i965: isl: Move the MCS gen7+ assertion into ISL
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 /* If the width is much smaller than a tile, don't bother tiling. */
523 if (row_pitch < 64)
524 return true;
525
526 if (ALIGN(row_pitch, 512) >= 32768) {
527 perf_debug("row pitch %u too large to blit, falling back to untiled",
528 row_pitch);
529 return true;
530 }
531
532 return false;
533 }
534
535 static bool
536 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
537 enum isl_tiling tiling)
538 {
539 const struct gen_device_info *devinfo = &brw->screen->devinfo;
540
541 /* If the BO is too large to fit in the aperture, we need to use the
542 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
543 * handle Y-tiling, so we need to fall back to X.
544 */
545 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
546 tiling == ISL_TILING_Y0)
547 return true;
548
549 return false;
550 }
551
552 static struct intel_mipmap_tree *
553 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
554 unsigned first_level, unsigned last_level,
555 unsigned width0, unsigned height0, unsigned depth0,
556 unsigned num_samples, isl_tiling_flags_t tiling_flags,
557 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
558 unsigned row_pitch, struct brw_bo *bo)
559 {
560 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
561 if (!mt)
562 return NULL;
563
564 if (!create_mapping_table(target, first_level, last_level, depth0,
565 mt->level)) {
566 free(mt);
567 return NULL;
568 }
569
570 mt->refcount = 1;
571
572 if (target == GL_TEXTURE_CUBE_MAP ||
573 target == GL_TEXTURE_CUBE_MAP_ARRAY)
574 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
575
576 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
577 __func__,
578 _mesa_enum_to_string(target),
579 _mesa_get_format_name(format),
580 num_samples, width0, height0, depth0,
581 first_level, last_level, mt);
582
583 struct isl_surf_init_info init_info = {
584 .dim = get_isl_surf_dim(target),
585 .format = translate_tex_format(brw, format, false),
586 .width = width0,
587 .height = height0,
588 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
589 .levels = last_level - first_level + 1,
590 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
591 .samples = num_samples,
592 .row_pitch = row_pitch,
593 .usage = isl_usage_flags,
594 .tiling_flags = tiling_flags,
595 };
596
597 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
598 goto fail;
599
600 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
601 * on gen7 platforms we also need to create Y-tiled copies of stencil for
602 * texturing since the hardware can't sample from W-tiled surfaces. For
603 * everything else, check for corner cases needing special treatment.
604 */
605 bool is_depth_stencil =
606 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
607 if (!is_depth_stencil) {
608 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
609 mt->surf.tiling, mt->surf.samples)) {
610 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
614 init_info.tiling_flags = 1u << ISL_TILING_X;
615 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
616 goto fail;
617 }
618 }
619
620 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
621 * the size may not be multiple of row_pitch.
622 * See isl_apply_surface_padding().
623 */
624 if (mt->surf.tiling != ISL_TILING_LINEAR)
625 assert(mt->surf.size % mt->surf.row_pitch == 0);
626
627 if (!bo) {
628 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
629 mt->surf.size,
630 isl_tiling_to_i915_tiling(
631 mt->surf.tiling),
632 mt->surf.row_pitch, alloc_flags);
633 if (!mt->bo)
634 goto fail;
635 } else {
636 mt->bo = bo;
637 }
638
639 mt->first_level = first_level;
640 mt->last_level = last_level;
641 mt->target = target;
642 mt->format = format;
643 mt->aux_state = NULL;
644 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
645 mt->compressed = _mesa_is_format_compressed(format);
646 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
647
648 return mt;
649
650 fail:
651 intel_miptree_release(&mt);
652 return NULL;
653 }
654
655 static bool
656 make_separate_stencil_surface(struct brw_context *brw,
657 struct intel_mipmap_tree *mt)
658 {
659 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
660 0, mt->surf.levels - 1,
661 mt->surf.logical_level0_px.width,
662 mt->surf.logical_level0_px.height,
663 mt->surf.dim == ISL_SURF_DIM_3D ?
664 mt->surf.logical_level0_px.depth :
665 mt->surf.logical_level0_px.array_len,
666 mt->surf.samples, ISL_TILING_W_BIT,
667 ISL_SURF_USAGE_STENCIL_BIT |
668 ISL_SURF_USAGE_TEXTURE_BIT,
669 BO_ALLOC_BUSY, 0, NULL);
670
671 if (!mt->stencil_mt)
672 return false;
673
674 mt->stencil_mt->r8stencil_needs_update = true;
675
676 return true;
677 }
678
679 static struct intel_mipmap_tree *
680 miptree_create(struct brw_context *brw,
681 GLenum target,
682 mesa_format format,
683 GLuint first_level,
684 GLuint last_level,
685 GLuint width0,
686 GLuint height0,
687 GLuint depth0,
688 GLuint num_samples,
689 enum intel_miptree_create_flags flags)
690 {
691 const struct gen_device_info *devinfo = &brw->screen->devinfo;
692
693 if (format == MESA_FORMAT_S_UINT8)
694 return make_surface(brw, target, format, first_level, last_level,
695 width0, height0, depth0, num_samples,
696 ISL_TILING_W_BIT,
697 ISL_SURF_USAGE_STENCIL_BIT |
698 ISL_SURF_USAGE_TEXTURE_BIT,
699 BO_ALLOC_BUSY,
700 0,
701 NULL);
702
703 const GLenum base_format = _mesa_get_format_base_format(format);
704 if ((base_format == GL_DEPTH_COMPONENT ||
705 base_format == GL_DEPTH_STENCIL) &&
706 !(flags & MIPTREE_CREATE_LINEAR)) {
707 /* Fix up the Z miptree format for how we're splitting out separate
708 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
709 */
710 const mesa_format depth_only_format =
711 intel_depth_format_for_depthstencil_format(format);
712 struct intel_mipmap_tree *mt = make_surface(
713 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
714 first_level, last_level,
715 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
716 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
717 BO_ALLOC_BUSY, 0, NULL);
718
719 if (needs_separate_stencil(brw, mt, format) &&
720 !make_separate_stencil_surface(brw, mt)) {
721 intel_miptree_release(&mt);
722 return NULL;
723 }
724
725 if (!(flags & MIPTREE_CREATE_NO_AUX))
726 intel_miptree_choose_aux_usage(brw, mt);
727
728 return mt;
729 }
730
731 mesa_format tex_format = format;
732 mesa_format etc_format = MESA_FORMAT_NONE;
733 uint32_t alloc_flags = 0;
734
735 format = intel_lower_compressed_format(brw, format);
736
737 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
738
739 if (flags & MIPTREE_CREATE_BUSY)
740 alloc_flags |= BO_ALLOC_BUSY;
741
742 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
743 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
744
745 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
746 if (devinfo->gen < 6)
747 tiling_flags &= ~ISL_TILING_Y0_BIT;
748
749 struct intel_mipmap_tree *mt = make_surface(
750 brw, target, format,
751 first_level, last_level,
752 width0, height0, depth0,
753 num_samples, tiling_flags,
754 ISL_SURF_USAGE_RENDER_TARGET_BIT |
755 ISL_SURF_USAGE_TEXTURE_BIT,
756 alloc_flags, 0, NULL);
757 if (!mt)
758 return NULL;
759
760 mt->etc_format = etc_format;
761
762 if (!(flags & MIPTREE_CREATE_NO_AUX))
763 intel_miptree_choose_aux_usage(brw, mt);
764
765 return mt;
766 }
767
768 struct intel_mipmap_tree *
769 intel_miptree_create(struct brw_context *brw,
770 GLenum target,
771 mesa_format format,
772 GLuint first_level,
773 GLuint last_level,
774 GLuint width0,
775 GLuint height0,
776 GLuint depth0,
777 GLuint num_samples,
778 enum intel_miptree_create_flags flags)
779 {
780 assert(num_samples > 0);
781
782 struct intel_mipmap_tree *mt = miptree_create(
783 brw, target, format,
784 first_level, last_level,
785 width0, height0, depth0, num_samples,
786 flags);
787 if (!mt)
788 return NULL;
789
790 mt->offset = 0;
791
792 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
793 * compress clear color so we wait until an actual fast-clear to allocate
794 * it.
795 */
796 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
797 !intel_miptree_alloc_aux(brw, mt)) {
798 intel_miptree_release(&mt);
799 return NULL;
800 }
801
802 return mt;
803 }
804
805 struct intel_mipmap_tree *
806 intel_miptree_create_for_bo(struct brw_context *brw,
807 struct brw_bo *bo,
808 mesa_format format,
809 uint32_t offset,
810 uint32_t width,
811 uint32_t height,
812 uint32_t depth,
813 int pitch,
814 enum isl_tiling tiling,
815 enum intel_miptree_create_flags flags)
816 {
817 const struct gen_device_info *devinfo = &brw->screen->devinfo;
818 struct intel_mipmap_tree *mt;
819 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
820 const GLenum base_format = _mesa_get_format_base_format(format);
821
822 if ((base_format == GL_DEPTH_COMPONENT ||
823 base_format == GL_DEPTH_STENCIL)) {
824 const mesa_format depth_only_format =
825 intel_depth_format_for_depthstencil_format(format);
826 mt = make_surface(brw, target,
827 devinfo->gen >= 6 ? depth_only_format : format,
828 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
829 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
830 0, pitch, bo);
831 if (!mt)
832 return NULL;
833
834 brw_bo_reference(bo);
835
836 if (!(flags & MIPTREE_CREATE_NO_AUX))
837 intel_miptree_choose_aux_usage(brw, mt);
838
839 return mt;
840 } else if (format == MESA_FORMAT_S_UINT8) {
841 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
842 0, 0, width, height, depth, 1,
843 ISL_TILING_W_BIT,
844 ISL_SURF_USAGE_STENCIL_BIT |
845 ISL_SURF_USAGE_TEXTURE_BIT,
846 0, pitch, bo);
847 if (!mt)
848 return NULL;
849
850 assert(bo->size >= mt->surf.size);
851
852 brw_bo_reference(bo);
853 return mt;
854 }
855
856 /* Nothing will be able to use this miptree with the BO if the offset isn't
857 * aligned.
858 */
859 if (tiling != ISL_TILING_LINEAR)
860 assert(offset % 4096 == 0);
861
862 /* miptrees can't handle negative pitch. If you need flipping of images,
863 * that's outside of the scope of the mt.
864 */
865 assert(pitch >= 0);
866
867 /* The BO already has a tiling format and we shouldn't confuse the lower
868 * layers by making it try to find a tiling format again.
869 */
870 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
871
872 mt = make_surface(brw, target, format,
873 0, 0, width, height, depth, 1,
874 1lu << tiling,
875 ISL_SURF_USAGE_RENDER_TARGET_BIT |
876 ISL_SURF_USAGE_TEXTURE_BIT,
877 0, pitch, bo);
878 if (!mt)
879 return NULL;
880
881 brw_bo_reference(bo);
882 mt->bo = bo;
883 mt->offset = offset;
884
885 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
886 intel_miptree_choose_aux_usage(brw, mt);
887
888 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
889 * only compress clear color so we wait until an actual fast-clear to
890 * allocate it.
891 */
892 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
893 !intel_miptree_alloc_aux(brw, mt)) {
894 intel_miptree_release(&mt);
895 return NULL;
896 }
897 }
898
899 return mt;
900 }
901
902 static struct intel_mipmap_tree *
903 miptree_create_for_planar_image(struct brw_context *brw,
904 __DRIimage *image, GLenum target,
905 enum isl_tiling tiling)
906 {
907 const struct intel_image_format *f = image->planar_format;
908 struct intel_mipmap_tree *planar_mt = NULL;
909
910 for (int i = 0; i < f->nplanes; i++) {
911 const int index = f->planes[i].buffer_index;
912 const uint32_t dri_format = f->planes[i].dri_format;
913 const mesa_format format = driImageFormatToGLFormat(dri_format);
914 const uint32_t width = image->width >> f->planes[i].width_shift;
915 const uint32_t height = image->height >> f->planes[i].height_shift;
916
917 /* Disable creation of the texture's aux buffers because the driver
918 * exposes no EGL API to manage them. That is, there is no API for
919 * resolving the aux buffer's content to the main buffer nor for
920 * invalidating the aux buffer's content.
921 */
922 struct intel_mipmap_tree *mt =
923 intel_miptree_create_for_bo(brw, image->bo, format,
924 image->offsets[index],
925 width, height, 1,
926 image->strides[index],
927 tiling,
928 MIPTREE_CREATE_NO_AUX);
929 if (mt == NULL)
930 return NULL;
931
932 mt->target = target;
933
934 if (i == 0)
935 planar_mt = mt;
936 else
937 planar_mt->plane[i - 1] = mt;
938 }
939
940 planar_mt->drm_modifier = image->modifier;
941
942 return planar_mt;
943 }
944
945 static bool
946 create_ccs_buf_for_image(struct brw_context *brw,
947 __DRIimage *image,
948 struct intel_mipmap_tree *mt,
949 enum isl_aux_state initial_state)
950 {
951 struct isl_surf temp_ccs_surf;
952
953 /* CCS is only supported for very simple miptrees */
954 assert(image->aux_offset != 0 && image->aux_pitch != 0);
955 assert(image->tile_x == 0 && image->tile_y == 0);
956 assert(mt->surf.samples == 1);
957 assert(mt->surf.levels == 1);
958 assert(mt->surf.logical_level0_px.depth == 1);
959 assert(mt->surf.logical_level0_px.array_len == 1);
960 assert(mt->first_level == 0);
961 assert(mt->last_level == 0);
962
963 /* We shouldn't already have a CCS */
964 assert(!mt->aux_buf);
965
966 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
967 image->aux_pitch))
968 return false;
969
970 assert(image->aux_offset < image->bo->size);
971 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
972
973 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
974 if (mt->aux_buf == NULL)
975 return false;
976
977 mt->aux_state = create_aux_state_map(mt, initial_state);
978 if (!mt->aux_state) {
979 free(mt->aux_buf);
980 mt->aux_buf = NULL;
981 return false;
982 }
983
984 /* On gen10+ we start using an extra space in the aux buffer to store the
985 * indirect clear color. However, if we imported an image from the window
986 * system with CCS, we don't have the extra space at the end of the aux
987 * buffer. So create a new bo here that will store that clear color.
988 */
989 if (brw->isl_dev.ss.clear_color_state_size > 0) {
990 mt->aux_buf->clear_color_bo =
991 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
992 brw->isl_dev.ss.clear_color_state_size,
993 I915_TILING_NONE, 0, BO_ALLOC_ZEROED);
994 if (!mt->aux_buf->clear_color_bo) {
995 free(mt->aux_buf);
996 mt->aux_buf = NULL;
997 return false;
998 }
999 }
1000
1001 mt->aux_buf->bo = image->bo;
1002 brw_bo_reference(image->bo);
1003
1004 mt->aux_buf->offset = image->aux_offset;
1005 mt->aux_buf->surf = temp_ccs_surf;
1006
1007 return true;
1008 }
1009
1010 struct intel_mipmap_tree *
1011 intel_miptree_create_for_dri_image(struct brw_context *brw,
1012 __DRIimage *image, GLenum target,
1013 mesa_format format,
1014 bool is_winsys_image)
1015 {
1016 uint32_t bo_tiling, bo_swizzle;
1017 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1018
1019 const struct isl_drm_modifier_info *mod_info =
1020 isl_drm_modifier_get_info(image->modifier);
1021
1022 const enum isl_tiling tiling =
1023 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1024
1025 if (image->planar_format && image->planar_format->nplanes > 1)
1026 return miptree_create_for_planar_image(brw, image, target, tiling);
1027
1028 if (image->planar_format)
1029 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1030
1031 if (!brw->ctx.TextureFormatSupported[format]) {
1032 /* The texture storage paths in core Mesa detect if the driver does not
1033 * support the user-requested format, and then searches for a
1034 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1035 * do the fallbacks here for important formats.
1036 *
1037 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1038 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1039 * the Chrome OS compositor consumes as dma_buf EGLImages.
1040 */
1041 format = _mesa_format_fallback_rgbx_to_rgba(format);
1042 }
1043
1044 if (!brw->ctx.TextureFormatSupported[format])
1045 return NULL;
1046
1047 enum intel_miptree_create_flags mt_create_flags = 0;
1048
1049 /* If this image comes in from a window system, we have different
1050 * requirements than if it comes in via an EGL import operation. Window
1051 * system images can use any form of auxiliary compression we wish because
1052 * they get "flushed" before being handed off to the window system and we
1053 * have the opportunity to do resolves. Non window-system images, on the
1054 * other hand, have no resolve point so we can't have aux without a
1055 * modifier.
1056 */
1057 if (!is_winsys_image)
1058 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1059
1060 /* If we have a modifier which specifies aux, don't create one yet */
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1062 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1063
1064 /* Disable creation of the texture's aux buffers because the driver exposes
1065 * no EGL API to manage them. That is, there is no API for resolving the aux
1066 * buffer's content to the main buffer nor for invalidating the aux buffer's
1067 * content.
1068 */
1069 struct intel_mipmap_tree *mt =
1070 intel_miptree_create_for_bo(brw, image->bo, format,
1071 image->offset, image->width, image->height, 1,
1072 image->pitch, tiling, mt_create_flags);
1073 if (mt == NULL)
1074 return NULL;
1075
1076 mt->target = target;
1077 mt->level[0].level_x = image->tile_x;
1078 mt->level[0].level_y = image->tile_y;
1079 mt->drm_modifier = image->modifier;
1080
1081 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1082 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1083 * trouble resolving back to destination image due to alignment issues.
1084 */
1085 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1086 if (!devinfo->has_surface_tile_offset) {
1087 uint32_t draw_x, draw_y;
1088 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1089
1090 if (draw_x != 0 || draw_y != 0) {
1091 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1092 intel_miptree_release(&mt);
1093 return NULL;
1094 }
1095 }
1096
1097 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1098 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1099
1100 mt->aux_usage = mod_info->aux_usage;
1101 /* If we are a window system buffer, then we can support fast-clears
1102 * even if the modifier doesn't support them by doing a partial resolve
1103 * as part of the flush operation.
1104 */
1105 mt->supports_fast_clear =
1106 is_winsys_image || mod_info->supports_clear_color;
1107
1108 /* We don't know the actual state of the surface when we get it but we
1109 * can make a pretty good guess based on the modifier. What we do know
1110 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1111 * a worst case of compression.
1112 */
1113 enum isl_aux_state initial_state =
1114 isl_drm_modifier_get_default_aux_state(image->modifier);
1115
1116 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1117 intel_miptree_release(&mt);
1118 return NULL;
1119 }
1120 }
1121
1122 /* Don't assume coherency for imported EGLimages. We don't know what
1123 * external clients are going to do with it. They may scan it out.
1124 */
1125 image->bo->cache_coherent = false;
1126
1127 return mt;
1128 }
1129
1130 /**
1131 * For a singlesample renderbuffer, this simply wraps the given BO with a
1132 * miptree.
1133 *
1134 * For a multisample renderbuffer, this wraps the window system's
1135 * (singlesample) BO with a singlesample miptree attached to the
1136 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1137 * that will contain the actual rendering (which is lazily resolved to
1138 * irb->singlesample_mt).
1139 */
1140 bool
1141 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1142 struct intel_renderbuffer *irb,
1143 struct intel_mipmap_tree *singlesample_mt,
1144 uint32_t width, uint32_t height,
1145 uint32_t pitch)
1146 {
1147 struct intel_mipmap_tree *multisample_mt = NULL;
1148 struct gl_renderbuffer *rb = &irb->Base.Base;
1149 mesa_format format = rb->Format;
1150 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1151
1152 /* Only the front and back buffers, which are color buffers, are allocated
1153 * through the image loader.
1154 */
1155 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1156 _mesa_get_format_base_format(format) == GL_RGBA);
1157
1158 assert(singlesample_mt);
1159
1160 if (num_samples == 1) {
1161 intel_miptree_release(&irb->mt);
1162 irb->mt = singlesample_mt;
1163
1164 assert(!irb->singlesample_mt);
1165 } else {
1166 intel_miptree_release(&irb->singlesample_mt);
1167 irb->singlesample_mt = singlesample_mt;
1168
1169 if (!irb->mt ||
1170 irb->mt->surf.logical_level0_px.width != width ||
1171 irb->mt->surf.logical_level0_px.height != height) {
1172 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1173 format,
1174 width,
1175 height,
1176 num_samples);
1177 if (!multisample_mt)
1178 goto fail;
1179
1180 irb->need_downsample = false;
1181 intel_miptree_release(&irb->mt);
1182 irb->mt = multisample_mt;
1183 }
1184 }
1185 return true;
1186
1187 fail:
1188 intel_miptree_release(&irb->mt);
1189 return false;
1190 }
1191
1192 struct intel_mipmap_tree*
1193 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1194 mesa_format format,
1195 uint32_t width,
1196 uint32_t height,
1197 uint32_t num_samples)
1198 {
1199 struct intel_mipmap_tree *mt;
1200 uint32_t depth = 1;
1201 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1202
1203 mt = intel_miptree_create(brw, target, format, 0, 0,
1204 width, height, depth, num_samples,
1205 MIPTREE_CREATE_BUSY);
1206 if (!mt)
1207 goto fail;
1208
1209 return mt;
1210
1211 fail:
1212 intel_miptree_release(&mt);
1213 return NULL;
1214 }
1215
1216 void
1217 intel_miptree_reference(struct intel_mipmap_tree **dst,
1218 struct intel_mipmap_tree *src)
1219 {
1220 if (*dst == src)
1221 return;
1222
1223 intel_miptree_release(dst);
1224
1225 if (src) {
1226 src->refcount++;
1227 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1228 }
1229
1230 *dst = src;
1231 }
1232
1233 static void
1234 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1235 {
1236 if (aux_buf == NULL)
1237 return;
1238
1239 brw_bo_unreference(aux_buf->bo);
1240 brw_bo_unreference(aux_buf->clear_color_bo);
1241
1242 free(aux_buf);
1243 }
1244
1245 void
1246 intel_miptree_release(struct intel_mipmap_tree **mt)
1247 {
1248 if (!*mt)
1249 return;
1250
1251 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1252 if (--(*mt)->refcount <= 0) {
1253 GLuint i;
1254
1255 DBG("%s deleting %p\n", __func__, *mt);
1256
1257 brw_bo_unreference((*mt)->bo);
1258 intel_miptree_release(&(*mt)->stencil_mt);
1259 intel_miptree_release(&(*mt)->r8stencil_mt);
1260 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1261 free_aux_state_map((*mt)->aux_state);
1262
1263 intel_miptree_release(&(*mt)->plane[0]);
1264 intel_miptree_release(&(*mt)->plane[1]);
1265
1266 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1267 free((*mt)->level[i].slice);
1268 }
1269
1270 free(*mt);
1271 }
1272 *mt = NULL;
1273 }
1274
1275
1276 void
1277 intel_get_image_dims(struct gl_texture_image *image,
1278 int *width, int *height, int *depth)
1279 {
1280 switch (image->TexObject->Target) {
1281 case GL_TEXTURE_1D_ARRAY:
1282 /* For a 1D Array texture the OpenGL API will treat the image height as
1283 * the number of array slices. For Intel hardware, we treat the 1D array
1284 * as a 2D Array with a height of 1. So, here we want to swap image
1285 * height and depth.
1286 */
1287 assert(image->Depth == 1);
1288 *width = image->Width;
1289 *height = 1;
1290 *depth = image->Height;
1291 break;
1292 case GL_TEXTURE_CUBE_MAP:
1293 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1294 * though we really have 6 slices.
1295 */
1296 assert(image->Depth == 1);
1297 *width = image->Width;
1298 *height = image->Height;
1299 *depth = 6;
1300 break;
1301 default:
1302 *width = image->Width;
1303 *height = image->Height;
1304 *depth = image->Depth;
1305 break;
1306 }
1307 }
1308
1309 /**
1310 * Can the image be pulled into a unified mipmap tree? This mirrors
1311 * the completeness test in a lot of ways.
1312 *
1313 * Not sure whether I want to pass gl_texture_image here.
1314 */
1315 bool
1316 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1317 struct gl_texture_image *image)
1318 {
1319 struct intel_texture_image *intelImage = intel_texture_image(image);
1320 GLuint level = intelImage->base.Base.Level;
1321 int width, height, depth;
1322
1323 /* glTexImage* choose the texture object based on the target passed in, and
1324 * objects can't change targets over their lifetimes, so this should be
1325 * true.
1326 */
1327 assert(image->TexObject->Target == mt->target);
1328
1329 mesa_format mt_format = mt->format;
1330 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1331 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1332 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1333 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1334 if (mt->etc_format != MESA_FORMAT_NONE)
1335 mt_format = mt->etc_format;
1336
1337 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1338 _mesa_get_srgb_format_linear(mt_format))
1339 return false;
1340
1341 intel_get_image_dims(image, &width, &height, &depth);
1342
1343 if (mt->target == GL_TEXTURE_CUBE_MAP)
1344 depth = 6;
1345
1346 if (level >= mt->surf.levels)
1347 return false;
1348
1349 const unsigned level_depth =
1350 mt->surf.dim == ISL_SURF_DIM_3D ?
1351 minify(mt->surf.logical_level0_px.depth, level) :
1352 mt->surf.logical_level0_px.array_len;
1353
1354 return width == minify(mt->surf.logical_level0_px.width, level) &&
1355 height == minify(mt->surf.logical_level0_px.height, level) &&
1356 depth == level_depth &&
1357 MAX2(image->NumSamples, 1) == mt->surf.samples;
1358 }
1359
1360 void
1361 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1362 GLuint level, GLuint slice,
1363 GLuint *x, GLuint *y)
1364 {
1365 if (level == 0 && slice == 0) {
1366 *x = mt->level[0].level_x;
1367 *y = mt->level[0].level_y;
1368 return;
1369 }
1370
1371 uint32_t x_offset_sa, y_offset_sa;
1372
1373 /* Miptree itself can have an offset only if it represents a single
1374 * slice in an imported buffer object.
1375 * See intel_miptree_create_for_dri_image().
1376 */
1377 assert(mt->level[0].level_x == 0);
1378 assert(mt->level[0].level_y == 0);
1379
1380 /* Given level is relative to level zero while the miptree may be
1381 * represent just a subset of all levels starting from 'first_level'.
1382 */
1383 assert(level >= mt->first_level);
1384 level -= mt->first_level;
1385
1386 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1387 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1388 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1389 &x_offset_sa, &y_offset_sa);
1390
1391 *x = x_offset_sa;
1392 *y = y_offset_sa;
1393 }
1394
1395
1396 /**
1397 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1398 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1399 * and tile_h is set to 1.
1400 */
1401 void
1402 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1403 uint32_t *tile_w, uint32_t *tile_h)
1404 {
1405 switch (tiling) {
1406 case ISL_TILING_X:
1407 *tile_w = 512;
1408 *tile_h = 8;
1409 break;
1410 case ISL_TILING_Y0:
1411 *tile_w = 128;
1412 *tile_h = 32;
1413 break;
1414 case ISL_TILING_LINEAR:
1415 *tile_w = cpp;
1416 *tile_h = 1;
1417 break;
1418 default:
1419 unreachable("not reached");
1420 }
1421 }
1422
1423
1424 /**
1425 * This function computes masks that may be used to select the bits of the X
1426 * and Y coordinates that indicate the offset within a tile. If the BO is
1427 * untiled, the masks are set to 0.
1428 */
1429 void
1430 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1431 uint32_t *mask_x, uint32_t *mask_y)
1432 {
1433 uint32_t tile_w_bytes, tile_h;
1434
1435 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1436
1437 *mask_x = tile_w_bytes / cpp - 1;
1438 *mask_y = tile_h - 1;
1439 }
1440
1441 /**
1442 * Compute the offset (in bytes) from the start of the BO to the given x
1443 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1444 * multiples of the tile size.
1445 */
1446 uint32_t
1447 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1448 uint32_t x, uint32_t y)
1449 {
1450 int cpp = mt->cpp;
1451 uint32_t pitch = mt->surf.row_pitch;
1452
1453 switch (mt->surf.tiling) {
1454 default:
1455 unreachable("not reached");
1456 case ISL_TILING_LINEAR:
1457 return y * pitch + x * cpp;
1458 case ISL_TILING_X:
1459 assert((x % (512 / cpp)) == 0);
1460 assert((y % 8) == 0);
1461 return y * pitch + x / (512 / cpp) * 4096;
1462 case ISL_TILING_Y0:
1463 assert((x % (128 / cpp)) == 0);
1464 assert((y % 32) == 0);
1465 return y * pitch + x / (128 / cpp) * 4096;
1466 }
1467 }
1468
1469 /**
1470 * Rendering with tiled buffers requires that the base address of the buffer
1471 * be aligned to a page boundary. For renderbuffers, and sometimes with
1472 * textures, we may want the surface to point at a texture image level that
1473 * isn't at a page boundary.
1474 *
1475 * This function returns an appropriately-aligned base offset
1476 * according to the tiling restrictions, plus any required x/y offset
1477 * from there.
1478 */
1479 uint32_t
1480 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1481 GLuint level, GLuint slice,
1482 uint32_t *tile_x,
1483 uint32_t *tile_y)
1484 {
1485 uint32_t x, y;
1486 uint32_t mask_x, mask_y;
1487
1488 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1489 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1490
1491 *tile_x = x & mask_x;
1492 *tile_y = y & mask_y;
1493
1494 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1495 }
1496
1497 static void
1498 intel_miptree_copy_slice_sw(struct brw_context *brw,
1499 struct intel_mipmap_tree *src_mt,
1500 unsigned src_level, unsigned src_layer,
1501 struct intel_mipmap_tree *dst_mt,
1502 unsigned dst_level, unsigned dst_layer,
1503 unsigned width, unsigned height)
1504 {
1505 void *src, *dst;
1506 ptrdiff_t src_stride, dst_stride;
1507 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1508
1509 intel_miptree_map(brw, src_mt,
1510 src_level, src_layer,
1511 0, 0,
1512 width, height,
1513 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1514 &src, &src_stride);
1515
1516 intel_miptree_map(brw, dst_mt,
1517 dst_level, dst_layer,
1518 0, 0,
1519 width, height,
1520 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1521 BRW_MAP_DIRECT_BIT,
1522 &dst, &dst_stride);
1523
1524 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1525 _mesa_get_format_name(src_mt->format),
1526 src_mt, src, src_stride,
1527 _mesa_get_format_name(dst_mt->format),
1528 dst_mt, dst, dst_stride,
1529 width, height);
1530
1531 int row_size = cpp * width;
1532 if (src_stride == row_size &&
1533 dst_stride == row_size) {
1534 memcpy(dst, src, row_size * height);
1535 } else {
1536 for (int i = 0; i < height; i++) {
1537 memcpy(dst, src, row_size);
1538 dst += dst_stride;
1539 src += src_stride;
1540 }
1541 }
1542
1543 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1544 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1545
1546 /* Don't forget to copy the stencil data over, too. We could have skipped
1547 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1548 * shuffling the two data sources in/out of temporary storage instead of
1549 * the direct mapping we get this way.
1550 */
1551 if (dst_mt->stencil_mt) {
1552 assert(src_mt->stencil_mt);
1553 intel_miptree_copy_slice_sw(brw,
1554 src_mt->stencil_mt, src_level, src_layer,
1555 dst_mt->stencil_mt, dst_level, dst_layer,
1556 width, height);
1557 }
1558 }
1559
1560 void
1561 intel_miptree_copy_slice(struct brw_context *brw,
1562 struct intel_mipmap_tree *src_mt,
1563 unsigned src_level, unsigned src_layer,
1564 struct intel_mipmap_tree *dst_mt,
1565 unsigned dst_level, unsigned dst_layer)
1566
1567 {
1568 mesa_format format = src_mt->format;
1569 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1570 src_level - src_mt->first_level);
1571 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1572 src_level - src_mt->first_level);
1573
1574 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1575 src_level - src_mt->first_level));
1576
1577 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1578 _mesa_get_srgb_format_linear(dst_mt->format));
1579
1580 if (dst_mt->compressed) {
1581 unsigned int i, j;
1582 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1583 height = ALIGN_NPOT(height, j) / j;
1584 width = ALIGN_NPOT(width, i) / i;
1585 }
1586
1587 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1588 * below won't apply since we can't do the depth's Y tiling or the
1589 * stencil's W tiling in the blitter.
1590 */
1591 if (src_mt->stencil_mt) {
1592 intel_miptree_copy_slice_sw(brw,
1593 src_mt, src_level, src_layer,
1594 dst_mt, dst_level, dst_layer,
1595 width, height);
1596 return;
1597 }
1598
1599 uint32_t dst_x, dst_y, src_x, src_y;
1600 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1601 &dst_x, &dst_y);
1602 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1603 &src_x, &src_y);
1604
1605 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1606 _mesa_get_format_name(src_mt->format),
1607 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1608 _mesa_get_format_name(dst_mt->format),
1609 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1610 width, height);
1611
1612 if (!intel_miptree_blit(brw,
1613 src_mt, src_level, src_layer, 0, 0, false,
1614 dst_mt, dst_level, dst_layer, 0, 0, false,
1615 width, height, COLOR_LOGICOP_COPY)) {
1616 perf_debug("miptree validate blit for %s failed\n",
1617 _mesa_get_format_name(format));
1618
1619 intel_miptree_copy_slice_sw(brw,
1620 src_mt, src_level, src_layer,
1621 dst_mt, dst_level, dst_layer,
1622 width, height);
1623 }
1624 }
1625
1626 /**
1627 * Copies the image's current data to the given miptree, and associates that
1628 * miptree with the image.
1629 */
1630 void
1631 intel_miptree_copy_teximage(struct brw_context *brw,
1632 struct intel_texture_image *intelImage,
1633 struct intel_mipmap_tree *dst_mt)
1634 {
1635 struct intel_mipmap_tree *src_mt = intelImage->mt;
1636 struct intel_texture_object *intel_obj =
1637 intel_texture_object(intelImage->base.Base.TexObject);
1638 int level = intelImage->base.Base.Level;
1639 const unsigned face = intelImage->base.Base.Face;
1640 unsigned start_layer, end_layer;
1641
1642 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1643 assert(face == 0);
1644 assert(intelImage->base.Base.Height);
1645 start_layer = 0;
1646 end_layer = intelImage->base.Base.Height - 1;
1647 } else if (face > 0) {
1648 start_layer = face;
1649 end_layer = face;
1650 } else {
1651 assert(intelImage->base.Base.Depth);
1652 start_layer = 0;
1653 end_layer = intelImage->base.Base.Depth - 1;
1654 }
1655
1656 for (unsigned i = start_layer; i <= end_layer; i++) {
1657 intel_miptree_copy_slice(brw,
1658 src_mt, level, i,
1659 dst_mt, level, i);
1660 }
1661
1662 intel_miptree_reference(&intelImage->mt, dst_mt);
1663 intel_obj->needs_validate = true;
1664 }
1665
1666 static struct intel_miptree_aux_buffer *
1667 intel_alloc_aux_buffer(struct brw_context *brw,
1668 const struct isl_surf *aux_surf,
1669 bool wants_memset,
1670 uint8_t memset_value)
1671 {
1672 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1673 if (!buf)
1674 return false;
1675
1676 uint64_t size = aux_surf->size;
1677
1678 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1679 if (has_indirect_clear) {
1680 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1681 * will set a pointer to a dword somewhere that contains the color. So,
1682 * allocate the space for the clear color value here on the aux buffer.
1683 */
1684 buf->clear_color_offset = size;
1685 size += brw->isl_dev.ss.clear_color_state_size;
1686 }
1687
1688 /* If the buffer needs to be initialised (requiring the buffer to be
1689 * immediately mapped to cpu space for writing), do not use the gpu access
1690 * flag which can cause an unnecessary delay if the backing pages happened
1691 * to be just used by the GPU.
1692 */
1693 const bool alloc_zeroed = wants_memset && memset_value == 0;
1694 const bool needs_memset =
1695 !alloc_zeroed && (wants_memset || has_indirect_clear);
1696 const uint32_t alloc_flags =
1697 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1698
1699 /* ISL has stricter set of alignment rules then the drm allocator.
1700 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1701 * trying to recalculate based on different format block sizes.
1702 */
1703 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1704 I915_TILING_Y, aux_surf->row_pitch,
1705 alloc_flags);
1706 if (!buf->bo) {
1707 free(buf);
1708 return NULL;
1709 }
1710
1711 /* Initialize the bo to the desired value */
1712 if (needs_memset) {
1713 assert(!(alloc_flags & BO_ALLOC_BUSY));
1714
1715 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1716 if (map == NULL) {
1717 intel_miptree_aux_buffer_free(buf);
1718 return NULL;
1719 }
1720
1721 /* Memset the aux_surf portion of the BO. */
1722 if (wants_memset)
1723 memset(map, memset_value, aux_surf->size);
1724
1725 /* Zero the indirect clear color to match ::fast_clear_color. */
1726 if (has_indirect_clear) {
1727 memset((char *)map + buf->clear_color_offset, 0,
1728 brw->isl_dev.ss.clear_color_state_size);
1729 }
1730
1731 brw_bo_unmap(buf->bo);
1732 }
1733
1734 if (has_indirect_clear) {
1735 buf->clear_color_bo = buf->bo;
1736 brw_bo_reference(buf->clear_color_bo);
1737 }
1738
1739 buf->surf = *aux_surf;
1740
1741 return buf;
1742 }
1743
1744
1745 /**
1746 * Helper for intel_miptree_alloc_aux() that sets
1747 * \c mt->level[level].has_hiz. Return true if and only if
1748 * \c has_hiz was set.
1749 */
1750 static bool
1751 intel_miptree_level_enable_hiz(struct brw_context *brw,
1752 struct intel_mipmap_tree *mt,
1753 uint32_t level)
1754 {
1755 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1756
1757 assert(mt->aux_buf);
1758 assert(mt->surf.size > 0);
1759
1760 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1761 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1762 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1763
1764 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1765 * and the height is 4 aligned. This allows our HiZ support
1766 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1767 * we can grow the width & height to allow the HiZ op to
1768 * force the proper size alignments.
1769 */
1770 if (level > 0 && ((width & 7) || (height & 3))) {
1771 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1772 return false;
1773 }
1774 }
1775
1776 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1777 mt->level[level].has_hiz = true;
1778 return true;
1779 }
1780
1781
1782 /**
1783 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1784 *
1785 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1786 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1787 * compress clear color so we wait until an actual fast-clear to allocate it.
1788 */
1789 bool
1790 intel_miptree_alloc_aux(struct brw_context *brw,
1791 struct intel_mipmap_tree *mt)
1792 {
1793 assert(mt->aux_buf == NULL);
1794
1795 /* Get the aux buf allocation parameters for this miptree. */
1796 enum isl_aux_state initial_state;
1797 uint8_t memset_value;
1798 struct isl_surf aux_surf;
1799 MAYBE_UNUSED bool aux_surf_ok;
1800
1801 switch (mt->aux_usage) {
1802 case ISL_AUX_USAGE_NONE:
1803 aux_surf.size = 0;
1804 aux_surf_ok = true;
1805 break;
1806 case ISL_AUX_USAGE_HIZ:
1807 initial_state = ISL_AUX_STATE_AUX_INVALID;
1808 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1809 break;
1810 case ISL_AUX_USAGE_MCS:
1811 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1812 *
1813 * When MCS buffer is enabled and bound to MSRT, it is required that
1814 * it is cleared prior to any rendering.
1815 *
1816 * Since we don't use the MCS buffer for any purpose other than
1817 * rendering, it makes sense to just clear it immediately upon
1818 * allocation.
1819 *
1820 * Note: the clear value for MCS buffers is all 1's, so we memset to
1821 * 0xff.
1822 */
1823 initial_state = ISL_AUX_STATE_CLEAR;
1824 memset_value = 0xFF;
1825 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1826 break;
1827 case ISL_AUX_USAGE_CCS_D:
1828 case ISL_AUX_USAGE_CCS_E:
1829 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1830 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1831 * Target(s)":
1832 *
1833 * "If Software wants to enable Color Compression without Fast
1834 * clear, Software needs to initialize MCS with zeros."
1835 *
1836 * A CCS value of 0 indicates that the corresponding block is in the
1837 * pass-through state which is what we want.
1838 *
1839 * For CCS_D, do the same thing. On gen9+, this avoids having any
1840 * undefined bits in the aux buffer.
1841 */
1842 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1843 memset_value = 0;
1844 aux_surf_ok =
1845 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1846 break;
1847 }
1848
1849 /* We should have a valid aux_surf. */
1850 assert(aux_surf_ok);
1851
1852 /* No work is needed for a zero-sized auxiliary buffer. */
1853 if (aux_surf.size == 0)
1854 return true;
1855
1856 /* Create the aux_state for the auxiliary buffer. */
1857 mt->aux_state = create_aux_state_map(mt, initial_state);
1858 if (mt->aux_state == NULL)
1859 return false;
1860
1861 /* Allocate the auxiliary buffer. */
1862 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1863 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1864 memset_value);
1865 if (mt->aux_buf == NULL) {
1866 free_aux_state_map(mt->aux_state);
1867 mt->aux_state = NULL;
1868 return false;
1869 }
1870
1871 /* Perform aux_usage-specific initialization. */
1872 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1873 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1874 intel_miptree_level_enable_hiz(brw, mt, level);
1875 }
1876
1877 return true;
1878 }
1879
1880
1881 /**
1882 * Can the miptree sample using the hiz buffer?
1883 */
1884 bool
1885 intel_miptree_sample_with_hiz(struct brw_context *brw,
1886 struct intel_mipmap_tree *mt)
1887 {
1888 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1889
1890 if (!devinfo->has_sample_with_hiz) {
1891 return false;
1892 }
1893
1894 if (!mt->aux_buf) {
1895 return false;
1896 }
1897
1898 /* It seems the hardware won't fallback to the depth buffer if some of the
1899 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1900 * of the texture to be HiZ enabled.
1901 */
1902 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1903 if (!intel_miptree_level_has_hiz(mt, level))
1904 return false;
1905 }
1906
1907 /* If compressed multisampling is enabled, then we use it for the auxiliary
1908 * buffer instead.
1909 *
1910 * From the BDW PRM (Volume 2d: Command Reference: Structures
1911 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1912 *
1913 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1914 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1915 *
1916 * There is no such blurb for 1D textures, but there is sufficient evidence
1917 * that this is broken on SKL+.
1918 */
1919 return (mt->surf.samples == 1 &&
1920 mt->target != GL_TEXTURE_3D &&
1921 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1922 }
1923
1924 /**
1925 * Does the miptree slice have hiz enabled?
1926 */
1927 bool
1928 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1929 {
1930 intel_miptree_check_level_layer(mt, level, 0);
1931 return mt->level[level].has_hiz;
1932 }
1933
1934 static inline uint32_t
1935 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1936 uint32_t start_level, uint32_t num_levels)
1937 {
1938 assert(start_level >= mt->first_level);
1939 assert(start_level <= mt->last_level);
1940
1941 if (num_levels == INTEL_REMAINING_LAYERS)
1942 num_levels = mt->last_level - start_level + 1;
1943 /* Check for overflow */
1944 assert(start_level + num_levels >= start_level);
1945 assert(start_level + num_levels <= mt->last_level + 1);
1946
1947 return num_levels;
1948 }
1949
1950 static inline uint32_t
1951 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1952 uint32_t start_layer, uint32_t num_layers)
1953 {
1954 assert(level <= mt->last_level);
1955
1956 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1957 assert(start_layer < total_num_layers);
1958 if (num_layers == INTEL_REMAINING_LAYERS)
1959 num_layers = total_num_layers - start_layer;
1960 /* Check for overflow */
1961 assert(start_layer + num_layers >= start_layer);
1962 assert(start_layer + num_layers <= total_num_layers);
1963
1964 return num_layers;
1965 }
1966
1967 bool
1968 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1969 unsigned start_level, unsigned num_levels,
1970 unsigned start_layer, unsigned num_layers)
1971 {
1972 assert(_mesa_is_format_color_format(mt->format));
1973
1974 if (!mt->aux_buf)
1975 return false;
1976
1977 /* Clamp the level range to fit the miptree */
1978 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1979
1980 for (uint32_t l = 0; l < num_levels; l++) {
1981 const uint32_t level = start_level + l;
1982 const uint32_t level_layers =
1983 miptree_layer_range_length(mt, level, start_layer, num_layers);
1984 for (unsigned a = 0; a < level_layers; a++) {
1985 enum isl_aux_state aux_state =
1986 intel_miptree_get_aux_state(mt, level, start_layer + a);
1987 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1988 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1989 return true;
1990 }
1991 }
1992
1993 return false;
1994 }
1995
1996 static void
1997 intel_miptree_check_color_resolve(const struct brw_context *brw,
1998 const struct intel_mipmap_tree *mt,
1999 unsigned level, unsigned layer)
2000 {
2001 if (!mt->aux_buf)
2002 return;
2003
2004 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2005 assert(brw->screen->devinfo.gen >= 8 ||
2006 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2007
2008 /* Compression of arrayed msaa surfaces is supported. */
2009 if (mt->surf.samples > 1)
2010 return;
2011
2012 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2013 assert(brw->screen->devinfo.gen >= 8 ||
2014 (layer == 0 &&
2015 mt->surf.logical_level0_px.depth == 1 &&
2016 mt->surf.logical_level0_px.array_len == 1));
2017
2018 (void)level;
2019 (void)layer;
2020 }
2021
2022 static enum isl_aux_op
2023 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2024 enum isl_aux_usage aux_usage,
2025 bool fast_clear_supported)
2026 {
2027 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2028
2029 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2030
2031 assert(ccs_supported == fast_clear_supported);
2032
2033 switch (aux_state) {
2034 case ISL_AUX_STATE_CLEAR:
2035 case ISL_AUX_STATE_PARTIAL_CLEAR:
2036 if (!ccs_supported)
2037 return ISL_AUX_OP_FULL_RESOLVE;
2038 else
2039 return ISL_AUX_OP_NONE;
2040
2041 case ISL_AUX_STATE_PASS_THROUGH:
2042 return ISL_AUX_OP_NONE;
2043
2044 case ISL_AUX_STATE_RESOLVED:
2045 case ISL_AUX_STATE_AUX_INVALID:
2046 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2047 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2048 break;
2049 }
2050
2051 unreachable("Invalid aux state for CCS_D");
2052 }
2053
2054 static enum isl_aux_op
2055 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2056 enum isl_aux_usage aux_usage,
2057 bool fast_clear_supported)
2058 {
2059 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2060 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2061 aux_usage == ISL_AUX_USAGE_CCS_D ||
2062 aux_usage == ISL_AUX_USAGE_CCS_E);
2063
2064 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2065 assert(fast_clear_supported);
2066
2067 switch (aux_state) {
2068 case ISL_AUX_STATE_CLEAR:
2069 case ISL_AUX_STATE_PARTIAL_CLEAR:
2070 if (fast_clear_supported)
2071 return ISL_AUX_OP_NONE;
2072 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2073 return ISL_AUX_OP_PARTIAL_RESOLVE;
2074 else
2075 return ISL_AUX_OP_FULL_RESOLVE;
2076
2077 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2078 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2079 return ISL_AUX_OP_FULL_RESOLVE;
2080 else if (!fast_clear_supported)
2081 return ISL_AUX_OP_PARTIAL_RESOLVE;
2082 else
2083 return ISL_AUX_OP_NONE;
2084
2085 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2086 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2087 return ISL_AUX_OP_FULL_RESOLVE;
2088 else
2089 return ISL_AUX_OP_NONE;
2090
2091 case ISL_AUX_STATE_PASS_THROUGH:
2092 return ISL_AUX_OP_NONE;
2093
2094 case ISL_AUX_STATE_RESOLVED:
2095 case ISL_AUX_STATE_AUX_INVALID:
2096 break;
2097 }
2098
2099 unreachable("Invalid aux state for CCS_E");
2100 }
2101
2102 static void
2103 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2104 struct intel_mipmap_tree *mt,
2105 uint32_t level, uint32_t layer,
2106 enum isl_aux_usage aux_usage,
2107 bool fast_clear_supported)
2108 {
2109 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2110
2111 enum isl_aux_op resolve_op;
2112 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2113 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2114 fast_clear_supported);
2115 } else {
2116 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2117 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2118 fast_clear_supported);
2119 }
2120
2121 if (resolve_op != ISL_AUX_OP_NONE) {
2122 intel_miptree_check_color_resolve(brw, mt, level, layer);
2123 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2124
2125 switch (resolve_op) {
2126 case ISL_AUX_OP_FULL_RESOLVE:
2127 /* The CCS full resolve operation destroys the CCS and sets it to the
2128 * pass-through state. (You can also think of this as being both a
2129 * resolve and an ambiguate in one operation.)
2130 */
2131 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2132 ISL_AUX_STATE_PASS_THROUGH);
2133 break;
2134
2135 case ISL_AUX_OP_PARTIAL_RESOLVE:
2136 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2137 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2138 break;
2139
2140 default:
2141 unreachable("Invalid resolve op");
2142 }
2143 }
2144 }
2145
2146 static void
2147 intel_miptree_finish_ccs_write(struct brw_context *brw,
2148 struct intel_mipmap_tree *mt,
2149 uint32_t level, uint32_t layer,
2150 enum isl_aux_usage aux_usage)
2151 {
2152 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2153 aux_usage == ISL_AUX_USAGE_CCS_D ||
2154 aux_usage == ISL_AUX_USAGE_CCS_E);
2155
2156 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2157
2158 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2159 switch (aux_state) {
2160 case ISL_AUX_STATE_CLEAR:
2161 case ISL_AUX_STATE_PARTIAL_CLEAR:
2162 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2163 aux_usage == ISL_AUX_USAGE_CCS_D);
2164
2165 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2166 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2167 ISL_AUX_STATE_COMPRESSED_CLEAR);
2168 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2169 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2170 ISL_AUX_STATE_PARTIAL_CLEAR);
2171 }
2172 break;
2173
2174 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2175 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2176 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2177 break; /* Nothing to do */
2178
2179 case ISL_AUX_STATE_PASS_THROUGH:
2180 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2181 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2182 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2183 } else {
2184 /* Nothing to do */
2185 }
2186 break;
2187
2188 case ISL_AUX_STATE_RESOLVED:
2189 case ISL_AUX_STATE_AUX_INVALID:
2190 unreachable("Invalid aux state for CCS_E");
2191 }
2192 } else {
2193 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2194 /* CCS_D is a bit simpler */
2195 switch (aux_state) {
2196 case ISL_AUX_STATE_CLEAR:
2197 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2198 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2199 ISL_AUX_STATE_PARTIAL_CLEAR);
2200 break;
2201
2202 case ISL_AUX_STATE_PARTIAL_CLEAR:
2203 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2204 break; /* Nothing to do */
2205
2206 case ISL_AUX_STATE_PASS_THROUGH:
2207 /* Nothing to do */
2208 break;
2209
2210 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2211 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2212 case ISL_AUX_STATE_RESOLVED:
2213 case ISL_AUX_STATE_AUX_INVALID:
2214 unreachable("Invalid aux state for CCS_D");
2215 }
2216 }
2217 }
2218
2219 static void
2220 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2221 struct intel_mipmap_tree *mt,
2222 uint32_t layer,
2223 enum isl_aux_usage aux_usage,
2224 bool fast_clear_supported)
2225 {
2226 assert(aux_usage == ISL_AUX_USAGE_MCS);
2227
2228 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2229 case ISL_AUX_STATE_CLEAR:
2230 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2231 if (!fast_clear_supported) {
2232 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2233 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2234 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2235 }
2236 break;
2237
2238 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2239 break; /* Nothing to do */
2240
2241 case ISL_AUX_STATE_RESOLVED:
2242 case ISL_AUX_STATE_PASS_THROUGH:
2243 case ISL_AUX_STATE_AUX_INVALID:
2244 case ISL_AUX_STATE_PARTIAL_CLEAR:
2245 unreachable("Invalid aux state for MCS");
2246 }
2247 }
2248
2249 static void
2250 intel_miptree_finish_mcs_write(struct brw_context *brw,
2251 struct intel_mipmap_tree *mt,
2252 uint32_t layer,
2253 enum isl_aux_usage aux_usage)
2254 {
2255 assert(aux_usage == ISL_AUX_USAGE_MCS);
2256
2257 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2258 case ISL_AUX_STATE_CLEAR:
2259 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2260 ISL_AUX_STATE_COMPRESSED_CLEAR);
2261 break;
2262
2263 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2264 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2265 break; /* Nothing to do */
2266
2267 case ISL_AUX_STATE_RESOLVED:
2268 case ISL_AUX_STATE_PASS_THROUGH:
2269 case ISL_AUX_STATE_AUX_INVALID:
2270 case ISL_AUX_STATE_PARTIAL_CLEAR:
2271 unreachable("Invalid aux state for MCS");
2272 }
2273 }
2274
2275 static void
2276 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2277 struct intel_mipmap_tree *mt,
2278 uint32_t level, uint32_t layer,
2279 enum isl_aux_usage aux_usage,
2280 bool fast_clear_supported)
2281 {
2282 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2283
2284 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2285 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2286 case ISL_AUX_STATE_CLEAR:
2287 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2288 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2289 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2290 break;
2291
2292 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2293 if (aux_usage != ISL_AUX_USAGE_HIZ)
2294 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2295 break;
2296
2297 case ISL_AUX_STATE_PASS_THROUGH:
2298 case ISL_AUX_STATE_RESOLVED:
2299 break;
2300
2301 case ISL_AUX_STATE_AUX_INVALID:
2302 if (aux_usage == ISL_AUX_USAGE_HIZ)
2303 hiz_op = ISL_AUX_OP_AMBIGUATE;
2304 break;
2305
2306 case ISL_AUX_STATE_PARTIAL_CLEAR:
2307 unreachable("Invalid HiZ state");
2308 }
2309
2310 if (hiz_op != ISL_AUX_OP_NONE) {
2311 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2312
2313 switch (hiz_op) {
2314 case ISL_AUX_OP_FULL_RESOLVE:
2315 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2316 ISL_AUX_STATE_RESOLVED);
2317 break;
2318
2319 case ISL_AUX_OP_AMBIGUATE:
2320 /* The HiZ resolve operation is actually an ambiguate */
2321 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2322 ISL_AUX_STATE_PASS_THROUGH);
2323 break;
2324
2325 default:
2326 unreachable("Invalid HiZ op");
2327 }
2328 }
2329 }
2330
2331 static void
2332 intel_miptree_finish_hiz_write(struct brw_context *brw,
2333 struct intel_mipmap_tree *mt,
2334 uint32_t level, uint32_t layer,
2335 enum isl_aux_usage aux_usage)
2336 {
2337 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2338
2339 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2340 case ISL_AUX_STATE_CLEAR:
2341 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2342 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2343 ISL_AUX_STATE_COMPRESSED_CLEAR);
2344 break;
2345
2346 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2347 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2348 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2349 break; /* Nothing to do */
2350
2351 case ISL_AUX_STATE_RESOLVED:
2352 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2353 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2354 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2355 } else {
2356 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2357 ISL_AUX_STATE_AUX_INVALID);
2358 }
2359 break;
2360
2361 case ISL_AUX_STATE_PASS_THROUGH:
2362 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2365 }
2366 break;
2367
2368 case ISL_AUX_STATE_AUX_INVALID:
2369 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2370 break;
2371
2372 case ISL_AUX_STATE_PARTIAL_CLEAR:
2373 unreachable("Invalid HiZ state");
2374 }
2375 }
2376
2377 void
2378 intel_miptree_prepare_access(struct brw_context *brw,
2379 struct intel_mipmap_tree *mt,
2380 uint32_t start_level, uint32_t num_levels,
2381 uint32_t start_layer, uint32_t num_layers,
2382 enum isl_aux_usage aux_usage,
2383 bool fast_clear_supported)
2384 {
2385 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2386
2387 switch (mt->aux_usage) {
2388 case ISL_AUX_USAGE_NONE:
2389 /* Nothing to do */
2390 break;
2391
2392 case ISL_AUX_USAGE_MCS:
2393 assert(mt->aux_buf);
2394 assert(start_level == 0 && num_levels == 1);
2395 const uint32_t level_layers =
2396 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2397 for (uint32_t a = 0; a < level_layers; a++) {
2398 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2399 aux_usage, fast_clear_supported);
2400 }
2401 break;
2402
2403 case ISL_AUX_USAGE_CCS_D:
2404 case ISL_AUX_USAGE_CCS_E:
2405 if (!mt->aux_buf)
2406 return;
2407
2408 for (uint32_t l = 0; l < num_levels; l++) {
2409 const uint32_t level = start_level + l;
2410 const uint32_t level_layers =
2411 miptree_layer_range_length(mt, level, start_layer, num_layers);
2412 for (uint32_t a = 0; a < level_layers; a++) {
2413 intel_miptree_prepare_ccs_access(brw, mt, level,
2414 start_layer + a,
2415 aux_usage, fast_clear_supported);
2416 }
2417 }
2418 break;
2419
2420 case ISL_AUX_USAGE_HIZ:
2421 assert(mt->aux_buf);
2422 for (uint32_t l = 0; l < num_levels; l++) {
2423 const uint32_t level = start_level + l;
2424 if (!intel_miptree_level_has_hiz(mt, level))
2425 continue;
2426
2427 const uint32_t level_layers =
2428 miptree_layer_range_length(mt, level, start_layer, num_layers);
2429 for (uint32_t a = 0; a < level_layers; a++) {
2430 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2431 aux_usage, fast_clear_supported);
2432 }
2433 }
2434 break;
2435
2436 default:
2437 unreachable("Invalid aux usage");
2438 }
2439 }
2440
2441 void
2442 intel_miptree_finish_write(struct brw_context *brw,
2443 struct intel_mipmap_tree *mt, uint32_t level,
2444 uint32_t start_layer, uint32_t num_layers,
2445 enum isl_aux_usage aux_usage)
2446 {
2447 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2448
2449 switch (mt->aux_usage) {
2450 case ISL_AUX_USAGE_NONE:
2451 /* Nothing to do */
2452 break;
2453
2454 case ISL_AUX_USAGE_MCS:
2455 assert(mt->aux_buf);
2456 for (uint32_t a = 0; a < num_layers; a++) {
2457 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2458 aux_usage);
2459 }
2460 break;
2461
2462 case ISL_AUX_USAGE_CCS_D:
2463 case ISL_AUX_USAGE_CCS_E:
2464 if (!mt->aux_buf)
2465 return;
2466
2467 for (uint32_t a = 0; a < num_layers; a++) {
2468 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2469 aux_usage);
2470 }
2471 break;
2472
2473 case ISL_AUX_USAGE_HIZ:
2474 if (!intel_miptree_level_has_hiz(mt, level))
2475 return;
2476
2477 for (uint32_t a = 0; a < num_layers; a++) {
2478 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2479 aux_usage);
2480 }
2481 break;
2482
2483 default:
2484 unreachable("Invavlid aux usage");
2485 }
2486 }
2487
2488 enum isl_aux_state
2489 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2490 uint32_t level, uint32_t layer)
2491 {
2492 intel_miptree_check_level_layer(mt, level, layer);
2493
2494 if (_mesa_is_format_color_format(mt->format)) {
2495 assert(mt->aux_buf != NULL);
2496 assert(mt->surf.samples == 1 ||
2497 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2498 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2499 unreachable("Cannot get aux state for stencil");
2500 } else {
2501 assert(intel_miptree_level_has_hiz(mt, level));
2502 }
2503
2504 return mt->aux_state[level][layer];
2505 }
2506
2507 void
2508 intel_miptree_set_aux_state(struct brw_context *brw,
2509 struct intel_mipmap_tree *mt, uint32_t level,
2510 uint32_t start_layer, uint32_t num_layers,
2511 enum isl_aux_state aux_state)
2512 {
2513 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2514
2515 if (_mesa_is_format_color_format(mt->format)) {
2516 assert(mt->aux_buf != NULL);
2517 assert(mt->surf.samples == 1 ||
2518 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2519 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2520 unreachable("Cannot get aux state for stencil");
2521 } else {
2522 assert(intel_miptree_level_has_hiz(mt, level));
2523 }
2524
2525 for (unsigned a = 0; a < num_layers; a++) {
2526 if (mt->aux_state[level][start_layer + a] != aux_state) {
2527 mt->aux_state[level][start_layer + a] = aux_state;
2528 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2529 }
2530 }
2531 }
2532
2533 /* On Gen9 color buffers may be compressed by the hardware (lossless
2534 * compression). There are, however, format restrictions and care needs to be
2535 * taken that the sampler engine is capable for re-interpreting a buffer with
2536 * format different the buffer was originally written with.
2537 *
2538 * For example, SRGB formats are not compressible and the sampler engine isn't
2539 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2540 * color buffer needs to be resolved so that the sampling surface can be
2541 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2542 * set).
2543 */
2544 static bool
2545 can_texture_with_ccs(struct brw_context *brw,
2546 struct intel_mipmap_tree *mt,
2547 enum isl_format view_format)
2548 {
2549 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2550 return false;
2551
2552 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2553 mt, view_format)) {
2554 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2555 isl_format_get_layout(view_format)->name,
2556 _mesa_get_format_name(mt->format));
2557 return false;
2558 }
2559
2560 return true;
2561 }
2562
2563 enum isl_aux_usage
2564 intel_miptree_texture_aux_usage(struct brw_context *brw,
2565 struct intel_mipmap_tree *mt,
2566 enum isl_format view_format)
2567 {
2568 switch (mt->aux_usage) {
2569 case ISL_AUX_USAGE_HIZ:
2570 if (intel_miptree_sample_with_hiz(brw, mt))
2571 return ISL_AUX_USAGE_HIZ;
2572 break;
2573
2574 case ISL_AUX_USAGE_MCS:
2575 return ISL_AUX_USAGE_MCS;
2576
2577 case ISL_AUX_USAGE_CCS_D:
2578 case ISL_AUX_USAGE_CCS_E:
2579 if (!mt->aux_buf) {
2580 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2581 return ISL_AUX_USAGE_NONE;
2582 }
2583
2584 /* If we don't have any unresolved color, report an aux usage of
2585 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2586 * aux surface and we can save some bandwidth.
2587 */
2588 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2589 0, INTEL_REMAINING_LAYERS))
2590 return ISL_AUX_USAGE_NONE;
2591
2592 if (can_texture_with_ccs(brw, mt, view_format))
2593 return ISL_AUX_USAGE_CCS_E;
2594 break;
2595
2596 default:
2597 break;
2598 }
2599
2600 return ISL_AUX_USAGE_NONE;
2601 }
2602
2603 static bool
2604 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2605 {
2606 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2607 * values so sRGB curve application was a no-op for all fast-clearable
2608 * formats.
2609 *
2610 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2611 * values, the hardware interprets the floats, not as what would be
2612 * returned from the sampler (or written by the shader), but as being
2613 * between format conversion and sRGB curve application. This means that
2614 * we can switch between sRGB and UNORM without having to whack the clear
2615 * color.
2616 */
2617 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2618 }
2619
2620 void
2621 intel_miptree_prepare_texture(struct brw_context *brw,
2622 struct intel_mipmap_tree *mt,
2623 enum isl_format view_format,
2624 uint32_t start_level, uint32_t num_levels,
2625 uint32_t start_layer, uint32_t num_layers)
2626 {
2627 enum isl_aux_usage aux_usage =
2628 intel_miptree_texture_aux_usage(brw, mt, view_format);
2629 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2630
2631 /* Clear color is specified as ints or floats and the conversion is done by
2632 * the sampler. If we have a texture view, we would have to perform the
2633 * clear color conversion manually. Just disable clear color.
2634 */
2635 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2636 clear_supported = false;
2637
2638 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2639 start_layer, num_layers,
2640 aux_usage, clear_supported);
2641 }
2642
2643 void
2644 intel_miptree_prepare_image(struct brw_context *brw,
2645 struct intel_mipmap_tree *mt)
2646 {
2647 /* The data port doesn't understand any compression */
2648 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2649 0, INTEL_REMAINING_LAYERS,
2650 ISL_AUX_USAGE_NONE, false);
2651 }
2652
2653 enum isl_aux_usage
2654 intel_miptree_render_aux_usage(struct brw_context *brw,
2655 struct intel_mipmap_tree *mt,
2656 enum isl_format render_format,
2657 bool blend_enabled,
2658 bool draw_aux_disabled)
2659 {
2660 struct gen_device_info *devinfo = &brw->screen->devinfo;
2661
2662 if (draw_aux_disabled)
2663 return ISL_AUX_USAGE_NONE;
2664
2665 switch (mt->aux_usage) {
2666 case ISL_AUX_USAGE_MCS:
2667 assert(mt->aux_buf);
2668 return ISL_AUX_USAGE_MCS;
2669
2670 case ISL_AUX_USAGE_CCS_D:
2671 case ISL_AUX_USAGE_CCS_E:
2672 if (!mt->aux_buf) {
2673 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2674 return ISL_AUX_USAGE_NONE;
2675 }
2676
2677 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2678 * formats. However, there are issues with blending where it doesn't
2679 * properly apply the sRGB curve to the clear color when blending.
2680 */
2681 if (devinfo->gen >= 9 && blend_enabled &&
2682 isl_format_is_srgb(render_format) &&
2683 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2684 return ISL_AUX_USAGE_NONE;
2685
2686 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2687 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2688 mt, render_format))
2689 return ISL_AUX_USAGE_CCS_E;
2690
2691 /* Otherwise, we have to fall back to CCS_D */
2692 return ISL_AUX_USAGE_CCS_D;
2693
2694 default:
2695 return ISL_AUX_USAGE_NONE;
2696 }
2697 }
2698
2699 void
2700 intel_miptree_prepare_render(struct brw_context *brw,
2701 struct intel_mipmap_tree *mt, uint32_t level,
2702 uint32_t start_layer, uint32_t layer_count,
2703 enum isl_aux_usage aux_usage)
2704 {
2705 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2706 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2707 }
2708
2709 void
2710 intel_miptree_finish_render(struct brw_context *brw,
2711 struct intel_mipmap_tree *mt, uint32_t level,
2712 uint32_t start_layer, uint32_t layer_count,
2713 enum isl_aux_usage aux_usage)
2714 {
2715 assert(_mesa_is_format_color_format(mt->format));
2716
2717 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2718 aux_usage);
2719 }
2720
2721 void
2722 intel_miptree_prepare_depth(struct brw_context *brw,
2723 struct intel_mipmap_tree *mt, uint32_t level,
2724 uint32_t start_layer, uint32_t layer_count)
2725 {
2726 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2727 mt->aux_usage, mt->aux_buf != NULL);
2728 }
2729
2730 void
2731 intel_miptree_finish_depth(struct brw_context *brw,
2732 struct intel_mipmap_tree *mt, uint32_t level,
2733 uint32_t start_layer, uint32_t layer_count,
2734 bool depth_written)
2735 {
2736 if (depth_written) {
2737 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2738 mt->aux_buf != NULL);
2739 }
2740 }
2741
2742 void
2743 intel_miptree_prepare_external(struct brw_context *brw,
2744 struct intel_mipmap_tree *mt)
2745 {
2746 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2747 bool supports_fast_clear = false;
2748
2749 const struct isl_drm_modifier_info *mod_info =
2750 isl_drm_modifier_get_info(mt->drm_modifier);
2751
2752 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2753 /* CCS_E is the only supported aux for external images and it's only
2754 * supported on very simple images.
2755 */
2756 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2757 assert(_mesa_is_format_color_format(mt->format));
2758 assert(mt->first_level == 0 && mt->last_level == 0);
2759 assert(mt->surf.logical_level0_px.depth == 1);
2760 assert(mt->surf.logical_level0_px.array_len == 1);
2761 assert(mt->surf.samples == 1);
2762 assert(mt->aux_buf != NULL);
2763
2764 aux_usage = mod_info->aux_usage;
2765 supports_fast_clear = mod_info->supports_clear_color;
2766 }
2767
2768 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2769 0, INTEL_REMAINING_LAYERS,
2770 aux_usage, supports_fast_clear);
2771 }
2772
2773 void
2774 intel_miptree_finish_external(struct brw_context *brw,
2775 struct intel_mipmap_tree *mt)
2776 {
2777 if (!mt->aux_buf)
2778 return;
2779
2780 /* We don't know the actual aux state of the aux surface. The previous
2781 * owner could have given it to us in a number of different states.
2782 * Because we don't know the aux state, we reset the aux state to the
2783 * least common denominator of possible valid states.
2784 */
2785 enum isl_aux_state default_aux_state =
2786 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2787 assert(mt->last_level == mt->first_level);
2788 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2789 default_aux_state);
2790 }
2791
2792 /**
2793 * Make it possible to share the BO backing the given miptree with another
2794 * process or another miptree.
2795 *
2796 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2797 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2798 * ensure that no MCS buffer gets allocated in the future.
2799 *
2800 * HiZ is similarly unsafe with shared buffers.
2801 */
2802 void
2803 intel_miptree_make_shareable(struct brw_context *brw,
2804 struct intel_mipmap_tree *mt)
2805 {
2806 /* MCS buffers are also used for multisample buffers, but we can't resolve
2807 * away a multisample MCS buffer because it's an integral part of how the
2808 * pixel data is stored. Fortunately this code path should never be
2809 * reached for multisample buffers.
2810 */
2811 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2812 mt->surf.samples == 1);
2813
2814 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2815 0, INTEL_REMAINING_LAYERS,
2816 ISL_AUX_USAGE_NONE, false);
2817
2818 if (mt->aux_buf) {
2819 intel_miptree_aux_buffer_free(mt->aux_buf);
2820 mt->aux_buf = NULL;
2821
2822 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2823 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2824 mt->level[l].has_hiz = false;
2825 }
2826
2827 free(mt->aux_state);
2828 mt->aux_state = NULL;
2829 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2830 }
2831
2832 mt->aux_usage = ISL_AUX_USAGE_NONE;
2833 mt->supports_fast_clear = false;
2834 }
2835
2836
2837 /**
2838 * \brief Get pointer offset into stencil buffer.
2839 *
2840 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2841 * must decode the tile's layout in software.
2842 *
2843 * See
2844 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2845 * Format.
2846 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2847 *
2848 * Even though the returned offset is always positive, the return type is
2849 * signed due to
2850 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2851 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2852 */
2853 static intptr_t
2854 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2855 {
2856 uint32_t tile_size = 4096;
2857 uint32_t tile_width = 64;
2858 uint32_t tile_height = 64;
2859 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2860
2861 uint32_t tile_x = x / tile_width;
2862 uint32_t tile_y = y / tile_height;
2863
2864 /* The byte's address relative to the tile's base addres. */
2865 uint32_t byte_x = x % tile_width;
2866 uint32_t byte_y = y % tile_height;
2867
2868 uintptr_t u = tile_y * row_size
2869 + tile_x * tile_size
2870 + 512 * (byte_x / 8)
2871 + 64 * (byte_y / 8)
2872 + 32 * ((byte_y / 4) % 2)
2873 + 16 * ((byte_x / 4) % 2)
2874 + 8 * ((byte_y / 2) % 2)
2875 + 4 * ((byte_x / 2) % 2)
2876 + 2 * (byte_y % 2)
2877 + 1 * (byte_x % 2);
2878
2879 if (swizzled) {
2880 /* adjust for bit6 swizzling */
2881 if (((byte_x / 8) % 2) == 1) {
2882 if (((byte_y / 8) % 2) == 0) {
2883 u += 64;
2884 } else {
2885 u -= 64;
2886 }
2887 }
2888 }
2889
2890 return u;
2891 }
2892
2893 void
2894 intel_miptree_updownsample(struct brw_context *brw,
2895 struct intel_mipmap_tree *src,
2896 struct intel_mipmap_tree *dst)
2897 {
2898 unsigned src_w = src->surf.logical_level0_px.width;
2899 unsigned src_h = src->surf.logical_level0_px.height;
2900 unsigned dst_w = dst->surf.logical_level0_px.width;
2901 unsigned dst_h = dst->surf.logical_level0_px.height;
2902
2903 brw_blorp_blit_miptrees(brw,
2904 src, 0 /* level */, 0 /* layer */,
2905 src->format, SWIZZLE_XYZW,
2906 dst, 0 /* level */, 0 /* layer */, dst->format,
2907 0, 0, src_w, src_h,
2908 0, 0, dst_w, dst_h,
2909 GL_NEAREST, false, false /*mirror x, y*/,
2910 false, false);
2911
2912 if (src->stencil_mt) {
2913 src_w = src->stencil_mt->surf.logical_level0_px.width;
2914 src_h = src->stencil_mt->surf.logical_level0_px.height;
2915 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2916 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2917
2918 brw_blorp_blit_miptrees(brw,
2919 src->stencil_mt, 0 /* level */, 0 /* layer */,
2920 src->stencil_mt->format, SWIZZLE_XYZW,
2921 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2922 dst->stencil_mt->format,
2923 0, 0, src_w, src_h,
2924 0, 0, dst_w, dst_h,
2925 GL_NEAREST, false, false /*mirror x, y*/,
2926 false, false /* decode/encode srgb */);
2927 }
2928 }
2929
2930 void
2931 intel_update_r8stencil(struct brw_context *brw,
2932 struct intel_mipmap_tree *mt)
2933 {
2934 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2935
2936 assert(devinfo->gen >= 7);
2937 struct intel_mipmap_tree *src =
2938 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2939 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2940 return;
2941
2942 assert(src->surf.size > 0);
2943
2944 if (!mt->r8stencil_mt) {
2945 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2946 mt->r8stencil_mt = make_surface(
2947 brw,
2948 src->target,
2949 MESA_FORMAT_R_UINT8,
2950 src->first_level, src->last_level,
2951 src->surf.logical_level0_px.width,
2952 src->surf.logical_level0_px.height,
2953 src->surf.dim == ISL_SURF_DIM_3D ?
2954 src->surf.logical_level0_px.depth :
2955 src->surf.logical_level0_px.array_len,
2956 src->surf.samples,
2957 ISL_TILING_Y0_BIT,
2958 ISL_SURF_USAGE_TEXTURE_BIT,
2959 BO_ALLOC_BUSY, 0, NULL);
2960 assert(mt->r8stencil_mt);
2961 }
2962
2963 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2964
2965 for (int level = src->first_level; level <= src->last_level; level++) {
2966 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2967 minify(src->surf.phys_level0_sa.depth, level) :
2968 src->surf.phys_level0_sa.array_len;
2969
2970 for (unsigned layer = 0; layer < depth; layer++) {
2971 brw_blorp_copy_miptrees(brw,
2972 src, level, layer,
2973 dst, level, layer,
2974 0, 0, 0, 0,
2975 minify(src->surf.logical_level0_px.width,
2976 level),
2977 minify(src->surf.logical_level0_px.height,
2978 level));
2979 }
2980 }
2981
2982 brw_cache_flush_for_read(brw, dst->bo);
2983 src->r8stencil_needs_update = false;
2984 }
2985
2986 static void *
2987 intel_miptree_map_raw(struct brw_context *brw,
2988 struct intel_mipmap_tree *mt,
2989 GLbitfield mode)
2990 {
2991 struct brw_bo *bo = mt->bo;
2992
2993 if (brw_batch_references(&brw->batch, bo))
2994 intel_batchbuffer_flush(brw);
2995
2996 return brw_bo_map(brw, bo, mode);
2997 }
2998
2999 static void
3000 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3001 {
3002 brw_bo_unmap(mt->bo);
3003 }
3004
3005 static void
3006 intel_miptree_unmap_gtt(struct brw_context *brw,
3007 struct intel_mipmap_tree *mt,
3008 struct intel_miptree_map *map,
3009 unsigned int level, unsigned int slice)
3010 {
3011 intel_miptree_unmap_raw(mt);
3012 }
3013
3014 static void
3015 intel_miptree_map_gtt(struct brw_context *brw,
3016 struct intel_mipmap_tree *mt,
3017 struct intel_miptree_map *map,
3018 unsigned int level, unsigned int slice)
3019 {
3020 unsigned int bw, bh;
3021 void *base;
3022 unsigned int image_x, image_y;
3023 intptr_t x = map->x;
3024 intptr_t y = map->y;
3025
3026 /* For compressed formats, the stride is the number of bytes per
3027 * row of blocks. intel_miptree_get_image_offset() already does
3028 * the divide.
3029 */
3030 _mesa_get_format_block_size(mt->format, &bw, &bh);
3031 assert(y % bh == 0);
3032 assert(x % bw == 0);
3033 y /= bh;
3034 x /= bw;
3035
3036 base = intel_miptree_map_raw(brw, mt, map->mode);
3037
3038 if (base == NULL)
3039 map->ptr = NULL;
3040 else {
3041 base += mt->offset;
3042
3043 /* Note that in the case of cube maps, the caller must have passed the
3044 * slice number referencing the face.
3045 */
3046 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3047 x += image_x;
3048 y += image_y;
3049
3050 map->stride = mt->surf.row_pitch;
3051 map->ptr = base + y * map->stride + x * mt->cpp;
3052 }
3053
3054 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3055 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3056 map->x, map->y, map->w, map->h,
3057 mt, _mesa_get_format_name(mt->format),
3058 x, y, map->ptr, map->stride);
3059
3060 map->unmap = intel_miptree_unmap_gtt;
3061 }
3062
3063 static void
3064 intel_miptree_unmap_blit(struct brw_context *brw,
3065 struct intel_mipmap_tree *mt,
3066 struct intel_miptree_map *map,
3067 unsigned int level,
3068 unsigned int slice)
3069 {
3070 struct gl_context *ctx = &brw->ctx;
3071
3072 intel_miptree_unmap_raw(map->linear_mt);
3073
3074 if (map->mode & GL_MAP_WRITE_BIT) {
3075 bool ok = intel_miptree_copy(brw,
3076 map->linear_mt, 0, 0, 0, 0,
3077 mt, level, slice, map->x, map->y,
3078 map->w, map->h);
3079 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3080 }
3081
3082 intel_miptree_release(&map->linear_mt);
3083 }
3084
3085 static void
3086 intel_miptree_map_blit(struct brw_context *brw,
3087 struct intel_mipmap_tree *mt,
3088 struct intel_miptree_map *map,
3089 unsigned int level, unsigned int slice)
3090 {
3091 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3092 /* first_level */ 0,
3093 /* last_level */ 0,
3094 map->w, map->h, 1,
3095 /* samples */ 1,
3096 MIPTREE_CREATE_LINEAR);
3097
3098 if (!map->linear_mt) {
3099 fprintf(stderr, "Failed to allocate blit temporary\n");
3100 goto fail;
3101 }
3102 map->stride = map->linear_mt->surf.row_pitch;
3103
3104 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3105 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3106 * invalidate is set, since we'll be writing the whole rectangle from our
3107 * temporary buffer back out.
3108 */
3109 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3110 if (!intel_miptree_copy(brw,
3111 mt, level, slice, map->x, map->y,
3112 map->linear_mt, 0, 0, 0, 0,
3113 map->w, map->h)) {
3114 fprintf(stderr, "Failed to blit\n");
3115 goto fail;
3116 }
3117 }
3118
3119 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3120
3121 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3122 map->x, map->y, map->w, map->h,
3123 mt, _mesa_get_format_name(mt->format),
3124 level, slice, map->ptr, map->stride);
3125
3126 map->unmap = intel_miptree_unmap_blit;
3127 return;
3128
3129 fail:
3130 intel_miptree_release(&map->linear_mt);
3131 map->ptr = NULL;
3132 map->stride = 0;
3133 }
3134
3135 /**
3136 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3137 */
3138 #if defined(USE_SSE41)
3139 static void
3140 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3141 struct intel_mipmap_tree *mt,
3142 struct intel_miptree_map *map,
3143 unsigned int level,
3144 unsigned int slice)
3145 {
3146 _mesa_align_free(map->buffer);
3147 map->buffer = NULL;
3148 map->ptr = NULL;
3149 }
3150
3151 static void
3152 intel_miptree_map_movntdqa(struct brw_context *brw,
3153 struct intel_mipmap_tree *mt,
3154 struct intel_miptree_map *map,
3155 unsigned int level, unsigned int slice)
3156 {
3157 assert(map->mode & GL_MAP_READ_BIT);
3158 assert(!(map->mode & GL_MAP_WRITE_BIT));
3159
3160 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3161 map->x, map->y, map->w, map->h,
3162 mt, _mesa_get_format_name(mt->format),
3163 level, slice, map->ptr, map->stride);
3164
3165 /* Map the original image */
3166 uint32_t image_x;
3167 uint32_t image_y;
3168 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3169 image_x += map->x;
3170 image_y += map->y;
3171
3172 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3173 if (!src)
3174 return;
3175
3176 src += mt->offset;
3177
3178 src += image_y * mt->surf.row_pitch;
3179 src += image_x * mt->cpp;
3180
3181 /* Due to the pixel offsets for the particular image being mapped, our
3182 * src pointer may not be 16-byte aligned. However, if the pitch is
3183 * divisible by 16, then the amount by which it's misaligned will remain
3184 * consistent from row to row.
3185 */
3186 assert((mt->surf.row_pitch % 16) == 0);
3187 const int misalignment = ((uintptr_t) src) & 15;
3188
3189 /* Create an untiled temporary buffer for the mapping. */
3190 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3191
3192 map->stride = ALIGN(misalignment + width_bytes, 16);
3193
3194 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3195 /* Offset the destination so it has the same misalignment as src. */
3196 map->ptr = map->buffer + misalignment;
3197
3198 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3199
3200 for (uint32_t y = 0; y < map->h; y++) {
3201 void *dst_ptr = map->ptr + y * map->stride;
3202 void *src_ptr = src + y * mt->surf.row_pitch;
3203
3204 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3205 }
3206
3207 intel_miptree_unmap_raw(mt);
3208
3209 map->unmap = intel_miptree_unmap_movntdqa;
3210 }
3211 #endif
3212
3213 static void
3214 intel_miptree_unmap_s8(struct brw_context *brw,
3215 struct intel_mipmap_tree *mt,
3216 struct intel_miptree_map *map,
3217 unsigned int level,
3218 unsigned int slice)
3219 {
3220 if (map->mode & GL_MAP_WRITE_BIT) {
3221 unsigned int image_x, image_y;
3222 uint8_t *untiled_s8_map = map->ptr;
3223 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3224
3225 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3226
3227 for (uint32_t y = 0; y < map->h; y++) {
3228 for (uint32_t x = 0; x < map->w; x++) {
3229 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3230 image_x + x + map->x,
3231 image_y + y + map->y,
3232 brw->has_swizzling);
3233 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3234 }
3235 }
3236
3237 intel_miptree_unmap_raw(mt);
3238 }
3239
3240 free(map->buffer);
3241 }
3242
3243 static void
3244 intel_miptree_map_s8(struct brw_context *brw,
3245 struct intel_mipmap_tree *mt,
3246 struct intel_miptree_map *map,
3247 unsigned int level, unsigned int slice)
3248 {
3249 map->stride = map->w;
3250 map->buffer = map->ptr = malloc(map->stride * map->h);
3251 if (!map->buffer)
3252 return;
3253
3254 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3255 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3256 * invalidate is set, since we'll be writing the whole rectangle from our
3257 * temporary buffer back out.
3258 */
3259 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3260 uint8_t *untiled_s8_map = map->ptr;
3261 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3262 unsigned int image_x, image_y;
3263
3264 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3265
3266 for (uint32_t y = 0; y < map->h; y++) {
3267 for (uint32_t x = 0; x < map->w; x++) {
3268 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3269 x + image_x + map->x,
3270 y + image_y + map->y,
3271 brw->has_swizzling);
3272 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3273 }
3274 }
3275
3276 intel_miptree_unmap_raw(mt);
3277
3278 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3279 map->x, map->y, map->w, map->h,
3280 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3281 } else {
3282 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3283 map->x, map->y, map->w, map->h,
3284 mt, map->ptr, map->stride);
3285 }
3286
3287 map->unmap = intel_miptree_unmap_s8;
3288 }
3289
3290 static void
3291 intel_miptree_unmap_etc(struct brw_context *brw,
3292 struct intel_mipmap_tree *mt,
3293 struct intel_miptree_map *map,
3294 unsigned int level,
3295 unsigned int slice)
3296 {
3297 uint32_t image_x;
3298 uint32_t image_y;
3299 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3300
3301 image_x += map->x;
3302 image_y += map->y;
3303
3304 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3305 + image_y * mt->surf.row_pitch
3306 + image_x * mt->cpp;
3307
3308 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3309 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3310 map->ptr, map->stride,
3311 map->w, map->h);
3312 else
3313 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3314 map->ptr, map->stride,
3315 map->w, map->h, mt->etc_format);
3316
3317 intel_miptree_unmap_raw(mt);
3318 free(map->buffer);
3319 }
3320
3321 static void
3322 intel_miptree_map_etc(struct brw_context *brw,
3323 struct intel_mipmap_tree *mt,
3324 struct intel_miptree_map *map,
3325 unsigned int level,
3326 unsigned int slice)
3327 {
3328 assert(mt->etc_format != MESA_FORMAT_NONE);
3329 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3330 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3331 }
3332
3333 assert(map->mode & GL_MAP_WRITE_BIT);
3334 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3335
3336 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3337 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3338 map->w, map->h, 1));
3339 map->ptr = map->buffer;
3340 map->unmap = intel_miptree_unmap_etc;
3341 }
3342
3343 /**
3344 * Mapping functions for packed depth/stencil miptrees backed by real separate
3345 * miptrees for depth and stencil.
3346 *
3347 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3348 * separate from the depth buffer. Yet at the GL API level, we have to expose
3349 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3350 * be able to map that memory for texture storage and glReadPixels-type
3351 * operations. We give Mesa core that access by mallocing a temporary and
3352 * copying the data between the actual backing store and the temporary.
3353 */
3354 static void
3355 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3356 struct intel_mipmap_tree *mt,
3357 struct intel_miptree_map *map,
3358 unsigned int level,
3359 unsigned int slice)
3360 {
3361 struct intel_mipmap_tree *z_mt = mt;
3362 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3363 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3364
3365 if (map->mode & GL_MAP_WRITE_BIT) {
3366 uint32_t *packed_map = map->ptr;
3367 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3368 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3369 unsigned int s_image_x, s_image_y;
3370 unsigned int z_image_x, z_image_y;
3371
3372 intel_miptree_get_image_offset(s_mt, level, slice,
3373 &s_image_x, &s_image_y);
3374 intel_miptree_get_image_offset(z_mt, level, slice,
3375 &z_image_x, &z_image_y);
3376
3377 for (uint32_t y = 0; y < map->h; y++) {
3378 for (uint32_t x = 0; x < map->w; x++) {
3379 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3380 x + s_image_x + map->x,
3381 y + s_image_y + map->y,
3382 brw->has_swizzling);
3383 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3384 (z_mt->surf.row_pitch / 4) +
3385 (x + z_image_x + map->x));
3386
3387 if (map_z32f_x24s8) {
3388 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3389 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3390 } else {
3391 uint32_t packed = packed_map[y * map->w + x];
3392 s_map[s_offset] = packed >> 24;
3393 z_map[z_offset] = packed;
3394 }
3395 }
3396 }
3397
3398 intel_miptree_unmap_raw(s_mt);
3399 intel_miptree_unmap_raw(z_mt);
3400
3401 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3402 __func__,
3403 map->x, map->y, map->w, map->h,
3404 z_mt, _mesa_get_format_name(z_mt->format),
3405 map->x + z_image_x, map->y + z_image_y,
3406 s_mt, map->x + s_image_x, map->y + s_image_y,
3407 map->ptr, map->stride);
3408 }
3409
3410 free(map->buffer);
3411 }
3412
3413 static void
3414 intel_miptree_map_depthstencil(struct brw_context *brw,
3415 struct intel_mipmap_tree *mt,
3416 struct intel_miptree_map *map,
3417 unsigned int level, unsigned int slice)
3418 {
3419 struct intel_mipmap_tree *z_mt = mt;
3420 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3421 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3422 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3423
3424 map->stride = map->w * packed_bpp;
3425 map->buffer = map->ptr = malloc(map->stride * map->h);
3426 if (!map->buffer)
3427 return;
3428
3429 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3430 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3431 * invalidate is set, since we'll be writing the whole rectangle from our
3432 * temporary buffer back out.
3433 */
3434 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3435 uint32_t *packed_map = map->ptr;
3436 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3437 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3438 unsigned int s_image_x, s_image_y;
3439 unsigned int z_image_x, z_image_y;
3440
3441 intel_miptree_get_image_offset(s_mt, level, slice,
3442 &s_image_x, &s_image_y);
3443 intel_miptree_get_image_offset(z_mt, level, slice,
3444 &z_image_x, &z_image_y);
3445
3446 for (uint32_t y = 0; y < map->h; y++) {
3447 for (uint32_t x = 0; x < map->w; x++) {
3448 int map_x = map->x + x, map_y = map->y + y;
3449 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3450 map_x + s_image_x,
3451 map_y + s_image_y,
3452 brw->has_swizzling);
3453 ptrdiff_t z_offset = ((map_y + z_image_y) *
3454 (z_mt->surf.row_pitch / 4) +
3455 (map_x + z_image_x));
3456 uint8_t s = s_map[s_offset];
3457 uint32_t z = z_map[z_offset];
3458
3459 if (map_z32f_x24s8) {
3460 packed_map[(y * map->w + x) * 2 + 0] = z;
3461 packed_map[(y * map->w + x) * 2 + 1] = s;
3462 } else {
3463 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3464 }
3465 }
3466 }
3467
3468 intel_miptree_unmap_raw(s_mt);
3469 intel_miptree_unmap_raw(z_mt);
3470
3471 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3472 __func__,
3473 map->x, map->y, map->w, map->h,
3474 z_mt, map->x + z_image_x, map->y + z_image_y,
3475 s_mt, map->x + s_image_x, map->y + s_image_y,
3476 map->ptr, map->stride);
3477 } else {
3478 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3479 map->x, map->y, map->w, map->h,
3480 mt, map->ptr, map->stride);
3481 }
3482
3483 map->unmap = intel_miptree_unmap_depthstencil;
3484 }
3485
3486 /**
3487 * Create and attach a map to the miptree at (level, slice). Return the
3488 * attached map.
3489 */
3490 static struct intel_miptree_map*
3491 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3492 unsigned int level,
3493 unsigned int slice,
3494 unsigned int x,
3495 unsigned int y,
3496 unsigned int w,
3497 unsigned int h,
3498 GLbitfield mode)
3499 {
3500 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3501
3502 if (!map)
3503 return NULL;
3504
3505 assert(mt->level[level].slice[slice].map == NULL);
3506 mt->level[level].slice[slice].map = map;
3507
3508 map->mode = mode;
3509 map->x = x;
3510 map->y = y;
3511 map->w = w;
3512 map->h = h;
3513
3514 return map;
3515 }
3516
3517 /**
3518 * Release the map at (level, slice).
3519 */
3520 static void
3521 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3522 unsigned int level,
3523 unsigned int slice)
3524 {
3525 struct intel_miptree_map **map;
3526
3527 map = &mt->level[level].slice[slice].map;
3528 free(*map);
3529 *map = NULL;
3530 }
3531
3532 static bool
3533 can_blit_slice(struct intel_mipmap_tree *mt,
3534 unsigned int level, unsigned int slice)
3535 {
3536 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3537 if (mt->surf.row_pitch >= 32768)
3538 return false;
3539
3540 return true;
3541 }
3542
3543 static bool
3544 use_intel_mipree_map_blit(struct brw_context *brw,
3545 struct intel_mipmap_tree *mt,
3546 GLbitfield mode,
3547 unsigned int level,
3548 unsigned int slice)
3549 {
3550 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3551
3552 if (devinfo->has_llc &&
3553 /* It's probably not worth swapping to the blit ring because of
3554 * all the overhead involved.
3555 */
3556 !(mode & GL_MAP_WRITE_BIT) &&
3557 !mt->compressed &&
3558 (mt->surf.tiling == ISL_TILING_X ||
3559 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3560 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3561 /* Fast copy blit on skl+ supports all tiling formats. */
3562 devinfo->gen >= 9) &&
3563 can_blit_slice(mt, level, slice))
3564 return true;
3565
3566 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3567 mt->bo->size >= brw->max_gtt_map_object_size) {
3568 assert(can_blit_slice(mt, level, slice));
3569 return true;
3570 }
3571
3572 return false;
3573 }
3574
3575 /**
3576 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3577 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3578 * arithmetic overflow.
3579 *
3580 * If you call this function and use \a out_stride, then you're doing pointer
3581 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3582 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3583 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3584 * which usually have type uint32_t or GLuint.
3585 */
3586 void
3587 intel_miptree_map(struct brw_context *brw,
3588 struct intel_mipmap_tree *mt,
3589 unsigned int level,
3590 unsigned int slice,
3591 unsigned int x,
3592 unsigned int y,
3593 unsigned int w,
3594 unsigned int h,
3595 GLbitfield mode,
3596 void **out_ptr,
3597 ptrdiff_t *out_stride)
3598 {
3599 struct intel_miptree_map *map;
3600
3601 assert(mt->surf.samples == 1);
3602
3603 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3604 if (!map){
3605 *out_ptr = NULL;
3606 *out_stride = 0;
3607 return;
3608 }
3609
3610 intel_miptree_access_raw(brw, mt, level, slice,
3611 map->mode & GL_MAP_WRITE_BIT);
3612
3613 if (mt->format == MESA_FORMAT_S_UINT8) {
3614 intel_miptree_map_s8(brw, mt, map, level, slice);
3615 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3616 !(mode & BRW_MAP_DIRECT_BIT)) {
3617 intel_miptree_map_etc(brw, mt, map, level, slice);
3618 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3619 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3620 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3621 intel_miptree_map_blit(brw, mt, map, level, slice);
3622 #if defined(USE_SSE41)
3623 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3624 !mt->compressed && cpu_has_sse4_1 &&
3625 (mt->surf.row_pitch % 16 == 0)) {
3626 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3627 #endif
3628 } else {
3629 intel_miptree_map_gtt(brw, mt, map, level, slice);
3630 }
3631
3632 *out_ptr = map->ptr;
3633 *out_stride = map->stride;
3634
3635 if (map->ptr == NULL)
3636 intel_miptree_release_map(mt, level, slice);
3637 }
3638
3639 void
3640 intel_miptree_unmap(struct brw_context *brw,
3641 struct intel_mipmap_tree *mt,
3642 unsigned int level,
3643 unsigned int slice)
3644 {
3645 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3646
3647 assert(mt->surf.samples == 1);
3648
3649 if (!map)
3650 return;
3651
3652 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3653 mt, _mesa_get_format_name(mt->format), level, slice);
3654
3655 if (map->unmap)
3656 map->unmap(brw, mt, map, level, slice);
3657
3658 intel_miptree_release_map(mt, level, slice);
3659 }
3660
3661 enum isl_surf_dim
3662 get_isl_surf_dim(GLenum target)
3663 {
3664 switch (target) {
3665 case GL_TEXTURE_1D:
3666 case GL_TEXTURE_1D_ARRAY:
3667 return ISL_SURF_DIM_1D;
3668
3669 case GL_TEXTURE_2D:
3670 case GL_TEXTURE_2D_ARRAY:
3671 case GL_TEXTURE_RECTANGLE:
3672 case GL_TEXTURE_CUBE_MAP:
3673 case GL_TEXTURE_CUBE_MAP_ARRAY:
3674 case GL_TEXTURE_2D_MULTISAMPLE:
3675 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3676 case GL_TEXTURE_EXTERNAL_OES:
3677 return ISL_SURF_DIM_2D;
3678
3679 case GL_TEXTURE_3D:
3680 return ISL_SURF_DIM_3D;
3681 }
3682
3683 unreachable("Invalid texture target");
3684 }
3685
3686 enum isl_dim_layout
3687 get_isl_dim_layout(const struct gen_device_info *devinfo,
3688 enum isl_tiling tiling, GLenum target)
3689 {
3690 switch (target) {
3691 case GL_TEXTURE_1D:
3692 case GL_TEXTURE_1D_ARRAY:
3693 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3694 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3695
3696 case GL_TEXTURE_2D:
3697 case GL_TEXTURE_2D_ARRAY:
3698 case GL_TEXTURE_RECTANGLE:
3699 case GL_TEXTURE_2D_MULTISAMPLE:
3700 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3701 case GL_TEXTURE_EXTERNAL_OES:
3702 return ISL_DIM_LAYOUT_GEN4_2D;
3703
3704 case GL_TEXTURE_CUBE_MAP:
3705 case GL_TEXTURE_CUBE_MAP_ARRAY:
3706 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3707 ISL_DIM_LAYOUT_GEN4_2D);
3708
3709 case GL_TEXTURE_3D:
3710 return (devinfo->gen >= 9 ?
3711 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3712 }
3713
3714 unreachable("Invalid texture target");
3715 }
3716
3717 bool
3718 intel_miptree_set_clear_color(struct brw_context *brw,
3719 struct intel_mipmap_tree *mt,
3720 union isl_color_value clear_color)
3721 {
3722 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3723 mt->fast_clear_color = clear_color;
3724 if (mt->aux_buf->clear_color_bo) {
3725 /* We can't update the clear color while the hardware is still using
3726 * the previous one for a resolve or sampling from it. Make sure that
3727 * there are no pending commands at this point.
3728 */
3729 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3730 for (int i = 0; i < 4; i++) {
3731 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3732 mt->aux_buf->clear_color_offset + i * 4,
3733 mt->fast_clear_color.u32[i]);
3734 }
3735 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3736 }
3737 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3738 return true;
3739 }
3740 return false;
3741 }
3742
3743 union isl_color_value
3744 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3745 const struct intel_mipmap_tree *mt,
3746 enum isl_format view_format, bool sampling,
3747 struct brw_bo **clear_color_bo,
3748 uint32_t *clear_color_offset)
3749 {
3750 assert(mt->aux_buf);
3751
3752 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3753 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3754 * we switch to using the inline clear color and do the sRGB color
3755 * conversion process defined in the OpenGL spec. The red, green, and
3756 * blue channels take part in gamma correction, while the alpha channel
3757 * is unchanged.
3758 */
3759 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3760 for (unsigned i = 0; i < 3; i++) {
3761 srgb_decoded_value.f32[i] =
3762 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3763 }
3764 *clear_color_bo = 0;
3765 *clear_color_offset = 0;
3766 return srgb_decoded_value;
3767 } else {
3768 *clear_color_bo = mt->aux_buf->clear_color_bo;
3769 *clear_color_offset = mt->aux_buf->clear_color_offset;
3770 return mt->fast_clear_color;
3771 }
3772 }