i965: fix missing break
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_tex.h"
32 #include "intel_blit.h"
33 #include "intel_fbo.h"
34
35 #include "brw_blorp.h"
36 #include "brw_context.h"
37 #include "brw_state.h"
38
39 #include "main/enums.h"
40 #include "main/fbobject.h"
41 #include "main/formats.h"
42 #include "main/glformats.h"
43 #include "main/texcompress_etc.h"
44 #include "main/teximage.h"
45 #include "main/streaming-load-memcpy.h"
46 #include "x86/common_x86_asm.h"
47
48 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
49
50 static void *intel_miptree_map_raw(struct brw_context *brw,
51 struct intel_mipmap_tree *mt,
52 GLbitfield mode);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 enum intel_aux_disable aux_disable)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104 bool
105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106 unsigned tiling)
107 {
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (brw->gen >= 9)
116 return tiling == I915_TILING_Y;
117 else if (brw->gen >= 7)
118 return tiling != I915_TILING_NONE;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 bool
145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 /* MCS support does not exist prior to Gen7 */
149 if (brw->gen < 7)
150 return false;
151
152 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153 return false;
154
155 /* This function applies only to non-multisampled render targets. */
156 if (mt->num_samples > 1)
157 return false;
158
159 /* MCS is only supported for color buffers */
160 switch (_mesa_get_format_base_format(mt->format)) {
161 case GL_DEPTH_COMPONENT:
162 case GL_DEPTH_STENCIL:
163 case GL_STENCIL_INDEX:
164 return false;
165 }
166
167 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168 return false;
169
170 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171 const bool arrayed = mt->physical_depth0 != 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->num_samples <= 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (brw->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->format_supported_as_render_target[mt->format])
208 return false;
209
210 if (brw->gen >= 9) {
211 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212 const enum isl_format isl_format =
213 brw_isl_format_for_mesa_format(linear_format);
214 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
215 } else
216 return true;
217 }
218
219 /* On Gen9 support for color buffer compression was extended to single
220 * sampled surfaces. This is a helper considering both auxiliary buffer
221 * type and number of samples telling if the given miptree represents
222 * the new single sampled case - also called lossless compression.
223 */
224 bool
225 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
226 const struct intel_mipmap_tree *mt)
227 {
228 /* Only available from Gen9 onwards. */
229 if (brw->gen < 9)
230 return false;
231
232 /* Compression always requires auxiliary buffer. */
233 if (!mt->mcs_buf)
234 return false;
235
236 /* Single sample compression is represented re-using msaa compression
237 * layout type: "Compressed Multisampled Surfaces".
238 */
239 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
240 return false;
241
242 /* And finally distinguish between msaa and single sample case. */
243 return mt->num_samples <= 1;
244 }
245
246 bool
247 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
248 const struct intel_mipmap_tree *mt)
249 {
250 /* For now compression is only enabled for integer formats even though
251 * there exist supported floating point formats also. This is a heuristic
252 * decision based on current public benchmarks. In none of the cases these
253 * formats provided any improvement but a few cases were seen to regress.
254 * Hence these are left to to be enabled in the future when they are known
255 * to improve things.
256 */
257 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
258 return false;
259
260 /* Fast clear mechanism and lossless compression go hand in hand. */
261 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
262 return false;
263
264 /* Fast clear can be also used to clear srgb surfaces by using equivalent
265 * linear format. This trick, however, can't be extended to be used with
266 * lossless compression and therefore a check is needed to see if the format
267 * really is linear.
268 */
269 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
270 }
271
272 /**
273 * Determine depth format corresponding to a depth+stencil format,
274 * for separate stencil.
275 */
276 mesa_format
277 intel_depth_format_for_depthstencil_format(mesa_format format) {
278 switch (format) {
279 case MESA_FORMAT_Z24_UNORM_S8_UINT:
280 return MESA_FORMAT_Z24_UNORM_X8_UINT;
281 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
282 return MESA_FORMAT_Z_FLOAT32;
283 default:
284 return format;
285 }
286 }
287
288
289 /**
290 * @param for_bo Indicates that the caller is
291 * intel_miptree_create_for_bo(). If true, then do not create
292 * \c stencil_mt.
293 */
294 static struct intel_mipmap_tree *
295 intel_miptree_create_layout(struct brw_context *brw,
296 GLenum target,
297 mesa_format format,
298 GLuint first_level,
299 GLuint last_level,
300 GLuint width0,
301 GLuint height0,
302 GLuint depth0,
303 GLuint num_samples,
304 uint32_t layout_flags)
305 {
306 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
307 if (!mt)
308 return NULL;
309
310 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
311 _mesa_enum_to_string(target),
312 _mesa_get_format_name(format),
313 first_level, last_level, depth0, mt);
314
315 if (target == GL_TEXTURE_1D_ARRAY)
316 assert(height0 == 1);
317
318 mt->target = target;
319 mt->format = format;
320 mt->first_level = first_level;
321 mt->last_level = last_level;
322 mt->logical_width0 = width0;
323 mt->logical_height0 = height0;
324 mt->logical_depth0 = depth0;
325 mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
326 INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
327 mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
328 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
329 mt->aux_state = NULL;
330 mt->cpp = _mesa_get_format_bytes(format);
331 mt->num_samples = num_samples;
332 mt->compressed = _mesa_is_format_compressed(format);
333 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
334 mt->refcount = 1;
335
336 int depth_multiply = 1;
337 if (num_samples > 1) {
338 /* Adjust width/height/depth for MSAA */
339 mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
340 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
341 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
342 * "If the surface is multisampled and it is a depth or stencil
343 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
344 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
345 * proceeding:
346 *
347 * +----------------------------------------------------------------+
348 * | Num Multisamples | W_l = | H_l = |
349 * +----------------------------------------------------------------+
350 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
351 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
352 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
353 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
354 * +----------------------------------------------------------------+
355 * "
356 *
357 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
358 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
359 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
360 *
361 * Another more complicated explanation for these adjustments comes
362 * from the Sandybridge PRM, volume 4, part 1, page 31:
363 *
364 * "Any of the other messages (sample*, LOD, load4) used with a
365 * (4x) multisampled surface will in-effect sample a surface with
366 * double the height and width as that indicated in the surface
367 * state. Each pixel position on the original-sized surface is
368 * replaced with a 2x2 of samples with the following arrangement:
369 *
370 * sample 0 sample 2
371 * sample 1 sample 3"
372 *
373 * Thus, when sampling from a multisampled texture, it behaves as
374 * though the layout in memory for (x,y,sample) is:
375 *
376 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
377 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
378 *
379 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
380 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
381 *
382 * However, the actual layout of multisampled data in memory is:
383 *
384 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
385 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
386 *
387 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
388 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
389 *
390 * This pattern repeats for each 2x2 pixel block.
391 *
392 * As a result, when calculating the size of our 4-sample buffer for
393 * an odd width or height, we have to align before scaling up because
394 * sample 3 is in that bottom right 2x2 block.
395 */
396 switch (num_samples) {
397 case 2:
398 assert(brw->gen >= 8);
399 width0 = ALIGN(width0, 2) * 2;
400 height0 = ALIGN(height0, 2);
401 break;
402 case 4:
403 width0 = ALIGN(width0, 2) * 2;
404 height0 = ALIGN(height0, 2) * 2;
405 break;
406 case 8:
407 width0 = ALIGN(width0, 2) * 4;
408 height0 = ALIGN(height0, 2) * 2;
409 break;
410 case 16:
411 width0 = ALIGN(width0, 2) * 4;
412 height0 = ALIGN(height0, 2) * 4;
413 break;
414 default:
415 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
416 * or 16.
417 */
418 unreachable("not reached");
419 }
420 } else {
421 /* Non-interleaved */
422 depth_multiply = num_samples;
423 depth0 *= depth_multiply;
424 }
425 }
426
427 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
428 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
429 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
430 * used on Gen8 to make it pick a qpitch value which doesn't include space
431 * for the mipmaps. On Gen9 this is not necessary because it will
432 * automatically pick a packed qpitch value whenever mt->first_level ==
433 * mt->last_level.
434 * TODO: can we use it elsewhere?
435 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
436 */
437 if (brw->gen >= 9) {
438 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
439 } else {
440 switch (mt->msaa_layout) {
441 case INTEL_MSAA_LAYOUT_NONE:
442 case INTEL_MSAA_LAYOUT_IMS:
443 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
444 break;
445 case INTEL_MSAA_LAYOUT_UMS:
446 case INTEL_MSAA_LAYOUT_CMS:
447 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
448 break;
449 }
450 }
451
452 if (target == GL_TEXTURE_CUBE_MAP)
453 assert(depth0 == 6 * depth_multiply);
454
455 mt->physical_width0 = width0;
456 mt->physical_height0 = height0;
457 mt->physical_depth0 = depth0;
458
459 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
460 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
461 (brw->must_use_separate_stencil ||
462 (brw->has_separate_stencil &&
463 intel_miptree_wants_hiz_buffer(brw, mt)))) {
464 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
465 if (brw->gen == 6) {
466 stencil_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL |
467 MIPTREE_LAYOUT_TILING_ANY;
468 }
469
470 mt->stencil_mt = intel_miptree_create(brw,
471 mt->target,
472 MESA_FORMAT_S_UINT8,
473 mt->first_level,
474 mt->last_level,
475 mt->logical_width0,
476 mt->logical_height0,
477 mt->logical_depth0,
478 num_samples,
479 stencil_flags);
480
481 if (!mt->stencil_mt) {
482 intel_miptree_release(&mt);
483 return NULL;
484 }
485 mt->stencil_mt->r8stencil_needs_update = true;
486
487 /* Fix up the Z miptree format for how we're splitting out separate
488 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
489 */
490 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
491 mt->cpp = 4;
492
493 if (format == mt->format) {
494 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
495 _mesa_get_format_name(mt->format));
496 }
497 }
498
499 if (layout_flags & MIPTREE_LAYOUT_GEN6_HIZ_STENCIL)
500 mt->array_layout = GEN6_HIZ_STENCIL;
501
502 /*
503 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
504 * multisampled or have an AUX buffer attached to it.
505 *
506 * GEN | MSRT | AUX_CCS_* or AUX_MCS
507 * -------------------------------------------
508 * 9 | HALIGN_16 | HALIGN_16
509 * 8 | HALIGN_ANY | HALIGN_16
510 * 7 | ? | ?
511 * 6 | ? | ?
512 */
513 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
514 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
515 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
516 } else if (brw->gen >= 9 && num_samples > 1) {
517 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
518 } else {
519 const UNUSED bool is_lossless_compressed_aux =
520 brw->gen >= 9 && num_samples == 1 &&
521 mt->format == MESA_FORMAT_R_UINT32;
522
523 /* For now, nothing else has this requirement */
524 assert(is_lossless_compressed_aux ||
525 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
526 }
527
528 if (!brw_miptree_layout(brw, mt, layout_flags)) {
529 intel_miptree_release(&mt);
530 return NULL;
531 }
532
533 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
534 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
535
536 return mt;
537 }
538
539
540 /**
541 * Choose an appropriate uncompressed format for a requested
542 * compressed format, if unsupported.
543 */
544 mesa_format
545 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
546 {
547 /* No need to lower ETC formats on these platforms,
548 * they are supported natively.
549 */
550 if (brw->gen >= 8 || brw->is_baytrail)
551 return format;
552
553 switch (format) {
554 case MESA_FORMAT_ETC1_RGB8:
555 return MESA_FORMAT_R8G8B8X8_UNORM;
556 case MESA_FORMAT_ETC2_RGB8:
557 return MESA_FORMAT_R8G8B8X8_UNORM;
558 case MESA_FORMAT_ETC2_SRGB8:
559 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
560 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
561 return MESA_FORMAT_B8G8R8A8_SRGB;
562 case MESA_FORMAT_ETC2_RGBA8_EAC:
563 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
564 return MESA_FORMAT_R8G8B8A8_UNORM;
565 case MESA_FORMAT_ETC2_R11_EAC:
566 return MESA_FORMAT_R_UNORM16;
567 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
568 return MESA_FORMAT_R_SNORM16;
569 case MESA_FORMAT_ETC2_RG11_EAC:
570 return MESA_FORMAT_R16G16_UNORM;
571 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
572 return MESA_FORMAT_R16G16_SNORM;
573 default:
574 /* Non ETC1 / ETC2 format */
575 return format;
576 }
577 }
578
579 static enum isl_aux_state **
580 create_aux_state_map(struct intel_mipmap_tree *mt,
581 enum isl_aux_state initial)
582 {
583 const uint32_t levels = mt->last_level + 1;
584
585 uint32_t total_slices = 0;
586 for (uint32_t level = 0; level < levels; level++)
587 total_slices += mt->level[level].depth;
588
589 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
590
591 /* We're going to allocate a single chunk of data for both the per-level
592 * reference array and the arrays of aux_state. This makes cleanup
593 * significantly easier.
594 */
595 const size_t total_size = per_level_array_size +
596 total_slices * sizeof(enum isl_aux_state);
597 void *data = malloc(total_size);
598 if (data == NULL)
599 return NULL;
600
601 enum isl_aux_state **per_level_arr = data;
602 enum isl_aux_state *s = data + per_level_array_size;
603 for (uint32_t level = 0; level < levels; level++) {
604 per_level_arr[level] = s;
605 for (uint32_t a = 0; a < mt->level[level].depth; a++)
606 *(s++) = initial;
607 }
608 assert((void *)s == data + total_size);
609
610 return per_level_arr;
611 }
612
613 static void
614 free_aux_state_map(enum isl_aux_state **state)
615 {
616 free(state);
617 }
618
619 static struct intel_mipmap_tree *
620 miptree_create(struct brw_context *brw,
621 GLenum target,
622 mesa_format format,
623 GLuint first_level,
624 GLuint last_level,
625 GLuint width0,
626 GLuint height0,
627 GLuint depth0,
628 GLuint num_samples,
629 uint32_t layout_flags)
630 {
631 struct intel_mipmap_tree *mt;
632 mesa_format tex_format = format;
633 mesa_format etc_format = MESA_FORMAT_NONE;
634 uint32_t alloc_flags = 0;
635
636 format = intel_lower_compressed_format(brw, format);
637
638 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
639
640 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
641 mt = intel_miptree_create_layout(brw, target, format,
642 first_level, last_level, width0,
643 height0, depth0, num_samples,
644 layout_flags);
645 if (!mt)
646 return NULL;
647
648 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
649 mt->tiling = I915_TILING_Y;
650
651 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
652 alloc_flags |= BO_ALLOC_FOR_RENDER;
653
654 mt->etc_format = etc_format;
655
656 if (format == MESA_FORMAT_S_UINT8) {
657 /* Align to size of W tile, 64x64. */
658 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
659 ALIGN(mt->total_width, 64),
660 ALIGN(mt->total_height, 64),
661 mt->cpp, mt->tiling, &mt->pitch,
662 alloc_flags);
663 } else {
664 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
665 mt->total_width, mt->total_height,
666 mt->cpp, mt->tiling, &mt->pitch,
667 alloc_flags);
668 }
669
670 if (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT)
671 mt->bo->cache_coherent = false;
672
673 return mt;
674 }
675
676 struct intel_mipmap_tree *
677 intel_miptree_create(struct brw_context *brw,
678 GLenum target,
679 mesa_format format,
680 GLuint first_level,
681 GLuint last_level,
682 GLuint width0,
683 GLuint height0,
684 GLuint depth0,
685 GLuint num_samples,
686 uint32_t layout_flags)
687 {
688 struct intel_mipmap_tree *mt = miptree_create(
689 brw, target, format,
690 first_level, last_level,
691 width0, height0, depth0, num_samples,
692 layout_flags);
693
694 /* If the BO is too large to fit in the aperture, we need to use the
695 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
696 * handle Y-tiling, so we need to fall back to X.
697 */
698 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
699 mt->tiling == I915_TILING_Y) {
700 const uint32_t alloc_flags =
701 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
702 BO_ALLOC_FOR_RENDER : 0;
703 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
704 mt->total_width, mt->total_height);
705
706 mt->tiling = I915_TILING_X;
707 brw_bo_unreference(mt->bo);
708 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
709 mt->total_width, mt->total_height, mt->cpp,
710 mt->tiling, &mt->pitch, alloc_flags);
711 }
712
713 mt->offset = 0;
714
715 if (!mt->bo) {
716 intel_miptree_release(&mt);
717 return NULL;
718 }
719
720
721 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
722 assert(mt->num_samples > 1);
723 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
724 intel_miptree_release(&mt);
725 return NULL;
726 }
727 }
728
729 /* If this miptree is capable of supporting fast color clears, set
730 * fast_clear_state appropriately to ensure that fast clears will occur.
731 * Allocation of the MCS miptree will be deferred until the first fast
732 * clear actually occurs or when compressed single sampled buffer is
733 * written by the GPU for the first time.
734 */
735 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
736 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
737 mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
738 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
739
740 /* On Gen9+ clients are not currently capable of consuming compressed
741 * single-sampled buffers. Disabling compression allows us to skip
742 * resolves.
743 */
744 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
745 const bool is_lossless_compressed =
746 unlikely(!lossless_compression_disabled) &&
747 brw->gen >= 9 && !mt->is_scanout &&
748 intel_miptree_supports_lossless_compressed(brw, mt);
749
750 if (is_lossless_compressed) {
751 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
752 }
753 }
754
755 return mt;
756 }
757
758 struct intel_mipmap_tree *
759 intel_miptree_create_for_bo(struct brw_context *brw,
760 struct brw_bo *bo,
761 mesa_format format,
762 uint32_t offset,
763 uint32_t width,
764 uint32_t height,
765 uint32_t depth,
766 int pitch,
767 uint32_t layout_flags)
768 {
769 struct intel_mipmap_tree *mt;
770 uint32_t tiling, swizzle;
771 GLenum target;
772
773 brw_bo_get_tiling(bo, &tiling, &swizzle);
774
775 /* Nothing will be able to use this miptree with the BO if the offset isn't
776 * aligned.
777 */
778 if (tiling != I915_TILING_NONE)
779 assert(offset % 4096 == 0);
780
781 /* miptrees can't handle negative pitch. If you need flipping of images,
782 * that's outside of the scope of the mt.
783 */
784 assert(pitch >= 0);
785
786 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
787
788 /* The BO already has a tiling format and we shouldn't confuse the lower
789 * layers by making it try to find a tiling format again.
790 */
791 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
792 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
793
794 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
795 mt = intel_miptree_create_layout(brw, target, format,
796 0, 0,
797 width, height, depth, 0,
798 layout_flags);
799 if (!mt)
800 return NULL;
801
802 brw_bo_reference(bo);
803 mt->bo = bo;
804 mt->pitch = pitch;
805 mt->offset = offset;
806 mt->tiling = tiling;
807
808 return mt;
809 }
810
811 /**
812 * For a singlesample renderbuffer, this simply wraps the given BO with a
813 * miptree.
814 *
815 * For a multisample renderbuffer, this wraps the window system's
816 * (singlesample) BO with a singlesample miptree attached to the
817 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
818 * that will contain the actual rendering (which is lazily resolved to
819 * irb->singlesample_mt).
820 */
821 void
822 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
823 struct intel_renderbuffer *irb,
824 struct brw_bo *bo,
825 uint32_t width, uint32_t height,
826 uint32_t pitch)
827 {
828 struct intel_mipmap_tree *singlesample_mt = NULL;
829 struct intel_mipmap_tree *multisample_mt = NULL;
830 struct gl_renderbuffer *rb = &irb->Base.Base;
831 mesa_format format = rb->Format;
832 int num_samples = rb->NumSamples;
833
834 /* Only the front and back buffers, which are color buffers, are allocated
835 * through the image loader.
836 */
837 assert(_mesa_get_format_base_format(format) == GL_RGB ||
838 _mesa_get_format_base_format(format) == GL_RGBA);
839
840 singlesample_mt = intel_miptree_create_for_bo(intel,
841 bo,
842 format,
843 0,
844 width,
845 height,
846 1,
847 pitch,
848 MIPTREE_LAYOUT_FOR_SCANOUT);
849 if (!singlesample_mt)
850 goto fail;
851
852 /* If this miptree is capable of supporting fast color clears, set
853 * mcs_state appropriately to ensure that fast clears will occur.
854 * Allocation of the MCS miptree will be deferred until the first fast
855 * clear actually occurs.
856 */
857 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
858 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
859 singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
860 }
861
862 if (num_samples == 0) {
863 intel_miptree_release(&irb->mt);
864 irb->mt = singlesample_mt;
865
866 assert(!irb->singlesample_mt);
867 } else {
868 intel_miptree_release(&irb->singlesample_mt);
869 irb->singlesample_mt = singlesample_mt;
870
871 if (!irb->mt ||
872 irb->mt->logical_width0 != width ||
873 irb->mt->logical_height0 != height) {
874 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
875 format,
876 width,
877 height,
878 num_samples);
879 if (!multisample_mt)
880 goto fail;
881
882 irb->need_downsample = false;
883 intel_miptree_release(&irb->mt);
884 irb->mt = multisample_mt;
885 }
886 }
887 return;
888
889 fail:
890 intel_miptree_release(&irb->singlesample_mt);
891 intel_miptree_release(&irb->mt);
892 return;
893 }
894
895 struct intel_mipmap_tree*
896 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
897 mesa_format format,
898 uint32_t width,
899 uint32_t height,
900 uint32_t num_samples)
901 {
902 struct intel_mipmap_tree *mt;
903 uint32_t depth = 1;
904 bool ok;
905 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
906 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
907 MIPTREE_LAYOUT_TILING_ANY |
908 MIPTREE_LAYOUT_FOR_SCANOUT;
909
910 mt = intel_miptree_create(brw, target, format, 0, 0,
911 width, height, depth, num_samples,
912 layout_flags);
913 if (!mt)
914 goto fail;
915
916 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
917 ok = intel_miptree_alloc_hiz(brw, mt);
918 if (!ok)
919 goto fail;
920 }
921
922 return mt;
923
924 fail:
925 intel_miptree_release(&mt);
926 return NULL;
927 }
928
929 void
930 intel_miptree_reference(struct intel_mipmap_tree **dst,
931 struct intel_mipmap_tree *src)
932 {
933 if (*dst == src)
934 return;
935
936 intel_miptree_release(dst);
937
938 if (src) {
939 src->refcount++;
940 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
941 }
942
943 *dst = src;
944 }
945
946 static void
947 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
948 {
949 if (hiz_buf == NULL)
950 return;
951
952 if (hiz_buf->mt)
953 intel_miptree_release(&hiz_buf->mt);
954 else
955 brw_bo_unreference(hiz_buf->aux_base.bo);
956
957 free(hiz_buf);
958 }
959
960 void
961 intel_miptree_release(struct intel_mipmap_tree **mt)
962 {
963 if (!*mt)
964 return;
965
966 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
967 if (--(*mt)->refcount <= 0) {
968 GLuint i;
969
970 DBG("%s deleting %p\n", __func__, *mt);
971
972 brw_bo_unreference((*mt)->bo);
973 intel_miptree_release(&(*mt)->stencil_mt);
974 intel_miptree_release(&(*mt)->r8stencil_mt);
975 intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
976 if ((*mt)->mcs_buf) {
977 brw_bo_unreference((*mt)->mcs_buf->bo);
978 free((*mt)->mcs_buf);
979 }
980 free_aux_state_map((*mt)->aux_state);
981
982 intel_miptree_release(&(*mt)->plane[0]);
983 intel_miptree_release(&(*mt)->plane[1]);
984
985 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
986 free((*mt)->level[i].slice);
987 }
988
989 free(*mt);
990 }
991 *mt = NULL;
992 }
993
994
995 void
996 intel_get_image_dims(struct gl_texture_image *image,
997 int *width, int *height, int *depth)
998 {
999 switch (image->TexObject->Target) {
1000 case GL_TEXTURE_1D_ARRAY:
1001 /* For a 1D Array texture the OpenGL API will treat the image height as
1002 * the number of array slices. For Intel hardware, we treat the 1D array
1003 * as a 2D Array with a height of 1. So, here we want to swap image
1004 * height and depth.
1005 */
1006 assert(image->Depth == 1);
1007 *width = image->Width;
1008 *height = 1;
1009 *depth = image->Height;
1010 break;
1011 case GL_TEXTURE_CUBE_MAP:
1012 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1013 * though we really have 6 slices.
1014 */
1015 assert(image->Depth == 1);
1016 *width = image->Width;
1017 *height = image->Height;
1018 *depth = 6;
1019 break;
1020 default:
1021 *width = image->Width;
1022 *height = image->Height;
1023 *depth = image->Depth;
1024 break;
1025 }
1026 }
1027
1028 /**
1029 * Can the image be pulled into a unified mipmap tree? This mirrors
1030 * the completeness test in a lot of ways.
1031 *
1032 * Not sure whether I want to pass gl_texture_image here.
1033 */
1034 bool
1035 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1036 struct gl_texture_image *image)
1037 {
1038 struct intel_texture_image *intelImage = intel_texture_image(image);
1039 GLuint level = intelImage->base.Base.Level;
1040 int width, height, depth;
1041
1042 /* glTexImage* choose the texture object based on the target passed in, and
1043 * objects can't change targets over their lifetimes, so this should be
1044 * true.
1045 */
1046 assert(image->TexObject->Target == mt->target);
1047
1048 mesa_format mt_format = mt->format;
1049 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1050 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1051 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1052 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1053 if (mt->etc_format != MESA_FORMAT_NONE)
1054 mt_format = mt->etc_format;
1055
1056 if (image->TexFormat != mt_format)
1057 return false;
1058
1059 intel_get_image_dims(image, &width, &height, &depth);
1060
1061 if (mt->target == GL_TEXTURE_CUBE_MAP)
1062 depth = 6;
1063
1064 int level_depth = mt->level[level].depth;
1065 if (mt->num_samples > 1) {
1066 switch (mt->msaa_layout) {
1067 case INTEL_MSAA_LAYOUT_NONE:
1068 case INTEL_MSAA_LAYOUT_IMS:
1069 break;
1070 case INTEL_MSAA_LAYOUT_UMS:
1071 case INTEL_MSAA_LAYOUT_CMS:
1072 level_depth /= mt->num_samples;
1073 break;
1074 }
1075 }
1076
1077 /* Test image dimensions against the base level image adjusted for
1078 * minification. This will also catch images not present in the
1079 * tree, changed targets, etc.
1080 */
1081 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1082 height != minify(mt->logical_height0, level - mt->first_level) ||
1083 depth != level_depth) {
1084 return false;
1085 }
1086
1087 if (image->NumSamples != mt->num_samples)
1088 return false;
1089
1090 return true;
1091 }
1092
1093
1094 void
1095 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1096 GLuint level,
1097 GLuint x, GLuint y, GLuint d)
1098 {
1099 mt->level[level].depth = d;
1100 mt->level[level].level_x = x;
1101 mt->level[level].level_y = y;
1102
1103 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1104 level, d, x, y);
1105
1106 assert(mt->level[level].slice == NULL);
1107
1108 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1109 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1110 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1111 }
1112
1113
1114 void
1115 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1116 GLuint level, GLuint img,
1117 GLuint x, GLuint y)
1118 {
1119 if (img == 0 && level == 0)
1120 assert(x == 0 && y == 0);
1121
1122 assert(img < mt->level[level].depth);
1123
1124 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1125 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1126
1127 DBG("%s level %d img %d pos %d,%d\n",
1128 __func__, level, img,
1129 mt->level[level].slice[img].x_offset,
1130 mt->level[level].slice[img].y_offset);
1131 }
1132
1133 void
1134 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1135 GLuint level, GLuint slice,
1136 GLuint *x, GLuint *y)
1137 {
1138 assert(slice < mt->level[level].depth);
1139
1140 *x = mt->level[level].slice[slice].x_offset;
1141 *y = mt->level[level].slice[slice].y_offset;
1142 }
1143
1144
1145 /**
1146 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1147 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1148 * and tile_h is set to 1.
1149 */
1150 void
1151 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
1152 uint32_t *tile_w, uint32_t *tile_h)
1153 {
1154 switch (tiling) {
1155 case I915_TILING_X:
1156 *tile_w = 512;
1157 *tile_h = 8;
1158 break;
1159 case I915_TILING_Y:
1160 *tile_w = 128;
1161 *tile_h = 32;
1162 break;
1163 case I915_TILING_NONE:
1164 *tile_w = cpp;
1165 *tile_h = 1;
1166 break;
1167 default:
1168 unreachable("not reached");
1169 }
1170 }
1171
1172
1173 /**
1174 * This function computes masks that may be used to select the bits of the X
1175 * and Y coordinates that indicate the offset within a tile. If the BO is
1176 * untiled, the masks are set to 0.
1177 */
1178 void
1179 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
1180 uint32_t *mask_x, uint32_t *mask_y)
1181 {
1182 uint32_t tile_w_bytes, tile_h;
1183
1184 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1185
1186 *mask_x = tile_w_bytes / cpp - 1;
1187 *mask_y = tile_h - 1;
1188 }
1189
1190 /**
1191 * Compute the offset (in bytes) from the start of the BO to the given x
1192 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1193 * multiples of the tile size.
1194 */
1195 uint32_t
1196 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1197 uint32_t x, uint32_t y)
1198 {
1199 int cpp = mt->cpp;
1200 uint32_t pitch = mt->pitch;
1201 uint32_t tiling = mt->tiling;
1202
1203 switch (tiling) {
1204 default:
1205 unreachable("not reached");
1206 case I915_TILING_NONE:
1207 return y * pitch + x * cpp;
1208 case I915_TILING_X:
1209 assert((x % (512 / cpp)) == 0);
1210 assert((y % 8) == 0);
1211 return y * pitch + x / (512 / cpp) * 4096;
1212 case I915_TILING_Y:
1213 assert((x % (128 / cpp)) == 0);
1214 assert((y % 32) == 0);
1215 return y * pitch + x / (128 / cpp) * 4096;
1216 }
1217 }
1218
1219 /**
1220 * Rendering with tiled buffers requires that the base address of the buffer
1221 * be aligned to a page boundary. For renderbuffers, and sometimes with
1222 * textures, we may want the surface to point at a texture image level that
1223 * isn't at a page boundary.
1224 *
1225 * This function returns an appropriately-aligned base offset
1226 * according to the tiling restrictions, plus any required x/y offset
1227 * from there.
1228 */
1229 uint32_t
1230 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1231 GLuint level, GLuint slice,
1232 uint32_t *tile_x,
1233 uint32_t *tile_y)
1234 {
1235 uint32_t x, y;
1236 uint32_t mask_x, mask_y;
1237
1238 intel_get_tile_masks(mt->tiling, mt->cpp, &mask_x, &mask_y);
1239 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1240
1241 *tile_x = x & mask_x;
1242 *tile_y = y & mask_y;
1243
1244 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1245 }
1246
1247 static void
1248 intel_miptree_copy_slice_sw(struct brw_context *brw,
1249 struct intel_mipmap_tree *dst_mt,
1250 struct intel_mipmap_tree *src_mt,
1251 int level,
1252 int slice,
1253 int width,
1254 int height)
1255 {
1256 void *src, *dst;
1257 ptrdiff_t src_stride, dst_stride;
1258 int cpp = dst_mt->cpp;
1259
1260 intel_miptree_map(brw, src_mt,
1261 level, slice,
1262 0, 0,
1263 width, height,
1264 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1265 &src, &src_stride);
1266
1267 intel_miptree_map(brw, dst_mt,
1268 level, slice,
1269 0, 0,
1270 width, height,
1271 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1272 BRW_MAP_DIRECT_BIT,
1273 &dst, &dst_stride);
1274
1275 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1276 _mesa_get_format_name(src_mt->format),
1277 src_mt, src, src_stride,
1278 _mesa_get_format_name(dst_mt->format),
1279 dst_mt, dst, dst_stride,
1280 width, height);
1281
1282 int row_size = cpp * width;
1283 if (src_stride == row_size &&
1284 dst_stride == row_size) {
1285 memcpy(dst, src, row_size * height);
1286 } else {
1287 for (int i = 0; i < height; i++) {
1288 memcpy(dst, src, row_size);
1289 dst += dst_stride;
1290 src += src_stride;
1291 }
1292 }
1293
1294 intel_miptree_unmap(brw, dst_mt, level, slice);
1295 intel_miptree_unmap(brw, src_mt, level, slice);
1296
1297 /* Don't forget to copy the stencil data over, too. We could have skipped
1298 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1299 * shuffling the two data sources in/out of temporary storage instead of
1300 * the direct mapping we get this way.
1301 */
1302 if (dst_mt->stencil_mt) {
1303 assert(src_mt->stencil_mt);
1304 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1305 level, slice, width, height);
1306 }
1307 }
1308
1309 static void
1310 intel_miptree_copy_slice(struct brw_context *brw,
1311 struct intel_mipmap_tree *dst_mt,
1312 struct intel_mipmap_tree *src_mt,
1313 int level,
1314 int face,
1315 int depth)
1316
1317 {
1318 mesa_format format = src_mt->format;
1319 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1320 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1321 int slice;
1322
1323 if (face > 0)
1324 slice = face;
1325 else
1326 slice = depth;
1327
1328 assert(depth < src_mt->level[level].depth);
1329 assert(src_mt->format == dst_mt->format);
1330
1331 if (dst_mt->compressed) {
1332 unsigned int i, j;
1333 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1334 height = ALIGN_NPOT(height, j) / j;
1335 width = ALIGN_NPOT(width, i) / i;
1336 }
1337
1338 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1339 * below won't apply since we can't do the depth's Y tiling or the
1340 * stencil's W tiling in the blitter.
1341 */
1342 if (src_mt->stencil_mt) {
1343 intel_miptree_copy_slice_sw(brw,
1344 dst_mt, src_mt,
1345 level, slice,
1346 width, height);
1347 return;
1348 }
1349
1350 uint32_t dst_x, dst_y, src_x, src_y;
1351 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1352 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1353
1354 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1355 _mesa_get_format_name(src_mt->format),
1356 src_mt, src_x, src_y, src_mt->pitch,
1357 _mesa_get_format_name(dst_mt->format),
1358 dst_mt, dst_x, dst_y, dst_mt->pitch,
1359 width, height);
1360
1361 if (!intel_miptree_blit(brw,
1362 src_mt, level, slice, 0, 0, false,
1363 dst_mt, level, slice, 0, 0, false,
1364 width, height, GL_COPY)) {
1365 perf_debug("miptree validate blit for %s failed\n",
1366 _mesa_get_format_name(format));
1367
1368 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1369 width, height);
1370 }
1371 }
1372
1373 /**
1374 * Copies the image's current data to the given miptree, and associates that
1375 * miptree with the image.
1376 *
1377 * If \c invalidate is true, then the actual image data does not need to be
1378 * copied, but the image still needs to be associated to the new miptree (this
1379 * is set to true if we're about to clear the image).
1380 */
1381 void
1382 intel_miptree_copy_teximage(struct brw_context *brw,
1383 struct intel_texture_image *intelImage,
1384 struct intel_mipmap_tree *dst_mt,
1385 bool invalidate)
1386 {
1387 struct intel_mipmap_tree *src_mt = intelImage->mt;
1388 struct intel_texture_object *intel_obj =
1389 intel_texture_object(intelImage->base.Base.TexObject);
1390 int level = intelImage->base.Base.Level;
1391 int face = intelImage->base.Base.Face;
1392
1393 GLuint depth;
1394 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1395 depth = intelImage->base.Base.Height;
1396 else
1397 depth = intelImage->base.Base.Depth;
1398
1399 if (!invalidate) {
1400 for (int slice = 0; slice < depth; slice++) {
1401 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1402 }
1403 }
1404
1405 intel_miptree_reference(&intelImage->mt, dst_mt);
1406 intel_obj->needs_validate = true;
1407 }
1408
1409 static void
1410 intel_miptree_init_mcs(struct brw_context *brw,
1411 struct intel_mipmap_tree *mt,
1412 int init_value)
1413 {
1414 assert(mt->mcs_buf != NULL);
1415
1416 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1417 *
1418 * When MCS buffer is enabled and bound to MSRT, it is required that it
1419 * is cleared prior to any rendering.
1420 *
1421 * Since we don't use the MCS buffer for any purpose other than rendering,
1422 * it makes sense to just clear it immediately upon allocation.
1423 *
1424 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1425 */
1426 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1427 if (unlikely(map == NULL)) {
1428 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1429 brw_bo_unreference(mt->mcs_buf->bo);
1430 free(mt->mcs_buf);
1431 return;
1432 }
1433 void *data = map;
1434 memset(data, init_value, mt->mcs_buf->size);
1435 brw_bo_unmap(mt->mcs_buf->bo);
1436 }
1437
1438 static struct intel_miptree_aux_buffer *
1439 intel_mcs_miptree_buf_create(struct brw_context *brw,
1440 struct intel_mipmap_tree *mt,
1441 mesa_format format,
1442 unsigned mcs_width,
1443 unsigned mcs_height,
1444 uint32_t layout_flags)
1445 {
1446 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1447 struct intel_mipmap_tree *temp_mt;
1448
1449 if (!buf)
1450 return NULL;
1451
1452 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1453 *
1454 * "The MCS surface must be stored as Tile Y."
1455 */
1456 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1457 temp_mt = miptree_create(brw,
1458 mt->target,
1459 format,
1460 mt->first_level,
1461 mt->last_level,
1462 mcs_width,
1463 mcs_height,
1464 mt->logical_depth0,
1465 0 /* num_samples */,
1466 layout_flags);
1467 if (!temp_mt) {
1468 free(buf);
1469 return NULL;
1470 }
1471
1472 buf->bo = temp_mt->bo;
1473 buf->offset = temp_mt->offset;
1474 buf->size = temp_mt->total_height * temp_mt->pitch;
1475 buf->pitch = temp_mt->pitch;
1476 buf->qpitch = temp_mt->qpitch;
1477
1478 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1479 * structure should go away. We use miptree create simply as a means to make
1480 * sure all the constraints for the buffer are satisfied.
1481 */
1482 brw_bo_reference(temp_mt->bo);
1483 intel_miptree_release(&temp_mt);
1484
1485 return buf;
1486 }
1487
1488 static bool
1489 intel_miptree_alloc_mcs(struct brw_context *brw,
1490 struct intel_mipmap_tree *mt,
1491 GLuint num_samples)
1492 {
1493 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1494 assert(mt->mcs_buf == NULL);
1495 assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1496
1497 /* Choose the correct format for the MCS buffer. All that really matters
1498 * is that we allocate the right buffer size, since we'll always be
1499 * accessing this miptree using MCS-specific hardware mechanisms, which
1500 * infer the correct format based on num_samples.
1501 */
1502 mesa_format format;
1503 switch (num_samples) {
1504 case 2:
1505 case 4:
1506 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1507 * each sample).
1508 */
1509 format = MESA_FORMAT_R_UNORM8;
1510 break;
1511 case 8:
1512 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1513 * for each sample, plus 8 padding bits).
1514 */
1515 format = MESA_FORMAT_R_UINT32;
1516 break;
1517 case 16:
1518 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1519 * for each sample).
1520 */
1521 format = MESA_FORMAT_RG_UINT32;
1522 break;
1523 default:
1524 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1525 };
1526
1527 /* Multisampled miptrees are only supported for single level. */
1528 assert(mt->first_level == 0);
1529 enum isl_aux_state **aux_state =
1530 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1531 if (!aux_state)
1532 return false;
1533
1534 mt->mcs_buf =
1535 intel_mcs_miptree_buf_create(brw, mt,
1536 format,
1537 mt->logical_width0,
1538 mt->logical_height0,
1539 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1540 if (!mt->mcs_buf) {
1541 free(aux_state);
1542 return false;
1543 }
1544
1545 mt->aux_state = aux_state;
1546
1547 intel_miptree_init_mcs(brw, mt, 0xFF);
1548
1549 return true;
1550 }
1551
1552 bool
1553 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1554 struct intel_mipmap_tree *mt,
1555 bool is_lossless_compressed)
1556 {
1557 assert(mt->mcs_buf == NULL);
1558 assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1559
1560 struct isl_surf temp_main_surf;
1561 struct isl_surf temp_ccs_surf;
1562
1563 /* Create first an ISL presentation for the main color surface and let ISL
1564 * calculate equivalent CCS surface against it.
1565 */
1566 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1567 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1568 return false;
1569
1570 assert(temp_ccs_surf.size &&
1571 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1572
1573 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1574 if (!buf)
1575 return false;
1576
1577 enum isl_aux_state **aux_state =
1578 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1579 if (!aux_state) {
1580 free(buf);
1581 return false;
1582 }
1583
1584 buf->size = temp_ccs_surf.size;
1585 buf->pitch = temp_ccs_surf.row_pitch;
1586 buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1587
1588 /* In case of compression mcs buffer needs to be initialised requiring the
1589 * buffer to be immediately mapped to cpu space for writing. Therefore do
1590 * not use the gpu access flag which can cause an unnecessary delay if the
1591 * backing pages happened to be just used by the GPU.
1592 */
1593 const uint32_t alloc_flags =
1594 is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1595
1596 /* ISL has stricter set of alignment rules then the drm allocator.
1597 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1598 * trying to recalculate based on different format block sizes.
1599 */
1600 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1601 buf->pitch, buf->size / buf->pitch,
1602 1, I915_TILING_Y, &buf->pitch, alloc_flags);
1603 if (!buf->bo) {
1604 free(buf);
1605 free(aux_state);
1606 return false;
1607 }
1608
1609 mt->mcs_buf = buf;
1610 mt->aux_state = aux_state;
1611
1612 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1613 * used for lossless compression which requires similar initialisation
1614 * as multi-sample compression.
1615 */
1616 if (is_lossless_compressed) {
1617 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1618 * resolve. Initialize it accordingly in case the first renderer is
1619 * cpu (or other none compression aware party).
1620 *
1621 * This is also explicitly stated in the spec (MCS Buffer for Render
1622 * Target(s)):
1623 * "If Software wants to enable Color Compression without Fast clear,
1624 * Software needs to initialize MCS with zeros."
1625 */
1626 intel_miptree_init_mcs(brw, mt, 0);
1627 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1628 }
1629
1630 return true;
1631 }
1632
1633 /**
1634 * Helper for intel_miptree_alloc_hiz() that sets
1635 * \c mt->level[level].has_hiz. Return true if and only if
1636 * \c has_hiz was set.
1637 */
1638 static bool
1639 intel_miptree_level_enable_hiz(struct brw_context *brw,
1640 struct intel_mipmap_tree *mt,
1641 uint32_t level)
1642 {
1643 assert(mt->hiz_buf);
1644
1645 if (brw->gen >= 8 || brw->is_haswell) {
1646 uint32_t width = minify(mt->physical_width0, level);
1647 uint32_t height = minify(mt->physical_height0, level);
1648
1649 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1650 * and the height is 4 aligned. This allows our HiZ support
1651 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1652 * we can grow the width & height to allow the HiZ op to
1653 * force the proper size alignments.
1654 */
1655 if (level > 0 && ((width & 7) || (height & 3))) {
1656 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1657 return false;
1658 }
1659 }
1660
1661 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1662 mt->level[level].has_hiz = true;
1663 return true;
1664 }
1665
1666
1667 /**
1668 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1669 * buffer dimensions and allocates a bo for the hiz buffer.
1670 */
1671 static struct intel_miptree_hiz_buffer *
1672 intel_gen7_hiz_buf_create(struct brw_context *brw,
1673 struct intel_mipmap_tree *mt)
1674 {
1675 unsigned z_width = mt->logical_width0;
1676 unsigned z_height = mt->logical_height0;
1677 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1678 unsigned hz_width, hz_height;
1679 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1680
1681 if (!buf)
1682 return NULL;
1683
1684 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1685 * adjustments required for Z_Height and Z_Width based on multisampling.
1686 */
1687 switch (mt->num_samples) {
1688 case 0:
1689 case 1:
1690 break;
1691 case 2:
1692 case 4:
1693 z_width *= 2;
1694 z_height *= 2;
1695 break;
1696 case 8:
1697 z_width *= 4;
1698 z_height *= 2;
1699 break;
1700 default:
1701 unreachable("unsupported sample count");
1702 }
1703
1704 const unsigned vertical_align = 8; /* 'j' in the docs */
1705 const unsigned H0 = z_height;
1706 const unsigned h0 = ALIGN(H0, vertical_align);
1707 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1708 const unsigned Z0 = z_depth;
1709
1710 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1711 hz_width = ALIGN(z_width, 16);
1712
1713 if (mt->target == GL_TEXTURE_3D) {
1714 unsigned H_i = H0;
1715 unsigned Z_i = Z0;
1716 hz_height = 0;
1717 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1718 unsigned h_i = ALIGN(H_i, vertical_align);
1719 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1720 hz_height += h_i * Z_i;
1721 H_i = minify(H_i, 1);
1722 Z_i = minify(Z_i, 1);
1723 }
1724 /* HZ_Height =
1725 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1726 */
1727 hz_height = DIV_ROUND_UP(hz_height, 2);
1728 } else {
1729 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1730 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1731 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1732 }
1733
1734 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1735 hz_width, hz_height, 1,
1736 I915_TILING_Y, &buf->aux_base.pitch,
1737 BO_ALLOC_FOR_RENDER);
1738 if (!buf->aux_base.bo) {
1739 free(buf);
1740 return NULL;
1741 }
1742
1743 buf->aux_base.size = hz_width * hz_height;
1744
1745 return buf;
1746 }
1747
1748
1749 /**
1750 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1751 * buffer dimensions and allocates a bo for the hiz buffer.
1752 */
1753 static struct intel_miptree_hiz_buffer *
1754 intel_gen8_hiz_buf_create(struct brw_context *brw,
1755 struct intel_mipmap_tree *mt)
1756 {
1757 unsigned z_width = mt->logical_width0;
1758 unsigned z_height = mt->logical_height0;
1759 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1760 unsigned hz_width, hz_height;
1761 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1762
1763 if (!buf)
1764 return NULL;
1765
1766 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1767 * adjustments required for Z_Height and Z_Width based on multisampling.
1768 */
1769 if (brw->gen < 9) {
1770 switch (mt->num_samples) {
1771 case 0:
1772 case 1:
1773 break;
1774 case 2:
1775 case 4:
1776 z_width *= 2;
1777 z_height *= 2;
1778 break;
1779 case 8:
1780 z_width *= 4;
1781 z_height *= 2;
1782 break;
1783 default:
1784 unreachable("unsupported sample count");
1785 }
1786 }
1787
1788 const unsigned vertical_align = 8; /* 'j' in the docs */
1789 const unsigned H0 = z_height;
1790 const unsigned h0 = ALIGN(H0, vertical_align);
1791 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1792 const unsigned Z0 = z_depth;
1793
1794 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1795 hz_width = ALIGN(z_width, 16);
1796
1797 unsigned H_i = H0;
1798 unsigned Z_i = Z0;
1799 unsigned sum_h_i = 0;
1800 unsigned hz_height_3d_sum = 0;
1801 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1802 unsigned i = level - mt->first_level;
1803 unsigned h_i = ALIGN(H_i, vertical_align);
1804 /* sum(i=2 to m; h_i) */
1805 if (i >= 2) {
1806 sum_h_i += h_i;
1807 }
1808 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1809 hz_height_3d_sum += h_i * Z_i;
1810 H_i = minify(H_i, 1);
1811 Z_i = minify(Z_i, 1);
1812 }
1813 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1814 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1815
1816 if (mt->target == GL_TEXTURE_3D) {
1817 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1818 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1819 } else {
1820 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1821 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1822 }
1823
1824 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1825 hz_width, hz_height, 1,
1826 I915_TILING_Y, &buf->aux_base.pitch,
1827 BO_ALLOC_FOR_RENDER);
1828 if (!buf->aux_base.bo) {
1829 free(buf);
1830 return NULL;
1831 }
1832
1833 buf->aux_base.size = hz_width * hz_height;
1834
1835 return buf;
1836 }
1837
1838
1839 static struct intel_miptree_hiz_buffer *
1840 intel_hiz_miptree_buf_create(struct brw_context *brw,
1841 struct intel_mipmap_tree *mt)
1842 {
1843 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1844 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1845
1846 if (brw->gen == 6)
1847 layout_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL;
1848
1849 if (!buf)
1850 return NULL;
1851
1852 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1853 buf->mt = intel_miptree_create(brw,
1854 mt->target,
1855 mt->format,
1856 mt->first_level,
1857 mt->last_level,
1858 mt->logical_width0,
1859 mt->logical_height0,
1860 mt->logical_depth0,
1861 mt->num_samples,
1862 layout_flags);
1863 if (!buf->mt) {
1864 free(buf);
1865 return NULL;
1866 }
1867
1868 buf->aux_base.bo = buf->mt->bo;
1869 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1870 buf->aux_base.pitch = buf->mt->pitch;
1871 buf->aux_base.qpitch = buf->mt->qpitch * 2;
1872
1873 return buf;
1874 }
1875
1876 bool
1877 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1878 struct intel_mipmap_tree *mt)
1879 {
1880 if (!brw->has_hiz)
1881 return false;
1882
1883 if (mt->hiz_buf != NULL)
1884 return false;
1885
1886 if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1887 return false;
1888
1889 switch (mt->format) {
1890 case MESA_FORMAT_Z_FLOAT32:
1891 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1892 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1893 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1894 case MESA_FORMAT_Z_UNORM16:
1895 return true;
1896 default:
1897 return false;
1898 }
1899 }
1900
1901 bool
1902 intel_miptree_alloc_hiz(struct brw_context *brw,
1903 struct intel_mipmap_tree *mt)
1904 {
1905 assert(mt->hiz_buf == NULL);
1906 assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1907
1908 enum isl_aux_state **aux_state =
1909 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1910 if (!aux_state)
1911 return false;
1912
1913 if (brw->gen == 7) {
1914 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1915 } else if (brw->gen >= 8) {
1916 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1917 } else {
1918 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1919 }
1920
1921 if (!mt->hiz_buf) {
1922 free(aux_state);
1923 return false;
1924 }
1925
1926 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1927 intel_miptree_level_enable_hiz(brw, mt, level);
1928
1929 mt->aux_state = aux_state;
1930
1931 return true;
1932 }
1933
1934 /**
1935 * Can the miptree sample using the hiz buffer?
1936 */
1937 bool
1938 intel_miptree_sample_with_hiz(struct brw_context *brw,
1939 struct intel_mipmap_tree *mt)
1940 {
1941 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1942 * so keep things conservative for now and never enable it unless we're SKL+.
1943 */
1944 if (brw->gen < 9) {
1945 return false;
1946 }
1947
1948 if (!mt->hiz_buf) {
1949 return false;
1950 }
1951
1952 /* It seems the hardware won't fallback to the depth buffer if some of the
1953 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1954 * of the texture to be HiZ enabled.
1955 */
1956 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1957 if (!intel_miptree_level_has_hiz(mt, level))
1958 return false;
1959 }
1960
1961 /* If compressed multisampling is enabled, then we use it for the auxiliary
1962 * buffer instead.
1963 *
1964 * From the BDW PRM (Volume 2d: Command Reference: Structures
1965 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1966 *
1967 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1968 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1969 *
1970 * There is no such blurb for 1D textures, but there is sufficient evidence
1971 * that this is broken on SKL+.
1972 */
1973 return (mt->num_samples <= 1 &&
1974 mt->target != GL_TEXTURE_3D &&
1975 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1976 }
1977
1978 /**
1979 * Does the miptree slice have hiz enabled?
1980 */
1981 bool
1982 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1983 {
1984 intel_miptree_check_level_layer(mt, level, 0);
1985 return mt->level[level].has_hiz;
1986 }
1987
1988 bool
1989 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1990 unsigned start_level, unsigned num_levels,
1991 unsigned start_layer, unsigned num_layers)
1992 {
1993 assert(_mesa_is_format_color_format(mt->format));
1994
1995 if (!mt->mcs_buf)
1996 return false;
1997
1998 /* Clamp the level range to fit the miptree */
1999 assert(start_level + num_levels >= start_level);
2000 const uint32_t last_level =
2001 MIN2(mt->last_level, start_level + num_levels - 1);
2002 start_level = MAX2(mt->first_level, start_level);
2003 num_levels = last_level - start_level + 1;
2004
2005 for (uint32_t level = start_level; level <= last_level; level++) {
2006 const uint32_t level_layers = MIN2(num_layers, mt->level[level].depth);
2007 for (unsigned a = 0; a < level_layers; a++) {
2008 enum isl_aux_state aux_state =
2009 intel_miptree_get_aux_state(mt, level, start_layer + a);
2010 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2011 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2012 return true;
2013 }
2014 }
2015
2016 return false;
2017 }
2018
2019 static void
2020 intel_miptree_check_color_resolve(const struct brw_context *brw,
2021 const struct intel_mipmap_tree *mt,
2022 unsigned level, unsigned layer)
2023 {
2024
2025 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2026 return;
2027
2028 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2029 assert(brw->gen >= 8 ||
2030 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2031
2032 /* Compression of arrayed msaa surfaces is supported. */
2033 if (mt->num_samples > 1)
2034 return;
2035
2036 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2037 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2038
2039 (void)level;
2040 (void)layer;
2041 }
2042
2043 static enum blorp_fast_clear_op
2044 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2045 bool ccs_supported, bool fast_clear_supported)
2046 {
2047 assert(ccs_supported == fast_clear_supported);
2048
2049 switch (aux_state) {
2050 case ISL_AUX_STATE_CLEAR:
2051 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2052 if (!ccs_supported)
2053 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2054 else
2055 return BLORP_FAST_CLEAR_OP_NONE;
2056
2057 case ISL_AUX_STATE_PASS_THROUGH:
2058 return BLORP_FAST_CLEAR_OP_NONE;
2059
2060 case ISL_AUX_STATE_RESOLVED:
2061 case ISL_AUX_STATE_AUX_INVALID:
2062 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2063 break;
2064 }
2065
2066 unreachable("Invalid aux state for CCS_D");
2067 }
2068
2069 static enum blorp_fast_clear_op
2070 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2071 bool ccs_supported, bool fast_clear_supported)
2072 {
2073 switch (aux_state) {
2074 case ISL_AUX_STATE_CLEAR:
2075 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2076 if (!ccs_supported)
2077 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2078 else if (!fast_clear_supported)
2079 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2080 else
2081 return BLORP_FAST_CLEAR_OP_NONE;
2082
2083 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2084 if (!ccs_supported)
2085 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2086 else
2087 return BLORP_FAST_CLEAR_OP_NONE;
2088
2089 case ISL_AUX_STATE_PASS_THROUGH:
2090 return BLORP_FAST_CLEAR_OP_NONE;
2091
2092 case ISL_AUX_STATE_RESOLVED:
2093 case ISL_AUX_STATE_AUX_INVALID:
2094 break;
2095 }
2096
2097 unreachable("Invalid aux state for CCS_E");
2098 }
2099
2100 static void
2101 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2102 struct intel_mipmap_tree *mt,
2103 uint32_t level, uint32_t layer,
2104 bool aux_supported,
2105 bool fast_clear_supported)
2106 {
2107 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2108
2109 enum blorp_fast_clear_op resolve_op;
2110 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2111 resolve_op = get_ccs_e_resolve_op(aux_state, aux_supported,
2112 fast_clear_supported);
2113 } else {
2114 resolve_op = get_ccs_d_resolve_op(aux_state, aux_supported,
2115 fast_clear_supported);
2116 }
2117
2118 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2119 intel_miptree_check_color_resolve(brw, mt, level, layer);
2120 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2121
2122 switch (resolve_op) {
2123 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2124 /* The CCS full resolve operation destroys the CCS and sets it to the
2125 * pass-through state. (You can also think of this as being both a
2126 * resolve and an ambiguate in one operation.)
2127 */
2128 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2129 ISL_AUX_STATE_PASS_THROUGH);
2130 break;
2131
2132 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2133 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2134 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2135 break;
2136
2137 default:
2138 unreachable("Invalid resolve op");
2139 }
2140 }
2141 }
2142
2143 static void
2144 intel_miptree_finish_ccs_write(struct brw_context *brw,
2145 struct intel_mipmap_tree *mt,
2146 uint32_t level, uint32_t layer,
2147 bool written_with_ccs)
2148 {
2149 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2150
2151 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2152 switch (aux_state) {
2153 case ISL_AUX_STATE_CLEAR:
2154 assert(written_with_ccs);
2155 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2156 ISL_AUX_STATE_COMPRESSED_CLEAR);
2157 break;
2158
2159 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2160 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2161 assert(written_with_ccs);
2162 break; /* Nothing to do */
2163
2164 case ISL_AUX_STATE_PASS_THROUGH:
2165 if (written_with_ccs) {
2166 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2167 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2168 } else {
2169 /* Nothing to do */
2170 }
2171 break;
2172
2173 case ISL_AUX_STATE_RESOLVED:
2174 case ISL_AUX_STATE_AUX_INVALID:
2175 unreachable("Invalid aux state for CCS_E");
2176 }
2177 } else {
2178 /* CCS_D is a bit simpler */
2179 switch (aux_state) {
2180 case ISL_AUX_STATE_CLEAR:
2181 assert(written_with_ccs);
2182 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2183 ISL_AUX_STATE_COMPRESSED_CLEAR);
2184 break;
2185
2186 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2187 assert(written_with_ccs);
2188 break; /* Nothing to do */
2189
2190 case ISL_AUX_STATE_PASS_THROUGH:
2191 /* Nothing to do */
2192 break;
2193
2194 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2195 case ISL_AUX_STATE_RESOLVED:
2196 case ISL_AUX_STATE_AUX_INVALID:
2197 unreachable("Invalid aux state for CCS_D");
2198 }
2199 }
2200 }
2201
2202 static void
2203 intel_miptree_finish_mcs_write(struct brw_context *brw,
2204 struct intel_mipmap_tree *mt,
2205 uint32_t level, uint32_t layer,
2206 bool written_with_aux)
2207 {
2208 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2209 case ISL_AUX_STATE_CLEAR:
2210 assert(written_with_aux);
2211 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2212 ISL_AUX_STATE_COMPRESSED_CLEAR);
2213 break;
2214
2215 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2216 assert(written_with_aux);
2217 break; /* Nothing to do */
2218
2219 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2220 case ISL_AUX_STATE_RESOLVED:
2221 case ISL_AUX_STATE_PASS_THROUGH:
2222 case ISL_AUX_STATE_AUX_INVALID:
2223 unreachable("Invalid aux state for MCS");
2224 }
2225 }
2226
2227 static void
2228 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2229 struct intel_mipmap_tree *mt,
2230 uint32_t level, uint32_t layer,
2231 bool hiz_supported, bool fast_clear_supported)
2232 {
2233 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2234 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2235 case ISL_AUX_STATE_CLEAR:
2236 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2237 if (!hiz_supported || !fast_clear_supported)
2238 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2239 break;
2240
2241 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2242 if (!hiz_supported)
2243 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2244 break;
2245
2246 case ISL_AUX_STATE_PASS_THROUGH:
2247 case ISL_AUX_STATE_RESOLVED:
2248 break;
2249
2250 case ISL_AUX_STATE_AUX_INVALID:
2251 if (hiz_supported)
2252 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2253 break;
2254 }
2255
2256 if (hiz_op != BLORP_HIZ_OP_NONE) {
2257 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2258
2259 switch (hiz_op) {
2260 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2261 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2262 ISL_AUX_STATE_RESOLVED);
2263 break;
2264
2265 case BLORP_HIZ_OP_HIZ_RESOLVE:
2266 /* The HiZ resolve operation is actually an ambiguate */
2267 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2268 ISL_AUX_STATE_PASS_THROUGH);
2269 break;
2270
2271 default:
2272 unreachable("Invalid HiZ op");
2273 }
2274 }
2275 }
2276
2277 static void
2278 intel_miptree_finish_hiz_write(struct brw_context *brw,
2279 struct intel_mipmap_tree *mt,
2280 uint32_t level, uint32_t layer,
2281 bool written_with_hiz)
2282 {
2283 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2284 case ISL_AUX_STATE_CLEAR:
2285 assert(written_with_hiz);
2286 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2287 ISL_AUX_STATE_COMPRESSED_CLEAR);
2288 break;
2289
2290 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2291 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2292 assert(written_with_hiz);
2293 break; /* Nothing to do */
2294
2295 case ISL_AUX_STATE_RESOLVED:
2296 if (written_with_hiz) {
2297 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2298 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2299 } else {
2300 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2301 ISL_AUX_STATE_AUX_INVALID);
2302 }
2303 break;
2304
2305 case ISL_AUX_STATE_PASS_THROUGH:
2306 if (written_with_hiz) {
2307 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2308 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2309 }
2310 break;
2311
2312 case ISL_AUX_STATE_AUX_INVALID:
2313 assert(!written_with_hiz);
2314 break;
2315 }
2316 }
2317
2318 static inline uint32_t
2319 miptree_level_range_length(const struct intel_mipmap_tree *mt,
2320 uint32_t start_level, uint32_t num_levels)
2321 {
2322 assert(start_level >= mt->first_level);
2323 assert(start_level <= mt->last_level);
2324
2325 if (num_levels == INTEL_REMAINING_LAYERS)
2326 num_levels = mt->last_level - start_level + 1;
2327 /* Check for overflow */
2328 assert(start_level + num_levels >= start_level);
2329 assert(start_level + num_levels <= mt->last_level + 1);
2330
2331 return num_levels;
2332 }
2333
2334 static inline uint32_t
2335 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2336 uint32_t start_layer, uint32_t num_layers)
2337 {
2338 assert(level <= mt->last_level);
2339 uint32_t total_num_layers = mt->level[level].depth;
2340
2341 assert(start_layer < total_num_layers);
2342 if (num_layers == INTEL_REMAINING_LAYERS)
2343 num_layers = total_num_layers - start_layer;
2344 /* Check for overflow */
2345 assert(start_layer + num_layers >= start_layer);
2346 assert(start_layer + num_layers <= total_num_layers);
2347
2348 return num_layers;
2349 }
2350
2351 void
2352 intel_miptree_prepare_access(struct brw_context *brw,
2353 struct intel_mipmap_tree *mt,
2354 uint32_t start_level, uint32_t num_levels,
2355 uint32_t start_layer, uint32_t num_layers,
2356 bool aux_supported, bool fast_clear_supported)
2357 {
2358 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2359
2360 if (_mesa_is_format_color_format(mt->format)) {
2361 if (!mt->mcs_buf)
2362 return;
2363
2364 if (mt->num_samples > 1) {
2365 /* Nothing to do for MSAA */
2366 assert(aux_supported && fast_clear_supported);
2367 } else {
2368 for (uint32_t l = 0; l < num_levels; l++) {
2369 const uint32_t level = start_level + l;
2370 const uint32_t level_layers =
2371 miptree_layer_range_length(mt, level, start_layer, num_layers);
2372 for (uint32_t a = 0; a < level_layers; a++) {
2373 intel_miptree_prepare_ccs_access(brw, mt, level,
2374 start_layer + a, aux_supported,
2375 fast_clear_supported);
2376 }
2377 }
2378 }
2379 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2380 /* Nothing to do for stencil */
2381 } else {
2382 if (!mt->hiz_buf)
2383 return;
2384
2385 for (uint32_t l = 0; l < num_levels; l++) {
2386 const uint32_t level = start_level + l;
2387 if (!intel_miptree_level_has_hiz(mt, level))
2388 continue;
2389
2390 const uint32_t level_layers =
2391 miptree_layer_range_length(mt, level, start_layer, num_layers);
2392 for (uint32_t a = 0; a < level_layers; a++) {
2393 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2394 aux_supported,
2395 fast_clear_supported);
2396 }
2397 }
2398 }
2399 }
2400
2401 void
2402 intel_miptree_finish_write(struct brw_context *brw,
2403 struct intel_mipmap_tree *mt, uint32_t level,
2404 uint32_t start_layer, uint32_t num_layers,
2405 bool written_with_aux)
2406 {
2407 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2408
2409 if (_mesa_is_format_color_format(mt->format)) {
2410 if (!mt->mcs_buf)
2411 return;
2412
2413 if (mt->num_samples > 1) {
2414 for (uint32_t a = 0; a < num_layers; a++) {
2415 intel_miptree_finish_mcs_write(brw, mt, level, start_layer + a,
2416 written_with_aux);
2417 }
2418 } else {
2419 for (uint32_t a = 0; a < num_layers; a++) {
2420 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2421 written_with_aux);
2422 }
2423 }
2424 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2425 /* Nothing to do for stencil */
2426 } else {
2427 if (!intel_miptree_level_has_hiz(mt, level))
2428 return;
2429
2430 for (uint32_t a = 0; a < num_layers; a++) {
2431 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2432 written_with_aux);
2433 }
2434 }
2435 }
2436
2437 enum isl_aux_state
2438 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2439 uint32_t level, uint32_t layer)
2440 {
2441 intel_miptree_check_level_layer(mt, level, layer);
2442
2443 if (_mesa_is_format_color_format(mt->format)) {
2444 assert(mt->mcs_buf != NULL);
2445 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2446 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2447 unreachable("Cannot get aux state for stencil");
2448 } else {
2449 assert(intel_miptree_level_has_hiz(mt, level));
2450 }
2451
2452 return mt->aux_state[level][layer];
2453 }
2454
2455 void
2456 intel_miptree_set_aux_state(struct brw_context *brw,
2457 struct intel_mipmap_tree *mt, uint32_t level,
2458 uint32_t start_layer, uint32_t num_layers,
2459 enum isl_aux_state aux_state)
2460 {
2461 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2462
2463 if (_mesa_is_format_color_format(mt->format)) {
2464 assert(mt->mcs_buf != NULL);
2465 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2466 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2467 unreachable("Cannot get aux state for stencil");
2468 } else {
2469 assert(intel_miptree_level_has_hiz(mt, level));
2470 }
2471
2472 for (unsigned a = 0; a < num_layers; a++)
2473 mt->aux_state[level][start_layer + a] = aux_state;
2474 }
2475
2476 /* On Gen9 color buffers may be compressed by the hardware (lossless
2477 * compression). There are, however, format restrictions and care needs to be
2478 * taken that the sampler engine is capable for re-interpreting a buffer with
2479 * format different the buffer was originally written with.
2480 *
2481 * For example, SRGB formats are not compressible and the sampler engine isn't
2482 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2483 * color buffer needs to be resolved so that the sampling surface can be
2484 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2485 * set).
2486 */
2487 static bool
2488 can_texture_with_ccs(struct brw_context *brw,
2489 struct intel_mipmap_tree *mt,
2490 mesa_format view_format)
2491 {
2492 if (!intel_miptree_is_lossless_compressed(brw, mt))
2493 return false;
2494
2495 enum isl_format isl_mt_format = brw_isl_format_for_mesa_format(mt->format);
2496 enum isl_format isl_view_format = brw_isl_format_for_mesa_format(view_format);
2497
2498 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2499 isl_mt_format, isl_view_format)) {
2500 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2501 _mesa_get_format_name(view_format),
2502 _mesa_get_format_name(mt->format));
2503 return false;
2504 }
2505
2506 return true;
2507 }
2508
2509 static void
2510 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2511 struct intel_mipmap_tree *mt,
2512 mesa_format view_format,
2513 uint32_t start_level, uint32_t num_levels,
2514 uint32_t start_layer, uint32_t num_layers,
2515 bool *aux_supported_out)
2516 {
2517 bool aux_supported, clear_supported;
2518 if (_mesa_is_format_color_format(mt->format)) {
2519 if (mt->num_samples > 1) {
2520 aux_supported = clear_supported = true;
2521 } else {
2522 aux_supported = can_texture_with_ccs(brw, mt, view_format);
2523
2524 /* Clear color is specified as ints or floats and the conversion is
2525 * done by the sampler. If we have a texture view, we would have to
2526 * perform the clear color conversion manually. Just disable clear
2527 * color.
2528 */
2529 clear_supported = aux_supported && (mt->format == view_format);
2530 }
2531 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2532 aux_supported = clear_supported = false;
2533 } else {
2534 aux_supported = clear_supported = intel_miptree_sample_with_hiz(brw, mt);
2535 }
2536
2537 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2538 start_layer, num_layers,
2539 aux_supported, clear_supported);
2540 if (aux_supported_out)
2541 *aux_supported_out = aux_supported;
2542 }
2543
2544 void
2545 intel_miptree_prepare_texture(struct brw_context *brw,
2546 struct intel_mipmap_tree *mt,
2547 mesa_format view_format,
2548 bool *aux_supported_out)
2549 {
2550 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2551 0, INTEL_REMAINING_LEVELS,
2552 0, INTEL_REMAINING_LAYERS,
2553 aux_supported_out);
2554 }
2555
2556 void
2557 intel_miptree_prepare_image(struct brw_context *brw,
2558 struct intel_mipmap_tree *mt)
2559 {
2560 /* The data port doesn't understand any compression */
2561 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2562 0, INTEL_REMAINING_LAYERS, false, false);
2563 }
2564
2565 void
2566 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2567 struct intel_mipmap_tree *mt, uint32_t level,
2568 uint32_t start_layer, uint32_t num_layers)
2569 {
2570 intel_miptree_prepare_texture_slices(brw, mt, mt->format, level, 1,
2571 start_layer, num_layers, NULL);
2572 }
2573
2574 void
2575 intel_miptree_prepare_render(struct brw_context *brw,
2576 struct intel_mipmap_tree *mt, uint32_t level,
2577 uint32_t start_layer, uint32_t layer_count,
2578 bool srgb_enabled)
2579 {
2580 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of
2581 * the single-sampled color renderbuffers because the CCS buffer isn't
2582 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
2583 * enabled because otherwise the surface state will be programmed with
2584 * the linear equivalent format anyway.
2585 */
2586 if (brw->gen == 9 && srgb_enabled && mt->num_samples <= 1 &&
2587 _mesa_get_srgb_format_linear(mt->format) != mt->format) {
2588
2589 /* Lossless compression is not supported for SRGB formats, it
2590 * should be impossible to get here with such surfaces.
2591 */
2592 assert(!intel_miptree_is_lossless_compressed(brw, mt));
2593 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2594 false, false);
2595 }
2596
2597 /* For layered rendering non-compressed fast cleared buffers need to be
2598 * resolved. Surface state can carry only one fast color clear value
2599 * while each layer may have its own fast clear color value. For
2600 * compressed buffers color value is available in the color buffer.
2601 */
2602 if (layer_count > 1 &&
2603 !(mt->aux_disable & INTEL_AUX_DISABLE_CCS) &&
2604 !intel_miptree_is_lossless_compressed(brw, mt)) {
2605 assert(brw->gen >= 8);
2606
2607 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2608 false, false);
2609 }
2610 }
2611
2612 void
2613 intel_miptree_finish_render(struct brw_context *brw,
2614 struct intel_mipmap_tree *mt, uint32_t level,
2615 uint32_t start_layer, uint32_t layer_count)
2616 {
2617 assert(_mesa_is_format_color_format(mt->format));
2618 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2619 mt->mcs_buf != NULL);
2620 }
2621
2622 void
2623 intel_miptree_prepare_depth(struct brw_context *brw,
2624 struct intel_mipmap_tree *mt, uint32_t level,
2625 uint32_t start_layer, uint32_t layer_count)
2626 {
2627 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2628 mt->hiz_buf != NULL, mt->hiz_buf != NULL);
2629 }
2630
2631 void
2632 intel_miptree_finish_depth(struct brw_context *brw,
2633 struct intel_mipmap_tree *mt, uint32_t level,
2634 uint32_t start_layer, uint32_t layer_count,
2635 bool depth_written)
2636 {
2637 if (depth_written) {
2638 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2639 mt->hiz_buf != NULL);
2640 }
2641 }
2642
2643 /**
2644 * Make it possible to share the BO backing the given miptree with another
2645 * process or another miptree.
2646 *
2647 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2648 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2649 * ensure that no MCS buffer gets allocated in the future.
2650 *
2651 * HiZ is similarly unsafe with shared buffers.
2652 */
2653 void
2654 intel_miptree_make_shareable(struct brw_context *brw,
2655 struct intel_mipmap_tree *mt)
2656 {
2657 /* MCS buffers are also used for multisample buffers, but we can't resolve
2658 * away a multisample MCS buffer because it's an integral part of how the
2659 * pixel data is stored. Fortunately this code path should never be
2660 * reached for multisample buffers.
2661 */
2662 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2663
2664 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2665 0, INTEL_REMAINING_LAYERS, false, false);
2666
2667 if (mt->mcs_buf) {
2668 mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2669 brw_bo_unreference(mt->mcs_buf->bo);
2670 free(mt->mcs_buf);
2671 mt->mcs_buf = NULL;
2672
2673 /* Any pending MCS/CCS operations are no longer needed. Trying to
2674 * execute any will likely crash due to the missing aux buffer. So let's
2675 * delete all pending ops.
2676 */
2677 free(mt->aux_state);
2678 mt->aux_state = NULL;
2679 }
2680
2681 if (mt->hiz_buf) {
2682 mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2683 intel_miptree_hiz_buffer_free(mt->hiz_buf);
2684 mt->hiz_buf = NULL;
2685
2686 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2687 mt->level[l].has_hiz = false;
2688 }
2689
2690 /* Any pending HiZ operations are no longer needed. Trying to execute
2691 * any will likely crash due to the missing aux buffer. So let's delete
2692 * all pending ops.
2693 */
2694 free(mt->aux_state);
2695 mt->aux_state = NULL;
2696 }
2697 }
2698
2699
2700 /**
2701 * \brief Get pointer offset into stencil buffer.
2702 *
2703 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2704 * must decode the tile's layout in software.
2705 *
2706 * See
2707 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2708 * Format.
2709 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2710 *
2711 * Even though the returned offset is always positive, the return type is
2712 * signed due to
2713 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2714 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2715 */
2716 static intptr_t
2717 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2718 {
2719 uint32_t tile_size = 4096;
2720 uint32_t tile_width = 64;
2721 uint32_t tile_height = 64;
2722 uint32_t row_size = 64 * stride;
2723
2724 uint32_t tile_x = x / tile_width;
2725 uint32_t tile_y = y / tile_height;
2726
2727 /* The byte's address relative to the tile's base addres. */
2728 uint32_t byte_x = x % tile_width;
2729 uint32_t byte_y = y % tile_height;
2730
2731 uintptr_t u = tile_y * row_size
2732 + tile_x * tile_size
2733 + 512 * (byte_x / 8)
2734 + 64 * (byte_y / 8)
2735 + 32 * ((byte_y / 4) % 2)
2736 + 16 * ((byte_x / 4) % 2)
2737 + 8 * ((byte_y / 2) % 2)
2738 + 4 * ((byte_x / 2) % 2)
2739 + 2 * (byte_y % 2)
2740 + 1 * (byte_x % 2);
2741
2742 if (swizzled) {
2743 /* adjust for bit6 swizzling */
2744 if (((byte_x / 8) % 2) == 1) {
2745 if (((byte_y / 8) % 2) == 0) {
2746 u += 64;
2747 } else {
2748 u -= 64;
2749 }
2750 }
2751 }
2752
2753 return u;
2754 }
2755
2756 void
2757 intel_miptree_updownsample(struct brw_context *brw,
2758 struct intel_mipmap_tree *src,
2759 struct intel_mipmap_tree *dst)
2760 {
2761 brw_blorp_blit_miptrees(brw,
2762 src, 0 /* level */, 0 /* layer */,
2763 src->format, SWIZZLE_XYZW,
2764 dst, 0 /* level */, 0 /* layer */, dst->format,
2765 0, 0,
2766 src->logical_width0, src->logical_height0,
2767 0, 0,
2768 dst->logical_width0, dst->logical_height0,
2769 GL_NEAREST, false, false /*mirror x, y*/,
2770 false, false);
2771
2772 if (src->stencil_mt) {
2773 brw_blorp_blit_miptrees(brw,
2774 src->stencil_mt, 0 /* level */, 0 /* layer */,
2775 src->stencil_mt->format, SWIZZLE_XYZW,
2776 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2777 dst->stencil_mt->format,
2778 0, 0,
2779 src->logical_width0, src->logical_height0,
2780 0, 0,
2781 dst->logical_width0, dst->logical_height0,
2782 GL_NEAREST, false, false /*mirror x, y*/,
2783 false, false /* decode/encode srgb */);
2784 }
2785 }
2786
2787 void
2788 intel_update_r8stencil(struct brw_context *brw,
2789 struct intel_mipmap_tree *mt)
2790 {
2791 assert(brw->gen >= 7);
2792 struct intel_mipmap_tree *src =
2793 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2794 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2795 return;
2796
2797 if (!mt->r8stencil_mt) {
2798 const uint32_t r8stencil_flags =
2799 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2800 MIPTREE_LAYOUT_DISABLE_AUX;
2801 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2802 mt->r8stencil_mt = intel_miptree_create(brw,
2803 src->target,
2804 MESA_FORMAT_R_UINT8,
2805 src->first_level,
2806 src->last_level,
2807 src->logical_width0,
2808 src->logical_height0,
2809 src->logical_depth0,
2810 src->num_samples,
2811 r8stencil_flags);
2812 assert(mt->r8stencil_mt);
2813 }
2814
2815 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2816
2817 for (int level = src->first_level; level <= src->last_level; level++) {
2818 const unsigned depth = src->level[level].depth;
2819
2820 for (unsigned layer = 0; layer < depth; layer++) {
2821 brw_blorp_copy_miptrees(brw,
2822 src, level, layer,
2823 dst, level, layer,
2824 0, 0, 0, 0,
2825 minify(src->logical_width0, level),
2826 minify(src->logical_height0, level));
2827 }
2828 }
2829
2830 brw_render_cache_set_check_flush(brw, dst->bo);
2831 src->r8stencil_needs_update = false;
2832 }
2833
2834 static void *
2835 intel_miptree_map_raw(struct brw_context *brw,
2836 struct intel_mipmap_tree *mt,
2837 GLbitfield mode)
2838 {
2839 struct brw_bo *bo = mt->bo;
2840
2841 if (brw_batch_references(&brw->batch, bo))
2842 intel_batchbuffer_flush(brw);
2843
2844 return brw_bo_map(brw, bo, mode);
2845 }
2846
2847 static void
2848 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2849 {
2850 brw_bo_unmap(mt->bo);
2851 }
2852
2853 static void
2854 intel_miptree_map_gtt(struct brw_context *brw,
2855 struct intel_mipmap_tree *mt,
2856 struct intel_miptree_map *map,
2857 unsigned int level, unsigned int slice)
2858 {
2859 unsigned int bw, bh;
2860 void *base;
2861 unsigned int image_x, image_y;
2862 intptr_t x = map->x;
2863 intptr_t y = map->y;
2864
2865 /* For compressed formats, the stride is the number of bytes per
2866 * row of blocks. intel_miptree_get_image_offset() already does
2867 * the divide.
2868 */
2869 _mesa_get_format_block_size(mt->format, &bw, &bh);
2870 assert(y % bh == 0);
2871 assert(x % bw == 0);
2872 y /= bh;
2873 x /= bw;
2874
2875 base = intel_miptree_map_raw(brw, mt, map->mode) + mt->offset;
2876
2877 if (base == NULL)
2878 map->ptr = NULL;
2879 else {
2880 /* Note that in the case of cube maps, the caller must have passed the
2881 * slice number referencing the face.
2882 */
2883 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2884 x += image_x;
2885 y += image_y;
2886
2887 map->stride = mt->pitch;
2888 map->ptr = base + y * map->stride + x * mt->cpp;
2889 }
2890
2891 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2892 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2893 map->x, map->y, map->w, map->h,
2894 mt, _mesa_get_format_name(mt->format),
2895 x, y, map->ptr, map->stride);
2896 }
2897
2898 static void
2899 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2900 {
2901 intel_miptree_unmap_raw(mt);
2902 }
2903
2904 static void
2905 intel_miptree_map_blit(struct brw_context *brw,
2906 struct intel_mipmap_tree *mt,
2907 struct intel_miptree_map *map,
2908 unsigned int level, unsigned int slice)
2909 {
2910 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2911 /* first_level */ 0,
2912 /* last_level */ 0,
2913 map->w, map->h, 1,
2914 /* samples */ 0,
2915 MIPTREE_LAYOUT_TILING_NONE);
2916
2917 if (!map->linear_mt) {
2918 fprintf(stderr, "Failed to allocate blit temporary\n");
2919 goto fail;
2920 }
2921 map->stride = map->linear_mt->pitch;
2922
2923 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2924 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2925 * invalidate is set, since we'll be writing the whole rectangle from our
2926 * temporary buffer back out.
2927 */
2928 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2929 if (!intel_miptree_copy(brw,
2930 mt, level, slice, map->x, map->y,
2931 map->linear_mt, 0, 0, 0, 0,
2932 map->w, map->h)) {
2933 fprintf(stderr, "Failed to blit\n");
2934 goto fail;
2935 }
2936 }
2937
2938 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2939
2940 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2941 map->x, map->y, map->w, map->h,
2942 mt, _mesa_get_format_name(mt->format),
2943 level, slice, map->ptr, map->stride);
2944
2945 return;
2946
2947 fail:
2948 intel_miptree_release(&map->linear_mt);
2949 map->ptr = NULL;
2950 map->stride = 0;
2951 }
2952
2953 static void
2954 intel_miptree_unmap_blit(struct brw_context *brw,
2955 struct intel_mipmap_tree *mt,
2956 struct intel_miptree_map *map,
2957 unsigned int level,
2958 unsigned int slice)
2959 {
2960 struct gl_context *ctx = &brw->ctx;
2961
2962 intel_miptree_unmap_raw(map->linear_mt);
2963
2964 if (map->mode & GL_MAP_WRITE_BIT) {
2965 bool ok = intel_miptree_copy(brw,
2966 map->linear_mt, 0, 0, 0, 0,
2967 mt, level, slice, map->x, map->y,
2968 map->w, map->h);
2969 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2970 }
2971
2972 intel_miptree_release(&map->linear_mt);
2973 }
2974
2975 /**
2976 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2977 */
2978 #if defined(USE_SSE41)
2979 static void
2980 intel_miptree_map_movntdqa(struct brw_context *brw,
2981 struct intel_mipmap_tree *mt,
2982 struct intel_miptree_map *map,
2983 unsigned int level, unsigned int slice)
2984 {
2985 assert(map->mode & GL_MAP_READ_BIT);
2986 assert(!(map->mode & GL_MAP_WRITE_BIT));
2987
2988 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2989 map->x, map->y, map->w, map->h,
2990 mt, _mesa_get_format_name(mt->format),
2991 level, slice, map->ptr, map->stride);
2992
2993 /* Map the original image */
2994 uint32_t image_x;
2995 uint32_t image_y;
2996 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2997 image_x += map->x;
2998 image_y += map->y;
2999
3000 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3001 if (!src)
3002 return;
3003
3004 src += mt->offset;
3005
3006 src += image_y * mt->pitch;
3007 src += image_x * mt->cpp;
3008
3009 /* Due to the pixel offsets for the particular image being mapped, our
3010 * src pointer may not be 16-byte aligned. However, if the pitch is
3011 * divisible by 16, then the amount by which it's misaligned will remain
3012 * consistent from row to row.
3013 */
3014 assert((mt->pitch % 16) == 0);
3015 const int misalignment = ((uintptr_t) src) & 15;
3016
3017 /* Create an untiled temporary buffer for the mapping. */
3018 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3019
3020 map->stride = ALIGN(misalignment + width_bytes, 16);
3021
3022 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3023 /* Offset the destination so it has the same misalignment as src. */
3024 map->ptr = map->buffer + misalignment;
3025
3026 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3027
3028 for (uint32_t y = 0; y < map->h; y++) {
3029 void *dst_ptr = map->ptr + y * map->stride;
3030 void *src_ptr = src + y * mt->pitch;
3031
3032 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3033 }
3034
3035 intel_miptree_unmap_raw(mt);
3036 }
3037
3038 static void
3039 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3040 struct intel_mipmap_tree *mt,
3041 struct intel_miptree_map *map,
3042 unsigned int level,
3043 unsigned int slice)
3044 {
3045 _mesa_align_free(map->buffer);
3046 map->buffer = NULL;
3047 map->ptr = NULL;
3048 }
3049 #endif
3050
3051 static void
3052 intel_miptree_map_s8(struct brw_context *brw,
3053 struct intel_mipmap_tree *mt,
3054 struct intel_miptree_map *map,
3055 unsigned int level, unsigned int slice)
3056 {
3057 map->stride = map->w;
3058 map->buffer = map->ptr = malloc(map->stride * map->h);
3059 if (!map->buffer)
3060 return;
3061
3062 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3063 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3064 * invalidate is set, since we'll be writing the whole rectangle from our
3065 * temporary buffer back out.
3066 */
3067 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3068 uint8_t *untiled_s8_map = map->ptr;
3069 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3070 unsigned int image_x, image_y;
3071
3072 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3073
3074 for (uint32_t y = 0; y < map->h; y++) {
3075 for (uint32_t x = 0; x < map->w; x++) {
3076 ptrdiff_t offset = intel_offset_S8(mt->pitch,
3077 x + image_x + map->x,
3078 y + image_y + map->y,
3079 brw->has_swizzling);
3080 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3081 }
3082 }
3083
3084 intel_miptree_unmap_raw(mt);
3085
3086 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3087 map->x, map->y, map->w, map->h,
3088 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3089 } else {
3090 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3091 map->x, map->y, map->w, map->h,
3092 mt, map->ptr, map->stride);
3093 }
3094 }
3095
3096 static void
3097 intel_miptree_unmap_s8(struct brw_context *brw,
3098 struct intel_mipmap_tree *mt,
3099 struct intel_miptree_map *map,
3100 unsigned int level,
3101 unsigned int slice)
3102 {
3103 if (map->mode & GL_MAP_WRITE_BIT) {
3104 unsigned int image_x, image_y;
3105 uint8_t *untiled_s8_map = map->ptr;
3106 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3107
3108 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3109
3110 for (uint32_t y = 0; y < map->h; y++) {
3111 for (uint32_t x = 0; x < map->w; x++) {
3112 ptrdiff_t offset = intel_offset_S8(mt->pitch,
3113 image_x + x + map->x,
3114 image_y + y + map->y,
3115 brw->has_swizzling);
3116 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3117 }
3118 }
3119
3120 intel_miptree_unmap_raw(mt);
3121 }
3122
3123 free(map->buffer);
3124 }
3125
3126 static void
3127 intel_miptree_map_etc(struct brw_context *brw,
3128 struct intel_mipmap_tree *mt,
3129 struct intel_miptree_map *map,
3130 unsigned int level,
3131 unsigned int slice)
3132 {
3133 assert(mt->etc_format != MESA_FORMAT_NONE);
3134 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3135 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3136 }
3137
3138 assert(map->mode & GL_MAP_WRITE_BIT);
3139 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3140
3141 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3142 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3143 map->w, map->h, 1));
3144 map->ptr = map->buffer;
3145 }
3146
3147 static void
3148 intel_miptree_unmap_etc(struct brw_context *brw,
3149 struct intel_mipmap_tree *mt,
3150 struct intel_miptree_map *map,
3151 unsigned int level,
3152 unsigned int slice)
3153 {
3154 uint32_t image_x;
3155 uint32_t image_y;
3156 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3157
3158 image_x += map->x;
3159 image_y += map->y;
3160
3161 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3162 + image_y * mt->pitch
3163 + image_x * mt->cpp;
3164
3165 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3166 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
3167 map->ptr, map->stride,
3168 map->w, map->h);
3169 else
3170 _mesa_unpack_etc2_format(dst, mt->pitch,
3171 map->ptr, map->stride,
3172 map->w, map->h, mt->etc_format);
3173
3174 intel_miptree_unmap_raw(mt);
3175 free(map->buffer);
3176 }
3177
3178 /**
3179 * Mapping function for packed depth/stencil miptrees backed by real separate
3180 * miptrees for depth and stencil.
3181 *
3182 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3183 * separate from the depth buffer. Yet at the GL API level, we have to expose
3184 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3185 * be able to map that memory for texture storage and glReadPixels-type
3186 * operations. We give Mesa core that access by mallocing a temporary and
3187 * copying the data between the actual backing store and the temporary.
3188 */
3189 static void
3190 intel_miptree_map_depthstencil(struct brw_context *brw,
3191 struct intel_mipmap_tree *mt,
3192 struct intel_miptree_map *map,
3193 unsigned int level, unsigned int slice)
3194 {
3195 struct intel_mipmap_tree *z_mt = mt;
3196 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3197 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3198 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3199
3200 map->stride = map->w * packed_bpp;
3201 map->buffer = map->ptr = malloc(map->stride * map->h);
3202 if (!map->buffer)
3203 return;
3204
3205 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3206 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3207 * invalidate is set, since we'll be writing the whole rectangle from our
3208 * temporary buffer back out.
3209 */
3210 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3211 uint32_t *packed_map = map->ptr;
3212 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3213 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3214 unsigned int s_image_x, s_image_y;
3215 unsigned int z_image_x, z_image_y;
3216
3217 intel_miptree_get_image_offset(s_mt, level, slice,
3218 &s_image_x, &s_image_y);
3219 intel_miptree_get_image_offset(z_mt, level, slice,
3220 &z_image_x, &z_image_y);
3221
3222 for (uint32_t y = 0; y < map->h; y++) {
3223 for (uint32_t x = 0; x < map->w; x++) {
3224 int map_x = map->x + x, map_y = map->y + y;
3225 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
3226 map_x + s_image_x,
3227 map_y + s_image_y,
3228 brw->has_swizzling);
3229 ptrdiff_t z_offset = ((map_y + z_image_y) *
3230 (z_mt->pitch / 4) +
3231 (map_x + z_image_x));
3232 uint8_t s = s_map[s_offset];
3233 uint32_t z = z_map[z_offset];
3234
3235 if (map_z32f_x24s8) {
3236 packed_map[(y * map->w + x) * 2 + 0] = z;
3237 packed_map[(y * map->w + x) * 2 + 1] = s;
3238 } else {
3239 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3240 }
3241 }
3242 }
3243
3244 intel_miptree_unmap_raw(s_mt);
3245 intel_miptree_unmap_raw(z_mt);
3246
3247 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3248 __func__,
3249 map->x, map->y, map->w, map->h,
3250 z_mt, map->x + z_image_x, map->y + z_image_y,
3251 s_mt, map->x + s_image_x, map->y + s_image_y,
3252 map->ptr, map->stride);
3253 } else {
3254 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3255 map->x, map->y, map->w, map->h,
3256 mt, map->ptr, map->stride);
3257 }
3258 }
3259
3260 static void
3261 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3262 struct intel_mipmap_tree *mt,
3263 struct intel_miptree_map *map,
3264 unsigned int level,
3265 unsigned int slice)
3266 {
3267 struct intel_mipmap_tree *z_mt = mt;
3268 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3269 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3270
3271 if (map->mode & GL_MAP_WRITE_BIT) {
3272 uint32_t *packed_map = map->ptr;
3273 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3274 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3275 unsigned int s_image_x, s_image_y;
3276 unsigned int z_image_x, z_image_y;
3277
3278 intel_miptree_get_image_offset(s_mt, level, slice,
3279 &s_image_x, &s_image_y);
3280 intel_miptree_get_image_offset(z_mt, level, slice,
3281 &z_image_x, &z_image_y);
3282
3283 for (uint32_t y = 0; y < map->h; y++) {
3284 for (uint32_t x = 0; x < map->w; x++) {
3285 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
3286 x + s_image_x + map->x,
3287 y + s_image_y + map->y,
3288 brw->has_swizzling);
3289 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3290 (z_mt->pitch / 4) +
3291 (x + z_image_x + map->x));
3292
3293 if (map_z32f_x24s8) {
3294 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3295 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3296 } else {
3297 uint32_t packed = packed_map[y * map->w + x];
3298 s_map[s_offset] = packed >> 24;
3299 z_map[z_offset] = packed;
3300 }
3301 }
3302 }
3303
3304 intel_miptree_unmap_raw(s_mt);
3305 intel_miptree_unmap_raw(z_mt);
3306
3307 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3308 __func__,
3309 map->x, map->y, map->w, map->h,
3310 z_mt, _mesa_get_format_name(z_mt->format),
3311 map->x + z_image_x, map->y + z_image_y,
3312 s_mt, map->x + s_image_x, map->y + s_image_y,
3313 map->ptr, map->stride);
3314 }
3315
3316 free(map->buffer);
3317 }
3318
3319 /**
3320 * Create and attach a map to the miptree at (level, slice). Return the
3321 * attached map.
3322 */
3323 static struct intel_miptree_map*
3324 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3325 unsigned int level,
3326 unsigned int slice,
3327 unsigned int x,
3328 unsigned int y,
3329 unsigned int w,
3330 unsigned int h,
3331 GLbitfield mode)
3332 {
3333 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3334
3335 if (!map)
3336 return NULL;
3337
3338 assert(mt->level[level].slice[slice].map == NULL);
3339 mt->level[level].slice[slice].map = map;
3340
3341 map->mode = mode;
3342 map->x = x;
3343 map->y = y;
3344 map->w = w;
3345 map->h = h;
3346
3347 return map;
3348 }
3349
3350 /**
3351 * Release the map at (level, slice).
3352 */
3353 static void
3354 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3355 unsigned int level,
3356 unsigned int slice)
3357 {
3358 struct intel_miptree_map **map;
3359
3360 map = &mt->level[level].slice[slice].map;
3361 free(*map);
3362 *map = NULL;
3363 }
3364
3365 static bool
3366 can_blit_slice(struct intel_mipmap_tree *mt,
3367 unsigned int level, unsigned int slice)
3368 {
3369 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3370 if (mt->pitch >= 32768)
3371 return false;
3372
3373 return true;
3374 }
3375
3376 static bool
3377 use_intel_mipree_map_blit(struct brw_context *brw,
3378 struct intel_mipmap_tree *mt,
3379 GLbitfield mode,
3380 unsigned int level,
3381 unsigned int slice)
3382 {
3383 if (brw->has_llc &&
3384 /* It's probably not worth swapping to the blit ring because of
3385 * all the overhead involved.
3386 */
3387 !(mode & GL_MAP_WRITE_BIT) &&
3388 !mt->compressed &&
3389 (mt->tiling == I915_TILING_X ||
3390 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3391 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3392 /* Fast copy blit on skl+ supports all tiling formats. */
3393 brw->gen >= 9) &&
3394 can_blit_slice(mt, level, slice))
3395 return true;
3396
3397 if (mt->tiling != I915_TILING_NONE &&
3398 mt->bo->size >= brw->max_gtt_map_object_size) {
3399 assert(can_blit_slice(mt, level, slice));
3400 return true;
3401 }
3402
3403 return false;
3404 }
3405
3406 /**
3407 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3408 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3409 * arithmetic overflow.
3410 *
3411 * If you call this function and use \a out_stride, then you're doing pointer
3412 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3413 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3414 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3415 * which usually have type uint32_t or GLuint.
3416 */
3417 void
3418 intel_miptree_map(struct brw_context *brw,
3419 struct intel_mipmap_tree *mt,
3420 unsigned int level,
3421 unsigned int slice,
3422 unsigned int x,
3423 unsigned int y,
3424 unsigned int w,
3425 unsigned int h,
3426 GLbitfield mode,
3427 void **out_ptr,
3428 ptrdiff_t *out_stride)
3429 {
3430 struct intel_miptree_map *map;
3431
3432 assert(mt->num_samples <= 1);
3433
3434 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3435 if (!map){
3436 *out_ptr = NULL;
3437 *out_stride = 0;
3438 return;
3439 }
3440
3441 intel_miptree_access_raw(brw, mt, level, slice,
3442 map->mode & GL_MAP_WRITE_BIT);
3443
3444 if (mt->format == MESA_FORMAT_S_UINT8) {
3445 intel_miptree_map_s8(brw, mt, map, level, slice);
3446 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3447 !(mode & BRW_MAP_DIRECT_BIT)) {
3448 intel_miptree_map_etc(brw, mt, map, level, slice);
3449 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3450 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3451 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3452 intel_miptree_map_blit(brw, mt, map, level, slice);
3453 #if defined(USE_SSE41)
3454 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3455 !mt->compressed && cpu_has_sse4_1 &&
3456 (mt->pitch % 16 == 0)) {
3457 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3458 #endif
3459 } else {
3460 intel_miptree_map_gtt(brw, mt, map, level, slice);
3461 }
3462
3463 *out_ptr = map->ptr;
3464 *out_stride = map->stride;
3465
3466 if (map->ptr == NULL)
3467 intel_miptree_release_map(mt, level, slice);
3468 }
3469
3470 void
3471 intel_miptree_unmap(struct brw_context *brw,
3472 struct intel_mipmap_tree *mt,
3473 unsigned int level,
3474 unsigned int slice)
3475 {
3476 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3477
3478 assert(mt->num_samples <= 1);
3479
3480 if (!map)
3481 return;
3482
3483 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3484 mt, _mesa_get_format_name(mt->format), level, slice);
3485
3486 if (mt->format == MESA_FORMAT_S_UINT8) {
3487 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3488 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3489 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3490 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3491 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3492 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3493 } else if (map->linear_mt) {
3494 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3495 #if defined(USE_SSE41)
3496 } else if (map->buffer && cpu_has_sse4_1) {
3497 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3498 #endif
3499 } else {
3500 intel_miptree_unmap_gtt(mt);
3501 }
3502
3503 intel_miptree_release_map(mt, level, slice);
3504 }
3505
3506 enum isl_surf_dim
3507 get_isl_surf_dim(GLenum target)
3508 {
3509 switch (target) {
3510 case GL_TEXTURE_1D:
3511 case GL_TEXTURE_1D_ARRAY:
3512 return ISL_SURF_DIM_1D;
3513
3514 case GL_TEXTURE_2D:
3515 case GL_TEXTURE_2D_ARRAY:
3516 case GL_TEXTURE_RECTANGLE:
3517 case GL_TEXTURE_CUBE_MAP:
3518 case GL_TEXTURE_CUBE_MAP_ARRAY:
3519 case GL_TEXTURE_2D_MULTISAMPLE:
3520 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3521 case GL_TEXTURE_EXTERNAL_OES:
3522 return ISL_SURF_DIM_2D;
3523
3524 case GL_TEXTURE_3D:
3525 return ISL_SURF_DIM_3D;
3526 }
3527
3528 unreachable("Invalid texture target");
3529 }
3530
3531 enum isl_dim_layout
3532 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3533 GLenum target, enum miptree_array_layout array_layout)
3534 {
3535 if (array_layout == GEN6_HIZ_STENCIL)
3536 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
3537
3538 switch (target) {
3539 case GL_TEXTURE_1D:
3540 case GL_TEXTURE_1D_ARRAY:
3541 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3542 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3543
3544 case GL_TEXTURE_2D:
3545 case GL_TEXTURE_2D_ARRAY:
3546 case GL_TEXTURE_RECTANGLE:
3547 case GL_TEXTURE_2D_MULTISAMPLE:
3548 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3549 case GL_TEXTURE_EXTERNAL_OES:
3550 return ISL_DIM_LAYOUT_GEN4_2D;
3551
3552 case GL_TEXTURE_CUBE_MAP:
3553 case GL_TEXTURE_CUBE_MAP_ARRAY:
3554 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3555 ISL_DIM_LAYOUT_GEN4_2D);
3556
3557 case GL_TEXTURE_3D:
3558 return (devinfo->gen >= 9 ?
3559 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3560 }
3561
3562 unreachable("Invalid texture target");
3563 }
3564
3565 enum isl_tiling
3566 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3567 {
3568 if (mt->format == MESA_FORMAT_S_UINT8) {
3569 return ISL_TILING_W;
3570 } else {
3571 switch (mt->tiling) {
3572 case I915_TILING_NONE:
3573 return ISL_TILING_LINEAR;
3574 case I915_TILING_X:
3575 return ISL_TILING_X;
3576 case I915_TILING_Y:
3577 return ISL_TILING_Y0;
3578 default:
3579 unreachable("Invalid tiling mode");
3580 }
3581 }
3582 }
3583
3584 void
3585 intel_miptree_get_isl_surf(struct brw_context *brw,
3586 const struct intel_mipmap_tree *mt,
3587 struct isl_surf *surf)
3588 {
3589 surf->dim = get_isl_surf_dim(mt->target);
3590 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3591 mt->tiling, mt->target,
3592 mt->array_layout);
3593
3594 if (mt->num_samples > 1) {
3595 switch (mt->msaa_layout) {
3596 case INTEL_MSAA_LAYOUT_IMS:
3597 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3598 break;
3599 case INTEL_MSAA_LAYOUT_UMS:
3600 case INTEL_MSAA_LAYOUT_CMS:
3601 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3602 break;
3603 default:
3604 unreachable("Invalid MSAA layout");
3605 }
3606 } else {
3607 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3608 }
3609
3610 surf->tiling = intel_miptree_get_isl_tiling(mt);
3611
3612 if (mt->format == MESA_FORMAT_S_UINT8) {
3613 /* The ISL definition of row_pitch matches the surface state pitch field
3614 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3615 * the factor of 2 for W-tiling in row_pitch.
3616 */
3617 surf->row_pitch = 2 * mt->pitch;
3618 } else {
3619 surf->row_pitch = mt->pitch;
3620 }
3621
3622 surf->format = translate_tex_format(brw, mt->format, false);
3623
3624 if (brw->gen >= 9) {
3625 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3626 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3627 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3628 } else {
3629 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3630 * alignment in terms of surface elements like we want.
3631 */
3632 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3633 }
3634 } else {
3635 /* On earlier gens it's stored in pixels. */
3636 unsigned bw, bh;
3637 _mesa_get_format_block_size(mt->format, &bw, &bh);
3638 surf->image_alignment_el =
3639 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3640 }
3641
3642 surf->logical_level0_px.width = mt->logical_width0;
3643 surf->logical_level0_px.height = mt->logical_height0;
3644 if (surf->dim == ISL_SURF_DIM_3D) {
3645 surf->logical_level0_px.depth = mt->logical_depth0;
3646 surf->logical_level0_px.array_len = 1;
3647 } else {
3648 surf->logical_level0_px.depth = 1;
3649 surf->logical_level0_px.array_len = mt->logical_depth0;
3650 }
3651
3652 surf->phys_level0_sa.width = mt->physical_width0;
3653 surf->phys_level0_sa.height = mt->physical_height0;
3654 if (surf->dim == ISL_SURF_DIM_3D) {
3655 surf->phys_level0_sa.depth = mt->physical_depth0;
3656 surf->phys_level0_sa.array_len = 1;
3657 } else {
3658 surf->phys_level0_sa.depth = 1;
3659 surf->phys_level0_sa.array_len = mt->physical_depth0;
3660 }
3661
3662 surf->levels = mt->last_level - mt->first_level + 1;
3663 surf->samples = MAX2(mt->num_samples, 1);
3664
3665 surf->size = 0; /* TODO */
3666 surf->alignment = 0; /* TODO */
3667
3668 switch (surf->dim_layout) {
3669 case ISL_DIM_LAYOUT_GEN4_2D:
3670 case ISL_DIM_LAYOUT_GEN4_3D:
3671 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
3672 if (brw->gen >= 9) {
3673 surf->array_pitch_el_rows = mt->qpitch;
3674 } else {
3675 unsigned bw, bh;
3676 _mesa_get_format_block_size(mt->format, &bw, &bh);
3677 assert(mt->qpitch % bh == 0);
3678 surf->array_pitch_el_rows = mt->qpitch / bh;
3679 }
3680 break;
3681 case ISL_DIM_LAYOUT_GEN9_1D:
3682 surf->array_pitch_el_rows = 1;
3683 break;
3684 }
3685
3686 switch (mt->array_layout) {
3687 case ALL_LOD_IN_EACH_SLICE:
3688 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3689 break;
3690 case ALL_SLICES_AT_EACH_LOD:
3691 case GEN6_HIZ_STENCIL:
3692 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3693 break;
3694 default:
3695 unreachable("Invalid array layout");
3696 }
3697
3698 GLenum base_format = _mesa_get_format_base_format(mt->format);
3699 switch (base_format) {
3700 case GL_DEPTH_COMPONENT:
3701 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3702 break;
3703 case GL_STENCIL_INDEX:
3704 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3705 if (brw->gen >= 8)
3706 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3707 break;
3708 case GL_DEPTH_STENCIL:
3709 /* In this case we only texture from the depth part */
3710 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3711 ISL_SURF_USAGE_TEXTURE_BIT;
3712 break;
3713 default:
3714 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3715 if (brw->format_supported_as_render_target[mt->format])
3716 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3717 break;
3718 }
3719
3720 if (_mesa_is_cube_map_texture(mt->target))
3721 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3722 }
3723
3724 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3725 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3726 * PASS IT INTO isl_surf_fill_state.
3727 */
3728 void
3729 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3730 const struct intel_mipmap_tree *mt,
3731 struct isl_surf *surf,
3732 enum isl_aux_usage *usage)
3733 {
3734 uint32_t aux_pitch, aux_qpitch;
3735 if (mt->mcs_buf) {
3736 aux_pitch = mt->mcs_buf->pitch;
3737 aux_qpitch = mt->mcs_buf->qpitch;
3738
3739 if (mt->num_samples > 1) {
3740 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3741 *usage = ISL_AUX_USAGE_MCS;
3742 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3743 assert(brw->gen >= 9);
3744 *usage = ISL_AUX_USAGE_CCS_E;
3745 } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3746 *usage = ISL_AUX_USAGE_CCS_D;
3747 } else {
3748 unreachable("Invalid MCS miptree");
3749 }
3750 } else if (mt->hiz_buf) {
3751 aux_pitch = mt->hiz_buf->aux_base.pitch;
3752 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3753
3754 *usage = ISL_AUX_USAGE_HIZ;
3755 } else {
3756 *usage = ISL_AUX_USAGE_NONE;
3757 return;
3758 }
3759
3760 /* Start with a copy of the original surface. */
3761 intel_miptree_get_isl_surf(brw, mt, surf);
3762
3763 /* Figure out the format and tiling of the auxiliary surface */
3764 switch (*usage) {
3765 case ISL_AUX_USAGE_NONE:
3766 unreachable("Invalid auxiliary usage");
3767
3768 case ISL_AUX_USAGE_HIZ:
3769 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3770 break;
3771
3772 case ISL_AUX_USAGE_MCS:
3773 /*
3774 * From the SKL PRM:
3775 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3776 * HALIGN 16 must be used."
3777 */
3778 if (brw->gen >= 9)
3779 assert(mt->halign == 16);
3780
3781 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3782 break;
3783
3784 case ISL_AUX_USAGE_CCS_D:
3785 case ISL_AUX_USAGE_CCS_E:
3786 /*
3787 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3788 *
3789 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3790 *
3791 * From the hardware spec for GEN9:
3792 *
3793 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3794 * HALIGN 16 must be used."
3795 */
3796 assert(mt->num_samples <= 1);
3797 if (brw->gen >= 8)
3798 assert(mt->halign == 16);
3799
3800 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3801 break;
3802 }
3803
3804 /* We want the pitch of the actual aux buffer. */
3805 surf->row_pitch = aux_pitch;
3806
3807 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3808 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3809 * in elements of the primary color surface so we have to divide by the
3810 * compression block height.
3811 */
3812 surf->array_pitch_el_rows =
3813 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3814 }