = w;
3510 map->h = h;
3511
3512 return map;
3513 }
3514
3515 /**
3516 * Release the map at (level, slice).
3517 */
3518 static void
3519 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3520 unsigned int level,
3521 unsigned int slice)
3522 {
3523 struct intel_miptree_map **map;
3524
3525 map = &mt->level[level].slice[slice].map;
3526 free(*map);
3527 *map = NULL;
3528 }
3529
3530 static bool
3531 can_blit_slice(struct intel_mipmap_tree *mt,
3532 unsigned int level, unsigned int slice)
3533 {
3534 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3535 if (mt->surf.row_pitch >= 32768)
3536 return false;
3537
3538 return true;
3539 }
3540
3541 static bool
3542 use_intel_mipree_map_blit(struct brw_context *brw,
3543 struct intel_mipmap_tree *mt,
3544 GLbitfield mode,
3545 unsigned int level,
3546 unsigned int slice)
3547 {
3548 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3549
3550 if (devinfo->has_llc &&
3551 /* It's probably not worth swapping to the blit ring because of
3552 * all the overhead involved.
3553 */
3554 !(mode & GL_MAP_WRITE_BIT) &&
3555 !mt->compressed &&
3556 (mt->surf.tiling == ISL_TILING_X ||
3557 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3558 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3559 /* Fast copy blit on skl+ supports all tiling formats. */
3560 devinfo->gen >= 9) &&
3561 can_blit_slice(mt, level, slice))
3562 return true;
3563
3564 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3565 mt->bo->size >= brw->max_gtt_map_object_size) {
3566 assert(can_blit_slice(mt, level, slice));
3567 return true;
3568 }
3569
3570 return false;
3571 }
3572
3573 /**
3574 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3575 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3576 * arithmetic overflow.
3577 *
3578 * If you call this function and use \a out_stride, then you're doing pointer
3579 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3580 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3581 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3582 * which usually have type uint32_t or GLuint.
3583 */
3584 void
3585 intel_miptree_map(struct brw_context *brw,
3586 struct intel_mipmap_tree *mt,
3587 unsigned int level,
3588 unsigned int slice,
3589 unsigned int x,
3590 unsigned int y,
3591 unsigned int w,
3592 unsigned int h,
3593 GLbitfield mode,
3594 void **out_ptr,
3595 ptrdiff_t *out_stride)
3596 {
3597 struct intel_miptree_map *map;
3598
3599 assert(mt->surf.samples == 1);
3600
3601 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3602 if (!map){
3603 *out_ptr = NULL;
3604 *out_stride = 0;
3605 return;
3606 }
3607
3608 intel_miptree_access_raw(brw, mt, level, slice,
3609 map->mode & GL_MAP_WRITE_BIT);
3610
3611 if (mt->format == MESA_FORMAT_S_UINT8) {
3612 intel_miptree_map_s8(brw, mt, map, level, slice);
3613 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3614 !(mode & BRW_MAP_DIRECT_BIT)) {
3615 intel_miptree_map_etc(brw, mt, map, level, slice);
3616 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3617 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3618 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3619 intel_miptree_map_blit(brw, mt, map, level, slice);
3620 #if defined(USE_SSE41)
3621 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3622 !mt->compressed && cpu_has_sse4_1 &&
3623 (mt->surf.row_pitch % 16 == 0)) {
3624 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3625 #endif
3626 } else {
3627 intel_miptree_map_gtt(brw, mt, map, level, slice);
3628 }
3629
3630 *out_ptr = map->ptr;
3631 *out_stride = map->stride;
3632
3633 if (map->ptr == NULL)
3634 intel_miptree_release_map(mt, level, slice);
3635 }
3636
3637 void
3638 intel_miptree_unmap(struct brw_context *brw,
3639 struct intel_mipmap_tree *mt,
3640 unsigned int level,
3641 unsigned int slice)
3642 {
3643 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3644
3645 assert(mt->surf.samples == 1);
3646
3647 if (!map)
3648 return;
3649
3650 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3651 mt, _mesa_get_format_name(mt->format), level, slice);
3652
3653 if (mt->format == MESA_FORMAT_S_UINT8) {
3654 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3655 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3656 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3657 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3658 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3659 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3660 } else if (map->linear_mt) {
3661 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3662 #if defined(USE_SSE41)
3663 } else if (map->buffer && cpu_has_sse4_1) {
3664 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3665 #endif
3666 } else {
3667 intel_miptree_unmap_gtt(mt);
3668 }
3669
3670 intel_miptree_release_map(mt, level, slice);
3671 }
3672
3673 enum isl_surf_dim
3674 get_isl_surf_dim(GLenum target)
3675 {
3676 switch (target) {
3677 case GL_TEXTURE_1D:
3678 case GL_TEXTURE_1D_ARRAY:
3679 return ISL_SURF_DIM_1D;
3680
3681 case GL_TEXTURE_2D:
3682 case GL_TEXTURE_2D_ARRAY:
3683 case GL_TEXTURE_RECTANGLE:
3684 case GL_TEXTURE_CUBE_MAP:
3685 case GL_TEXTURE_CUBE_MAP_ARRAY:
3686 case GL_TEXTURE_2D_MULTISAMPLE:
3687 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3688 case GL_TEXTURE_EXTERNAL_OES:
3689 return ISL_SURF_DIM_2D;
3690
3691 case GL_TEXTURE_3D:
3692 return ISL_SURF_DIM_3D;
3693 }
3694
3695 unreachable("Invalid texture target");
3696 }
3697
3698 enum isl_dim_layout
3699 get_isl_dim_layout(const struct gen_device_info *devinfo,
3700 enum isl_tiling tiling, GLenum target)
3701 {
3702 switch (target) {
3703 case GL_TEXTURE_1D:
3704 case GL_TEXTURE_1D_ARRAY:
3705 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3706 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3707
3708 case GL_TEXTURE_2D:
3709 case GL_TEXTURE_2D_ARRAY:
3710 case GL_TEXTURE_RECTANGLE:
3711 case GL_TEXTURE_2D_MULTISAMPLE:
3712 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3713 case GL_TEXTURE_EXTERNAL_OES:
3714 return ISL_DIM_LAYOUT_GEN4_2D;
3715
3716 case GL_TEXTURE_CUBE_MAP:
3717 case GL_TEXTURE_CUBE_MAP_ARRAY:
3718 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3719 ISL_DIM_LAYOUT_GEN4_2D);
3720
3721 case GL_TEXTURE_3D:
3722 return (devinfo->gen >= 9 ?
3723 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3724 }
3725
3726 unreachable("Invalid texture target");
3727 }
3728
3729 enum isl_aux_usage
3730 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3731 const struct intel_mipmap_tree *mt)
3732 {
3733 if (mt->hiz_buf)
3734 return ISL_AUX_USAGE_HIZ;
3735
3736 if (!mt->mcs_buf)
3737 return ISL_AUX_USAGE_NONE;
3738
3739 return mt->aux_usage;
3740 }