i965/miptree: Use blorp for validation tex copies on gen6+
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 /* If the width is much smaller than a tile, don't bother tiling. */
523 if (row_pitch < 64)
524 return true;
525
526 if (ALIGN(row_pitch, 512) >= 32768) {
527 perf_debug("row pitch %u too large to blit, falling back to untiled",
528 row_pitch);
529 return true;
530 }
531
532 return false;
533 }
534
535 static bool
536 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
537 enum isl_tiling tiling)
538 {
539 const struct gen_device_info *devinfo = &brw->screen->devinfo;
540
541 /* If the BO is too large to fit in the aperture, we need to use the
542 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
543 * handle Y-tiling, so we need to fall back to X.
544 */
545 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
546 tiling == ISL_TILING_Y0)
547 return true;
548
549 return false;
550 }
551
552 static struct intel_mipmap_tree *
553 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
554 unsigned first_level, unsigned last_level,
555 unsigned width0, unsigned height0, unsigned depth0,
556 unsigned num_samples, isl_tiling_flags_t tiling_flags,
557 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
558 unsigned row_pitch, struct brw_bo *bo)
559 {
560 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
561 if (!mt)
562 return NULL;
563
564 if (!create_mapping_table(target, first_level, last_level, depth0,
565 mt->level)) {
566 free(mt);
567 return NULL;
568 }
569
570 mt->refcount = 1;
571
572 if (target == GL_TEXTURE_CUBE_MAP ||
573 target == GL_TEXTURE_CUBE_MAP_ARRAY)
574 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
575
576 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
577 __func__,
578 _mesa_enum_to_string(target),
579 _mesa_get_format_name(format),
580 num_samples, width0, height0, depth0,
581 first_level, last_level, mt);
582
583 struct isl_surf_init_info init_info = {
584 .dim = get_isl_surf_dim(target),
585 .format = translate_tex_format(brw, format, false),
586 .width = width0,
587 .height = height0,
588 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
589 .levels = last_level - first_level + 1,
590 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
591 .samples = num_samples,
592 .row_pitch = row_pitch,
593 .usage = isl_usage_flags,
594 .tiling_flags = tiling_flags,
595 };
596
597 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
598 goto fail;
599
600 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
601 * on gen7 platforms we also need to create Y-tiled copies of stencil for
602 * texturing since the hardware can't sample from W-tiled surfaces. For
603 * everything else, check for corner cases needing special treatment.
604 */
605 bool is_depth_stencil =
606 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
607 if (!is_depth_stencil) {
608 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
609 mt->surf.tiling, mt->surf.samples)) {
610 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
614 init_info.tiling_flags = 1u << ISL_TILING_X;
615 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
616 goto fail;
617 }
618 }
619
620 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
621 * the size may not be multiple of row_pitch.
622 * See isl_apply_surface_padding().
623 */
624 if (mt->surf.tiling != ISL_TILING_LINEAR)
625 assert(mt->surf.size % mt->surf.row_pitch == 0);
626
627 if (!bo) {
628 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
629 mt->surf.size,
630 BRW_MEMZONE_OTHER,
631 isl_tiling_to_i915_tiling(
632 mt->surf.tiling),
633 mt->surf.row_pitch, alloc_flags);
634 if (!mt->bo)
635 goto fail;
636 } else {
637 mt->bo = bo;
638 }
639
640 mt->first_level = first_level;
641 mt->last_level = last_level;
642 mt->target = target;
643 mt->format = format;
644 mt->aux_state = NULL;
645 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
646 mt->compressed = _mesa_is_format_compressed(format);
647 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
648
649 return mt;
650
651 fail:
652 intel_miptree_release(&mt);
653 return NULL;
654 }
655
656 static bool
657 make_separate_stencil_surface(struct brw_context *brw,
658 struct intel_mipmap_tree *mt)
659 {
660 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
661 0, mt->surf.levels - 1,
662 mt->surf.logical_level0_px.width,
663 mt->surf.logical_level0_px.height,
664 mt->surf.dim == ISL_SURF_DIM_3D ?
665 mt->surf.logical_level0_px.depth :
666 mt->surf.logical_level0_px.array_len,
667 mt->surf.samples, ISL_TILING_W_BIT,
668 ISL_SURF_USAGE_STENCIL_BIT |
669 ISL_SURF_USAGE_TEXTURE_BIT,
670 BO_ALLOC_BUSY, 0, NULL);
671
672 if (!mt->stencil_mt)
673 return false;
674
675 mt->stencil_mt->r8stencil_needs_update = true;
676
677 return true;
678 }
679
680 static struct intel_mipmap_tree *
681 miptree_create(struct brw_context *brw,
682 GLenum target,
683 mesa_format format,
684 GLuint first_level,
685 GLuint last_level,
686 GLuint width0,
687 GLuint height0,
688 GLuint depth0,
689 GLuint num_samples,
690 enum intel_miptree_create_flags flags)
691 {
692 const struct gen_device_info *devinfo = &brw->screen->devinfo;
693
694 if (format == MESA_FORMAT_S_UINT8)
695 return make_surface(brw, target, format, first_level, last_level,
696 width0, height0, depth0, num_samples,
697 ISL_TILING_W_BIT,
698 ISL_SURF_USAGE_STENCIL_BIT |
699 ISL_SURF_USAGE_TEXTURE_BIT,
700 BO_ALLOC_BUSY,
701 0,
702 NULL);
703
704 const GLenum base_format = _mesa_get_format_base_format(format);
705 if ((base_format == GL_DEPTH_COMPONENT ||
706 base_format == GL_DEPTH_STENCIL) &&
707 !(flags & MIPTREE_CREATE_LINEAR)) {
708 /* Fix up the Z miptree format for how we're splitting out separate
709 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
710 */
711 const mesa_format depth_only_format =
712 intel_depth_format_for_depthstencil_format(format);
713 struct intel_mipmap_tree *mt = make_surface(
714 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
715 first_level, last_level,
716 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
717 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
718 BO_ALLOC_BUSY, 0, NULL);
719
720 if (needs_separate_stencil(brw, mt, format) &&
721 !make_separate_stencil_surface(brw, mt)) {
722 intel_miptree_release(&mt);
723 return NULL;
724 }
725
726 if (!(flags & MIPTREE_CREATE_NO_AUX))
727 intel_miptree_choose_aux_usage(brw, mt);
728
729 return mt;
730 }
731
732 mesa_format tex_format = format;
733 mesa_format etc_format = MESA_FORMAT_NONE;
734 uint32_t alloc_flags = 0;
735
736 format = intel_lower_compressed_format(brw, format);
737
738 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
739
740 if (flags & MIPTREE_CREATE_BUSY)
741 alloc_flags |= BO_ALLOC_BUSY;
742
743 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
744 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
745
746 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
747 if (devinfo->gen < 6)
748 tiling_flags &= ~ISL_TILING_Y0_BIT;
749
750 struct intel_mipmap_tree *mt = make_surface(
751 brw, target, format,
752 first_level, last_level,
753 width0, height0, depth0,
754 num_samples, tiling_flags,
755 ISL_SURF_USAGE_RENDER_TARGET_BIT |
756 ISL_SURF_USAGE_TEXTURE_BIT,
757 alloc_flags, 0, NULL);
758 if (!mt)
759 return NULL;
760
761 mt->etc_format = etc_format;
762
763 if (!(flags & MIPTREE_CREATE_NO_AUX))
764 intel_miptree_choose_aux_usage(brw, mt);
765
766 return mt;
767 }
768
769 struct intel_mipmap_tree *
770 intel_miptree_create(struct brw_context *brw,
771 GLenum target,
772 mesa_format format,
773 GLuint first_level,
774 GLuint last_level,
775 GLuint width0,
776 GLuint height0,
777 GLuint depth0,
778 GLuint num_samples,
779 enum intel_miptree_create_flags flags)
780 {
781 assert(num_samples > 0);
782
783 struct intel_mipmap_tree *mt = miptree_create(
784 brw, target, format,
785 first_level, last_level,
786 width0, height0, depth0, num_samples,
787 flags);
788 if (!mt)
789 return NULL;
790
791 mt->offset = 0;
792
793 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
794 * compress clear color so we wait until an actual fast-clear to allocate
795 * it.
796 */
797 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
798 !intel_miptree_alloc_aux(brw, mt)) {
799 intel_miptree_release(&mt);
800 return NULL;
801 }
802
803 return mt;
804 }
805
806 struct intel_mipmap_tree *
807 intel_miptree_create_for_bo(struct brw_context *brw,
808 struct brw_bo *bo,
809 mesa_format format,
810 uint32_t offset,
811 uint32_t width,
812 uint32_t height,
813 uint32_t depth,
814 int pitch,
815 enum isl_tiling tiling,
816 enum intel_miptree_create_flags flags)
817 {
818 const struct gen_device_info *devinfo = &brw->screen->devinfo;
819 struct intel_mipmap_tree *mt;
820 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
821 const GLenum base_format = _mesa_get_format_base_format(format);
822
823 if ((base_format == GL_DEPTH_COMPONENT ||
824 base_format == GL_DEPTH_STENCIL)) {
825 const mesa_format depth_only_format =
826 intel_depth_format_for_depthstencil_format(format);
827 mt = make_surface(brw, target,
828 devinfo->gen >= 6 ? depth_only_format : format,
829 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
830 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
831 0, pitch, bo);
832 if (!mt)
833 return NULL;
834
835 brw_bo_reference(bo);
836
837 if (!(flags & MIPTREE_CREATE_NO_AUX))
838 intel_miptree_choose_aux_usage(brw, mt);
839
840 return mt;
841 } else if (format == MESA_FORMAT_S_UINT8) {
842 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
843 0, 0, width, height, depth, 1,
844 ISL_TILING_W_BIT,
845 ISL_SURF_USAGE_STENCIL_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 assert(bo->size >= mt->surf.size);
852
853 brw_bo_reference(bo);
854 return mt;
855 }
856
857 /* Nothing will be able to use this miptree with the BO if the offset isn't
858 * aligned.
859 */
860 if (tiling != ISL_TILING_LINEAR)
861 assert(offset % 4096 == 0);
862
863 /* miptrees can't handle negative pitch. If you need flipping of images,
864 * that's outside of the scope of the mt.
865 */
866 assert(pitch >= 0);
867
868 /* The BO already has a tiling format and we shouldn't confuse the lower
869 * layers by making it try to find a tiling format again.
870 */
871 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
872
873 mt = make_surface(brw, target, format,
874 0, 0, width, height, depth, 1,
875 1lu << tiling,
876 ISL_SURF_USAGE_RENDER_TARGET_BIT |
877 ISL_SURF_USAGE_TEXTURE_BIT,
878 0, pitch, bo);
879 if (!mt)
880 return NULL;
881
882 brw_bo_reference(bo);
883 mt->bo = bo;
884 mt->offset = offset;
885
886 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
887 intel_miptree_choose_aux_usage(brw, mt);
888
889 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
890 * only compress clear color so we wait until an actual fast-clear to
891 * allocate it.
892 */
893 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
894 !intel_miptree_alloc_aux(brw, mt)) {
895 intel_miptree_release(&mt);
896 return NULL;
897 }
898 }
899
900 return mt;
901 }
902
903 static struct intel_mipmap_tree *
904 miptree_create_for_planar_image(struct brw_context *brw,
905 __DRIimage *image, GLenum target,
906 enum isl_tiling tiling)
907 {
908 const struct intel_image_format *f = image->planar_format;
909 struct intel_mipmap_tree *planar_mt = NULL;
910
911 for (int i = 0; i < f->nplanes; i++) {
912 const int index = f->planes[i].buffer_index;
913 const uint32_t dri_format = f->planes[i].dri_format;
914 const mesa_format format = driImageFormatToGLFormat(dri_format);
915 const uint32_t width = image->width >> f->planes[i].width_shift;
916 const uint32_t height = image->height >> f->planes[i].height_shift;
917
918 /* Disable creation of the texture's aux buffers because the driver
919 * exposes no EGL API to manage them. That is, there is no API for
920 * resolving the aux buffer's content to the main buffer nor for
921 * invalidating the aux buffer's content.
922 */
923 struct intel_mipmap_tree *mt =
924 intel_miptree_create_for_bo(brw, image->bo, format,
925 image->offsets[index],
926 width, height, 1,
927 image->strides[index],
928 tiling,
929 MIPTREE_CREATE_NO_AUX);
930 if (mt == NULL)
931 return NULL;
932
933 mt->target = target;
934
935 if (i == 0)
936 planar_mt = mt;
937 else
938 planar_mt->plane[i - 1] = mt;
939 }
940
941 planar_mt->drm_modifier = image->modifier;
942
943 return planar_mt;
944 }
945
946 static bool
947 create_ccs_buf_for_image(struct brw_context *brw,
948 __DRIimage *image,
949 struct intel_mipmap_tree *mt,
950 enum isl_aux_state initial_state)
951 {
952 struct isl_surf temp_ccs_surf;
953
954 /* CCS is only supported for very simple miptrees */
955 assert(image->aux_offset != 0 && image->aux_pitch != 0);
956 assert(image->tile_x == 0 && image->tile_y == 0);
957 assert(mt->surf.samples == 1);
958 assert(mt->surf.levels == 1);
959 assert(mt->surf.logical_level0_px.depth == 1);
960 assert(mt->surf.logical_level0_px.array_len == 1);
961 assert(mt->first_level == 0);
962 assert(mt->last_level == 0);
963
964 /* We shouldn't already have a CCS */
965 assert(!mt->aux_buf);
966
967 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
968 image->aux_pitch))
969 return false;
970
971 assert(image->aux_offset < image->bo->size);
972 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
973
974 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
975 if (mt->aux_buf == NULL)
976 return false;
977
978 mt->aux_state = create_aux_state_map(mt, initial_state);
979 if (!mt->aux_state) {
980 free(mt->aux_buf);
981 mt->aux_buf = NULL;
982 return false;
983 }
984
985 /* On gen10+ we start using an extra space in the aux buffer to store the
986 * indirect clear color. However, if we imported an image from the window
987 * system with CCS, we don't have the extra space at the end of the aux
988 * buffer. So create a new bo here that will store that clear color.
989 */
990 if (brw->isl_dev.ss.clear_color_state_size > 0) {
991 mt->aux_buf->clear_color_bo =
992 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
993 brw->isl_dev.ss.clear_color_state_size,
994 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
995 BO_ALLOC_ZEROED);
996 if (!mt->aux_buf->clear_color_bo) {
997 free(mt->aux_buf);
998 mt->aux_buf = NULL;
999 return false;
1000 }
1001 }
1002
1003 mt->aux_buf->bo = image->bo;
1004 brw_bo_reference(image->bo);
1005
1006 mt->aux_buf->offset = image->aux_offset;
1007 mt->aux_buf->surf = temp_ccs_surf;
1008
1009 return true;
1010 }
1011
1012 struct intel_mipmap_tree *
1013 intel_miptree_create_for_dri_image(struct brw_context *brw,
1014 __DRIimage *image, GLenum target,
1015 mesa_format format,
1016 bool is_winsys_image)
1017 {
1018 uint32_t bo_tiling, bo_swizzle;
1019 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1020
1021 const struct isl_drm_modifier_info *mod_info =
1022 isl_drm_modifier_get_info(image->modifier);
1023
1024 const enum isl_tiling tiling =
1025 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1026
1027 if (image->planar_format && image->planar_format->nplanes > 1)
1028 return miptree_create_for_planar_image(brw, image, target, tiling);
1029
1030 if (image->planar_format)
1031 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1032
1033 if (!brw->ctx.TextureFormatSupported[format]) {
1034 /* The texture storage paths in core Mesa detect if the driver does not
1035 * support the user-requested format, and then searches for a
1036 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1037 * do the fallbacks here for important formats.
1038 *
1039 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1040 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1041 * the Chrome OS compositor consumes as dma_buf EGLImages.
1042 */
1043 format = _mesa_format_fallback_rgbx_to_rgba(format);
1044 }
1045
1046 if (!brw->ctx.TextureFormatSupported[format])
1047 return NULL;
1048
1049 enum intel_miptree_create_flags mt_create_flags = 0;
1050
1051 /* If this image comes in from a window system, we have different
1052 * requirements than if it comes in via an EGL import operation. Window
1053 * system images can use any form of auxiliary compression we wish because
1054 * they get "flushed" before being handed off to the window system and we
1055 * have the opportunity to do resolves. Non window-system images, on the
1056 * other hand, have no resolve point so we can't have aux without a
1057 * modifier.
1058 */
1059 if (!is_winsys_image)
1060 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1061
1062 /* If we have a modifier which specifies aux, don't create one yet */
1063 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1064 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1065
1066 /* Disable creation of the texture's aux buffers because the driver exposes
1067 * no EGL API to manage them. That is, there is no API for resolving the aux
1068 * buffer's content to the main buffer nor for invalidating the aux buffer's
1069 * content.
1070 */
1071 struct intel_mipmap_tree *mt =
1072 intel_miptree_create_for_bo(brw, image->bo, format,
1073 image->offset, image->width, image->height, 1,
1074 image->pitch, tiling, mt_create_flags);
1075 if (mt == NULL)
1076 return NULL;
1077
1078 mt->target = target;
1079 mt->level[0].level_x = image->tile_x;
1080 mt->level[0].level_y = image->tile_y;
1081 mt->drm_modifier = image->modifier;
1082
1083 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1084 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1085 * trouble resolving back to destination image due to alignment issues.
1086 */
1087 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1088 if (!devinfo->has_surface_tile_offset) {
1089 uint32_t draw_x, draw_y;
1090 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1091
1092 if (draw_x != 0 || draw_y != 0) {
1093 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1094 intel_miptree_release(&mt);
1095 return NULL;
1096 }
1097 }
1098
1099 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1100 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1101
1102 mt->aux_usage = mod_info->aux_usage;
1103 /* If we are a window system buffer, then we can support fast-clears
1104 * even if the modifier doesn't support them by doing a partial resolve
1105 * as part of the flush operation.
1106 */
1107 mt->supports_fast_clear =
1108 is_winsys_image || mod_info->supports_clear_color;
1109
1110 /* We don't know the actual state of the surface when we get it but we
1111 * can make a pretty good guess based on the modifier. What we do know
1112 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1113 * a worst case of compression.
1114 */
1115 enum isl_aux_state initial_state =
1116 isl_drm_modifier_get_default_aux_state(image->modifier);
1117
1118 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1119 intel_miptree_release(&mt);
1120 return NULL;
1121 }
1122 }
1123
1124 /* Don't assume coherency for imported EGLimages. We don't know what
1125 * external clients are going to do with it. They may scan it out.
1126 */
1127 image->bo->cache_coherent = false;
1128
1129 return mt;
1130 }
1131
1132 /**
1133 * For a singlesample renderbuffer, this simply wraps the given BO with a
1134 * miptree.
1135 *
1136 * For a multisample renderbuffer, this wraps the window system's
1137 * (singlesample) BO with a singlesample miptree attached to the
1138 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1139 * that will contain the actual rendering (which is lazily resolved to
1140 * irb->singlesample_mt).
1141 */
1142 bool
1143 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1144 struct intel_renderbuffer *irb,
1145 struct intel_mipmap_tree *singlesample_mt,
1146 uint32_t width, uint32_t height,
1147 uint32_t pitch)
1148 {
1149 struct intel_mipmap_tree *multisample_mt = NULL;
1150 struct gl_renderbuffer *rb = &irb->Base.Base;
1151 mesa_format format = rb->Format;
1152 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1153
1154 /* Only the front and back buffers, which are color buffers, are allocated
1155 * through the image loader.
1156 */
1157 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1158 _mesa_get_format_base_format(format) == GL_RGBA);
1159
1160 assert(singlesample_mt);
1161
1162 if (num_samples == 1) {
1163 intel_miptree_release(&irb->mt);
1164 irb->mt = singlesample_mt;
1165
1166 assert(!irb->singlesample_mt);
1167 } else {
1168 intel_miptree_release(&irb->singlesample_mt);
1169 irb->singlesample_mt = singlesample_mt;
1170
1171 if (!irb->mt ||
1172 irb->mt->surf.logical_level0_px.width != width ||
1173 irb->mt->surf.logical_level0_px.height != height) {
1174 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1175 format,
1176 width,
1177 height,
1178 num_samples);
1179 if (!multisample_mt)
1180 goto fail;
1181
1182 irb->need_downsample = false;
1183 intel_miptree_release(&irb->mt);
1184 irb->mt = multisample_mt;
1185 }
1186 }
1187 return true;
1188
1189 fail:
1190 intel_miptree_release(&irb->mt);
1191 return false;
1192 }
1193
1194 struct intel_mipmap_tree*
1195 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1196 mesa_format format,
1197 uint32_t width,
1198 uint32_t height,
1199 uint32_t num_samples)
1200 {
1201 struct intel_mipmap_tree *mt;
1202 uint32_t depth = 1;
1203 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1204
1205 mt = intel_miptree_create(brw, target, format, 0, 0,
1206 width, height, depth, num_samples,
1207 MIPTREE_CREATE_BUSY);
1208 if (!mt)
1209 goto fail;
1210
1211 return mt;
1212
1213 fail:
1214 intel_miptree_release(&mt);
1215 return NULL;
1216 }
1217
1218 void
1219 intel_miptree_reference(struct intel_mipmap_tree **dst,
1220 struct intel_mipmap_tree *src)
1221 {
1222 if (*dst == src)
1223 return;
1224
1225 intel_miptree_release(dst);
1226
1227 if (src) {
1228 src->refcount++;
1229 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1230 }
1231
1232 *dst = src;
1233 }
1234
1235 static void
1236 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1237 {
1238 if (aux_buf == NULL)
1239 return;
1240
1241 brw_bo_unreference(aux_buf->bo);
1242 brw_bo_unreference(aux_buf->clear_color_bo);
1243
1244 free(aux_buf);
1245 }
1246
1247 void
1248 intel_miptree_release(struct intel_mipmap_tree **mt)
1249 {
1250 if (!*mt)
1251 return;
1252
1253 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1254 if (--(*mt)->refcount <= 0) {
1255 GLuint i;
1256
1257 DBG("%s deleting %p\n", __func__, *mt);
1258
1259 brw_bo_unreference((*mt)->bo);
1260 intel_miptree_release(&(*mt)->stencil_mt);
1261 intel_miptree_release(&(*mt)->r8stencil_mt);
1262 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1263 free_aux_state_map((*mt)->aux_state);
1264
1265 intel_miptree_release(&(*mt)->plane[0]);
1266 intel_miptree_release(&(*mt)->plane[1]);
1267
1268 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1269 free((*mt)->level[i].slice);
1270 }
1271
1272 free(*mt);
1273 }
1274 *mt = NULL;
1275 }
1276
1277
1278 void
1279 intel_get_image_dims(struct gl_texture_image *image,
1280 int *width, int *height, int *depth)
1281 {
1282 switch (image->TexObject->Target) {
1283 case GL_TEXTURE_1D_ARRAY:
1284 /* For a 1D Array texture the OpenGL API will treat the image height as
1285 * the number of array slices. For Intel hardware, we treat the 1D array
1286 * as a 2D Array with a height of 1. So, here we want to swap image
1287 * height and depth.
1288 */
1289 assert(image->Depth == 1);
1290 *width = image->Width;
1291 *height = 1;
1292 *depth = image->Height;
1293 break;
1294 case GL_TEXTURE_CUBE_MAP:
1295 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1296 * though we really have 6 slices.
1297 */
1298 assert(image->Depth == 1);
1299 *width = image->Width;
1300 *height = image->Height;
1301 *depth = 6;
1302 break;
1303 default:
1304 *width = image->Width;
1305 *height = image->Height;
1306 *depth = image->Depth;
1307 break;
1308 }
1309 }
1310
1311 /**
1312 * Can the image be pulled into a unified mipmap tree? This mirrors
1313 * the completeness test in a lot of ways.
1314 *
1315 * Not sure whether I want to pass gl_texture_image here.
1316 */
1317 bool
1318 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1319 struct gl_texture_image *image)
1320 {
1321 struct intel_texture_image *intelImage = intel_texture_image(image);
1322 GLuint level = intelImage->base.Base.Level;
1323 int width, height, depth;
1324
1325 /* glTexImage* choose the texture object based on the target passed in, and
1326 * objects can't change targets over their lifetimes, so this should be
1327 * true.
1328 */
1329 assert(image->TexObject->Target == mt->target);
1330
1331 mesa_format mt_format = mt->format;
1332 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1333 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1334 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1335 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1336 if (mt->etc_format != MESA_FORMAT_NONE)
1337 mt_format = mt->etc_format;
1338
1339 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1340 _mesa_get_srgb_format_linear(mt_format))
1341 return false;
1342
1343 intel_get_image_dims(image, &width, &height, &depth);
1344
1345 if (mt->target == GL_TEXTURE_CUBE_MAP)
1346 depth = 6;
1347
1348 if (level >= mt->surf.levels)
1349 return false;
1350
1351 const unsigned level_depth =
1352 mt->surf.dim == ISL_SURF_DIM_3D ?
1353 minify(mt->surf.logical_level0_px.depth, level) :
1354 mt->surf.logical_level0_px.array_len;
1355
1356 return width == minify(mt->surf.logical_level0_px.width, level) &&
1357 height == minify(mt->surf.logical_level0_px.height, level) &&
1358 depth == level_depth &&
1359 MAX2(image->NumSamples, 1) == mt->surf.samples;
1360 }
1361
1362 void
1363 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1364 GLuint level, GLuint slice,
1365 GLuint *x, GLuint *y)
1366 {
1367 if (level == 0 && slice == 0) {
1368 *x = mt->level[0].level_x;
1369 *y = mt->level[0].level_y;
1370 return;
1371 }
1372
1373 uint32_t x_offset_sa, y_offset_sa;
1374
1375 /* Miptree itself can have an offset only if it represents a single
1376 * slice in an imported buffer object.
1377 * See intel_miptree_create_for_dri_image().
1378 */
1379 assert(mt->level[0].level_x == 0);
1380 assert(mt->level[0].level_y == 0);
1381
1382 /* Given level is relative to level zero while the miptree may be
1383 * represent just a subset of all levels starting from 'first_level'.
1384 */
1385 assert(level >= mt->first_level);
1386 level -= mt->first_level;
1387
1388 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1389 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1390 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1391 &x_offset_sa, &y_offset_sa);
1392
1393 *x = x_offset_sa;
1394 *y = y_offset_sa;
1395 }
1396
1397
1398 /**
1399 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1400 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1401 * and tile_h is set to 1.
1402 */
1403 void
1404 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1405 uint32_t *tile_w, uint32_t *tile_h)
1406 {
1407 switch (tiling) {
1408 case ISL_TILING_X:
1409 *tile_w = 512;
1410 *tile_h = 8;
1411 break;
1412 case ISL_TILING_Y0:
1413 *tile_w = 128;
1414 *tile_h = 32;
1415 break;
1416 case ISL_TILING_LINEAR:
1417 *tile_w = cpp;
1418 *tile_h = 1;
1419 break;
1420 default:
1421 unreachable("not reached");
1422 }
1423 }
1424
1425
1426 /**
1427 * This function computes masks that may be used to select the bits of the X
1428 * and Y coordinates that indicate the offset within a tile. If the BO is
1429 * untiled, the masks are set to 0.
1430 */
1431 void
1432 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1433 uint32_t *mask_x, uint32_t *mask_y)
1434 {
1435 uint32_t tile_w_bytes, tile_h;
1436
1437 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1438
1439 *mask_x = tile_w_bytes / cpp - 1;
1440 *mask_y = tile_h - 1;
1441 }
1442
1443 /**
1444 * Compute the offset (in bytes) from the start of the BO to the given x
1445 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1446 * multiples of the tile size.
1447 */
1448 uint32_t
1449 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1450 uint32_t x, uint32_t y)
1451 {
1452 int cpp = mt->cpp;
1453 uint32_t pitch = mt->surf.row_pitch;
1454
1455 switch (mt->surf.tiling) {
1456 default:
1457 unreachable("not reached");
1458 case ISL_TILING_LINEAR:
1459 return y * pitch + x * cpp;
1460 case ISL_TILING_X:
1461 assert((x % (512 / cpp)) == 0);
1462 assert((y % 8) == 0);
1463 return y * pitch + x / (512 / cpp) * 4096;
1464 case ISL_TILING_Y0:
1465 assert((x % (128 / cpp)) == 0);
1466 assert((y % 32) == 0);
1467 return y * pitch + x / (128 / cpp) * 4096;
1468 }
1469 }
1470
1471 /**
1472 * Rendering with tiled buffers requires that the base address of the buffer
1473 * be aligned to a page boundary. For renderbuffers, and sometimes with
1474 * textures, we may want the surface to point at a texture image level that
1475 * isn't at a page boundary.
1476 *
1477 * This function returns an appropriately-aligned base offset
1478 * according to the tiling restrictions, plus any required x/y offset
1479 * from there.
1480 */
1481 uint32_t
1482 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1483 GLuint level, GLuint slice,
1484 uint32_t *tile_x,
1485 uint32_t *tile_y)
1486 {
1487 uint32_t x, y;
1488 uint32_t mask_x, mask_y;
1489
1490 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1491 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1492
1493 *tile_x = x & mask_x;
1494 *tile_y = y & mask_y;
1495
1496 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1497 }
1498
1499 static void
1500 intel_miptree_copy_slice_sw(struct brw_context *brw,
1501 struct intel_mipmap_tree *src_mt,
1502 unsigned src_level, unsigned src_layer,
1503 struct intel_mipmap_tree *dst_mt,
1504 unsigned dst_level, unsigned dst_layer,
1505 unsigned width, unsigned height)
1506 {
1507 void *src, *dst;
1508 ptrdiff_t src_stride, dst_stride;
1509 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1510
1511 intel_miptree_map(brw, src_mt,
1512 src_level, src_layer,
1513 0, 0,
1514 width, height,
1515 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1516 &src, &src_stride);
1517
1518 intel_miptree_map(brw, dst_mt,
1519 dst_level, dst_layer,
1520 0, 0,
1521 width, height,
1522 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1523 BRW_MAP_DIRECT_BIT,
1524 &dst, &dst_stride);
1525
1526 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1527 _mesa_get_format_name(src_mt->format),
1528 src_mt, src, src_stride,
1529 _mesa_get_format_name(dst_mt->format),
1530 dst_mt, dst, dst_stride,
1531 width, height);
1532
1533 int row_size = cpp * width;
1534 if (src_stride == row_size &&
1535 dst_stride == row_size) {
1536 memcpy(dst, src, row_size * height);
1537 } else {
1538 for (int i = 0; i < height; i++) {
1539 memcpy(dst, src, row_size);
1540 dst += dst_stride;
1541 src += src_stride;
1542 }
1543 }
1544
1545 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1546 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1547
1548 /* Don't forget to copy the stencil data over, too. We could have skipped
1549 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1550 * shuffling the two data sources in/out of temporary storage instead of
1551 * the direct mapping we get this way.
1552 */
1553 if (dst_mt->stencil_mt) {
1554 assert(src_mt->stencil_mt);
1555 intel_miptree_copy_slice_sw(brw,
1556 src_mt->stencil_mt, src_level, src_layer,
1557 dst_mt->stencil_mt, dst_level, dst_layer,
1558 width, height);
1559 }
1560 }
1561
1562 void
1563 intel_miptree_copy_slice(struct brw_context *brw,
1564 struct intel_mipmap_tree *src_mt,
1565 unsigned src_level, unsigned src_layer,
1566 struct intel_mipmap_tree *dst_mt,
1567 unsigned dst_level, unsigned dst_layer)
1568
1569 {
1570 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1571 mesa_format format = src_mt->format;
1572 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1573 src_level - src_mt->first_level);
1574 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1575 src_level - src_mt->first_level);
1576
1577 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1578 src_level - src_mt->first_level));
1579
1580 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1581 _mesa_get_srgb_format_linear(dst_mt->format));
1582
1583 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1584 _mesa_get_format_name(src_mt->format),
1585 src_mt, src_level, src_layer,
1586 _mesa_get_format_name(dst_mt->format),
1587 dst_mt, dst_level, dst_layer,
1588 width, height);
1589
1590 if (devinfo->gen >= 6) {
1591 /* On gen6 and above, we just use blorp. It's faster than the blitter
1592 * and can handle everything without software fallbacks.
1593 */
1594 brw_blorp_copy_miptrees(brw,
1595 src_mt, src_level, src_layer,
1596 dst_mt, dst_level, dst_layer,
1597 0, 0, 0, 0, width, height);
1598
1599 if (src_mt->stencil_mt) {
1600 assert(dst_mt->stencil_mt);
1601 brw_blorp_copy_miptrees(brw,
1602 src_mt->stencil_mt, src_level, src_layer,
1603 dst_mt->stencil_mt, dst_level, dst_layer,
1604 0, 0, 0, 0, width, height);
1605 }
1606 return;
1607 }
1608
1609 if (dst_mt->compressed) {
1610 unsigned int i, j;
1611 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1612 height = ALIGN_NPOT(height, j) / j;
1613 width = ALIGN_NPOT(width, i) / i;
1614 }
1615
1616 /* Gen4-5 doesn't support separate stencil */
1617 assert(!src_mt->stencil_mt);
1618
1619 uint32_t dst_x, dst_y, src_x, src_y;
1620 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1621 &dst_x, &dst_y);
1622 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1623 &src_x, &src_y);
1624
1625 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1626 _mesa_get_format_name(src_mt->format),
1627 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1628 _mesa_get_format_name(dst_mt->format),
1629 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1630 width, height);
1631
1632 if (!intel_miptree_blit(brw,
1633 src_mt, src_level, src_layer, 0, 0, false,
1634 dst_mt, dst_level, dst_layer, 0, 0, false,
1635 width, height, COLOR_LOGICOP_COPY)) {
1636 perf_debug("miptree validate blit for %s failed\n",
1637 _mesa_get_format_name(format));
1638
1639 intel_miptree_copy_slice_sw(brw,
1640 src_mt, src_level, src_layer,
1641 dst_mt, dst_level, dst_layer,
1642 width, height);
1643 }
1644 }
1645
1646 /**
1647 * Copies the image's current data to the given miptree, and associates that
1648 * miptree with the image.
1649 */
1650 void
1651 intel_miptree_copy_teximage(struct brw_context *brw,
1652 struct intel_texture_image *intelImage,
1653 struct intel_mipmap_tree *dst_mt)
1654 {
1655 struct intel_mipmap_tree *src_mt = intelImage->mt;
1656 struct intel_texture_object *intel_obj =
1657 intel_texture_object(intelImage->base.Base.TexObject);
1658 int level = intelImage->base.Base.Level;
1659 const unsigned face = intelImage->base.Base.Face;
1660 unsigned start_layer, end_layer;
1661
1662 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1663 assert(face == 0);
1664 assert(intelImage->base.Base.Height);
1665 start_layer = 0;
1666 end_layer = intelImage->base.Base.Height - 1;
1667 } else if (face > 0) {
1668 start_layer = face;
1669 end_layer = face;
1670 } else {
1671 assert(intelImage->base.Base.Depth);
1672 start_layer = 0;
1673 end_layer = intelImage->base.Base.Depth - 1;
1674 }
1675
1676 for (unsigned i = start_layer; i <= end_layer; i++) {
1677 intel_miptree_copy_slice(brw,
1678 src_mt, level, i,
1679 dst_mt, level, i);
1680 }
1681
1682 intel_miptree_reference(&intelImage->mt, dst_mt);
1683 intel_obj->needs_validate = true;
1684 }
1685
1686 static struct intel_miptree_aux_buffer *
1687 intel_alloc_aux_buffer(struct brw_context *brw,
1688 const struct isl_surf *aux_surf,
1689 bool wants_memset,
1690 uint8_t memset_value)
1691 {
1692 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1693 if (!buf)
1694 return false;
1695
1696 uint64_t size = aux_surf->size;
1697
1698 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1699 if (has_indirect_clear) {
1700 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1701 * will set a pointer to a dword somewhere that contains the color. So,
1702 * allocate the space for the clear color value here on the aux buffer.
1703 */
1704 buf->clear_color_offset = size;
1705 size += brw->isl_dev.ss.clear_color_state_size;
1706 }
1707
1708 /* If the buffer needs to be initialised (requiring the buffer to be
1709 * immediately mapped to cpu space for writing), do not use the gpu access
1710 * flag which can cause an unnecessary delay if the backing pages happened
1711 * to be just used by the GPU.
1712 */
1713 const bool alloc_zeroed = wants_memset && memset_value == 0;
1714 const bool needs_memset =
1715 !alloc_zeroed && (wants_memset || has_indirect_clear);
1716 const uint32_t alloc_flags =
1717 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1718
1719 /* ISL has stricter set of alignment rules then the drm allocator.
1720 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1721 * trying to recalculate based on different format block sizes.
1722 */
1723 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1724 BRW_MEMZONE_OTHER, I915_TILING_Y,
1725 aux_surf->row_pitch, alloc_flags);
1726 if (!buf->bo) {
1727 free(buf);
1728 return NULL;
1729 }
1730
1731 /* Initialize the bo to the desired value */
1732 if (needs_memset) {
1733 assert(!(alloc_flags & BO_ALLOC_BUSY));
1734
1735 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1736 if (map == NULL) {
1737 intel_miptree_aux_buffer_free(buf);
1738 return NULL;
1739 }
1740
1741 /* Memset the aux_surf portion of the BO. */
1742 if (wants_memset)
1743 memset(map, memset_value, aux_surf->size);
1744
1745 /* Zero the indirect clear color to match ::fast_clear_color. */
1746 if (has_indirect_clear) {
1747 memset((char *)map + buf->clear_color_offset, 0,
1748 brw->isl_dev.ss.clear_color_state_size);
1749 }
1750
1751 brw_bo_unmap(buf->bo);
1752 }
1753
1754 if (has_indirect_clear) {
1755 buf->clear_color_bo = buf->bo;
1756 brw_bo_reference(buf->clear_color_bo);
1757 }
1758
1759 buf->surf = *aux_surf;
1760
1761 return buf;
1762 }
1763
1764
1765 /**
1766 * Helper for intel_miptree_alloc_aux() that sets
1767 * \c mt->level[level].has_hiz. Return true if and only if
1768 * \c has_hiz was set.
1769 */
1770 static bool
1771 intel_miptree_level_enable_hiz(struct brw_context *brw,
1772 struct intel_mipmap_tree *mt,
1773 uint32_t level)
1774 {
1775 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1776
1777 assert(mt->aux_buf);
1778 assert(mt->surf.size > 0);
1779
1780 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1781 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1782 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1783
1784 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1785 * and the height is 4 aligned. This allows our HiZ support
1786 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1787 * we can grow the width & height to allow the HiZ op to
1788 * force the proper size alignments.
1789 */
1790 if (level > 0 && ((width & 7) || (height & 3))) {
1791 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1792 return false;
1793 }
1794 }
1795
1796 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1797 mt->level[level].has_hiz = true;
1798 return true;
1799 }
1800
1801
1802 /**
1803 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1804 *
1805 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1806 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1807 * compress clear color so we wait until an actual fast-clear to allocate it.
1808 */
1809 bool
1810 intel_miptree_alloc_aux(struct brw_context *brw,
1811 struct intel_mipmap_tree *mt)
1812 {
1813 assert(mt->aux_buf == NULL);
1814
1815 /* Get the aux buf allocation parameters for this miptree. */
1816 enum isl_aux_state initial_state;
1817 uint8_t memset_value;
1818 struct isl_surf aux_surf;
1819 MAYBE_UNUSED bool aux_surf_ok;
1820
1821 switch (mt->aux_usage) {
1822 case ISL_AUX_USAGE_NONE:
1823 aux_surf.size = 0;
1824 aux_surf_ok = true;
1825 break;
1826 case ISL_AUX_USAGE_HIZ:
1827 initial_state = ISL_AUX_STATE_AUX_INVALID;
1828 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1829 break;
1830 case ISL_AUX_USAGE_MCS:
1831 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1832 *
1833 * When MCS buffer is enabled and bound to MSRT, it is required that
1834 * it is cleared prior to any rendering.
1835 *
1836 * Since we don't use the MCS buffer for any purpose other than
1837 * rendering, it makes sense to just clear it immediately upon
1838 * allocation.
1839 *
1840 * Note: the clear value for MCS buffers is all 1's, so we memset to
1841 * 0xff.
1842 */
1843 initial_state = ISL_AUX_STATE_CLEAR;
1844 memset_value = 0xFF;
1845 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1846 break;
1847 case ISL_AUX_USAGE_CCS_D:
1848 case ISL_AUX_USAGE_CCS_E:
1849 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1850 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1851 * Target(s)":
1852 *
1853 * "If Software wants to enable Color Compression without Fast
1854 * clear, Software needs to initialize MCS with zeros."
1855 *
1856 * A CCS value of 0 indicates that the corresponding block is in the
1857 * pass-through state which is what we want.
1858 *
1859 * For CCS_D, do the same thing. On gen9+, this avoids having any
1860 * undefined bits in the aux buffer.
1861 */
1862 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1863 memset_value = 0;
1864 aux_surf_ok =
1865 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1866 break;
1867 }
1868
1869 /* We should have a valid aux_surf. */
1870 assert(aux_surf_ok);
1871
1872 /* No work is needed for a zero-sized auxiliary buffer. */
1873 if (aux_surf.size == 0)
1874 return true;
1875
1876 /* Create the aux_state for the auxiliary buffer. */
1877 mt->aux_state = create_aux_state_map(mt, initial_state);
1878 if (mt->aux_state == NULL)
1879 return false;
1880
1881 /* Allocate the auxiliary buffer. */
1882 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1883 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1884 memset_value);
1885 if (mt->aux_buf == NULL) {
1886 free_aux_state_map(mt->aux_state);
1887 mt->aux_state = NULL;
1888 return false;
1889 }
1890
1891 /* Perform aux_usage-specific initialization. */
1892 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1893 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1894 intel_miptree_level_enable_hiz(brw, mt, level);
1895 }
1896
1897 return true;
1898 }
1899
1900
1901 /**
1902 * Can the miptree sample using the hiz buffer?
1903 */
1904 bool
1905 intel_miptree_sample_with_hiz(struct brw_context *brw,
1906 struct intel_mipmap_tree *mt)
1907 {
1908 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1909
1910 if (!devinfo->has_sample_with_hiz) {
1911 return false;
1912 }
1913
1914 if (!mt->aux_buf) {
1915 return false;
1916 }
1917
1918 /* It seems the hardware won't fallback to the depth buffer if some of the
1919 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1920 * of the texture to be HiZ enabled.
1921 */
1922 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1923 if (!intel_miptree_level_has_hiz(mt, level))
1924 return false;
1925 }
1926
1927 /* If compressed multisampling is enabled, then we use it for the auxiliary
1928 * buffer instead.
1929 *
1930 * From the BDW PRM (Volume 2d: Command Reference: Structures
1931 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1932 *
1933 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1934 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1935 *
1936 * There is no such blurb for 1D textures, but there is sufficient evidence
1937 * that this is broken on SKL+.
1938 */
1939 return (mt->surf.samples == 1 &&
1940 mt->target != GL_TEXTURE_3D &&
1941 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1942 }
1943
1944 /**
1945 * Does the miptree slice have hiz enabled?
1946 */
1947 bool
1948 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1949 {
1950 intel_miptree_check_level_layer(mt, level, 0);
1951 return mt->level[level].has_hiz;
1952 }
1953
1954 static inline uint32_t
1955 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1956 uint32_t start_level, uint32_t num_levels)
1957 {
1958 assert(start_level >= mt->first_level);
1959 assert(start_level <= mt->last_level);
1960
1961 if (num_levels == INTEL_REMAINING_LAYERS)
1962 num_levels = mt->last_level - start_level + 1;
1963 /* Check for overflow */
1964 assert(start_level + num_levels >= start_level);
1965 assert(start_level + num_levels <= mt->last_level + 1);
1966
1967 return num_levels;
1968 }
1969
1970 static inline uint32_t
1971 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1972 uint32_t start_layer, uint32_t num_layers)
1973 {
1974 assert(level <= mt->last_level);
1975
1976 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1977 assert(start_layer < total_num_layers);
1978 if (num_layers == INTEL_REMAINING_LAYERS)
1979 num_layers = total_num_layers - start_layer;
1980 /* Check for overflow */
1981 assert(start_layer + num_layers >= start_layer);
1982 assert(start_layer + num_layers <= total_num_layers);
1983
1984 return num_layers;
1985 }
1986
1987 bool
1988 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1989 unsigned start_level, unsigned num_levels,
1990 unsigned start_layer, unsigned num_layers)
1991 {
1992 assert(_mesa_is_format_color_format(mt->format));
1993
1994 if (!mt->aux_buf)
1995 return false;
1996
1997 /* Clamp the level range to fit the miptree */
1998 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1999
2000 for (uint32_t l = 0; l < num_levels; l++) {
2001 const uint32_t level = start_level + l;
2002 const uint32_t level_layers =
2003 miptree_layer_range_length(mt, level, start_layer, num_layers);
2004 for (unsigned a = 0; a < level_layers; a++) {
2005 enum isl_aux_state aux_state =
2006 intel_miptree_get_aux_state(mt, level, start_layer + a);
2007 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2008 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2009 return true;
2010 }
2011 }
2012
2013 return false;
2014 }
2015
2016 static void
2017 intel_miptree_check_color_resolve(const struct brw_context *brw,
2018 const struct intel_mipmap_tree *mt,
2019 unsigned level, unsigned layer)
2020 {
2021 if (!mt->aux_buf)
2022 return;
2023
2024 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2025 assert(brw->screen->devinfo.gen >= 8 ||
2026 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2027
2028 /* Compression of arrayed msaa surfaces is supported. */
2029 if (mt->surf.samples > 1)
2030 return;
2031
2032 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2033 assert(brw->screen->devinfo.gen >= 8 ||
2034 (layer == 0 &&
2035 mt->surf.logical_level0_px.depth == 1 &&
2036 mt->surf.logical_level0_px.array_len == 1));
2037
2038 (void)level;
2039 (void)layer;
2040 }
2041
2042 static enum isl_aux_op
2043 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2044 enum isl_aux_usage aux_usage,
2045 bool fast_clear_supported)
2046 {
2047 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2048
2049 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2050
2051 assert(ccs_supported == fast_clear_supported);
2052
2053 switch (aux_state) {
2054 case ISL_AUX_STATE_CLEAR:
2055 case ISL_AUX_STATE_PARTIAL_CLEAR:
2056 if (!ccs_supported)
2057 return ISL_AUX_OP_FULL_RESOLVE;
2058 else
2059 return ISL_AUX_OP_NONE;
2060
2061 case ISL_AUX_STATE_PASS_THROUGH:
2062 return ISL_AUX_OP_NONE;
2063
2064 case ISL_AUX_STATE_RESOLVED:
2065 case ISL_AUX_STATE_AUX_INVALID:
2066 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2067 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2068 break;
2069 }
2070
2071 unreachable("Invalid aux state for CCS_D");
2072 }
2073
2074 static enum isl_aux_op
2075 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2076 enum isl_aux_usage aux_usage,
2077 bool fast_clear_supported)
2078 {
2079 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2080 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2081 aux_usage == ISL_AUX_USAGE_CCS_D ||
2082 aux_usage == ISL_AUX_USAGE_CCS_E);
2083
2084 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2085 assert(fast_clear_supported);
2086
2087 switch (aux_state) {
2088 case ISL_AUX_STATE_CLEAR:
2089 case ISL_AUX_STATE_PARTIAL_CLEAR:
2090 if (fast_clear_supported)
2091 return ISL_AUX_OP_NONE;
2092 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2093 return ISL_AUX_OP_PARTIAL_RESOLVE;
2094 else
2095 return ISL_AUX_OP_FULL_RESOLVE;
2096
2097 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2098 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2099 return ISL_AUX_OP_FULL_RESOLVE;
2100 else if (!fast_clear_supported)
2101 return ISL_AUX_OP_PARTIAL_RESOLVE;
2102 else
2103 return ISL_AUX_OP_NONE;
2104
2105 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2106 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2107 return ISL_AUX_OP_FULL_RESOLVE;
2108 else
2109 return ISL_AUX_OP_NONE;
2110
2111 case ISL_AUX_STATE_PASS_THROUGH:
2112 return ISL_AUX_OP_NONE;
2113
2114 case ISL_AUX_STATE_RESOLVED:
2115 case ISL_AUX_STATE_AUX_INVALID:
2116 break;
2117 }
2118
2119 unreachable("Invalid aux state for CCS_E");
2120 }
2121
2122 static void
2123 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2124 struct intel_mipmap_tree *mt,
2125 uint32_t level, uint32_t layer,
2126 enum isl_aux_usage aux_usage,
2127 bool fast_clear_supported)
2128 {
2129 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2130
2131 enum isl_aux_op resolve_op;
2132 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2133 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2134 fast_clear_supported);
2135 } else {
2136 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2137 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2138 fast_clear_supported);
2139 }
2140
2141 if (resolve_op != ISL_AUX_OP_NONE) {
2142 intel_miptree_check_color_resolve(brw, mt, level, layer);
2143 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2144
2145 switch (resolve_op) {
2146 case ISL_AUX_OP_FULL_RESOLVE:
2147 /* The CCS full resolve operation destroys the CCS and sets it to the
2148 * pass-through state. (You can also think of this as being both a
2149 * resolve and an ambiguate in one operation.)
2150 */
2151 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2152 ISL_AUX_STATE_PASS_THROUGH);
2153 break;
2154
2155 case ISL_AUX_OP_PARTIAL_RESOLVE:
2156 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2157 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2158 break;
2159
2160 default:
2161 unreachable("Invalid resolve op");
2162 }
2163 }
2164 }
2165
2166 static void
2167 intel_miptree_finish_ccs_write(struct brw_context *brw,
2168 struct intel_mipmap_tree *mt,
2169 uint32_t level, uint32_t layer,
2170 enum isl_aux_usage aux_usage)
2171 {
2172 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2173 aux_usage == ISL_AUX_USAGE_CCS_D ||
2174 aux_usage == ISL_AUX_USAGE_CCS_E);
2175
2176 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2177
2178 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2179 switch (aux_state) {
2180 case ISL_AUX_STATE_CLEAR:
2181 case ISL_AUX_STATE_PARTIAL_CLEAR:
2182 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2183 aux_usage == ISL_AUX_USAGE_CCS_D);
2184
2185 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2186 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2187 ISL_AUX_STATE_COMPRESSED_CLEAR);
2188 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2189 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2190 ISL_AUX_STATE_PARTIAL_CLEAR);
2191 }
2192 break;
2193
2194 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2195 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2196 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2197 break; /* Nothing to do */
2198
2199 case ISL_AUX_STATE_PASS_THROUGH:
2200 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2201 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2202 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2203 } else {
2204 /* Nothing to do */
2205 }
2206 break;
2207
2208 case ISL_AUX_STATE_RESOLVED:
2209 case ISL_AUX_STATE_AUX_INVALID:
2210 unreachable("Invalid aux state for CCS_E");
2211 }
2212 } else {
2213 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2214 /* CCS_D is a bit simpler */
2215 switch (aux_state) {
2216 case ISL_AUX_STATE_CLEAR:
2217 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2218 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2219 ISL_AUX_STATE_PARTIAL_CLEAR);
2220 break;
2221
2222 case ISL_AUX_STATE_PARTIAL_CLEAR:
2223 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2224 break; /* Nothing to do */
2225
2226 case ISL_AUX_STATE_PASS_THROUGH:
2227 /* Nothing to do */
2228 break;
2229
2230 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2231 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2232 case ISL_AUX_STATE_RESOLVED:
2233 case ISL_AUX_STATE_AUX_INVALID:
2234 unreachable("Invalid aux state for CCS_D");
2235 }
2236 }
2237 }
2238
2239 static void
2240 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2241 struct intel_mipmap_tree *mt,
2242 uint32_t layer,
2243 enum isl_aux_usage aux_usage,
2244 bool fast_clear_supported)
2245 {
2246 assert(aux_usage == ISL_AUX_USAGE_MCS);
2247
2248 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2249 case ISL_AUX_STATE_CLEAR:
2250 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2251 if (!fast_clear_supported) {
2252 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2253 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2254 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2255 }
2256 break;
2257
2258 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2259 break; /* Nothing to do */
2260
2261 case ISL_AUX_STATE_RESOLVED:
2262 case ISL_AUX_STATE_PASS_THROUGH:
2263 case ISL_AUX_STATE_AUX_INVALID:
2264 case ISL_AUX_STATE_PARTIAL_CLEAR:
2265 unreachable("Invalid aux state for MCS");
2266 }
2267 }
2268
2269 static void
2270 intel_miptree_finish_mcs_write(struct brw_context *brw,
2271 struct intel_mipmap_tree *mt,
2272 uint32_t layer,
2273 enum isl_aux_usage aux_usage)
2274 {
2275 assert(aux_usage == ISL_AUX_USAGE_MCS);
2276
2277 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2278 case ISL_AUX_STATE_CLEAR:
2279 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2280 ISL_AUX_STATE_COMPRESSED_CLEAR);
2281 break;
2282
2283 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2284 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2285 break; /* Nothing to do */
2286
2287 case ISL_AUX_STATE_RESOLVED:
2288 case ISL_AUX_STATE_PASS_THROUGH:
2289 case ISL_AUX_STATE_AUX_INVALID:
2290 case ISL_AUX_STATE_PARTIAL_CLEAR:
2291 unreachable("Invalid aux state for MCS");
2292 }
2293 }
2294
2295 static void
2296 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2297 struct intel_mipmap_tree *mt,
2298 uint32_t level, uint32_t layer,
2299 enum isl_aux_usage aux_usage,
2300 bool fast_clear_supported)
2301 {
2302 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2303
2304 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2305 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2306 case ISL_AUX_STATE_CLEAR:
2307 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2308 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2309 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2310 break;
2311
2312 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2313 if (aux_usage != ISL_AUX_USAGE_HIZ)
2314 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2315 break;
2316
2317 case ISL_AUX_STATE_PASS_THROUGH:
2318 case ISL_AUX_STATE_RESOLVED:
2319 break;
2320
2321 case ISL_AUX_STATE_AUX_INVALID:
2322 if (aux_usage == ISL_AUX_USAGE_HIZ)
2323 hiz_op = ISL_AUX_OP_AMBIGUATE;
2324 break;
2325
2326 case ISL_AUX_STATE_PARTIAL_CLEAR:
2327 unreachable("Invalid HiZ state");
2328 }
2329
2330 if (hiz_op != ISL_AUX_OP_NONE) {
2331 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2332
2333 switch (hiz_op) {
2334 case ISL_AUX_OP_FULL_RESOLVE:
2335 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2336 ISL_AUX_STATE_RESOLVED);
2337 break;
2338
2339 case ISL_AUX_OP_AMBIGUATE:
2340 /* The HiZ resolve operation is actually an ambiguate */
2341 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2342 ISL_AUX_STATE_PASS_THROUGH);
2343 break;
2344
2345 default:
2346 unreachable("Invalid HiZ op");
2347 }
2348 }
2349 }
2350
2351 static void
2352 intel_miptree_finish_hiz_write(struct brw_context *brw,
2353 struct intel_mipmap_tree *mt,
2354 uint32_t level, uint32_t layer,
2355 enum isl_aux_usage aux_usage)
2356 {
2357 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2358
2359 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2360 case ISL_AUX_STATE_CLEAR:
2361 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2362 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2363 ISL_AUX_STATE_COMPRESSED_CLEAR);
2364 break;
2365
2366 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2367 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2368 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2369 break; /* Nothing to do */
2370
2371 case ISL_AUX_STATE_RESOLVED:
2372 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2373 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2374 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2375 } else {
2376 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2377 ISL_AUX_STATE_AUX_INVALID);
2378 }
2379 break;
2380
2381 case ISL_AUX_STATE_PASS_THROUGH:
2382 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2383 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2384 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2385 }
2386 break;
2387
2388 case ISL_AUX_STATE_AUX_INVALID:
2389 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2390 break;
2391
2392 case ISL_AUX_STATE_PARTIAL_CLEAR:
2393 unreachable("Invalid HiZ state");
2394 }
2395 }
2396
2397 void
2398 intel_miptree_prepare_access(struct brw_context *brw,
2399 struct intel_mipmap_tree *mt,
2400 uint32_t start_level, uint32_t num_levels,
2401 uint32_t start_layer, uint32_t num_layers,
2402 enum isl_aux_usage aux_usage,
2403 bool fast_clear_supported)
2404 {
2405 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2406
2407 switch (mt->aux_usage) {
2408 case ISL_AUX_USAGE_NONE:
2409 /* Nothing to do */
2410 break;
2411
2412 case ISL_AUX_USAGE_MCS:
2413 assert(mt->aux_buf);
2414 assert(start_level == 0 && num_levels == 1);
2415 const uint32_t level_layers =
2416 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2417 for (uint32_t a = 0; a < level_layers; a++) {
2418 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2419 aux_usage, fast_clear_supported);
2420 }
2421 break;
2422
2423 case ISL_AUX_USAGE_CCS_D:
2424 case ISL_AUX_USAGE_CCS_E:
2425 if (!mt->aux_buf)
2426 return;
2427
2428 for (uint32_t l = 0; l < num_levels; l++) {
2429 const uint32_t level = start_level + l;
2430 const uint32_t level_layers =
2431 miptree_layer_range_length(mt, level, start_layer, num_layers);
2432 for (uint32_t a = 0; a < level_layers; a++) {
2433 intel_miptree_prepare_ccs_access(brw, mt, level,
2434 start_layer + a,
2435 aux_usage, fast_clear_supported);
2436 }
2437 }
2438 break;
2439
2440 case ISL_AUX_USAGE_HIZ:
2441 assert(mt->aux_buf);
2442 for (uint32_t l = 0; l < num_levels; l++) {
2443 const uint32_t level = start_level + l;
2444 if (!intel_miptree_level_has_hiz(mt, level))
2445 continue;
2446
2447 const uint32_t level_layers =
2448 miptree_layer_range_length(mt, level, start_layer, num_layers);
2449 for (uint32_t a = 0; a < level_layers; a++) {
2450 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2451 aux_usage, fast_clear_supported);
2452 }
2453 }
2454 break;
2455
2456 default:
2457 unreachable("Invalid aux usage");
2458 }
2459 }
2460
2461 void
2462 intel_miptree_finish_write(struct brw_context *brw,
2463 struct intel_mipmap_tree *mt, uint32_t level,
2464 uint32_t start_layer, uint32_t num_layers,
2465 enum isl_aux_usage aux_usage)
2466 {
2467 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2468
2469 switch (mt->aux_usage) {
2470 case ISL_AUX_USAGE_NONE:
2471 /* Nothing to do */
2472 break;
2473
2474 case ISL_AUX_USAGE_MCS:
2475 assert(mt->aux_buf);
2476 for (uint32_t a = 0; a < num_layers; a++) {
2477 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2478 aux_usage);
2479 }
2480 break;
2481
2482 case ISL_AUX_USAGE_CCS_D:
2483 case ISL_AUX_USAGE_CCS_E:
2484 if (!mt->aux_buf)
2485 return;
2486
2487 for (uint32_t a = 0; a < num_layers; a++) {
2488 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2489 aux_usage);
2490 }
2491 break;
2492
2493 case ISL_AUX_USAGE_HIZ:
2494 if (!intel_miptree_level_has_hiz(mt, level))
2495 return;
2496
2497 for (uint32_t a = 0; a < num_layers; a++) {
2498 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2499 aux_usage);
2500 }
2501 break;
2502
2503 default:
2504 unreachable("Invavlid aux usage");
2505 }
2506 }
2507
2508 enum isl_aux_state
2509 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2510 uint32_t level, uint32_t layer)
2511 {
2512 intel_miptree_check_level_layer(mt, level, layer);
2513
2514 if (_mesa_is_format_color_format(mt->format)) {
2515 assert(mt->aux_buf != NULL);
2516 assert(mt->surf.samples == 1 ||
2517 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2518 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2519 unreachable("Cannot get aux state for stencil");
2520 } else {
2521 assert(intel_miptree_level_has_hiz(mt, level));
2522 }
2523
2524 return mt->aux_state[level][layer];
2525 }
2526
2527 void
2528 intel_miptree_set_aux_state(struct brw_context *brw,
2529 struct intel_mipmap_tree *mt, uint32_t level,
2530 uint32_t start_layer, uint32_t num_layers,
2531 enum isl_aux_state aux_state)
2532 {
2533 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2534
2535 if (_mesa_is_format_color_format(mt->format)) {
2536 assert(mt->aux_buf != NULL);
2537 assert(mt->surf.samples == 1 ||
2538 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2539 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2540 unreachable("Cannot get aux state for stencil");
2541 } else {
2542 assert(intel_miptree_level_has_hiz(mt, level));
2543 }
2544
2545 for (unsigned a = 0; a < num_layers; a++) {
2546 if (mt->aux_state[level][start_layer + a] != aux_state) {
2547 mt->aux_state[level][start_layer + a] = aux_state;
2548 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2549 }
2550 }
2551 }
2552
2553 /* On Gen9 color buffers may be compressed by the hardware (lossless
2554 * compression). There are, however, format restrictions and care needs to be
2555 * taken that the sampler engine is capable for re-interpreting a buffer with
2556 * format different the buffer was originally written with.
2557 *
2558 * For example, SRGB formats are not compressible and the sampler engine isn't
2559 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2560 * color buffer needs to be resolved so that the sampling surface can be
2561 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2562 * set).
2563 */
2564 static bool
2565 can_texture_with_ccs(struct brw_context *brw,
2566 struct intel_mipmap_tree *mt,
2567 enum isl_format view_format)
2568 {
2569 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2570 return false;
2571
2572 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2573 mt, view_format)) {
2574 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2575 isl_format_get_layout(view_format)->name,
2576 _mesa_get_format_name(mt->format));
2577 return false;
2578 }
2579
2580 return true;
2581 }
2582
2583 enum isl_aux_usage
2584 intel_miptree_texture_aux_usage(struct brw_context *brw,
2585 struct intel_mipmap_tree *mt,
2586 enum isl_format view_format)
2587 {
2588 switch (mt->aux_usage) {
2589 case ISL_AUX_USAGE_HIZ:
2590 if (intel_miptree_sample_with_hiz(brw, mt))
2591 return ISL_AUX_USAGE_HIZ;
2592 break;
2593
2594 case ISL_AUX_USAGE_MCS:
2595 return ISL_AUX_USAGE_MCS;
2596
2597 case ISL_AUX_USAGE_CCS_D:
2598 case ISL_AUX_USAGE_CCS_E:
2599 if (!mt->aux_buf) {
2600 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2601 return ISL_AUX_USAGE_NONE;
2602 }
2603
2604 /* If we don't have any unresolved color, report an aux usage of
2605 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2606 * aux surface and we can save some bandwidth.
2607 */
2608 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2609 0, INTEL_REMAINING_LAYERS))
2610 return ISL_AUX_USAGE_NONE;
2611
2612 if (can_texture_with_ccs(brw, mt, view_format))
2613 return ISL_AUX_USAGE_CCS_E;
2614 break;
2615
2616 default:
2617 break;
2618 }
2619
2620 return ISL_AUX_USAGE_NONE;
2621 }
2622
2623 static bool
2624 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2625 {
2626 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2627 * values so sRGB curve application was a no-op for all fast-clearable
2628 * formats.
2629 *
2630 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2631 * values, the hardware interprets the floats, not as what would be
2632 * returned from the sampler (or written by the shader), but as being
2633 * between format conversion and sRGB curve application. This means that
2634 * we can switch between sRGB and UNORM without having to whack the clear
2635 * color.
2636 */
2637 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2638 }
2639
2640 void
2641 intel_miptree_prepare_texture(struct brw_context *brw,
2642 struct intel_mipmap_tree *mt,
2643 enum isl_format view_format,
2644 uint32_t start_level, uint32_t num_levels,
2645 uint32_t start_layer, uint32_t num_layers)
2646 {
2647 enum isl_aux_usage aux_usage =
2648 intel_miptree_texture_aux_usage(brw, mt, view_format);
2649 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2650
2651 /* Clear color is specified as ints or floats and the conversion is done by
2652 * the sampler. If we have a texture view, we would have to perform the
2653 * clear color conversion manually. Just disable clear color.
2654 */
2655 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2656 clear_supported = false;
2657
2658 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2659 start_layer, num_layers,
2660 aux_usage, clear_supported);
2661 }
2662
2663 void
2664 intel_miptree_prepare_image(struct brw_context *brw,
2665 struct intel_mipmap_tree *mt)
2666 {
2667 /* The data port doesn't understand any compression */
2668 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2669 0, INTEL_REMAINING_LAYERS,
2670 ISL_AUX_USAGE_NONE, false);
2671 }
2672
2673 enum isl_aux_usage
2674 intel_miptree_render_aux_usage(struct brw_context *brw,
2675 struct intel_mipmap_tree *mt,
2676 enum isl_format render_format,
2677 bool blend_enabled,
2678 bool draw_aux_disabled)
2679 {
2680 struct gen_device_info *devinfo = &brw->screen->devinfo;
2681
2682 if (draw_aux_disabled)
2683 return ISL_AUX_USAGE_NONE;
2684
2685 switch (mt->aux_usage) {
2686 case ISL_AUX_USAGE_MCS:
2687 assert(mt->aux_buf);
2688 return ISL_AUX_USAGE_MCS;
2689
2690 case ISL_AUX_USAGE_CCS_D:
2691 case ISL_AUX_USAGE_CCS_E:
2692 if (!mt->aux_buf) {
2693 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2694 return ISL_AUX_USAGE_NONE;
2695 }
2696
2697 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2698 * formats. However, there are issues with blending where it doesn't
2699 * properly apply the sRGB curve to the clear color when blending.
2700 */
2701 if (devinfo->gen >= 9 && blend_enabled &&
2702 isl_format_is_srgb(render_format) &&
2703 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2704 return ISL_AUX_USAGE_NONE;
2705
2706 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2707 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2708 mt, render_format))
2709 return ISL_AUX_USAGE_CCS_E;
2710
2711 /* Otherwise, we have to fall back to CCS_D */
2712 return ISL_AUX_USAGE_CCS_D;
2713
2714 default:
2715 return ISL_AUX_USAGE_NONE;
2716 }
2717 }
2718
2719 void
2720 intel_miptree_prepare_render(struct brw_context *brw,
2721 struct intel_mipmap_tree *mt, uint32_t level,
2722 uint32_t start_layer, uint32_t layer_count,
2723 enum isl_aux_usage aux_usage)
2724 {
2725 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2726 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2727 }
2728
2729 void
2730 intel_miptree_finish_render(struct brw_context *brw,
2731 struct intel_mipmap_tree *mt, uint32_t level,
2732 uint32_t start_layer, uint32_t layer_count,
2733 enum isl_aux_usage aux_usage)
2734 {
2735 assert(_mesa_is_format_color_format(mt->format));
2736
2737 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2738 aux_usage);
2739 }
2740
2741 void
2742 intel_miptree_prepare_depth(struct brw_context *brw,
2743 struct intel_mipmap_tree *mt, uint32_t level,
2744 uint32_t start_layer, uint32_t layer_count)
2745 {
2746 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2747 mt->aux_usage, mt->aux_buf != NULL);
2748 }
2749
2750 void
2751 intel_miptree_finish_depth(struct brw_context *brw,
2752 struct intel_mipmap_tree *mt, uint32_t level,
2753 uint32_t start_layer, uint32_t layer_count,
2754 bool depth_written)
2755 {
2756 if (depth_written) {
2757 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2758 mt->aux_buf != NULL);
2759 }
2760 }
2761
2762 void
2763 intel_miptree_prepare_external(struct brw_context *brw,
2764 struct intel_mipmap_tree *mt)
2765 {
2766 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2767 bool supports_fast_clear = false;
2768
2769 const struct isl_drm_modifier_info *mod_info =
2770 isl_drm_modifier_get_info(mt->drm_modifier);
2771
2772 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2773 /* CCS_E is the only supported aux for external images and it's only
2774 * supported on very simple images.
2775 */
2776 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2777 assert(_mesa_is_format_color_format(mt->format));
2778 assert(mt->first_level == 0 && mt->last_level == 0);
2779 assert(mt->surf.logical_level0_px.depth == 1);
2780 assert(mt->surf.logical_level0_px.array_len == 1);
2781 assert(mt->surf.samples == 1);
2782 assert(mt->aux_buf != NULL);
2783
2784 aux_usage = mod_info->aux_usage;
2785 supports_fast_clear = mod_info->supports_clear_color;
2786 }
2787
2788 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2789 0, INTEL_REMAINING_LAYERS,
2790 aux_usage, supports_fast_clear);
2791 }
2792
2793 void
2794 intel_miptree_finish_external(struct brw_context *brw,
2795 struct intel_mipmap_tree *mt)
2796 {
2797 if (!mt->aux_buf)
2798 return;
2799
2800 /* We don't know the actual aux state of the aux surface. The previous
2801 * owner could have given it to us in a number of different states.
2802 * Because we don't know the aux state, we reset the aux state to the
2803 * least common denominator of possible valid states.
2804 */
2805 enum isl_aux_state default_aux_state =
2806 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2807 assert(mt->last_level == mt->first_level);
2808 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2809 default_aux_state);
2810 }
2811
2812 /**
2813 * Make it possible to share the BO backing the given miptree with another
2814 * process or another miptree.
2815 *
2816 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2817 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2818 * ensure that no MCS buffer gets allocated in the future.
2819 *
2820 * HiZ is similarly unsafe with shared buffers.
2821 */
2822 void
2823 intel_miptree_make_shareable(struct brw_context *brw,
2824 struct intel_mipmap_tree *mt)
2825 {
2826 /* MCS buffers are also used for multisample buffers, but we can't resolve
2827 * away a multisample MCS buffer because it's an integral part of how the
2828 * pixel data is stored. Fortunately this code path should never be
2829 * reached for multisample buffers.
2830 */
2831 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2832 mt->surf.samples == 1);
2833
2834 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2835 0, INTEL_REMAINING_LAYERS,
2836 ISL_AUX_USAGE_NONE, false);
2837
2838 if (mt->aux_buf) {
2839 intel_miptree_aux_buffer_free(mt->aux_buf);
2840 mt->aux_buf = NULL;
2841
2842 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2843 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2844 mt->level[l].has_hiz = false;
2845 }
2846
2847 free(mt->aux_state);
2848 mt->aux_state = NULL;
2849 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2850 }
2851
2852 mt->aux_usage = ISL_AUX_USAGE_NONE;
2853 mt->supports_fast_clear = false;
2854 }
2855
2856
2857 /**
2858 * \brief Get pointer offset into stencil buffer.
2859 *
2860 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2861 * must decode the tile's layout in software.
2862 *
2863 * See
2864 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2865 * Format.
2866 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2867 *
2868 * Even though the returned offset is always positive, the return type is
2869 * signed due to
2870 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2871 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2872 */
2873 static intptr_t
2874 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2875 {
2876 uint32_t tile_size = 4096;
2877 uint32_t tile_width = 64;
2878 uint32_t tile_height = 64;
2879 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2880
2881 uint32_t tile_x = x / tile_width;
2882 uint32_t tile_y = y / tile_height;
2883
2884 /* The byte's address relative to the tile's base addres. */
2885 uint32_t byte_x = x % tile_width;
2886 uint32_t byte_y = y % tile_height;
2887
2888 uintptr_t u = tile_y * row_size
2889 + tile_x * tile_size
2890 + 512 * (byte_x / 8)
2891 + 64 * (byte_y / 8)
2892 + 32 * ((byte_y / 4) % 2)
2893 + 16 * ((byte_x / 4) % 2)
2894 + 8 * ((byte_y / 2) % 2)
2895 + 4 * ((byte_x / 2) % 2)
2896 + 2 * (byte_y % 2)
2897 + 1 * (byte_x % 2);
2898
2899 if (swizzled) {
2900 /* adjust for bit6 swizzling */
2901 if (((byte_x / 8) % 2) == 1) {
2902 if (((byte_y / 8) % 2) == 0) {
2903 u += 64;
2904 } else {
2905 u -= 64;
2906 }
2907 }
2908 }
2909
2910 return u;
2911 }
2912
2913 void
2914 intel_miptree_updownsample(struct brw_context *brw,
2915 struct intel_mipmap_tree *src,
2916 struct intel_mipmap_tree *dst)
2917 {
2918 unsigned src_w = src->surf.logical_level0_px.width;
2919 unsigned src_h = src->surf.logical_level0_px.height;
2920 unsigned dst_w = dst->surf.logical_level0_px.width;
2921 unsigned dst_h = dst->surf.logical_level0_px.height;
2922
2923 brw_blorp_blit_miptrees(brw,
2924 src, 0 /* level */, 0 /* layer */,
2925 src->format, SWIZZLE_XYZW,
2926 dst, 0 /* level */, 0 /* layer */, dst->format,
2927 0, 0, src_w, src_h,
2928 0, 0, dst_w, dst_h,
2929 GL_NEAREST, false, false /*mirror x, y*/,
2930 false, false);
2931
2932 if (src->stencil_mt) {
2933 src_w = src->stencil_mt->surf.logical_level0_px.width;
2934 src_h = src->stencil_mt->surf.logical_level0_px.height;
2935 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2936 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2937
2938 brw_blorp_blit_miptrees(brw,
2939 src->stencil_mt, 0 /* level */, 0 /* layer */,
2940 src->stencil_mt->format, SWIZZLE_XYZW,
2941 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2942 dst->stencil_mt->format,
2943 0, 0, src_w, src_h,
2944 0, 0, dst_w, dst_h,
2945 GL_NEAREST, false, false /*mirror x, y*/,
2946 false, false /* decode/encode srgb */);
2947 }
2948 }
2949
2950 void
2951 intel_update_r8stencil(struct brw_context *brw,
2952 struct intel_mipmap_tree *mt)
2953 {
2954 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2955
2956 assert(devinfo->gen >= 7);
2957 struct intel_mipmap_tree *src =
2958 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2959 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2960 return;
2961
2962 assert(src->surf.size > 0);
2963
2964 if (!mt->r8stencil_mt) {
2965 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2966 mt->r8stencil_mt = make_surface(
2967 brw,
2968 src->target,
2969 MESA_FORMAT_R_UINT8,
2970 src->first_level, src->last_level,
2971 src->surf.logical_level0_px.width,
2972 src->surf.logical_level0_px.height,
2973 src->surf.dim == ISL_SURF_DIM_3D ?
2974 src->surf.logical_level0_px.depth :
2975 src->surf.logical_level0_px.array_len,
2976 src->surf.samples,
2977 ISL_TILING_Y0_BIT,
2978 ISL_SURF_USAGE_TEXTURE_BIT,
2979 BO_ALLOC_BUSY, 0, NULL);
2980 assert(mt->r8stencil_mt);
2981 }
2982
2983 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2984
2985 for (int level = src->first_level; level <= src->last_level; level++) {
2986 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2987 minify(src->surf.phys_level0_sa.depth, level) :
2988 src->surf.phys_level0_sa.array_len;
2989
2990 for (unsigned layer = 0; layer < depth; layer++) {
2991 brw_blorp_copy_miptrees(brw,
2992 src, level, layer,
2993 dst, level, layer,
2994 0, 0, 0, 0,
2995 minify(src->surf.logical_level0_px.width,
2996 level),
2997 minify(src->surf.logical_level0_px.height,
2998 level));
2999 }
3000 }
3001
3002 brw_cache_flush_for_read(brw, dst->bo);
3003 src->r8stencil_needs_update = false;
3004 }
3005
3006 static void *
3007 intel_miptree_map_raw(struct brw_context *brw,
3008 struct intel_mipmap_tree *mt,
3009 GLbitfield mode)
3010 {
3011 struct brw_bo *bo = mt->bo;
3012
3013 if (brw_batch_references(&brw->batch, bo))
3014 intel_batchbuffer_flush(brw);
3015
3016 return brw_bo_map(brw, bo, mode);
3017 }
3018
3019 static void
3020 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3021 {
3022 brw_bo_unmap(mt->bo);
3023 }
3024
3025 static void
3026 intel_miptree_unmap_gtt(struct brw_context *brw,
3027 struct intel_mipmap_tree *mt,
3028 struct intel_miptree_map *map,
3029 unsigned int level, unsigned int slice)
3030 {
3031 intel_miptree_unmap_raw(mt);
3032 }
3033
3034 static void
3035 intel_miptree_map_gtt(struct brw_context *brw,
3036 struct intel_mipmap_tree *mt,
3037 struct intel_miptree_map *map,
3038 unsigned int level, unsigned int slice)
3039 {
3040 unsigned int bw, bh;
3041 void *base;
3042 unsigned int image_x, image_y;
3043 intptr_t x = map->x;
3044 intptr_t y = map->y;
3045
3046 /* For compressed formats, the stride is the number of bytes per
3047 * row of blocks. intel_miptree_get_image_offset() already does
3048 * the divide.
3049 */
3050 _mesa_get_format_block_size(mt->format, &bw, &bh);
3051 assert(y % bh == 0);
3052 assert(x % bw == 0);
3053 y /= bh;
3054 x /= bw;
3055
3056 base = intel_miptree_map_raw(brw, mt, map->mode);
3057
3058 if (base == NULL)
3059 map->ptr = NULL;
3060 else {
3061 base += mt->offset;
3062
3063 /* Note that in the case of cube maps, the caller must have passed the
3064 * slice number referencing the face.
3065 */
3066 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3067 x += image_x;
3068 y += image_y;
3069
3070 map->stride = mt->surf.row_pitch;
3071 map->ptr = base + y * map->stride + x * mt->cpp;
3072 }
3073
3074 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3075 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3076 map->x, map->y, map->w, map->h,
3077 mt, _mesa_get_format_name(mt->format),
3078 x, y, map->ptr, map->stride);
3079
3080 map->unmap = intel_miptree_unmap_gtt;
3081 }
3082
3083 static void
3084 intel_miptree_unmap_blit(struct brw_context *brw,
3085 struct intel_mipmap_tree *mt,
3086 struct intel_miptree_map *map,
3087 unsigned int level,
3088 unsigned int slice)
3089 {
3090 struct gl_context *ctx = &brw->ctx;
3091
3092 intel_miptree_unmap_raw(map->linear_mt);
3093
3094 if (map->mode & GL_MAP_WRITE_BIT) {
3095 bool ok = intel_miptree_copy(brw,
3096 map->linear_mt, 0, 0, 0, 0,
3097 mt, level, slice, map->x, map->y,
3098 map->w, map->h);
3099 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3100 }
3101
3102 intel_miptree_release(&map->linear_mt);
3103 }
3104
3105 static void
3106 intel_miptree_map_blit(struct brw_context *brw,
3107 struct intel_mipmap_tree *mt,
3108 struct intel_miptree_map *map,
3109 unsigned int level, unsigned int slice)
3110 {
3111 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3112 /* first_level */ 0,
3113 /* last_level */ 0,
3114 map->w, map->h, 1,
3115 /* samples */ 1,
3116 MIPTREE_CREATE_LINEAR);
3117
3118 if (!map->linear_mt) {
3119 fprintf(stderr, "Failed to allocate blit temporary\n");
3120 goto fail;
3121 }
3122 map->stride = map->linear_mt->surf.row_pitch;
3123
3124 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3125 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3126 * invalidate is set, since we'll be writing the whole rectangle from our
3127 * temporary buffer back out.
3128 */
3129 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3130 if (!intel_miptree_copy(brw,
3131 mt, level, slice, map->x, map->y,
3132 map->linear_mt, 0, 0, 0, 0,
3133 map->w, map->h)) {
3134 fprintf(stderr, "Failed to blit\n");
3135 goto fail;
3136 }
3137 }
3138
3139 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3140
3141 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3142 map->x, map->y, map->w, map->h,
3143 mt, _mesa_get_format_name(mt->format),
3144 level, slice, map->ptr, map->stride);
3145
3146 map->unmap = intel_miptree_unmap_blit;
3147 return;
3148
3149 fail:
3150 intel_miptree_release(&map->linear_mt);
3151 map->ptr = NULL;
3152 map->stride = 0;
3153 }
3154
3155 /**
3156 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3157 */
3158 #if defined(USE_SSE41)
3159 static void
3160 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3161 struct intel_mipmap_tree *mt,
3162 struct intel_miptree_map *map,
3163 unsigned int level,
3164 unsigned int slice)
3165 {
3166 _mesa_align_free(map->buffer);
3167 map->buffer = NULL;
3168 map->ptr = NULL;
3169 }
3170
3171 static void
3172 intel_miptree_map_movntdqa(struct brw_context *brw,
3173 struct intel_mipmap_tree *mt,
3174 struct intel_miptree_map *map,
3175 unsigned int level, unsigned int slice)
3176 {
3177 assert(map->mode & GL_MAP_READ_BIT);
3178 assert(!(map->mode & GL_MAP_WRITE_BIT));
3179
3180 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3181 map->x, map->y, map->w, map->h,
3182 mt, _mesa_get_format_name(mt->format),
3183 level, slice, map->ptr, map->stride);
3184
3185 /* Map the original image */
3186 uint32_t image_x;
3187 uint32_t image_y;
3188 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3189 image_x += map->x;
3190 image_y += map->y;
3191
3192 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3193 if (!src)
3194 return;
3195
3196 src += mt->offset;
3197
3198 src += image_y * mt->surf.row_pitch;
3199 src += image_x * mt->cpp;
3200
3201 /* Due to the pixel offsets for the particular image being mapped, our
3202 * src pointer may not be 16-byte aligned. However, if the pitch is
3203 * divisible by 16, then the amount by which it's misaligned will remain
3204 * consistent from row to row.
3205 */
3206 assert((mt->surf.row_pitch % 16) == 0);
3207 const int misalignment = ((uintptr_t) src) & 15;
3208
3209 /* Create an untiled temporary buffer for the mapping. */
3210 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3211
3212 map->stride = ALIGN(misalignment + width_bytes, 16);
3213
3214 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3215 /* Offset the destination so it has the same misalignment as src. */
3216 map->ptr = map->buffer + misalignment;
3217
3218 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3219
3220 for (uint32_t y = 0; y < map->h; y++) {
3221 void *dst_ptr = map->ptr + y * map->stride;
3222 void *src_ptr = src + y * mt->surf.row_pitch;
3223
3224 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3225 }
3226
3227 intel_miptree_unmap_raw(mt);
3228
3229 map->unmap = intel_miptree_unmap_movntdqa;
3230 }
3231 #endif
3232
3233 static void
3234 intel_miptree_unmap_s8(struct brw_context *brw,
3235 struct intel_mipmap_tree *mt,
3236 struct intel_miptree_map *map,
3237 unsigned int level,
3238 unsigned int slice)
3239 {
3240 if (map->mode & GL_MAP_WRITE_BIT) {
3241 unsigned int image_x, image_y;
3242 uint8_t *untiled_s8_map = map->ptr;
3243 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3244
3245 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3246
3247 for (uint32_t y = 0; y < map->h; y++) {
3248 for (uint32_t x = 0; x < map->w; x++) {
3249 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3250 image_x + x + map->x,
3251 image_y + y + map->y,
3252 brw->has_swizzling);
3253 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3254 }
3255 }
3256
3257 intel_miptree_unmap_raw(mt);
3258 }
3259
3260 free(map->buffer);
3261 }
3262
3263 static void
3264 intel_miptree_map_s8(struct brw_context *brw,
3265 struct intel_mipmap_tree *mt,
3266 struct intel_miptree_map *map,
3267 unsigned int level, unsigned int slice)
3268 {
3269 map->stride = map->w;
3270 map->buffer = map->ptr = malloc(map->stride * map->h);
3271 if (!map->buffer)
3272 return;
3273
3274 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3275 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3276 * invalidate is set, since we'll be writing the whole rectangle from our
3277 * temporary buffer back out.
3278 */
3279 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3280 uint8_t *untiled_s8_map = map->ptr;
3281 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3282 unsigned int image_x, image_y;
3283
3284 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3285
3286 for (uint32_t y = 0; y < map->h; y++) {
3287 for (uint32_t x = 0; x < map->w; x++) {
3288 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3289 x + image_x + map->x,
3290 y + image_y + map->y,
3291 brw->has_swizzling);
3292 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3293 }
3294 }
3295
3296 intel_miptree_unmap_raw(mt);
3297
3298 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3299 map->x, map->y, map->w, map->h,
3300 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3301 } else {
3302 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3303 map->x, map->y, map->w, map->h,
3304 mt, map->ptr, map->stride);
3305 }
3306
3307 map->unmap = intel_miptree_unmap_s8;
3308 }
3309
3310 static void
3311 intel_miptree_unmap_etc(struct brw_context *brw,
3312 struct intel_mipmap_tree *mt,
3313 struct intel_miptree_map *map,
3314 unsigned int level,
3315 unsigned int slice)
3316 {
3317 uint32_t image_x;
3318 uint32_t image_y;
3319 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3320
3321 image_x += map->x;
3322 image_y += map->y;
3323
3324 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3325 + image_y * mt->surf.row_pitch
3326 + image_x * mt->cpp;
3327
3328 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3329 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3330 map->ptr, map->stride,
3331 map->w, map->h);
3332 else
3333 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3334 map->ptr, map->stride,
3335 map->w, map->h, mt->etc_format);
3336
3337 intel_miptree_unmap_raw(mt);
3338 free(map->buffer);
3339 }
3340
3341 static void
3342 intel_miptree_map_etc(struct brw_context *brw,
3343 struct intel_mipmap_tree *mt,
3344 struct intel_miptree_map *map,
3345 unsigned int level,
3346 unsigned int slice)
3347 {
3348 assert(mt->etc_format != MESA_FORMAT_NONE);
3349 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3350 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3351 }
3352
3353 assert(map->mode & GL_MAP_WRITE_BIT);
3354 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3355
3356 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3357 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3358 map->w, map->h, 1));
3359 map->ptr = map->buffer;
3360 map->unmap = intel_miptree_unmap_etc;
3361 }
3362
3363 /**
3364 * Mapping functions for packed depth/stencil miptrees backed by real separate
3365 * miptrees for depth and stencil.
3366 *
3367 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3368 * separate from the depth buffer. Yet at the GL API level, we have to expose
3369 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3370 * be able to map that memory for texture storage and glReadPixels-type
3371 * operations. We give Mesa core that access by mallocing a temporary and
3372 * copying the data between the actual backing store and the temporary.
3373 */
3374 static void
3375 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3376 struct intel_mipmap_tree *mt,
3377 struct intel_miptree_map *map,
3378 unsigned int level,
3379 unsigned int slice)
3380 {
3381 struct intel_mipmap_tree *z_mt = mt;
3382 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3383 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3384
3385 if (map->mode & GL_MAP_WRITE_BIT) {
3386 uint32_t *packed_map = map->ptr;
3387 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3388 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3389 unsigned int s_image_x, s_image_y;
3390 unsigned int z_image_x, z_image_y;
3391
3392 intel_miptree_get_image_offset(s_mt, level, slice,
3393 &s_image_x, &s_image_y);
3394 intel_miptree_get_image_offset(z_mt, level, slice,
3395 &z_image_x, &z_image_y);
3396
3397 for (uint32_t y = 0; y < map->h; y++) {
3398 for (uint32_t x = 0; x < map->w; x++) {
3399 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3400 x + s_image_x + map->x,
3401 y + s_image_y + map->y,
3402 brw->has_swizzling);
3403 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3404 (z_mt->surf.row_pitch / 4) +
3405 (x + z_image_x + map->x));
3406
3407 if (map_z32f_x24s8) {
3408 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3409 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3410 } else {
3411 uint32_t packed = packed_map[y * map->w + x];
3412 s_map[s_offset] = packed >> 24;
3413 z_map[z_offset] = packed;
3414 }
3415 }
3416 }
3417
3418 intel_miptree_unmap_raw(s_mt);
3419 intel_miptree_unmap_raw(z_mt);
3420
3421 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3422 __func__,
3423 map->x, map->y, map->w, map->h,
3424 z_mt, _mesa_get_format_name(z_mt->format),
3425 map->x + z_image_x, map->y + z_image_y,
3426 s_mt, map->x + s_image_x, map->y + s_image_y,
3427 map->ptr, map->stride);
3428 }
3429
3430 free(map->buffer);
3431 }
3432
3433 static void
3434 intel_miptree_map_depthstencil(struct brw_context *brw,
3435 struct intel_mipmap_tree *mt,
3436 struct intel_miptree_map *map,
3437 unsigned int level, unsigned int slice)
3438 {
3439 struct intel_mipmap_tree *z_mt = mt;
3440 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3441 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3442 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3443
3444 map->stride = map->w * packed_bpp;
3445 map->buffer = map->ptr = malloc(map->stride * map->h);
3446 if (!map->buffer)
3447 return;
3448
3449 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3450 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3451 * invalidate is set, since we'll be writing the whole rectangle from our
3452 * temporary buffer back out.
3453 */
3454 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3455 uint32_t *packed_map = map->ptr;
3456 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3457 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3458 unsigned int s_image_x, s_image_y;
3459 unsigned int z_image_x, z_image_y;
3460
3461 intel_miptree_get_image_offset(s_mt, level, slice,
3462 &s_image_x, &s_image_y);
3463 intel_miptree_get_image_offset(z_mt, level, slice,
3464 &z_image_x, &z_image_y);
3465
3466 for (uint32_t y = 0; y < map->h; y++) {
3467 for (uint32_t x = 0; x < map->w; x++) {
3468 int map_x = map->x + x, map_y = map->y + y;
3469 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3470 map_x + s_image_x,
3471 map_y + s_image_y,
3472 brw->has_swizzling);
3473 ptrdiff_t z_offset = ((map_y + z_image_y) *
3474 (z_mt->surf.row_pitch / 4) +
3475 (map_x + z_image_x));
3476 uint8_t s = s_map[s_offset];
3477 uint32_t z = z_map[z_offset];
3478
3479 if (map_z32f_x24s8) {
3480 packed_map[(y * map->w + x) * 2 + 0] = z;
3481 packed_map[(y * map->w + x) * 2 + 1] = s;
3482 } else {
3483 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3484 }
3485 }
3486 }
3487
3488 intel_miptree_unmap_raw(s_mt);
3489 intel_miptree_unmap_raw(z_mt);
3490
3491 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3492 __func__,
3493 map->x, map->y, map->w, map->h,
3494 z_mt, map->x + z_image_x, map->y + z_image_y,
3495 s_mt, map->x + s_image_x, map->y + s_image_y,
3496 map->ptr, map->stride);
3497 } else {
3498 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3499 map->x, map->y, map->w, map->h,
3500 mt, map->ptr, map->stride);
3501 }
3502
3503 map->unmap = intel_miptree_unmap_depthstencil;
3504 }
3505
3506 /**
3507 * Create and attach a map to the miptree at (level, slice). Return the
3508 * attached map.
3509 */
3510 static struct intel_miptree_map*
3511 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3512 unsigned int level,
3513 unsigned int slice,
3514 unsigned int x,
3515 unsigned int y,
3516 unsigned int w,
3517 unsigned int h,
3518 GLbitfield mode)
3519 {
3520 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3521
3522 if (!map)
3523 return NULL;
3524
3525 assert(mt->level[level].slice[slice].map == NULL);
3526 mt->level[level].slice[slice].map = map;
3527
3528 map->mode = mode;
3529 map->x = x;
3530 map->y = y;
3531 map->w = w;
3532 map->h = h;
3533
3534 return map;
3535 }
3536
3537 /**
3538 * Release the map at (level, slice).
3539 */
3540 static void
3541 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3542 unsigned int level,
3543 unsigned int slice)
3544 {
3545 struct intel_miptree_map **map;
3546
3547 map = &mt->level[level].slice[slice].map;
3548 free(*map);
3549 *map = NULL;
3550 }
3551
3552 static bool
3553 can_blit_slice(struct intel_mipmap_tree *mt,
3554 unsigned int level, unsigned int slice)
3555 {
3556 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3557 if (mt->surf.row_pitch >= 32768)
3558 return false;
3559
3560 return true;
3561 }
3562
3563 static bool
3564 use_intel_mipree_map_blit(struct brw_context *brw,
3565 struct intel_mipmap_tree *mt,
3566 GLbitfield mode,
3567 unsigned int level,
3568 unsigned int slice)
3569 {
3570 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3571
3572 if (devinfo->has_llc &&
3573 /* It's probably not worth swapping to the blit ring because of
3574 * all the overhead involved.
3575 */
3576 !(mode & GL_MAP_WRITE_BIT) &&
3577 !mt->compressed &&
3578 (mt->surf.tiling == ISL_TILING_X ||
3579 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3580 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3581 /* Fast copy blit on skl+ supports all tiling formats. */
3582 devinfo->gen >= 9) &&
3583 can_blit_slice(mt, level, slice))
3584 return true;
3585
3586 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3587 mt->bo->size >= brw->max_gtt_map_object_size) {
3588 assert(can_blit_slice(mt, level, slice));
3589 return true;
3590 }
3591
3592 return false;
3593 }
3594
3595 /**
3596 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3597 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3598 * arithmetic overflow.
3599 *
3600 * If you call this function and use \a out_stride, then you're doing pointer
3601 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3602 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3603 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3604 * which usually have type uint32_t or GLuint.
3605 */
3606 void
3607 intel_miptree_map(struct brw_context *brw,
3608 struct intel_mipmap_tree *mt,
3609 unsigned int level,
3610 unsigned int slice,
3611 unsigned int x,
3612 unsigned int y,
3613 unsigned int w,
3614 unsigned int h,
3615 GLbitfield mode,
3616 void **out_ptr,
3617 ptrdiff_t *out_stride)
3618 {
3619 struct intel_miptree_map *map;
3620
3621 assert(mt->surf.samples == 1);
3622
3623 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3624 if (!map){
3625 *out_ptr = NULL;
3626 *out_stride = 0;
3627 return;
3628 }
3629
3630 intel_miptree_access_raw(brw, mt, level, slice,
3631 map->mode & GL_MAP_WRITE_BIT);
3632
3633 if (mt->format == MESA_FORMAT_S_UINT8) {
3634 intel_miptree_map_s8(brw, mt, map, level, slice);
3635 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3636 !(mode & BRW_MAP_DIRECT_BIT)) {
3637 intel_miptree_map_etc(brw, mt, map, level, slice);
3638 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3639 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3640 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3641 intel_miptree_map_blit(brw, mt, map, level, slice);
3642 #if defined(USE_SSE41)
3643 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3644 !mt->compressed && cpu_has_sse4_1 &&
3645 (mt->surf.row_pitch % 16 == 0)) {
3646 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3647 #endif
3648 } else {
3649 intel_miptree_map_gtt(brw, mt, map, level, slice);
3650 }
3651
3652 *out_ptr = map->ptr;
3653 *out_stride = map->stride;
3654
3655 if (map->ptr == NULL)
3656 intel_miptree_release_map(mt, level, slice);
3657 }
3658
3659 void
3660 intel_miptree_unmap(struct brw_context *brw,
3661 struct intel_mipmap_tree *mt,
3662 unsigned int level,
3663 unsigned int slice)
3664 {
3665 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3666
3667 assert(mt->surf.samples == 1);
3668
3669 if (!map)
3670 return;
3671
3672 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3673 mt, _mesa_get_format_name(mt->format), level, slice);
3674
3675 if (map->unmap)
3676 map->unmap(brw, mt, map, level, slice);
3677
3678 intel_miptree_release_map(mt, level, slice);
3679 }
3680
3681 enum isl_surf_dim
3682 get_isl_surf_dim(GLenum target)
3683 {
3684 switch (target) {
3685 case GL_TEXTURE_1D:
3686 case GL_TEXTURE_1D_ARRAY:
3687 return ISL_SURF_DIM_1D;
3688
3689 case GL_TEXTURE_2D:
3690 case GL_TEXTURE_2D_ARRAY:
3691 case GL_TEXTURE_RECTANGLE:
3692 case GL_TEXTURE_CUBE_MAP:
3693 case GL_TEXTURE_CUBE_MAP_ARRAY:
3694 case GL_TEXTURE_2D_MULTISAMPLE:
3695 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3696 case GL_TEXTURE_EXTERNAL_OES:
3697 return ISL_SURF_DIM_2D;
3698
3699 case GL_TEXTURE_3D:
3700 return ISL_SURF_DIM_3D;
3701 }
3702
3703 unreachable("Invalid texture target");
3704 }
3705
3706 enum isl_dim_layout
3707 get_isl_dim_layout(const struct gen_device_info *devinfo,
3708 enum isl_tiling tiling, GLenum target)
3709 {
3710 switch (target) {
3711 case GL_TEXTURE_1D:
3712 case GL_TEXTURE_1D_ARRAY:
3713 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3714 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3715
3716 case GL_TEXTURE_2D:
3717 case GL_TEXTURE_2D_ARRAY:
3718 case GL_TEXTURE_RECTANGLE:
3719 case GL_TEXTURE_2D_MULTISAMPLE:
3720 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3721 case GL_TEXTURE_EXTERNAL_OES:
3722 return ISL_DIM_LAYOUT_GEN4_2D;
3723
3724 case GL_TEXTURE_CUBE_MAP:
3725 case GL_TEXTURE_CUBE_MAP_ARRAY:
3726 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3727 ISL_DIM_LAYOUT_GEN4_2D);
3728
3729 case GL_TEXTURE_3D:
3730 return (devinfo->gen >= 9 ?
3731 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3732 }
3733
3734 unreachable("Invalid texture target");
3735 }
3736
3737 bool
3738 intel_miptree_set_clear_color(struct brw_context *brw,
3739 struct intel_mipmap_tree *mt,
3740 union isl_color_value clear_color)
3741 {
3742 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3743 mt->fast_clear_color = clear_color;
3744 if (mt->aux_buf->clear_color_bo) {
3745 /* We can't update the clear color while the hardware is still using
3746 * the previous one for a resolve or sampling from it. Make sure that
3747 * there are no pending commands at this point.
3748 */
3749 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3750 for (int i = 0; i < 4; i++) {
3751 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3752 mt->aux_buf->clear_color_offset + i * 4,
3753 mt->fast_clear_color.u32[i]);
3754 }
3755 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3756 }
3757 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3758 return true;
3759 }
3760 return false;
3761 }
3762
3763 union isl_color_value
3764 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3765 const struct intel_mipmap_tree *mt,
3766 enum isl_format view_format, bool sampling,
3767 struct brw_bo **clear_color_bo,
3768 uint32_t *clear_color_offset)
3769 {
3770 assert(mt->aux_buf);
3771
3772 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3773 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3774 * we switch to using the inline clear color and do the sRGB color
3775 * conversion process defined in the OpenGL spec. The red, green, and
3776 * blue channels take part in gamma correction, while the alpha channel
3777 * is unchanged.
3778 */
3779 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3780 for (unsigned i = 0; i < 3; i++) {
3781 srgb_decoded_value.f32[i] =
3782 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3783 }
3784 *clear_color_bo = 0;
3785 *clear_color_offset = 0;
3786 return srgb_decoded_value;
3787 } else {
3788 *clear_color_bo = mt->aux_buf->clear_color_bo;
3789 *clear_color_offset = mt->aux_buf->clear_color_offset;
3790 return mt->fast_clear_color;
3791 }
3792 }