i965: Don't bother freeing NULL.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_resolve_map.h"
34 #include "intel_tex.h"
35 #include "intel_blit.h"
36 #include "intel_fbo.h"
37
38 #include "brw_blorp.h"
39 #include "brw_context.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static bool
53 intel_miptree_alloc_mcs(struct brw_context *brw,
54 struct intel_mipmap_tree *mt,
55 GLuint num_samples);
56
57 /**
58 * Determine which MSAA layout should be used by the MSAA surface being
59 * created, based on the chip generation and the surface type.
60 */
61 static enum intel_msaa_layout
62 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target,
63 bool disable_aux_buffers)
64 {
65 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
66 if (brw->gen < 7)
67 return INTEL_MSAA_LAYOUT_IMS;
68
69 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
70 switch (_mesa_get_format_base_format(format)) {
71 case GL_DEPTH_COMPONENT:
72 case GL_STENCIL_INDEX:
73 case GL_DEPTH_STENCIL:
74 return INTEL_MSAA_LAYOUT_IMS;
75 default:
76 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
77 *
78 * This field must be set to 0 for all SINT MSRTs when all RT channels
79 * are not written
80 *
81 * In practice this means that we have to disable MCS for all signed
82 * integer MSAA buffers. The alternative, to disable MCS only when one
83 * of the render target channels is disabled, is impractical because it
84 * would require converting between CMS and UMS MSAA layouts on the fly,
85 * which is expensive.
86 */
87 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
88 return INTEL_MSAA_LAYOUT_UMS;
89 } else if (disable_aux_buffers) {
90 /* We can't use the CMS layout because it uses an aux buffer, the MCS
91 * buffer. So fallback to UMS, which is identical to CMS without the
92 * MCS. */
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else {
95 return INTEL_MSAA_LAYOUT_CMS;
96 }
97 }
98 }
99
100
101 /**
102 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
103 * scaled-down bitfield representation of the color buffer which is capable of
104 * recording when blocks of the color buffer are equal to the clear value.
105 * This function returns the block size that will be used by the MCS buffer
106 * corresponding to a certain color miptree.
107 *
108 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
109 * beneath the "Fast Color Clear" bullet (p327):
110 *
111 * The following table describes the RT alignment
112 *
113 * Pixels Lines
114 * TiledY RT CL
115 * bpp
116 * 32 8 4
117 * 64 4 4
118 * 128 2 4
119 * TiledX RT CL
120 * bpp
121 * 32 16 2
122 * 64 8 2
123 * 128 4 2
124 *
125 * This alignment has the following uses:
126 *
127 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
128 * buffer contains 128 blocks horizontally and 256 blocks vertically.
129 *
130 * - For figuring out alignment restrictions for a fast clear operation. Fast
131 * clear operations must always clear aligned multiples of 16 blocks
132 * horizontally and 32 blocks vertically.
133 *
134 * - For scaling down the coordinates sent through the render pipeline during
135 * a fast clear. X coordinates must be scaled down by 8 times the block
136 * width, and Y coordinates by 16 times the block height.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a "Render Target Resolve" operation. X coordinates must be scaled down
140 * by half the block width, and Y coordinates by half the block height.
141 */
142 void
143 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
144 struct intel_mipmap_tree *mt,
145 unsigned *width_px, unsigned *height)
146 {
147 switch (mt->tiling) {
148 default:
149 unreachable("Non-MSRT MCS requires X or Y tiling");
150 /* In release builds, fall through */
151 case I915_TILING_Y:
152 *width_px = 32 / mt->cpp;
153 *height = 4;
154 break;
155 case I915_TILING_X:
156 *width_px = 64 / mt->cpp;
157 *height = 2;
158 }
159 }
160
161
162 /**
163 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
164 * can be used.
165 *
166 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
167 * beneath the "Fast Color Clear" bullet (p326):
168 *
169 * - Support is limited to tiled render targets.
170 * - Support is for non-mip-mapped and non-array surface types only.
171 *
172 * And then later, on p327:
173 *
174 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
175 * 64bpp, and 128bpp.
176 */
177 bool
178 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
179 struct intel_mipmap_tree *mt)
180 {
181 /* MCS support does not exist prior to Gen7 */
182 if (brw->gen < 7)
183 return false;
184
185 if (mt->disable_aux_buffers)
186 return false;
187
188 /* MCS is only supported for color buffers */
189 switch (_mesa_get_format_base_format(mt->format)) {
190 case GL_DEPTH_COMPONENT:
191 case GL_DEPTH_STENCIL:
192 case GL_STENCIL_INDEX:
193 return false;
194 }
195
196 if (mt->tiling != I915_TILING_X &&
197 mt->tiling != I915_TILING_Y)
198 return false;
199 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
200 return false;
201 if (mt->first_level != 0 || mt->last_level != 0)
202 return false;
203 if (mt->physical_depth0 != 1)
204 return false;
205
206 /* There's no point in using an MCS buffer if the surface isn't in a
207 * renderable format.
208 */
209 if (!brw->format_supported_as_render_target[mt->format])
210 return false;
211
212 return true;
213 }
214
215
216 /**
217 * Determine depth format corresponding to a depth+stencil format,
218 * for separate stencil.
219 */
220 mesa_format
221 intel_depth_format_for_depthstencil_format(mesa_format format) {
222 switch (format) {
223 case MESA_FORMAT_Z24_UNORM_S8_UINT:
224 return MESA_FORMAT_Z24_UNORM_X8_UINT;
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 return MESA_FORMAT_Z_FLOAT32;
227 default:
228 return format;
229 }
230 }
231
232
233 /**
234 * @param for_bo Indicates that the caller is
235 * intel_miptree_create_for_bo(). If true, then do not create
236 * \c stencil_mt.
237 */
238 static struct intel_mipmap_tree *
239 intel_miptree_create_layout(struct brw_context *brw,
240 GLenum target,
241 mesa_format format,
242 GLuint first_level,
243 GLuint last_level,
244 GLuint width0,
245 GLuint height0,
246 GLuint depth0,
247 bool for_bo,
248 GLuint num_samples,
249 bool force_all_slices_at_each_lod,
250 bool disable_aux_buffers)
251 {
252 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
253 if (!mt)
254 return NULL;
255
256 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
257 _mesa_lookup_enum_by_nr(target),
258 _mesa_get_format_name(format),
259 first_level, last_level, depth0, mt);
260
261 if (target == GL_TEXTURE_1D_ARRAY) {
262 /* For a 1D Array texture the OpenGL API will treat the height0
263 * parameter as the number of array slices. For Intel hardware, we treat
264 * the 1D array as a 2D Array with a height of 1.
265 *
266 * So, when we first come through this path to create a 1D Array
267 * texture, height0 stores the number of slices, and depth0 is 1. In
268 * this case, we want to swap height0 and depth0.
269 *
270 * Since some miptrees will be created based on the base miptree, we may
271 * come through this path and see height0 as 1 and depth0 being the
272 * number of slices. In this case we don't need to do the swap.
273 */
274 assert(height0 == 1 || depth0 == 1);
275 if (height0 > 1) {
276 depth0 = height0;
277 height0 = 1;
278 }
279 }
280
281 mt->target = target;
282 mt->format = format;
283 mt->first_level = first_level;
284 mt->last_level = last_level;
285 mt->logical_width0 = width0;
286 mt->logical_height0 = height0;
287 mt->logical_depth0 = depth0;
288 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
289 mt->disable_aux_buffers = disable_aux_buffers;
290 exec_list_make_empty(&mt->hiz_map);
291
292 /* The cpp is bytes per (1, blockheight)-sized block for compressed
293 * textures. This is why you'll see divides by blockheight all over
294 */
295 unsigned bw, bh;
296 _mesa_get_format_block_size(format, &bw, &bh);
297 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
298 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
299
300 mt->num_samples = num_samples;
301 mt->compressed = _mesa_is_format_compressed(format);
302 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
303 mt->refcount = 1;
304
305 if (num_samples > 1) {
306 /* Adjust width/height/depth for MSAA */
307 mt->msaa_layout = compute_msaa_layout(brw, format,
308 mt->target, mt->disable_aux_buffers);
309 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
310 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
311 * "If the surface is multisampled and it is a depth or stencil
312 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
313 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
314 * proceeding:
315 *
316 * +----------------------------------------------------------------+
317 * | Num Multisamples | W_l = | H_l = |
318 * +----------------------------------------------------------------+
319 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
320 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
321 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
322 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
323 * +----------------------------------------------------------------+
324 * "
325 *
326 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
327 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
328 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
329 *
330 * Another more complicated explanation for these adjustments comes
331 * from the Sandybridge PRM, volume 4, part 1, page 31:
332 *
333 * "Any of the other messages (sample*, LOD, load4) used with a
334 * (4x) multisampled surface will in-effect sample a surface with
335 * double the height and width as that indicated in the surface
336 * state. Each pixel position on the original-sized surface is
337 * replaced with a 2x2 of samples with the following arrangement:
338 *
339 * sample 0 sample 2
340 * sample 1 sample 3"
341 *
342 * Thus, when sampling from a multisampled texture, it behaves as
343 * though the layout in memory for (x,y,sample) is:
344 *
345 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
346 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
347 *
348 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
349 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
350 *
351 * However, the actual layout of multisampled data in memory is:
352 *
353 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
354 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
355 *
356 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
357 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
358 *
359 * This pattern repeats for each 2x2 pixel block.
360 *
361 * As a result, when calculating the size of our 4-sample buffer for
362 * an odd width or height, we have to align before scaling up because
363 * sample 3 is in that bottom right 2x2 block.
364 */
365 switch (num_samples) {
366 case 2:
367 assert(brw->gen >= 8);
368 width0 = ALIGN(width0, 2) * 2;
369 height0 = ALIGN(height0, 2);
370 break;
371 case 4:
372 width0 = ALIGN(width0, 2) * 2;
373 height0 = ALIGN(height0, 2) * 2;
374 break;
375 case 8:
376 width0 = ALIGN(width0, 2) * 4;
377 height0 = ALIGN(height0, 2) * 2;
378 break;
379 default:
380 /* num_samples should already have been quantized to 0, 1, 2, 4, or
381 * 8.
382 */
383 unreachable("not reached");
384 }
385 } else {
386 /* Non-interleaved */
387 depth0 *= num_samples;
388 }
389 }
390
391 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when gen7+ array_spacing_lod0
392 * can be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces.
393 * TODO: can we use it elsewhere?
394 */
395 switch (mt->msaa_layout) {
396 case INTEL_MSAA_LAYOUT_NONE:
397 case INTEL_MSAA_LAYOUT_IMS:
398 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
399 break;
400 case INTEL_MSAA_LAYOUT_UMS:
401 case INTEL_MSAA_LAYOUT_CMS:
402 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
403 break;
404 }
405
406 if (target == GL_TEXTURE_CUBE_MAP) {
407 assert(depth0 == 1);
408 depth0 = 6;
409 }
410
411 mt->physical_width0 = width0;
412 mt->physical_height0 = height0;
413 mt->physical_depth0 = depth0;
414
415 if (!for_bo &&
416 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
417 (brw->must_use_separate_stencil ||
418 (brw->has_separate_stencil &&
419 intel_miptree_wants_hiz_buffer(brw, mt)))) {
420 const bool force_all_slices_at_each_lod = brw->gen == 6;
421 mt->stencil_mt = intel_miptree_create(brw,
422 mt->target,
423 MESA_FORMAT_S_UINT8,
424 mt->first_level,
425 mt->last_level,
426 mt->logical_width0,
427 mt->logical_height0,
428 mt->logical_depth0,
429 true,
430 num_samples,
431 INTEL_MIPTREE_TILING_ANY,
432 force_all_slices_at_each_lod);
433 if (!mt->stencil_mt) {
434 intel_miptree_release(&mt);
435 return NULL;
436 }
437
438 /* Fix up the Z miptree format for how we're splitting out separate
439 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
440 */
441 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
442 mt->cpp = 4;
443
444 if (format == mt->format) {
445 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
446 _mesa_get_format_name(mt->format));
447 }
448 }
449
450 if (force_all_slices_at_each_lod)
451 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
452
453 brw_miptree_layout(brw, mt);
454
455 if (mt->disable_aux_buffers)
456 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
457
458 return mt;
459 }
460
461 /**
462 * \brief Helper function for intel_miptree_create().
463 */
464 static uint32_t
465 intel_miptree_choose_tiling(struct brw_context *brw,
466 mesa_format format,
467 uint32_t width0,
468 uint32_t num_samples,
469 enum intel_miptree_tiling_mode requested,
470 struct intel_mipmap_tree *mt)
471 {
472 if (format == MESA_FORMAT_S_UINT8) {
473 /* The stencil buffer is W tiled. However, we request from the kernel a
474 * non-tiled buffer because the GTT is incapable of W fencing.
475 */
476 return I915_TILING_NONE;
477 }
478
479 /* Some usages may want only one type of tiling, like depth miptrees (Y
480 * tiled), or temporary BOs for uploading data once (linear).
481 */
482 switch (requested) {
483 case INTEL_MIPTREE_TILING_ANY:
484 break;
485 case INTEL_MIPTREE_TILING_Y:
486 return I915_TILING_Y;
487 case INTEL_MIPTREE_TILING_NONE:
488 return I915_TILING_NONE;
489 }
490
491 if (num_samples > 1) {
492 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
493 * Surface"):
494 *
495 * [DevSNB+]: For multi-sample render targets, this field must be
496 * 1. MSRTs can only be tiled.
497 *
498 * Our usual reason for preferring X tiling (fast blits using the
499 * blitting engine) doesn't apply to MSAA, since we'll generally be
500 * downsampling or upsampling when blitting between the MSAA buffer
501 * and another buffer, and the blitting engine doesn't support that.
502 * So use Y tiling, since it makes better use of the cache.
503 */
504 return I915_TILING_Y;
505 }
506
507 GLenum base_format = _mesa_get_format_base_format(format);
508 if (base_format == GL_DEPTH_COMPONENT ||
509 base_format == GL_DEPTH_STENCIL_EXT)
510 return I915_TILING_Y;
511
512 /* 1D textures (and 1D array textures) don't get any benefit from tiling,
513 * in fact it leads to a less efficient use of memory space and bandwidth
514 * due to tile alignment.
515 */
516 if (mt->logical_height0 == 1)
517 return I915_TILING_NONE;
518
519 int minimum_pitch = mt->total_width * mt->cpp;
520
521 /* If the width is much smaller than a tile, don't bother tiling. */
522 if (minimum_pitch < 64)
523 return I915_TILING_NONE;
524
525 if (ALIGN(minimum_pitch, 512) >= 32768 ||
526 mt->total_width >= 32768 || mt->total_height >= 32768) {
527 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
528 mt->total_width, mt->total_height);
529 return I915_TILING_NONE;
530 }
531
532 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
533 if (brw->gen < 6)
534 return I915_TILING_X;
535
536 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
537 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
538 * or Linear."
539 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
540 * all the way back to 965, but is permitted on Gen7+.
541 */
542 if (brw->gen < 7 && mt->cpp >= 16)
543 return I915_TILING_X;
544
545 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
546 * messages), on p64, under the heading "Surface Vertical Alignment":
547 *
548 * This field must be set to VALIGN_4 for all tiled Y Render Target
549 * surfaces.
550 *
551 * So if the surface is renderable and uses a vertical alignment of 2,
552 * force it to be X tiled. This is somewhat conservative (it's possible
553 * that the client won't ever render to this surface), but it's difficult
554 * to know that ahead of time. And besides, since we use a vertical
555 * alignment of 4 as often as we can, this shouldn't happen very often.
556 */
557 if (brw->gen == 7 && mt->align_h == 2 &&
558 brw->format_supported_as_render_target[format]) {
559 return I915_TILING_X;
560 }
561
562 return I915_TILING_Y | I915_TILING_X;
563 }
564
565
566 /**
567 * Choose an appropriate uncompressed format for a requested
568 * compressed format, if unsupported.
569 */
570 mesa_format
571 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
572 {
573 /* No need to lower ETC formats on these platforms,
574 * they are supported natively.
575 */
576 if (brw->gen >= 8 || brw->is_baytrail)
577 return format;
578
579 switch (format) {
580 case MESA_FORMAT_ETC1_RGB8:
581 return MESA_FORMAT_R8G8B8X8_UNORM;
582 case MESA_FORMAT_ETC2_RGB8:
583 return MESA_FORMAT_R8G8B8X8_UNORM;
584 case MESA_FORMAT_ETC2_SRGB8:
585 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
586 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
587 return MESA_FORMAT_B8G8R8A8_SRGB;
588 case MESA_FORMAT_ETC2_RGBA8_EAC:
589 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
590 return MESA_FORMAT_R8G8B8A8_UNORM;
591 case MESA_FORMAT_ETC2_R11_EAC:
592 return MESA_FORMAT_R_UNORM16;
593 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
594 return MESA_FORMAT_R_SNORM16;
595 case MESA_FORMAT_ETC2_RG11_EAC:
596 return MESA_FORMAT_R16G16_UNORM;
597 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
598 return MESA_FORMAT_R16G16_SNORM;
599 default:
600 /* Non ETC1 / ETC2 format */
601 return format;
602 }
603 }
604
605
606 struct intel_mipmap_tree *
607 intel_miptree_create(struct brw_context *brw,
608 GLenum target,
609 mesa_format format,
610 GLuint first_level,
611 GLuint last_level,
612 GLuint width0,
613 GLuint height0,
614 GLuint depth0,
615 bool expect_accelerated_upload,
616 GLuint num_samples,
617 enum intel_miptree_tiling_mode requested_tiling,
618 bool force_all_slices_at_each_lod)
619 {
620 struct intel_mipmap_tree *mt;
621 mesa_format tex_format = format;
622 mesa_format etc_format = MESA_FORMAT_NONE;
623 GLuint total_width, total_height;
624
625 format = intel_lower_compressed_format(brw, format);
626
627 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
628
629 mt = intel_miptree_create_layout(brw, target, format,
630 first_level, last_level, width0,
631 height0, depth0,
632 false, num_samples,
633 force_all_slices_at_each_lod,
634 false /*disable_aux_buffers*/);
635 /*
636 * pitch == 0 || height == 0 indicates the null texture
637 */
638 if (!mt || !mt->total_width || !mt->total_height) {
639 intel_miptree_release(&mt);
640 return NULL;
641 }
642
643 total_width = mt->total_width;
644 total_height = mt->total_height;
645
646 if (format == MESA_FORMAT_S_UINT8) {
647 /* Align to size of W tile, 64x64. */
648 total_width = ALIGN(total_width, 64);
649 total_height = ALIGN(total_height, 64);
650 }
651
652 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
653 num_samples, requested_tiling,
654 mt);
655 bool y_or_x = false;
656
657 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
658 y_or_x = true;
659 mt->tiling = I915_TILING_Y;
660 } else {
661 mt->tiling = tiling;
662 }
663
664 unsigned long pitch;
665 mt->etc_format = etc_format;
666 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
667 total_width, total_height, mt->cpp,
668 &mt->tiling, &pitch,
669 (expect_accelerated_upload ?
670 BO_ALLOC_FOR_RENDER : 0));
671 mt->pitch = pitch;
672
673 /* If the BO is too large to fit in the aperture, we need to use the
674 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
675 * handle Y-tiling, so we need to fall back to X.
676 */
677 if (brw->gen < 6 && y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
678 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
679 mt->total_width, mt->total_height);
680
681 mt->tiling = I915_TILING_X;
682 drm_intel_bo_unreference(mt->bo);
683 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
684 total_width, total_height, mt->cpp,
685 &mt->tiling, &pitch,
686 (expect_accelerated_upload ?
687 BO_ALLOC_FOR_RENDER : 0));
688 mt->pitch = pitch;
689 }
690
691 mt->offset = 0;
692
693 if (!mt->bo) {
694 intel_miptree_release(&mt);
695 return NULL;
696 }
697
698
699 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
700 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
701 intel_miptree_release(&mt);
702 return NULL;
703 }
704 }
705
706 /* If this miptree is capable of supporting fast color clears, set
707 * fast_clear_state appropriately to ensure that fast clears will occur.
708 * Allocation of the MCS miptree will be deferred until the first fast
709 * clear actually occurs.
710 */
711 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
712 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
713
714 return mt;
715 }
716
717 struct intel_mipmap_tree *
718 intel_miptree_create_for_bo(struct brw_context *brw,
719 drm_intel_bo *bo,
720 mesa_format format,
721 uint32_t offset,
722 uint32_t width,
723 uint32_t height,
724 uint32_t depth,
725 int pitch,
726 bool disable_aux_buffers)
727 {
728 struct intel_mipmap_tree *mt;
729 uint32_t tiling, swizzle;
730 GLenum target;
731
732 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
733
734 /* Nothing will be able to use this miptree with the BO if the offset isn't
735 * aligned.
736 */
737 if (tiling != I915_TILING_NONE)
738 assert(offset % 4096 == 0);
739
740 /* miptrees can't handle negative pitch. If you need flipping of images,
741 * that's outside of the scope of the mt.
742 */
743 assert(pitch >= 0);
744
745 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
746
747 mt = intel_miptree_create_layout(brw, target, format,
748 0, 0,
749 width, height, depth,
750 true, 0, false,
751 disable_aux_buffers);
752 if (!mt)
753 return NULL;
754
755 drm_intel_bo_reference(bo);
756 mt->bo = bo;
757 mt->pitch = pitch;
758 mt->offset = offset;
759 mt->tiling = tiling;
760
761 return mt;
762 }
763
764 /**
765 * For a singlesample renderbuffer, this simply wraps the given BO with a
766 * miptree.
767 *
768 * For a multisample renderbuffer, this wraps the window system's
769 * (singlesample) BO with a singlesample miptree attached to the
770 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
771 * that will contain the actual rendering (which is lazily resolved to
772 * irb->singlesample_mt).
773 */
774 void
775 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
776 struct intel_renderbuffer *irb,
777 drm_intel_bo *bo,
778 uint32_t width, uint32_t height,
779 uint32_t pitch)
780 {
781 struct intel_mipmap_tree *singlesample_mt = NULL;
782 struct intel_mipmap_tree *multisample_mt = NULL;
783 struct gl_renderbuffer *rb = &irb->Base.Base;
784 mesa_format format = rb->Format;
785 int num_samples = rb->NumSamples;
786
787 /* Only the front and back buffers, which are color buffers, are allocated
788 * through the image loader.
789 */
790 assert(_mesa_get_format_base_format(format) == GL_RGB ||
791 _mesa_get_format_base_format(format) == GL_RGBA);
792
793 singlesample_mt = intel_miptree_create_for_bo(intel,
794 bo,
795 format,
796 0,
797 width,
798 height,
799 1,
800 pitch,
801 false);
802 if (!singlesample_mt)
803 goto fail;
804
805 /* If this miptree is capable of supporting fast color clears, set
806 * mcs_state appropriately to ensure that fast clears will occur.
807 * Allocation of the MCS miptree will be deferred until the first fast
808 * clear actually occurs.
809 */
810 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
811 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
812
813 if (num_samples == 0) {
814 intel_miptree_release(&irb->mt);
815 irb->mt = singlesample_mt;
816
817 assert(!irb->singlesample_mt);
818 } else {
819 intel_miptree_release(&irb->singlesample_mt);
820 irb->singlesample_mt = singlesample_mt;
821
822 if (!irb->mt ||
823 irb->mt->logical_width0 != width ||
824 irb->mt->logical_height0 != height) {
825 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
826 format,
827 width,
828 height,
829 num_samples);
830 if (!multisample_mt)
831 goto fail;
832
833 irb->need_downsample = false;
834 intel_miptree_release(&irb->mt);
835 irb->mt = multisample_mt;
836 }
837 }
838 return;
839
840 fail:
841 intel_miptree_release(&irb->singlesample_mt);
842 intel_miptree_release(&irb->mt);
843 return;
844 }
845
846 struct intel_mipmap_tree*
847 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
848 mesa_format format,
849 uint32_t width,
850 uint32_t height,
851 uint32_t num_samples)
852 {
853 struct intel_mipmap_tree *mt;
854 uint32_t depth = 1;
855 bool ok;
856 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
857
858 mt = intel_miptree_create(brw, target, format, 0, 0,
859 width, height, depth, true, num_samples,
860 INTEL_MIPTREE_TILING_ANY, false);
861 if (!mt)
862 goto fail;
863
864 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
865 ok = intel_miptree_alloc_hiz(brw, mt);
866 if (!ok)
867 goto fail;
868 }
869
870 return mt;
871
872 fail:
873 intel_miptree_release(&mt);
874 return NULL;
875 }
876
877 void
878 intel_miptree_reference(struct intel_mipmap_tree **dst,
879 struct intel_mipmap_tree *src)
880 {
881 if (*dst == src)
882 return;
883
884 intel_miptree_release(dst);
885
886 if (src) {
887 src->refcount++;
888 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
889 }
890
891 *dst = src;
892 }
893
894
895 void
896 intel_miptree_release(struct intel_mipmap_tree **mt)
897 {
898 if (!*mt)
899 return;
900
901 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
902 if (--(*mt)->refcount <= 0) {
903 GLuint i;
904
905 DBG("%s deleting %p\n", __FUNCTION__, *mt);
906
907 drm_intel_bo_unreference((*mt)->bo);
908 intel_miptree_release(&(*mt)->stencil_mt);
909 if ((*mt)->hiz_buf) {
910 if ((*mt)->hiz_buf->mt)
911 intel_miptree_release(&(*mt)->hiz_buf->mt);
912 else
913 drm_intel_bo_unreference((*mt)->hiz_buf->bo);
914 free((*mt)->hiz_buf);
915 }
916 intel_miptree_release(&(*mt)->mcs_mt);
917 intel_resolve_map_clear(&(*mt)->hiz_map);
918
919 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
920 free((*mt)->level[i].slice);
921 }
922
923 free(*mt);
924 }
925 *mt = NULL;
926 }
927
928 void
929 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
930 int *width, int *height, int *depth)
931 {
932 switch (image->TexObject->Target) {
933 case GL_TEXTURE_1D_ARRAY:
934 *width = image->Width;
935 *height = 1;
936 *depth = image->Height;
937 break;
938 default:
939 *width = image->Width;
940 *height = image->Height;
941 *depth = image->Depth;
942 break;
943 }
944 }
945
946 /**
947 * Can the image be pulled into a unified mipmap tree? This mirrors
948 * the completeness test in a lot of ways.
949 *
950 * Not sure whether I want to pass gl_texture_image here.
951 */
952 bool
953 intel_miptree_match_image(struct intel_mipmap_tree *mt,
954 struct gl_texture_image *image)
955 {
956 struct intel_texture_image *intelImage = intel_texture_image(image);
957 GLuint level = intelImage->base.Base.Level;
958 int width, height, depth;
959
960 /* glTexImage* choose the texture object based on the target passed in, and
961 * objects can't change targets over their lifetimes, so this should be
962 * true.
963 */
964 assert(image->TexObject->Target == mt->target);
965
966 mesa_format mt_format = mt->format;
967 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
968 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
969 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
970 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
971 if (mt->etc_format != MESA_FORMAT_NONE)
972 mt_format = mt->etc_format;
973
974 if (image->TexFormat != mt_format)
975 return false;
976
977 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
978
979 if (mt->target == GL_TEXTURE_CUBE_MAP)
980 depth = 6;
981
982 int level_depth = mt->level[level].depth;
983 if (mt->num_samples > 1) {
984 switch (mt->msaa_layout) {
985 case INTEL_MSAA_LAYOUT_NONE:
986 case INTEL_MSAA_LAYOUT_IMS:
987 break;
988 case INTEL_MSAA_LAYOUT_UMS:
989 case INTEL_MSAA_LAYOUT_CMS:
990 level_depth /= mt->num_samples;
991 break;
992 }
993 }
994
995 /* Test image dimensions against the base level image adjusted for
996 * minification. This will also catch images not present in the
997 * tree, changed targets, etc.
998 */
999 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1000 height != minify(mt->logical_height0, level - mt->first_level) ||
1001 depth != level_depth) {
1002 return false;
1003 }
1004
1005 if (image->NumSamples != mt->num_samples)
1006 return false;
1007
1008 return true;
1009 }
1010
1011
1012 void
1013 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1014 GLuint level,
1015 GLuint x, GLuint y, GLuint d)
1016 {
1017 mt->level[level].depth = d;
1018 mt->level[level].level_x = x;
1019 mt->level[level].level_y = y;
1020
1021 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
1022 level, d, x, y);
1023
1024 assert(mt->level[level].slice == NULL);
1025
1026 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1027 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1028 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1029 }
1030
1031
1032 void
1033 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1034 GLuint level, GLuint img,
1035 GLuint x, GLuint y)
1036 {
1037 if (img == 0 && level == 0)
1038 assert(x == 0 && y == 0);
1039
1040 assert(img < mt->level[level].depth);
1041
1042 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1043 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1044
1045 DBG("%s level %d img %d pos %d,%d\n",
1046 __FUNCTION__, level, img,
1047 mt->level[level].slice[img].x_offset,
1048 mt->level[level].slice[img].y_offset);
1049 }
1050
1051 void
1052 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1053 GLuint level, GLuint slice,
1054 GLuint *x, GLuint *y)
1055 {
1056 assert(slice < mt->level[level].depth);
1057
1058 *x = mt->level[level].slice[slice].x_offset;
1059 *y = mt->level[level].slice[slice].y_offset;
1060 }
1061
1062 /**
1063 * This function computes masks that may be used to select the bits of the X
1064 * and Y coordinates that indicate the offset within a tile. If the BO is
1065 * untiled, the masks are set to 0.
1066 */
1067 void
1068 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
1069 uint32_t *mask_x, uint32_t *mask_y,
1070 bool map_stencil_as_y_tiled)
1071 {
1072 int cpp = mt->cpp;
1073 uint32_t tiling = mt->tiling;
1074
1075 if (map_stencil_as_y_tiled)
1076 tiling = I915_TILING_Y;
1077
1078 switch (tiling) {
1079 default:
1080 unreachable("not reached");
1081 case I915_TILING_NONE:
1082 *mask_x = *mask_y = 0;
1083 break;
1084 case I915_TILING_X:
1085 *mask_x = 512 / cpp - 1;
1086 *mask_y = 7;
1087 break;
1088 case I915_TILING_Y:
1089 *mask_x = 128 / cpp - 1;
1090 *mask_y = 31;
1091 break;
1092 }
1093 }
1094
1095 /**
1096 * Compute the offset (in bytes) from the start of the BO to the given x
1097 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1098 * multiples of the tile size.
1099 */
1100 uint32_t
1101 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1102 uint32_t x, uint32_t y,
1103 bool map_stencil_as_y_tiled)
1104 {
1105 int cpp = mt->cpp;
1106 uint32_t pitch = mt->pitch;
1107 uint32_t tiling = mt->tiling;
1108
1109 if (map_stencil_as_y_tiled) {
1110 tiling = I915_TILING_Y;
1111
1112 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1113 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1114 * the resulting surface is twice the pitch of the original miptree,
1115 * since each row in the Y-tiled view corresponds to two rows in the
1116 * actual W-tiled surface. So we need to correct the pitch before
1117 * computing the offsets.
1118 */
1119 pitch *= 2;
1120 }
1121
1122 switch (tiling) {
1123 default:
1124 unreachable("not reached");
1125 case I915_TILING_NONE:
1126 return y * pitch + x * cpp;
1127 case I915_TILING_X:
1128 assert((x % (512 / cpp)) == 0);
1129 assert((y % 8) == 0);
1130 return y * pitch + x / (512 / cpp) * 4096;
1131 case I915_TILING_Y:
1132 assert((x % (128 / cpp)) == 0);
1133 assert((y % 32) == 0);
1134 return y * pitch + x / (128 / cpp) * 4096;
1135 }
1136 }
1137
1138 /**
1139 * Rendering with tiled buffers requires that the base address of the buffer
1140 * be aligned to a page boundary. For renderbuffers, and sometimes with
1141 * textures, we may want the surface to point at a texture image level that
1142 * isn't at a page boundary.
1143 *
1144 * This function returns an appropriately-aligned base offset
1145 * according to the tiling restrictions, plus any required x/y offset
1146 * from there.
1147 */
1148 uint32_t
1149 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1150 GLuint level, GLuint slice,
1151 uint32_t *tile_x,
1152 uint32_t *tile_y)
1153 {
1154 uint32_t x, y;
1155 uint32_t mask_x, mask_y;
1156
1157 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1158 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1159
1160 *tile_x = x & mask_x;
1161 *tile_y = y & mask_y;
1162
1163 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1164 }
1165
1166 static void
1167 intel_miptree_copy_slice_sw(struct brw_context *brw,
1168 struct intel_mipmap_tree *dst_mt,
1169 struct intel_mipmap_tree *src_mt,
1170 int level,
1171 int slice,
1172 int width,
1173 int height)
1174 {
1175 void *src, *dst;
1176 ptrdiff_t src_stride, dst_stride;
1177 int cpp = dst_mt->cpp;
1178
1179 intel_miptree_map(brw, src_mt,
1180 level, slice,
1181 0, 0,
1182 width, height,
1183 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1184 &src, &src_stride);
1185
1186 intel_miptree_map(brw, dst_mt,
1187 level, slice,
1188 0, 0,
1189 width, height,
1190 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1191 BRW_MAP_DIRECT_BIT,
1192 &dst, &dst_stride);
1193
1194 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1195 _mesa_get_format_name(src_mt->format),
1196 src_mt, src, src_stride,
1197 _mesa_get_format_name(dst_mt->format),
1198 dst_mt, dst, dst_stride,
1199 width, height);
1200
1201 int row_size = cpp * width;
1202 if (src_stride == row_size &&
1203 dst_stride == row_size) {
1204 memcpy(dst, src, row_size * height);
1205 } else {
1206 for (int i = 0; i < height; i++) {
1207 memcpy(dst, src, row_size);
1208 dst += dst_stride;
1209 src += src_stride;
1210 }
1211 }
1212
1213 intel_miptree_unmap(brw, dst_mt, level, slice);
1214 intel_miptree_unmap(brw, src_mt, level, slice);
1215
1216 /* Don't forget to copy the stencil data over, too. We could have skipped
1217 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1218 * shuffling the two data sources in/out of temporary storage instead of
1219 * the direct mapping we get this way.
1220 */
1221 if (dst_mt->stencil_mt) {
1222 assert(src_mt->stencil_mt);
1223 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1224 level, slice, width, height);
1225 }
1226 }
1227
1228 static void
1229 intel_miptree_copy_slice(struct brw_context *brw,
1230 struct intel_mipmap_tree *dst_mt,
1231 struct intel_mipmap_tree *src_mt,
1232 int level,
1233 int face,
1234 int depth)
1235
1236 {
1237 mesa_format format = src_mt->format;
1238 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1239 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1240 int slice;
1241
1242 if (face > 0)
1243 slice = face;
1244 else
1245 slice = depth;
1246
1247 assert(depth < src_mt->level[level].depth);
1248 assert(src_mt->format == dst_mt->format);
1249
1250 if (dst_mt->compressed) {
1251 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1252 width = ALIGN(width, dst_mt->align_w);
1253 }
1254
1255 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1256 * below won't apply since we can't do the depth's Y tiling or the
1257 * stencil's W tiling in the blitter.
1258 */
1259 if (src_mt->stencil_mt) {
1260 intel_miptree_copy_slice_sw(brw,
1261 dst_mt, src_mt,
1262 level, slice,
1263 width, height);
1264 return;
1265 }
1266
1267 uint32_t dst_x, dst_y, src_x, src_y;
1268 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1269 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1270
1271 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1272 _mesa_get_format_name(src_mt->format),
1273 src_mt, src_x, src_y, src_mt->pitch,
1274 _mesa_get_format_name(dst_mt->format),
1275 dst_mt, dst_x, dst_y, dst_mt->pitch,
1276 width, height);
1277
1278 if (!intel_miptree_blit(brw,
1279 src_mt, level, slice, 0, 0, false,
1280 dst_mt, level, slice, 0, 0, false,
1281 width, height, GL_COPY)) {
1282 perf_debug("miptree validate blit for %s failed\n",
1283 _mesa_get_format_name(format));
1284
1285 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1286 width, height);
1287 }
1288 }
1289
1290 /**
1291 * Copies the image's current data to the given miptree, and associates that
1292 * miptree with the image.
1293 *
1294 * If \c invalidate is true, then the actual image data does not need to be
1295 * copied, but the image still needs to be associated to the new miptree (this
1296 * is set to true if we're about to clear the image).
1297 */
1298 void
1299 intel_miptree_copy_teximage(struct brw_context *brw,
1300 struct intel_texture_image *intelImage,
1301 struct intel_mipmap_tree *dst_mt,
1302 bool invalidate)
1303 {
1304 struct intel_mipmap_tree *src_mt = intelImage->mt;
1305 struct intel_texture_object *intel_obj =
1306 intel_texture_object(intelImage->base.Base.TexObject);
1307 int level = intelImage->base.Base.Level;
1308 int face = intelImage->base.Base.Face;
1309
1310 GLuint depth;
1311 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1312 depth = intelImage->base.Base.Height;
1313 else
1314 depth = intelImage->base.Base.Depth;
1315
1316 if (!invalidate) {
1317 for (int slice = 0; slice < depth; slice++) {
1318 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1319 }
1320 }
1321
1322 intel_miptree_reference(&intelImage->mt, dst_mt);
1323 intel_obj->needs_validate = true;
1324 }
1325
1326 static bool
1327 intel_miptree_alloc_mcs(struct brw_context *brw,
1328 struct intel_mipmap_tree *mt,
1329 GLuint num_samples)
1330 {
1331 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1332 assert(mt->mcs_mt == NULL);
1333 assert(!mt->disable_aux_buffers);
1334
1335 /* Choose the correct format for the MCS buffer. All that really matters
1336 * is that we allocate the right buffer size, since we'll always be
1337 * accessing this miptree using MCS-specific hardware mechanisms, which
1338 * infer the correct format based on num_samples.
1339 */
1340 mesa_format format;
1341 switch (num_samples) {
1342 case 2:
1343 case 4:
1344 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1345 * each sample).
1346 */
1347 format = MESA_FORMAT_R_UNORM8;
1348 break;
1349 case 8:
1350 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1351 * for each sample, plus 8 padding bits).
1352 */
1353 format = MESA_FORMAT_R_UINT32;
1354 break;
1355 default:
1356 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1357 };
1358
1359 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1360 *
1361 * "The MCS surface must be stored as Tile Y."
1362 */
1363 mt->mcs_mt = intel_miptree_create(brw,
1364 mt->target,
1365 format,
1366 mt->first_level,
1367 mt->last_level,
1368 mt->logical_width0,
1369 mt->logical_height0,
1370 mt->logical_depth0,
1371 true,
1372 0 /* num_samples */,
1373 INTEL_MIPTREE_TILING_Y,
1374 false);
1375
1376 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1377 *
1378 * When MCS buffer is enabled and bound to MSRT, it is required that it
1379 * is cleared prior to any rendering.
1380 *
1381 * Since we don't use the MCS buffer for any purpose other than rendering,
1382 * it makes sense to just clear it immediately upon allocation.
1383 *
1384 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1385 */
1386 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1387 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1388 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1389 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1390
1391 return mt->mcs_mt;
1392 }
1393
1394
1395 bool
1396 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1397 struct intel_mipmap_tree *mt)
1398 {
1399 assert(mt->mcs_mt == NULL);
1400 assert(!mt->disable_aux_buffers);
1401
1402 /* The format of the MCS buffer is opaque to the driver; all that matters
1403 * is that we get its size and pitch right. We'll pretend that the format
1404 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1405 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1406 * the block width and then a further factor of 4. Since an MCS tile
1407 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1408 * we'll need to scale the height down by the block height and then a
1409 * further factor of 8.
1410 */
1411 const mesa_format format = MESA_FORMAT_R_UINT32;
1412 unsigned block_width_px;
1413 unsigned block_height;
1414 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1415 unsigned width_divisor = block_width_px * 4;
1416 unsigned height_divisor = block_height * 8;
1417 unsigned mcs_width =
1418 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1419 unsigned mcs_height =
1420 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1421 assert(mt->logical_depth0 == 1);
1422 mt->mcs_mt = intel_miptree_create(brw,
1423 mt->target,
1424 format,
1425 mt->first_level,
1426 mt->last_level,
1427 mcs_width,
1428 mcs_height,
1429 mt->logical_depth0,
1430 true,
1431 0 /* num_samples */,
1432 INTEL_MIPTREE_TILING_Y,
1433 false);
1434
1435 return mt->mcs_mt;
1436 }
1437
1438
1439 /**
1440 * Helper for intel_miptree_alloc_hiz() that sets
1441 * \c mt->level[level].has_hiz. Return true if and only if
1442 * \c has_hiz was set.
1443 */
1444 static bool
1445 intel_miptree_level_enable_hiz(struct brw_context *brw,
1446 struct intel_mipmap_tree *mt,
1447 uint32_t level)
1448 {
1449 assert(mt->hiz_buf);
1450
1451 if (brw->gen >= 8 || brw->is_haswell) {
1452 uint32_t width = minify(mt->physical_width0, level);
1453 uint32_t height = minify(mt->physical_height0, level);
1454
1455 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1456 * and the height is 4 aligned. This allows our HiZ support
1457 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1458 * we can grow the width & height to allow the HiZ op to
1459 * force the proper size alignments.
1460 */
1461 if (level > 0 && ((width & 7) || (height & 3))) {
1462 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1463 return false;
1464 }
1465 }
1466
1467 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1468 mt->level[level].has_hiz = true;
1469 return true;
1470 }
1471
1472
1473 /**
1474 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1475 * buffer dimensions and allocates a bo for the hiz buffer.
1476 */
1477 static struct intel_miptree_aux_buffer *
1478 intel_gen7_hiz_buf_create(struct brw_context *brw,
1479 struct intel_mipmap_tree *mt)
1480 {
1481 unsigned z_width = mt->logical_width0;
1482 unsigned z_height = mt->logical_height0;
1483 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1484 unsigned hz_width, hz_height;
1485 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1486
1487 if (!buf)
1488 return NULL;
1489
1490 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1491 * adjustments required for Z_Height and Z_Width based on multisampling.
1492 */
1493 switch (mt->num_samples) {
1494 case 0:
1495 case 1:
1496 break;
1497 case 2:
1498 case 4:
1499 z_width *= 2;
1500 z_height *= 2;
1501 break;
1502 case 8:
1503 z_width *= 4;
1504 z_height *= 2;
1505 break;
1506 default:
1507 unreachable("unsupported sample count");
1508 }
1509
1510 const unsigned vertical_align = 8; /* 'j' in the docs */
1511 const unsigned H0 = z_height;
1512 const unsigned h0 = ALIGN(H0, vertical_align);
1513 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1514 const unsigned Z0 = z_depth;
1515
1516 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1517 hz_width = ALIGN(z_width, 16);
1518
1519 if (mt->target == GL_TEXTURE_3D) {
1520 unsigned H_i = H0;
1521 unsigned Z_i = Z0;
1522 hz_height = 0;
1523 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1524 unsigned h_i = ALIGN(H_i, vertical_align);
1525 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1526 hz_height += h_i * Z_i;
1527 H_i = minify(H_i, 1);
1528 Z_i = minify(Z_i, 1);
1529 }
1530 /* HZ_Height =
1531 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1532 */
1533 hz_height = DIV_ROUND_UP(hz_height, 2);
1534 } else {
1535 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1536 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1537 mt->target == GL_TEXTURE_CUBE_MAP) {
1538 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth * 6/2) /8 ) * 8 */
1539 hz_height = DIV_ROUND_UP(hz_qpitch * Z0 * 6, 2 * 8) * 8;
1540 } else {
1541 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1542 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1543 }
1544 }
1545
1546 unsigned long pitch;
1547 uint32_t tiling = I915_TILING_Y;
1548 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1549 hz_width, hz_height, 1,
1550 &tiling, &pitch,
1551 BO_ALLOC_FOR_RENDER);
1552 if (!buf->bo) {
1553 free(buf);
1554 return NULL;
1555 } else if (tiling != I915_TILING_Y) {
1556 drm_intel_bo_unreference(buf->bo);
1557 free(buf);
1558 return NULL;
1559 }
1560
1561 buf->pitch = pitch;
1562
1563 return buf;
1564 }
1565
1566
1567 /**
1568 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1569 * buffer dimensions and allocates a bo for the hiz buffer.
1570 */
1571 static struct intel_miptree_aux_buffer *
1572 intel_gen8_hiz_buf_create(struct brw_context *brw,
1573 struct intel_mipmap_tree *mt)
1574 {
1575 unsigned z_width = mt->logical_width0;
1576 unsigned z_height = mt->logical_height0;
1577 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1578 unsigned hz_width, hz_height;
1579 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1580
1581 if (!buf)
1582 return NULL;
1583
1584 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1585 * adjustments required for Z_Height and Z_Width based on multisampling.
1586 */
1587 switch (mt->num_samples) {
1588 case 0:
1589 case 1:
1590 break;
1591 case 2:
1592 case 4:
1593 z_width *= 2;
1594 z_height *= 2;
1595 break;
1596 case 8:
1597 z_width *= 4;
1598 z_height *= 2;
1599 break;
1600 default:
1601 unreachable("unsupported sample count");
1602 }
1603
1604 const unsigned vertical_align = 8; /* 'j' in the docs */
1605 const unsigned H0 = z_height;
1606 const unsigned h0 = ALIGN(H0, vertical_align);
1607 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1608 const unsigned Z0 = z_depth;
1609
1610 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1611 hz_width = ALIGN(z_width, 16);
1612
1613 unsigned H_i = H0;
1614 unsigned Z_i = Z0;
1615 unsigned sum_h_i = 0;
1616 unsigned hz_height_3d_sum = 0;
1617 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1618 unsigned i = level - mt->first_level;
1619 unsigned h_i = ALIGN(H_i, vertical_align);
1620 /* sum(i=2 to m; h_i) */
1621 if (i >= 2) {
1622 sum_h_i += h_i;
1623 }
1624 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1625 hz_height_3d_sum += h_i * Z_i;
1626 H_i = minify(H_i, 1);
1627 Z_i = minify(Z_i, 1);
1628 }
1629 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1630 buf->qpitch = h0 + MAX2(h1, sum_h_i);
1631
1632 if (mt->target == GL_TEXTURE_3D) {
1633 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1634 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1635 } else {
1636 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1637 hz_height = DIV_ROUND_UP(buf->qpitch, 2 * 8) * 8 * Z0;
1638 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1639 mt->target == GL_TEXTURE_CUBE_MAP) {
1640 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * 6 * Z_Depth
1641 *
1642 * We can can just take our hz_height calculation from above, and
1643 * multiply by 6 for the cube map and cube map array types.
1644 */
1645 hz_height *= 6;
1646 }
1647 }
1648
1649 unsigned long pitch;
1650 uint32_t tiling = I915_TILING_Y;
1651 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1652 hz_width, hz_height, 1,
1653 &tiling, &pitch,
1654 BO_ALLOC_FOR_RENDER);
1655 if (!buf->bo) {
1656 free(buf);
1657 return NULL;
1658 } else if (tiling != I915_TILING_Y) {
1659 drm_intel_bo_unreference(buf->bo);
1660 free(buf);
1661 return NULL;
1662 }
1663
1664 buf->pitch = pitch;
1665
1666 return buf;
1667 }
1668
1669
1670 static struct intel_miptree_aux_buffer *
1671 intel_hiz_miptree_buf_create(struct brw_context *brw,
1672 struct intel_mipmap_tree *mt)
1673 {
1674 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1675 const bool force_all_slices_at_each_lod = brw->gen == 6;
1676
1677 if (!buf)
1678 return NULL;
1679
1680 buf->mt = intel_miptree_create(brw,
1681 mt->target,
1682 mt->format,
1683 mt->first_level,
1684 mt->last_level,
1685 mt->logical_width0,
1686 mt->logical_height0,
1687 mt->logical_depth0,
1688 true,
1689 mt->num_samples,
1690 INTEL_MIPTREE_TILING_ANY,
1691 force_all_slices_at_each_lod);
1692 if (!buf->mt) {
1693 free(buf);
1694 return NULL;
1695 }
1696
1697 buf->bo = buf->mt->bo;
1698 buf->pitch = buf->mt->pitch;
1699 buf->qpitch = buf->mt->qpitch;
1700
1701 return buf;
1702 }
1703
1704 bool
1705 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1706 struct intel_mipmap_tree *mt)
1707 {
1708 if (!brw->has_hiz)
1709 return false;
1710
1711 if (mt->hiz_buf != NULL)
1712 return false;
1713
1714 if (mt->disable_aux_buffers)
1715 return false;
1716
1717 switch (mt->format) {
1718 case MESA_FORMAT_Z_FLOAT32:
1719 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1720 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1721 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1722 case MESA_FORMAT_Z_UNORM16:
1723 return true;
1724 default:
1725 return false;
1726 }
1727 }
1728
1729 bool
1730 intel_miptree_alloc_hiz(struct brw_context *brw,
1731 struct intel_mipmap_tree *mt)
1732 {
1733 assert(mt->hiz_buf == NULL);
1734 assert(!mt->disable_aux_buffers);
1735
1736 if (brw->gen == 7) {
1737 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1738 } else if (brw->gen >= 8) {
1739 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1740 } else {
1741 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1742 }
1743
1744 if (!mt->hiz_buf)
1745 return false;
1746
1747 /* Mark that all slices need a HiZ resolve. */
1748 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1749 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1750 continue;
1751
1752 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1753 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1754 exec_node_init(&m->link);
1755 m->level = level;
1756 m->layer = layer;
1757 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1758
1759 exec_list_push_tail(&mt->hiz_map, &m->link);
1760 }
1761 }
1762
1763 return true;
1764 }
1765
1766 /**
1767 * Does the miptree slice have hiz enabled?
1768 */
1769 bool
1770 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1771 {
1772 intel_miptree_check_level_layer(mt, level, 0);
1773 return mt->level[level].has_hiz;
1774 }
1775
1776 void
1777 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1778 uint32_t level,
1779 uint32_t layer)
1780 {
1781 if (!intel_miptree_level_has_hiz(mt, level))
1782 return;
1783
1784 intel_resolve_map_set(&mt->hiz_map,
1785 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1786 }
1787
1788
1789 void
1790 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1791 uint32_t level,
1792 uint32_t layer)
1793 {
1794 if (!intel_miptree_level_has_hiz(mt, level))
1795 return;
1796
1797 intel_resolve_map_set(&mt->hiz_map,
1798 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1799 }
1800
1801 void
1802 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1803 uint32_t level)
1804 {
1805 uint32_t layer;
1806 uint32_t end_layer = mt->level[level].depth;
1807
1808 for (layer = 0; layer < end_layer; layer++) {
1809 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1810 }
1811 }
1812
1813 static bool
1814 intel_miptree_slice_resolve(struct brw_context *brw,
1815 struct intel_mipmap_tree *mt,
1816 uint32_t level,
1817 uint32_t layer,
1818 enum gen6_hiz_op need)
1819 {
1820 intel_miptree_check_level_layer(mt, level, layer);
1821
1822 struct intel_resolve_map *item =
1823 intel_resolve_map_get(&mt->hiz_map, level, layer);
1824
1825 if (!item || item->need != need)
1826 return false;
1827
1828 intel_hiz_exec(brw, mt, level, layer, need);
1829 intel_resolve_map_remove(item);
1830 return true;
1831 }
1832
1833 bool
1834 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1835 struct intel_mipmap_tree *mt,
1836 uint32_t level,
1837 uint32_t layer)
1838 {
1839 return intel_miptree_slice_resolve(brw, mt, level, layer,
1840 GEN6_HIZ_OP_HIZ_RESOLVE);
1841 }
1842
1843 bool
1844 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1845 struct intel_mipmap_tree *mt,
1846 uint32_t level,
1847 uint32_t layer)
1848 {
1849 return intel_miptree_slice_resolve(brw, mt, level, layer,
1850 GEN6_HIZ_OP_DEPTH_RESOLVE);
1851 }
1852
1853 static bool
1854 intel_miptree_all_slices_resolve(struct brw_context *brw,
1855 struct intel_mipmap_tree *mt,
1856 enum gen6_hiz_op need)
1857 {
1858 bool did_resolve = false;
1859
1860 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1861 if (map->need != need)
1862 continue;
1863
1864 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1865 intel_resolve_map_remove(map);
1866 did_resolve = true;
1867 }
1868
1869 return did_resolve;
1870 }
1871
1872 bool
1873 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1874 struct intel_mipmap_tree *mt)
1875 {
1876 return intel_miptree_all_slices_resolve(brw, mt,
1877 GEN6_HIZ_OP_HIZ_RESOLVE);
1878 }
1879
1880 bool
1881 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1882 struct intel_mipmap_tree *mt)
1883 {
1884 return intel_miptree_all_slices_resolve(brw, mt,
1885 GEN6_HIZ_OP_DEPTH_RESOLVE);
1886 }
1887
1888
1889 void
1890 intel_miptree_resolve_color(struct brw_context *brw,
1891 struct intel_mipmap_tree *mt)
1892 {
1893 switch (mt->fast_clear_state) {
1894 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1895 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1896 /* No resolve needed */
1897 break;
1898 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1899 case INTEL_FAST_CLEAR_STATE_CLEAR:
1900 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1901 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1902 brw_meta_resolve_color(brw, mt);
1903 break;
1904 }
1905 }
1906
1907
1908 /**
1909 * Make it possible to share the BO backing the given miptree with another
1910 * process or another miptree.
1911 *
1912 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1913 * then discard the MCS buffer, if present. We also set the fast_clear_state
1914 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1915 * allocated in the future.
1916 */
1917 void
1918 intel_miptree_make_shareable(struct brw_context *brw,
1919 struct intel_mipmap_tree *mt)
1920 {
1921 /* MCS buffers are also used for multisample buffers, but we can't resolve
1922 * away a multisample MCS buffer because it's an integral part of how the
1923 * pixel data is stored. Fortunately this code path should never be
1924 * reached for multisample buffers.
1925 */
1926 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1927
1928 if (mt->mcs_mt) {
1929 intel_miptree_resolve_color(brw, mt);
1930 intel_miptree_release(&mt->mcs_mt);
1931 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1932 }
1933 }
1934
1935
1936 /**
1937 * \brief Get pointer offset into stencil buffer.
1938 *
1939 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1940 * must decode the tile's layout in software.
1941 *
1942 * See
1943 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1944 * Format.
1945 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1946 *
1947 * Even though the returned offset is always positive, the return type is
1948 * signed due to
1949 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1950 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1951 */
1952 static intptr_t
1953 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1954 {
1955 uint32_t tile_size = 4096;
1956 uint32_t tile_width = 64;
1957 uint32_t tile_height = 64;
1958 uint32_t row_size = 64 * stride;
1959
1960 uint32_t tile_x = x / tile_width;
1961 uint32_t tile_y = y / tile_height;
1962
1963 /* The byte's address relative to the tile's base addres. */
1964 uint32_t byte_x = x % tile_width;
1965 uint32_t byte_y = y % tile_height;
1966
1967 uintptr_t u = tile_y * row_size
1968 + tile_x * tile_size
1969 + 512 * (byte_x / 8)
1970 + 64 * (byte_y / 8)
1971 + 32 * ((byte_y / 4) % 2)
1972 + 16 * ((byte_x / 4) % 2)
1973 + 8 * ((byte_y / 2) % 2)
1974 + 4 * ((byte_x / 2) % 2)
1975 + 2 * (byte_y % 2)
1976 + 1 * (byte_x % 2);
1977
1978 if (swizzled) {
1979 /* adjust for bit6 swizzling */
1980 if (((byte_x / 8) % 2) == 1) {
1981 if (((byte_y / 8) % 2) == 0) {
1982 u += 64;
1983 } else {
1984 u -= 64;
1985 }
1986 }
1987 }
1988
1989 return u;
1990 }
1991
1992 void
1993 intel_miptree_updownsample(struct brw_context *brw,
1994 struct intel_mipmap_tree *src,
1995 struct intel_mipmap_tree *dst)
1996 {
1997 if (brw->gen < 8) {
1998 brw_blorp_blit_miptrees(brw,
1999 src, 0 /* level */, 0 /* layer */, src->format,
2000 dst, 0 /* level */, 0 /* layer */, dst->format,
2001 0, 0,
2002 src->logical_width0, src->logical_height0,
2003 0, 0,
2004 dst->logical_width0, dst->logical_height0,
2005 GL_NEAREST, false, false /*mirror x, y*/);
2006 } else if (src->format == MESA_FORMAT_S_UINT8) {
2007 brw_meta_stencil_updownsample(brw, src, dst);
2008 } else {
2009 brw_meta_updownsample(brw, src, dst);
2010 }
2011
2012 if (src->stencil_mt) {
2013 if (brw->gen >= 8) {
2014 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
2015 return;
2016 }
2017
2018 brw_blorp_blit_miptrees(brw,
2019 src->stencil_mt, 0 /* level */, 0 /* layer */,
2020 src->stencil_mt->format,
2021 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2022 dst->stencil_mt->format,
2023 0, 0,
2024 src->logical_width0, src->logical_height0,
2025 0, 0,
2026 dst->logical_width0, dst->logical_height0,
2027 GL_NEAREST, false, false /*mirror x, y*/);
2028 }
2029 }
2030
2031 void *
2032 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2033 {
2034 /* CPU accesses to color buffers don't understand fast color clears, so
2035 * resolve any pending fast color clears before we map.
2036 */
2037 intel_miptree_resolve_color(brw, mt);
2038
2039 drm_intel_bo *bo = mt->bo;
2040
2041 if (drm_intel_bo_references(brw->batch.bo, bo))
2042 intel_batchbuffer_flush(brw);
2043
2044 if (mt->tiling != I915_TILING_NONE)
2045 brw_bo_map_gtt(brw, bo, "miptree");
2046 else
2047 brw_bo_map(brw, bo, true, "miptree");
2048
2049 return bo->virtual;
2050 }
2051
2052 void
2053 intel_miptree_unmap_raw(struct brw_context *brw,
2054 struct intel_mipmap_tree *mt)
2055 {
2056 drm_intel_bo_unmap(mt->bo);
2057 }
2058
2059 static void
2060 intel_miptree_map_gtt(struct brw_context *brw,
2061 struct intel_mipmap_tree *mt,
2062 struct intel_miptree_map *map,
2063 unsigned int level, unsigned int slice)
2064 {
2065 unsigned int bw, bh;
2066 void *base;
2067 unsigned int image_x, image_y;
2068 intptr_t x = map->x;
2069 intptr_t y = map->y;
2070
2071 /* For compressed formats, the stride is the number of bytes per
2072 * row of blocks. intel_miptree_get_image_offset() already does
2073 * the divide.
2074 */
2075 _mesa_get_format_block_size(mt->format, &bw, &bh);
2076 assert(y % bh == 0);
2077 y /= bh;
2078
2079 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2080
2081 if (base == NULL)
2082 map->ptr = NULL;
2083 else {
2084 /* Note that in the case of cube maps, the caller must have passed the
2085 * slice number referencing the face.
2086 */
2087 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2088 x += image_x;
2089 y += image_y;
2090
2091 map->stride = mt->pitch;
2092 map->ptr = base + y * map->stride + x * mt->cpp;
2093 }
2094
2095 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2096 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __FUNCTION__,
2097 map->x, map->y, map->w, map->h,
2098 mt, _mesa_get_format_name(mt->format),
2099 x, y, map->ptr, map->stride);
2100 }
2101
2102 static void
2103 intel_miptree_unmap_gtt(struct brw_context *brw,
2104 struct intel_mipmap_tree *mt,
2105 struct intel_miptree_map *map,
2106 unsigned int level,
2107 unsigned int slice)
2108 {
2109 intel_miptree_unmap_raw(brw, mt);
2110 }
2111
2112 static void
2113 intel_miptree_map_blit(struct brw_context *brw,
2114 struct intel_mipmap_tree *mt,
2115 struct intel_miptree_map *map,
2116 unsigned int level, unsigned int slice)
2117 {
2118 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2119 0, 0,
2120 map->w, map->h, 1,
2121 false, 0,
2122 INTEL_MIPTREE_TILING_NONE,
2123 false);
2124 if (!map->mt) {
2125 fprintf(stderr, "Failed to allocate blit temporary\n");
2126 goto fail;
2127 }
2128 map->stride = map->mt->pitch;
2129
2130 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2131 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2132 * invalidate is set, since we'll be writing the whole rectangle from our
2133 * temporary buffer back out.
2134 */
2135 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2136 if (!intel_miptree_blit(brw,
2137 mt, level, slice,
2138 map->x, map->y, false,
2139 map->mt, 0, 0,
2140 0, 0, false,
2141 map->w, map->h, GL_COPY)) {
2142 fprintf(stderr, "Failed to blit\n");
2143 goto fail;
2144 }
2145 }
2146
2147 map->ptr = intel_miptree_map_raw(brw, map->mt);
2148
2149 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
2150 map->x, map->y, map->w, map->h,
2151 mt, _mesa_get_format_name(mt->format),
2152 level, slice, map->ptr, map->stride);
2153
2154 return;
2155
2156 fail:
2157 intel_miptree_release(&map->mt);
2158 map->ptr = NULL;
2159 map->stride = 0;
2160 }
2161
2162 static void
2163 intel_miptree_unmap_blit(struct brw_context *brw,
2164 struct intel_mipmap_tree *mt,
2165 struct intel_miptree_map *map,
2166 unsigned int level,
2167 unsigned int slice)
2168 {
2169 struct gl_context *ctx = &brw->ctx;
2170
2171 intel_miptree_unmap_raw(brw, map->mt);
2172
2173 if (map->mode & GL_MAP_WRITE_BIT) {
2174 bool ok = intel_miptree_blit(brw,
2175 map->mt, 0, 0,
2176 0, 0, false,
2177 mt, level, slice,
2178 map->x, map->y, false,
2179 map->w, map->h, GL_COPY);
2180 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2181 }
2182
2183 intel_miptree_release(&map->mt);
2184 }
2185
2186 /**
2187 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2188 */
2189 #if defined(USE_SSE41)
2190 static void
2191 intel_miptree_map_movntdqa(struct brw_context *brw,
2192 struct intel_mipmap_tree *mt,
2193 struct intel_miptree_map *map,
2194 unsigned int level, unsigned int slice)
2195 {
2196 assert(map->mode & GL_MAP_READ_BIT);
2197 assert(!(map->mode & GL_MAP_WRITE_BIT));
2198
2199 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
2200 map->x, map->y, map->w, map->h,
2201 mt, _mesa_get_format_name(mt->format),
2202 level, slice, map->ptr, map->stride);
2203
2204 /* Map the original image */
2205 uint32_t image_x;
2206 uint32_t image_y;
2207 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2208 image_x += map->x;
2209 image_y += map->y;
2210
2211 void *src = intel_miptree_map_raw(brw, mt);
2212 if (!src)
2213 return;
2214 src += image_y * mt->pitch;
2215 src += image_x * mt->cpp;
2216
2217 /* Due to the pixel offsets for the particular image being mapped, our
2218 * src pointer may not be 16-byte aligned. However, if the pitch is
2219 * divisible by 16, then the amount by which it's misaligned will remain
2220 * consistent from row to row.
2221 */
2222 assert((mt->pitch % 16) == 0);
2223 const int misalignment = ((uintptr_t) src) & 15;
2224
2225 /* Create an untiled temporary buffer for the mapping. */
2226 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2227
2228 map->stride = ALIGN(misalignment + width_bytes, 16);
2229
2230 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2231 /* Offset the destination so it has the same misalignment as src. */
2232 map->ptr = map->buffer + misalignment;
2233
2234 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2235
2236 for (uint32_t y = 0; y < map->h; y++) {
2237 void *dst_ptr = map->ptr + y * map->stride;
2238 void *src_ptr = src + y * mt->pitch;
2239
2240 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2241 }
2242
2243 intel_miptree_unmap_raw(brw, mt);
2244 }
2245
2246 static void
2247 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2248 struct intel_mipmap_tree *mt,
2249 struct intel_miptree_map *map,
2250 unsigned int level,
2251 unsigned int slice)
2252 {
2253 _mesa_align_free(map->buffer);
2254 map->buffer = NULL;
2255 map->ptr = NULL;
2256 }
2257 #endif
2258
2259 static void
2260 intel_miptree_map_s8(struct brw_context *brw,
2261 struct intel_mipmap_tree *mt,
2262 struct intel_miptree_map *map,
2263 unsigned int level, unsigned int slice)
2264 {
2265 map->stride = map->w;
2266 map->buffer = map->ptr = malloc(map->stride * map->h);
2267 if (!map->buffer)
2268 return;
2269
2270 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2271 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2272 * invalidate is set, since we'll be writing the whole rectangle from our
2273 * temporary buffer back out.
2274 */
2275 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2276 uint8_t *untiled_s8_map = map->ptr;
2277 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2278 unsigned int image_x, image_y;
2279
2280 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2281
2282 for (uint32_t y = 0; y < map->h; y++) {
2283 for (uint32_t x = 0; x < map->w; x++) {
2284 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2285 x + image_x + map->x,
2286 y + image_y + map->y,
2287 brw->has_swizzling);
2288 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2289 }
2290 }
2291
2292 intel_miptree_unmap_raw(brw, mt);
2293
2294 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
2295 map->x, map->y, map->w, map->h,
2296 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2297 } else {
2298 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2299 map->x, map->y, map->w, map->h,
2300 mt, map->ptr, map->stride);
2301 }
2302 }
2303
2304 static void
2305 intel_miptree_unmap_s8(struct brw_context *brw,
2306 struct intel_mipmap_tree *mt,
2307 struct intel_miptree_map *map,
2308 unsigned int level,
2309 unsigned int slice)
2310 {
2311 if (map->mode & GL_MAP_WRITE_BIT) {
2312 unsigned int image_x, image_y;
2313 uint8_t *untiled_s8_map = map->ptr;
2314 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2315
2316 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2317
2318 for (uint32_t y = 0; y < map->h; y++) {
2319 for (uint32_t x = 0; x < map->w; x++) {
2320 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2321 x + map->x,
2322 y + map->y,
2323 brw->has_swizzling);
2324 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2325 }
2326 }
2327
2328 intel_miptree_unmap_raw(brw, mt);
2329 }
2330
2331 free(map->buffer);
2332 }
2333
2334 static void
2335 intel_miptree_map_etc(struct brw_context *brw,
2336 struct intel_mipmap_tree *mt,
2337 struct intel_miptree_map *map,
2338 unsigned int level,
2339 unsigned int slice)
2340 {
2341 assert(mt->etc_format != MESA_FORMAT_NONE);
2342 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2343 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2344 }
2345
2346 assert(map->mode & GL_MAP_WRITE_BIT);
2347 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2348
2349 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2350 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2351 map->w, map->h, 1));
2352 map->ptr = map->buffer;
2353 }
2354
2355 static void
2356 intel_miptree_unmap_etc(struct brw_context *brw,
2357 struct intel_mipmap_tree *mt,
2358 struct intel_miptree_map *map,
2359 unsigned int level,
2360 unsigned int slice)
2361 {
2362 uint32_t image_x;
2363 uint32_t image_y;
2364 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2365
2366 image_x += map->x;
2367 image_y += map->y;
2368
2369 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2370 + image_y * mt->pitch
2371 + image_x * mt->cpp;
2372
2373 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2374 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2375 map->ptr, map->stride,
2376 map->w, map->h);
2377 else
2378 _mesa_unpack_etc2_format(dst, mt->pitch,
2379 map->ptr, map->stride,
2380 map->w, map->h, mt->etc_format);
2381
2382 intel_miptree_unmap_raw(brw, mt);
2383 free(map->buffer);
2384 }
2385
2386 /**
2387 * Mapping function for packed depth/stencil miptrees backed by real separate
2388 * miptrees for depth and stencil.
2389 *
2390 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2391 * separate from the depth buffer. Yet at the GL API level, we have to expose
2392 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2393 * be able to map that memory for texture storage and glReadPixels-type
2394 * operations. We give Mesa core that access by mallocing a temporary and
2395 * copying the data between the actual backing store and the temporary.
2396 */
2397 static void
2398 intel_miptree_map_depthstencil(struct brw_context *brw,
2399 struct intel_mipmap_tree *mt,
2400 struct intel_miptree_map *map,
2401 unsigned int level, unsigned int slice)
2402 {
2403 struct intel_mipmap_tree *z_mt = mt;
2404 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2405 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2406 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2407
2408 map->stride = map->w * packed_bpp;
2409 map->buffer = map->ptr = malloc(map->stride * map->h);
2410 if (!map->buffer)
2411 return;
2412
2413 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2414 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2415 * invalidate is set, since we'll be writing the whole rectangle from our
2416 * temporary buffer back out.
2417 */
2418 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2419 uint32_t *packed_map = map->ptr;
2420 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2421 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2422 unsigned int s_image_x, s_image_y;
2423 unsigned int z_image_x, z_image_y;
2424
2425 intel_miptree_get_image_offset(s_mt, level, slice,
2426 &s_image_x, &s_image_y);
2427 intel_miptree_get_image_offset(z_mt, level, slice,
2428 &z_image_x, &z_image_y);
2429
2430 for (uint32_t y = 0; y < map->h; y++) {
2431 for (uint32_t x = 0; x < map->w; x++) {
2432 int map_x = map->x + x, map_y = map->y + y;
2433 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2434 map_x + s_image_x,
2435 map_y + s_image_y,
2436 brw->has_swizzling);
2437 ptrdiff_t z_offset = ((map_y + z_image_y) *
2438 (z_mt->pitch / 4) +
2439 (map_x + z_image_x));
2440 uint8_t s = s_map[s_offset];
2441 uint32_t z = z_map[z_offset];
2442
2443 if (map_z32f_x24s8) {
2444 packed_map[(y * map->w + x) * 2 + 0] = z;
2445 packed_map[(y * map->w + x) * 2 + 1] = s;
2446 } else {
2447 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2448 }
2449 }
2450 }
2451
2452 intel_miptree_unmap_raw(brw, s_mt);
2453 intel_miptree_unmap_raw(brw, z_mt);
2454
2455 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2456 __FUNCTION__,
2457 map->x, map->y, map->w, map->h,
2458 z_mt, map->x + z_image_x, map->y + z_image_y,
2459 s_mt, map->x + s_image_x, map->y + s_image_y,
2460 map->ptr, map->stride);
2461 } else {
2462 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2463 map->x, map->y, map->w, map->h,
2464 mt, map->ptr, map->stride);
2465 }
2466 }
2467
2468 static void
2469 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2470 struct intel_mipmap_tree *mt,
2471 struct intel_miptree_map *map,
2472 unsigned int level,
2473 unsigned int slice)
2474 {
2475 struct intel_mipmap_tree *z_mt = mt;
2476 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2477 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2478
2479 if (map->mode & GL_MAP_WRITE_BIT) {
2480 uint32_t *packed_map = map->ptr;
2481 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2482 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2483 unsigned int s_image_x, s_image_y;
2484 unsigned int z_image_x, z_image_y;
2485
2486 intel_miptree_get_image_offset(s_mt, level, slice,
2487 &s_image_x, &s_image_y);
2488 intel_miptree_get_image_offset(z_mt, level, slice,
2489 &z_image_x, &z_image_y);
2490
2491 for (uint32_t y = 0; y < map->h; y++) {
2492 for (uint32_t x = 0; x < map->w; x++) {
2493 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2494 x + s_image_x + map->x,
2495 y + s_image_y + map->y,
2496 brw->has_swizzling);
2497 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2498 (z_mt->pitch / 4) +
2499 (x + z_image_x + map->x));
2500
2501 if (map_z32f_x24s8) {
2502 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2503 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2504 } else {
2505 uint32_t packed = packed_map[y * map->w + x];
2506 s_map[s_offset] = packed >> 24;
2507 z_map[z_offset] = packed;
2508 }
2509 }
2510 }
2511
2512 intel_miptree_unmap_raw(brw, s_mt);
2513 intel_miptree_unmap_raw(brw, z_mt);
2514
2515 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2516 __FUNCTION__,
2517 map->x, map->y, map->w, map->h,
2518 z_mt, _mesa_get_format_name(z_mt->format),
2519 map->x + z_image_x, map->y + z_image_y,
2520 s_mt, map->x + s_image_x, map->y + s_image_y,
2521 map->ptr, map->stride);
2522 }
2523
2524 free(map->buffer);
2525 }
2526
2527 /**
2528 * Create and attach a map to the miptree at (level, slice). Return the
2529 * attached map.
2530 */
2531 static struct intel_miptree_map*
2532 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2533 unsigned int level,
2534 unsigned int slice,
2535 unsigned int x,
2536 unsigned int y,
2537 unsigned int w,
2538 unsigned int h,
2539 GLbitfield mode)
2540 {
2541 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2542
2543 if (!map)
2544 return NULL;
2545
2546 assert(mt->level[level].slice[slice].map == NULL);
2547 mt->level[level].slice[slice].map = map;
2548
2549 map->mode = mode;
2550 map->x = x;
2551 map->y = y;
2552 map->w = w;
2553 map->h = h;
2554
2555 return map;
2556 }
2557
2558 /**
2559 * Release the map at (level, slice).
2560 */
2561 static void
2562 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2563 unsigned int level,
2564 unsigned int slice)
2565 {
2566 struct intel_miptree_map **map;
2567
2568 map = &mt->level[level].slice[slice].map;
2569 free(*map);
2570 *map = NULL;
2571 }
2572
2573 static bool
2574 can_blit_slice(struct intel_mipmap_tree *mt,
2575 unsigned int level, unsigned int slice)
2576 {
2577 uint32_t image_x;
2578 uint32_t image_y;
2579 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2580 if (image_x >= 32768 || image_y >= 32768)
2581 return false;
2582
2583 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2584 if (mt->pitch >= 32768)
2585 return false;
2586
2587 return true;
2588 }
2589
2590 static bool
2591 use_intel_mipree_map_blit(struct brw_context *brw,
2592 struct intel_mipmap_tree *mt,
2593 GLbitfield mode,
2594 unsigned int level,
2595 unsigned int slice)
2596 {
2597 if (brw->has_llc &&
2598 /* It's probably not worth swapping to the blit ring because of
2599 * all the overhead involved.
2600 */
2601 !(mode & GL_MAP_WRITE_BIT) &&
2602 !mt->compressed &&
2603 (mt->tiling == I915_TILING_X ||
2604 /* Prior to Sandybridge, the blitter can't handle Y tiling */
2605 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2606 can_blit_slice(mt, level, slice))
2607 return true;
2608
2609 if (mt->tiling != I915_TILING_NONE &&
2610 mt->bo->size >= brw->max_gtt_map_object_size) {
2611 assert(can_blit_slice(mt, level, slice));
2612 return true;
2613 }
2614
2615 return false;
2616 }
2617
2618 /**
2619 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
2620 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
2621 * arithmetic overflow.
2622 *
2623 * If you call this function and use \a out_stride, then you're doing pointer
2624 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
2625 * bugs. The caller must still take care to avoid 32-bit overflow errors in
2626 * all arithmetic expressions that contain buffer offsets and pixel sizes,
2627 * which usually have type uint32_t or GLuint.
2628 */
2629 void
2630 intel_miptree_map(struct brw_context *brw,
2631 struct intel_mipmap_tree *mt,
2632 unsigned int level,
2633 unsigned int slice,
2634 unsigned int x,
2635 unsigned int y,
2636 unsigned int w,
2637 unsigned int h,
2638 GLbitfield mode,
2639 void **out_ptr,
2640 ptrdiff_t *out_stride)
2641 {
2642 struct intel_miptree_map *map;
2643
2644 assert(mt->num_samples <= 1);
2645
2646 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2647 if (!map){
2648 *out_ptr = NULL;
2649 *out_stride = 0;
2650 return;
2651 }
2652
2653 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2654 if (map->mode & GL_MAP_WRITE_BIT) {
2655 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2656 }
2657
2658 if (mt->format == MESA_FORMAT_S_UINT8) {
2659 intel_miptree_map_s8(brw, mt, map, level, slice);
2660 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2661 !(mode & BRW_MAP_DIRECT_BIT)) {
2662 intel_miptree_map_etc(brw, mt, map, level, slice);
2663 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2664 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2665 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
2666 intel_miptree_map_blit(brw, mt, map, level, slice);
2667 #if defined(USE_SSE41)
2668 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2669 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2670 #endif
2671 } else {
2672 intel_miptree_map_gtt(brw, mt, map, level, slice);
2673 }
2674
2675 *out_ptr = map->ptr;
2676 *out_stride = map->stride;
2677
2678 if (map->ptr == NULL)
2679 intel_miptree_release_map(mt, level, slice);
2680 }
2681
2682 void
2683 intel_miptree_unmap(struct brw_context *brw,
2684 struct intel_mipmap_tree *mt,
2685 unsigned int level,
2686 unsigned int slice)
2687 {
2688 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2689
2690 assert(mt->num_samples <= 1);
2691
2692 if (!map)
2693 return;
2694
2695 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2696 mt, _mesa_get_format_name(mt->format), level, slice);
2697
2698 if (mt->format == MESA_FORMAT_S_UINT8) {
2699 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2700 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2701 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2702 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2703 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2704 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2705 } else if (map->mt) {
2706 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2707 #if defined(USE_SSE41)
2708 } else if (map->buffer && cpu_has_sse4_1) {
2709 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2710 #endif
2711 } else {
2712 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2713 }
2714
2715 intel_miptree_release_map(mt, level, slice);
2716 }