i965/gen7+: Disentangle MSAA layout from fast clear state.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38
39 #include "brw_blorp.h"
40 #include "brw_context.h"
41
42 #include "main/enums.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static GLenum
52 target_to_target(GLenum target)
53 {
54 switch (target) {
55 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
56 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
57 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
58 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
59 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
60 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
61 return GL_TEXTURE_CUBE_MAP_ARB;
62 default:
63 return target;
64 }
65 }
66
67
68 /**
69 * Determine which MSAA layout should be used by the MSAA surface being
70 * created, based on the chip generation and the surface type.
71 */
72 static enum intel_msaa_layout
73 compute_msaa_layout(struct brw_context *brw, gl_format format, GLenum target)
74 {
75 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
76 if (brw->gen < 7)
77 return INTEL_MSAA_LAYOUT_IMS;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return INTEL_MSAA_LAYOUT_IMS;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (_mesa_get_format_datatype(format) == GL_INT) {
98 /* TODO: is this workaround needed for future chipsets? */
99 assert(brw->gen == 7);
100 return INTEL_MSAA_LAYOUT_UMS;
101 } else {
102 return INTEL_MSAA_LAYOUT_CMS;
103 }
104 }
105 }
106
107
108 /**
109 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
110 * scaled-down bitfield representation of the color buffer which is capable of
111 * recording when blocks of the color buffer are equal to the clear value.
112 * This function returns the block size that will be used by the MCS buffer
113 * corresponding to a certain color miptree.
114 *
115 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
116 * beneath the "Fast Color Clear" bullet (p327):
117 *
118 * The following table describes the RT alignment
119 *
120 * Pixels Lines
121 * TiledY RT CL
122 * bpp
123 * 32 8 4
124 * 64 4 4
125 * 128 2 4
126 * TiledX RT CL
127 * bpp
128 * 32 16 2
129 * 64 8 2
130 * 128 4 2
131 *
132 * This alignment has the following uses:
133 *
134 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
135 * buffer contains 128 blocks horizontally and 256 blocks vertically.
136 *
137 * - For figuring out alignment restrictions for a fast clear operation. Fast
138 * clear operations must always clear aligned multiples of 16 blocks
139 * horizontally and 32 blocks vertically.
140 *
141 * - For scaling down the coordinates sent through the render pipeline during
142 * a fast clear. X coordinates must be scaled down by 8 times the block
143 * width, and Y coordinates by 16 times the block height.
144 *
145 * - For scaling down the coordinates sent through the render pipeline during
146 * a "Render Target Resolve" operation. X coordinates must be scaled down
147 * by half the block width, and Y coordinates by half the block height.
148 */
149 void
150 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
151 struct intel_mipmap_tree *mt,
152 unsigned *width_px, unsigned *height)
153 {
154 switch (mt->region->tiling) {
155 default:
156 assert(!"Non-MSRT MCS requires X or Y tiling");
157 /* In release builds, fall through */
158 case I915_TILING_Y:
159 *width_px = 32 / mt->cpp;
160 *height = 4;
161 break;
162 case I915_TILING_X:
163 *width_px = 64 / mt->cpp;
164 *height = 2;
165 }
166 }
167
168
169 /**
170 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
171 * can be used.
172 *
173 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
174 * beneath the "Fast Color Clear" bullet (p326):
175 *
176 * - Support is limited to tiled render targets.
177 * - Support is for non-mip-mapped and non-array surface types only.
178 *
179 * And then later, on p327:
180 *
181 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
182 * 64bpp, and 128bpp.
183 */
184 bool
185 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
186 struct intel_mipmap_tree *mt)
187 {
188 /* MCS support does not exist prior to Gen7 */
189 if (brw->gen < 7 || brw->gen >= 8)
190 return false;
191
192 /* MCS is only supported for color buffers */
193 switch (_mesa_get_format_base_format(mt->format)) {
194 case GL_DEPTH_COMPONENT:
195 case GL_DEPTH_STENCIL:
196 case GL_STENCIL_INDEX:
197 return false;
198 }
199
200 if (mt->region->tiling != I915_TILING_X &&
201 mt->region->tiling != I915_TILING_Y)
202 return false;
203 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
204 return false;
205 if (mt->first_level != 0 || mt->last_level != 0)
206 return false;
207 if (mt->physical_depth0 != 1)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->format_supported_as_render_target[mt->format])
214 return false;
215
216 return true;
217 }
218
219
220 /**
221 * @param for_bo Indicates that the caller is
222 * intel_miptree_create_for_bo(). If true, then do not create
223 * \c stencil_mt.
224 */
225 struct intel_mipmap_tree *
226 intel_miptree_create_layout(struct brw_context *brw,
227 GLenum target,
228 gl_format format,
229 GLuint first_level,
230 GLuint last_level,
231 GLuint width0,
232 GLuint height0,
233 GLuint depth0,
234 bool for_bo,
235 GLuint num_samples)
236 {
237 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
238 if (!mt)
239 return NULL;
240
241 DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__,
242 _mesa_lookup_enum_by_nr(target),
243 _mesa_get_format_name(format),
244 first_level, last_level, mt);
245
246 mt->target = target_to_target(target);
247 mt->format = format;
248 mt->first_level = first_level;
249 mt->last_level = last_level;
250 mt->logical_width0 = width0;
251 mt->logical_height0 = height0;
252 mt->logical_depth0 = depth0;
253 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
254
255 /* The cpp is bytes per (1, blockheight)-sized block for compressed
256 * textures. This is why you'll see divides by blockheight all over
257 */
258 unsigned bw, bh;
259 _mesa_get_format_block_size(format, &bw, &bh);
260 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
261 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
262
263 mt->num_samples = num_samples;
264 mt->compressed = _mesa_is_format_compressed(format);
265 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
266 mt->refcount = 1;
267
268 if (num_samples > 1) {
269 /* Adjust width/height/depth for MSAA */
270 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
271 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
272 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
273 *
274 * "Any of the other messages (sample*, LOD, load4) used with a
275 * (4x) multisampled surface will in-effect sample a surface with
276 * double the height and width as that indicated in the surface
277 * state. Each pixel position on the original-sized surface is
278 * replaced with a 2x2 of samples with the following arrangement:
279 *
280 * sample 0 sample 2
281 * sample 1 sample 3"
282 *
283 * Thus, when sampling from a multisampled texture, it behaves as
284 * though the layout in memory for (x,y,sample) is:
285 *
286 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
287 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
288 *
289 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
290 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
291 *
292 * However, the actual layout of multisampled data in memory is:
293 *
294 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
295 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
296 *
297 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
298 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
299 *
300 * This pattern repeats for each 2x2 pixel block.
301 *
302 * As a result, when calculating the size of our 4-sample buffer for
303 * an odd width or height, we have to align before scaling up because
304 * sample 3 is in that bottom right 2x2 block.
305 */
306 switch (num_samples) {
307 case 4:
308 width0 = ALIGN(width0, 2) * 2;
309 height0 = ALIGN(height0, 2) * 2;
310 break;
311 case 8:
312 width0 = ALIGN(width0, 2) * 4;
313 height0 = ALIGN(height0, 2) * 2;
314 break;
315 default:
316 /* num_samples should already have been quantized to 0, 1, 4, or
317 * 8.
318 */
319 assert(false);
320 }
321 } else {
322 /* Non-interleaved */
323 depth0 *= num_samples;
324 }
325 }
326
327 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
328 * use it elsewhere?
329 */
330 switch (mt->msaa_layout) {
331 case INTEL_MSAA_LAYOUT_NONE:
332 case INTEL_MSAA_LAYOUT_IMS:
333 mt->array_spacing_lod0 = false;
334 break;
335 case INTEL_MSAA_LAYOUT_UMS:
336 case INTEL_MSAA_LAYOUT_CMS:
337 mt->array_spacing_lod0 = true;
338 break;
339 }
340
341 if (target == GL_TEXTURE_CUBE_MAP) {
342 assert(depth0 == 1);
343 depth0 = 6;
344 }
345
346 mt->physical_width0 = width0;
347 mt->physical_height0 = height0;
348 mt->physical_depth0 = depth0;
349
350 if (!for_bo &&
351 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
352 (brw->must_use_separate_stencil ||
353 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
354 mt->stencil_mt = intel_miptree_create(brw,
355 mt->target,
356 MESA_FORMAT_S8,
357 mt->first_level,
358 mt->last_level,
359 mt->logical_width0,
360 mt->logical_height0,
361 mt->logical_depth0,
362 true,
363 num_samples,
364 INTEL_MIPTREE_TILING_ANY);
365 if (!mt->stencil_mt) {
366 intel_miptree_release(&mt);
367 return NULL;
368 }
369
370 /* Fix up the Z miptree format for how we're splitting out separate
371 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
372 */
373 if (mt->format == MESA_FORMAT_S8_Z24) {
374 mt->format = MESA_FORMAT_X8_Z24;
375 } else if (mt->format == MESA_FORMAT_Z32_FLOAT_X24S8) {
376 mt->format = MESA_FORMAT_Z32_FLOAT;
377 mt->cpp = 4;
378 } else {
379 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
380 _mesa_get_format_name(mt->format));
381 }
382 }
383
384 brw_miptree_layout(brw, mt);
385
386 return mt;
387 }
388
389 /**
390 * \brief Helper function for intel_miptree_create().
391 */
392 static uint32_t
393 intel_miptree_choose_tiling(struct brw_context *brw,
394 gl_format format,
395 uint32_t width0,
396 uint32_t num_samples,
397 enum intel_miptree_tiling_mode requested,
398 struct intel_mipmap_tree *mt)
399 {
400 if (format == MESA_FORMAT_S8) {
401 /* The stencil buffer is W tiled. However, we request from the kernel a
402 * non-tiled buffer because the GTT is incapable of W fencing.
403 */
404 return I915_TILING_NONE;
405 }
406
407 /* Some usages may want only one type of tiling, like depth miptrees (Y
408 * tiled), or temporary BOs for uploading data once (linear).
409 */
410 switch (requested) {
411 case INTEL_MIPTREE_TILING_ANY:
412 break;
413 case INTEL_MIPTREE_TILING_Y:
414 return I915_TILING_Y;
415 case INTEL_MIPTREE_TILING_NONE:
416 return I915_TILING_NONE;
417 }
418
419 if (num_samples > 1) {
420 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
421 * Surface"):
422 *
423 * [DevSNB+]: For multi-sample render targets, this field must be
424 * 1. MSRTs can only be tiled.
425 *
426 * Our usual reason for preferring X tiling (fast blits using the
427 * blitting engine) doesn't apply to MSAA, since we'll generally be
428 * downsampling or upsampling when blitting between the MSAA buffer
429 * and another buffer, and the blitting engine doesn't support that.
430 * So use Y tiling, since it makes better use of the cache.
431 */
432 return I915_TILING_Y;
433 }
434
435 GLenum base_format = _mesa_get_format_base_format(format);
436 if (base_format == GL_DEPTH_COMPONENT ||
437 base_format == GL_DEPTH_STENCIL_EXT)
438 return I915_TILING_Y;
439
440 int minimum_pitch = mt->total_width * mt->cpp;
441
442 /* If the width is much smaller than a tile, don't bother tiling. */
443 if (minimum_pitch < 64)
444 return I915_TILING_NONE;
445
446 if (ALIGN(minimum_pitch, 512) >= 32768) {
447 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
448 mt->total_width, mt->total_height);
449 return I915_TILING_NONE;
450 }
451
452 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
453 if (brw->gen < 6)
454 return I915_TILING_X;
455
456 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
457 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
458 * or Linear."
459 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
460 * all the way back to 965, but is explicitly permitted on Gen7.
461 */
462 if (brw->gen != 7 && mt->cpp >= 16)
463 return I915_TILING_X;
464
465 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
466 * messages), on p64, under the heading "Surface Vertical Alignment":
467 *
468 * This field must be set to VALIGN_4 for all tiled Y Render Target
469 * surfaces.
470 *
471 * So if the surface is renderable and uses a vertical alignment of 2,
472 * force it to be X tiled. This is somewhat conservative (it's possible
473 * that the client won't ever render to this surface), but it's difficult
474 * to know that ahead of time. And besides, since we use a vertical
475 * alignment of 4 as often as we can, this shouldn't happen very often.
476 */
477 if (brw->gen == 7 && mt->align_h == 2 &&
478 brw->format_supported_as_render_target[format]) {
479 return I915_TILING_X;
480 }
481
482 return I915_TILING_Y | I915_TILING_X;
483 }
484
485 struct intel_mipmap_tree *
486 intel_miptree_create(struct brw_context *brw,
487 GLenum target,
488 gl_format format,
489 GLuint first_level,
490 GLuint last_level,
491 GLuint width0,
492 GLuint height0,
493 GLuint depth0,
494 bool expect_accelerated_upload,
495 GLuint num_samples,
496 enum intel_miptree_tiling_mode requested_tiling)
497 {
498 struct intel_mipmap_tree *mt;
499 gl_format tex_format = format;
500 gl_format etc_format = MESA_FORMAT_NONE;
501 GLuint total_width, total_height;
502
503 if (!brw->is_baytrail) {
504 switch (format) {
505 case MESA_FORMAT_ETC1_RGB8:
506 format = MESA_FORMAT_RGBX8888_REV;
507 break;
508 case MESA_FORMAT_ETC2_RGB8:
509 format = MESA_FORMAT_RGBX8888_REV;
510 break;
511 case MESA_FORMAT_ETC2_SRGB8:
512 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
513 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
514 format = MESA_FORMAT_SARGB8;
515 break;
516 case MESA_FORMAT_ETC2_RGBA8_EAC:
517 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
518 format = MESA_FORMAT_RGBA8888_REV;
519 break;
520 case MESA_FORMAT_ETC2_R11_EAC:
521 format = MESA_FORMAT_R16;
522 break;
523 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
524 format = MESA_FORMAT_SIGNED_R16;
525 break;
526 case MESA_FORMAT_ETC2_RG11_EAC:
527 format = MESA_FORMAT_GR1616;
528 break;
529 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
530 format = MESA_FORMAT_SIGNED_GR1616;
531 break;
532 default:
533 /* Non ETC1 / ETC2 format */
534 break;
535 }
536 }
537
538 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
539
540 mt = intel_miptree_create_layout(brw, target, format,
541 first_level, last_level, width0,
542 height0, depth0,
543 false, num_samples);
544 /*
545 * pitch == 0 || height == 0 indicates the null texture
546 */
547 if (!mt || !mt->total_width || !mt->total_height) {
548 intel_miptree_release(&mt);
549 return NULL;
550 }
551
552 total_width = mt->total_width;
553 total_height = mt->total_height;
554
555 if (format == MESA_FORMAT_S8) {
556 /* Align to size of W tile, 64x64. */
557 total_width = ALIGN(total_width, 64);
558 total_height = ALIGN(total_height, 64);
559 }
560
561 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
562 num_samples, requested_tiling,
563 mt);
564 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
565
566 mt->etc_format = etc_format;
567 mt->region = intel_region_alloc(brw->intelScreen,
568 y_or_x ? I915_TILING_Y : tiling,
569 mt->cpp,
570 total_width,
571 total_height,
572 expect_accelerated_upload);
573
574 /* If the region is too large to fit in the aperture, we need to use the
575 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
576 * so we need to fall back to X.
577 */
578 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
579 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
580 mt->total_width, mt->total_height);
581 intel_region_release(&mt->region);
582
583 mt->region = intel_region_alloc(brw->intelScreen,
584 I915_TILING_X,
585 mt->cpp,
586 total_width,
587 total_height,
588 expect_accelerated_upload);
589 }
590
591 mt->offset = 0;
592
593 if (!mt->region) {
594 intel_miptree_release(&mt);
595 return NULL;
596 }
597
598
599 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
600 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
601 intel_miptree_release(&mt);
602 return NULL;
603 }
604 }
605
606 /* If this miptree is capable of supporting fast color clears, set
607 * fast_clear_state appropriately to ensure that fast clears will occur.
608 * Allocation of the MCS miptree will be deferred until the first fast
609 * clear actually occurs.
610 */
611 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
612 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
613
614 return mt;
615 }
616
617 struct intel_mipmap_tree *
618 intel_miptree_create_for_bo(struct brw_context *brw,
619 drm_intel_bo *bo,
620 gl_format format,
621 uint32_t offset,
622 uint32_t width,
623 uint32_t height,
624 int pitch,
625 uint32_t tiling)
626 {
627 struct intel_mipmap_tree *mt;
628
629 struct intel_region *region = calloc(1, sizeof(*region));
630 if (!region)
631 return NULL;
632
633 /* Nothing will be able to use this miptree with the BO if the offset isn't
634 * aligned.
635 */
636 if (tiling != I915_TILING_NONE)
637 assert(offset % 4096 == 0);
638
639 /* miptrees can't handle negative pitch. If you need flipping of images,
640 * that's outside of the scope of the mt.
641 */
642 assert(pitch >= 0);
643
644 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
645 0, 0,
646 width, height, 1,
647 true, 0 /* num_samples */);
648 if (!mt) {
649 free(region);
650 return mt;
651 }
652
653 region->cpp = mt->cpp;
654 region->width = width;
655 region->height = height;
656 region->pitch = pitch;
657 region->refcount = 1;
658 drm_intel_bo_reference(bo);
659 region->bo = bo;
660 region->tiling = tiling;
661
662 mt->region = region;
663 mt->offset = offset;
664
665 return mt;
666 }
667
668
669 /**
670 * For a singlesample DRI2 buffer, this simply wraps the given region with a miptree.
671 *
672 * For a multisample DRI2 buffer, this wraps the given region with
673 * a singlesample miptree, then creates a multisample miptree into which the
674 * singlesample miptree is embedded as a child.
675 */
676 struct intel_mipmap_tree*
677 intel_miptree_create_for_dri2_buffer(struct brw_context *brw,
678 unsigned dri_attachment,
679 gl_format format,
680 uint32_t num_samples,
681 struct intel_region *region)
682 {
683 struct intel_mipmap_tree *singlesample_mt = NULL;
684 struct intel_mipmap_tree *multisample_mt = NULL;
685
686 /* Only the front and back buffers, which are color buffers, are shared
687 * through DRI2.
688 */
689 assert(dri_attachment == __DRI_BUFFER_BACK_LEFT ||
690 dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
691 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT);
692 assert(_mesa_get_format_base_format(format) == GL_RGB ||
693 _mesa_get_format_base_format(format) == GL_RGBA);
694
695 singlesample_mt = intel_miptree_create_for_bo(brw,
696 region->bo,
697 format,
698 0,
699 region->width,
700 region->height,
701 region->pitch,
702 region->tiling);
703 if (!singlesample_mt)
704 return NULL;
705 singlesample_mt->region->name = region->name;
706
707 /* If this miptree is capable of supporting fast color clears, set
708 * fast_clear_state appropriately to ensure that fast clears will occur.
709 * Allocation of the MCS miptree will be deferred until the first fast
710 * clear actually occurs.
711 */
712 if (intel_is_non_msrt_mcs_buffer_supported(brw, singlesample_mt))
713 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
714
715 if (num_samples == 0)
716 return singlesample_mt;
717
718 multisample_mt = intel_miptree_create_for_renderbuffer(brw,
719 format,
720 region->width,
721 region->height,
722 num_samples);
723 if (!multisample_mt) {
724 intel_miptree_release(&singlesample_mt);
725 return NULL;
726 }
727
728 multisample_mt->singlesample_mt = singlesample_mt;
729 multisample_mt->need_downsample = false;
730
731 if (brw->is_front_buffer_rendering &&
732 (dri_attachment == __DRI_BUFFER_FRONT_LEFT ||
733 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT)) {
734 intel_miptree_upsample(brw, multisample_mt);
735 }
736
737 return multisample_mt;
738 }
739
740 /**
741 * For a singlesample image buffer, this simply wraps the given region with a miptree.
742 *
743 * For a multisample image buffer, this wraps the given region with
744 * a singlesample miptree, then creates a multisample miptree into which the
745 * singlesample miptree is embedded as a child.
746 */
747 struct intel_mipmap_tree*
748 intel_miptree_create_for_image_buffer(struct brw_context *intel,
749 enum __DRIimageBufferMask buffer_type,
750 gl_format format,
751 uint32_t num_samples,
752 struct intel_region *region)
753 {
754 struct intel_mipmap_tree *singlesample_mt = NULL;
755 struct intel_mipmap_tree *multisample_mt = NULL;
756
757 /* Only the front and back buffers, which are color buffers, are allocated
758 * through the image loader.
759 */
760 assert(_mesa_get_format_base_format(format) == GL_RGB ||
761 _mesa_get_format_base_format(format) == GL_RGBA);
762
763 singlesample_mt = intel_miptree_create_for_bo(intel,
764 region->bo,
765 format,
766 0,
767 region->width,
768 region->height,
769 region->pitch,
770 region->tiling);
771 if (!singlesample_mt)
772 return NULL;
773
774 intel_region_reference(&singlesample_mt->region, region);
775
776 if (num_samples == 0)
777 return singlesample_mt;
778
779 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
780 format,
781 region->width,
782 region->height,
783 num_samples);
784 if (!multisample_mt) {
785 intel_miptree_release(&singlesample_mt);
786 return NULL;
787 }
788
789 multisample_mt->singlesample_mt = singlesample_mt;
790 multisample_mt->need_downsample = false;
791
792 intel_region_reference(&multisample_mt->region, region);
793
794 if (intel->is_front_buffer_rendering && buffer_type == __DRI_IMAGE_BUFFER_FRONT) {
795 intel_miptree_upsample(intel, multisample_mt);
796 }
797
798 return multisample_mt;
799 }
800
801 struct intel_mipmap_tree*
802 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
803 gl_format format,
804 uint32_t width,
805 uint32_t height,
806 uint32_t num_samples)
807 {
808 struct intel_mipmap_tree *mt;
809 uint32_t depth = 1;
810 bool ok;
811
812 mt = intel_miptree_create(brw, GL_TEXTURE_2D, format, 0, 0,
813 width, height, depth, true, num_samples,
814 INTEL_MIPTREE_TILING_ANY);
815 if (!mt)
816 goto fail;
817
818 if (brw_is_hiz_depth_format(brw, format)) {
819 ok = intel_miptree_alloc_hiz(brw, mt);
820 if (!ok)
821 goto fail;
822 }
823
824 return mt;
825
826 fail:
827 intel_miptree_release(&mt);
828 return NULL;
829 }
830
831 void
832 intel_miptree_reference(struct intel_mipmap_tree **dst,
833 struct intel_mipmap_tree *src)
834 {
835 if (*dst == src)
836 return;
837
838 intel_miptree_release(dst);
839
840 if (src) {
841 src->refcount++;
842 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
843 }
844
845 *dst = src;
846 }
847
848
849 void
850 intel_miptree_release(struct intel_mipmap_tree **mt)
851 {
852 if (!*mt)
853 return;
854
855 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
856 if (--(*mt)->refcount <= 0) {
857 GLuint i;
858
859 DBG("%s deleting %p\n", __FUNCTION__, *mt);
860
861 intel_region_release(&((*mt)->region));
862 intel_miptree_release(&(*mt)->stencil_mt);
863 intel_miptree_release(&(*mt)->hiz_mt);
864 intel_miptree_release(&(*mt)->mcs_mt);
865 intel_miptree_release(&(*mt)->singlesample_mt);
866 intel_resolve_map_clear(&(*mt)->hiz_map);
867
868 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
869 free((*mt)->level[i].slice);
870 }
871
872 free(*mt);
873 }
874 *mt = NULL;
875 }
876
877 void
878 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
879 int *width, int *height, int *depth)
880 {
881 switch (image->TexObject->Target) {
882 case GL_TEXTURE_1D_ARRAY:
883 *width = image->Width;
884 *height = 1;
885 *depth = image->Height;
886 break;
887 default:
888 *width = image->Width;
889 *height = image->Height;
890 *depth = image->Depth;
891 break;
892 }
893 }
894
895 /**
896 * Can the image be pulled into a unified mipmap tree? This mirrors
897 * the completeness test in a lot of ways.
898 *
899 * Not sure whether I want to pass gl_texture_image here.
900 */
901 bool
902 intel_miptree_match_image(struct intel_mipmap_tree *mt,
903 struct gl_texture_image *image)
904 {
905 struct intel_texture_image *intelImage = intel_texture_image(image);
906 GLuint level = intelImage->base.Base.Level;
907 int width, height, depth;
908
909 /* glTexImage* choose the texture object based on the target passed in, and
910 * objects can't change targets over their lifetimes, so this should be
911 * true.
912 */
913 assert(target_to_target(image->TexObject->Target) == mt->target);
914
915 gl_format mt_format = mt->format;
916 if (mt->format == MESA_FORMAT_X8_Z24 && mt->stencil_mt)
917 mt_format = MESA_FORMAT_S8_Z24;
918 if (mt->format == MESA_FORMAT_Z32_FLOAT && mt->stencil_mt)
919 mt_format = MESA_FORMAT_Z32_FLOAT_X24S8;
920 if (mt->etc_format != MESA_FORMAT_NONE)
921 mt_format = mt->etc_format;
922
923 if (image->TexFormat != mt_format)
924 return false;
925
926 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
927
928 if (mt->target == GL_TEXTURE_CUBE_MAP)
929 depth = 6;
930
931 /* Test image dimensions against the base level image adjusted for
932 * minification. This will also catch images not present in the
933 * tree, changed targets, etc.
934 */
935 if (mt->target == GL_TEXTURE_2D_MULTISAMPLE ||
936 mt->target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
937 /* nonzero level here is always bogus */
938 assert(level == 0);
939
940 if (width != mt->logical_width0 ||
941 height != mt->logical_height0 ||
942 depth != mt->logical_depth0) {
943 return false;
944 }
945 }
946 else {
947 /* all normal textures, renderbuffers, etc */
948 if (width != mt->level[level].width ||
949 height != mt->level[level].height ||
950 depth != mt->level[level].depth) {
951 return false;
952 }
953 }
954
955 if (image->NumSamples != mt->num_samples)
956 return false;
957
958 return true;
959 }
960
961
962 void
963 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
964 GLuint level,
965 GLuint x, GLuint y,
966 GLuint w, GLuint h, GLuint d)
967 {
968 mt->level[level].width = w;
969 mt->level[level].height = h;
970 mt->level[level].depth = d;
971 mt->level[level].level_x = x;
972 mt->level[level].level_y = y;
973
974 DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__,
975 level, w, h, d, x, y);
976
977 assert(mt->level[level].slice == NULL);
978
979 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
980 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
981 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
982 }
983
984
985 void
986 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
987 GLuint level, GLuint img,
988 GLuint x, GLuint y)
989 {
990 if (img == 0 && level == 0)
991 assert(x == 0 && y == 0);
992
993 assert(img < mt->level[level].depth);
994
995 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
996 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
997
998 DBG("%s level %d img %d pos %d,%d\n",
999 __FUNCTION__, level, img,
1000 mt->level[level].slice[img].x_offset,
1001 mt->level[level].slice[img].y_offset);
1002 }
1003
1004 void
1005 intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
1006 GLuint level, GLuint slice,
1007 GLuint *x, GLuint *y)
1008 {
1009 assert(slice < mt->level[level].depth);
1010
1011 *x = mt->level[level].slice[slice].x_offset;
1012 *y = mt->level[level].slice[slice].y_offset;
1013 }
1014
1015 /**
1016 * Rendering with tiled buffers requires that the base address of the buffer
1017 * be aligned to a page boundary. For renderbuffers, and sometimes with
1018 * textures, we may want the surface to point at a texture image level that
1019 * isn't at a page boundary.
1020 *
1021 * This function returns an appropriately-aligned base offset
1022 * according to the tiling restrictions, plus any required x/y offset
1023 * from there.
1024 */
1025 uint32_t
1026 intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
1027 GLuint level, GLuint slice,
1028 uint32_t *tile_x,
1029 uint32_t *tile_y)
1030 {
1031 struct intel_region *region = mt->region;
1032 uint32_t x, y;
1033 uint32_t mask_x, mask_y;
1034
1035 intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
1036 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1037
1038 *tile_x = x & mask_x;
1039 *tile_y = y & mask_y;
1040
1041 return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
1042 false);
1043 }
1044
1045 static void
1046 intel_miptree_copy_slice_sw(struct brw_context *brw,
1047 struct intel_mipmap_tree *dst_mt,
1048 struct intel_mipmap_tree *src_mt,
1049 int level,
1050 int slice,
1051 int width,
1052 int height)
1053 {
1054 void *src, *dst;
1055 int src_stride, dst_stride;
1056 int cpp = dst_mt->cpp;
1057
1058 intel_miptree_map(brw, src_mt,
1059 level, slice,
1060 0, 0,
1061 width, height,
1062 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1063 &src, &src_stride);
1064
1065 intel_miptree_map(brw, dst_mt,
1066 level, slice,
1067 0, 0,
1068 width, height,
1069 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1070 BRW_MAP_DIRECT_BIT,
1071 &dst, &dst_stride);
1072
1073 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1074 _mesa_get_format_name(src_mt->format),
1075 src_mt, src, src_stride,
1076 _mesa_get_format_name(dst_mt->format),
1077 dst_mt, dst, dst_stride,
1078 width, height);
1079
1080 int row_size = cpp * width;
1081 if (src_stride == row_size &&
1082 dst_stride == row_size) {
1083 memcpy(dst, src, row_size * height);
1084 } else {
1085 for (int i = 0; i < height; i++) {
1086 memcpy(dst, src, row_size);
1087 dst += dst_stride;
1088 src += src_stride;
1089 }
1090 }
1091
1092 intel_miptree_unmap(brw, dst_mt, level, slice);
1093 intel_miptree_unmap(brw, src_mt, level, slice);
1094
1095 /* Don't forget to copy the stencil data over, too. We could have skipped
1096 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1097 * shuffling the two data sources in/out of temporary storage instead of
1098 * the direct mapping we get this way.
1099 */
1100 if (dst_mt->stencil_mt) {
1101 assert(src_mt->stencil_mt);
1102 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1103 level, slice, width, height);
1104 }
1105 }
1106
1107 static void
1108 intel_miptree_copy_slice(struct brw_context *brw,
1109 struct intel_mipmap_tree *dst_mt,
1110 struct intel_mipmap_tree *src_mt,
1111 int level,
1112 int face,
1113 int depth)
1114
1115 {
1116 gl_format format = src_mt->format;
1117 uint32_t width = src_mt->level[level].width;
1118 uint32_t height = src_mt->level[level].height;
1119 int slice;
1120
1121 if (face > 0)
1122 slice = face;
1123 else
1124 slice = depth;
1125
1126 assert(depth < src_mt->level[level].depth);
1127 assert(src_mt->format == dst_mt->format);
1128
1129 if (dst_mt->compressed) {
1130 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1131 width = ALIGN(width, dst_mt->align_w);
1132 }
1133
1134 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1135 * below won't apply since we can't do the depth's Y tiling or the
1136 * stencil's W tiling in the blitter.
1137 */
1138 if (src_mt->stencil_mt) {
1139 intel_miptree_copy_slice_sw(brw,
1140 dst_mt, src_mt,
1141 level, slice,
1142 width, height);
1143 return;
1144 }
1145
1146 uint32_t dst_x, dst_y, src_x, src_y;
1147 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1148 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1149
1150 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1151 _mesa_get_format_name(src_mt->format),
1152 src_mt, src_x, src_y, src_mt->region->pitch,
1153 _mesa_get_format_name(dst_mt->format),
1154 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1155 width, height);
1156
1157 if (!intel_miptree_blit(brw,
1158 src_mt, level, slice, 0, 0, false,
1159 dst_mt, level, slice, 0, 0, false,
1160 width, height, GL_COPY)) {
1161 perf_debug("miptree validate blit for %s failed\n",
1162 _mesa_get_format_name(format));
1163
1164 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1165 width, height);
1166 }
1167 }
1168
1169 /**
1170 * Copies the image's current data to the given miptree, and associates that
1171 * miptree with the image.
1172 *
1173 * If \c invalidate is true, then the actual image data does not need to be
1174 * copied, but the image still needs to be associated to the new miptree (this
1175 * is set to true if we're about to clear the image).
1176 */
1177 void
1178 intel_miptree_copy_teximage(struct brw_context *brw,
1179 struct intel_texture_image *intelImage,
1180 struct intel_mipmap_tree *dst_mt,
1181 bool invalidate)
1182 {
1183 struct intel_mipmap_tree *src_mt = intelImage->mt;
1184 struct intel_texture_object *intel_obj =
1185 intel_texture_object(intelImage->base.Base.TexObject);
1186 int level = intelImage->base.Base.Level;
1187 int face = intelImage->base.Base.Face;
1188 GLuint depth = intelImage->base.Base.Depth;
1189
1190 if (!invalidate) {
1191 for (int slice = 0; slice < depth; slice++) {
1192 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1193 }
1194 }
1195
1196 intel_miptree_reference(&intelImage->mt, dst_mt);
1197 intel_obj->needs_validate = true;
1198 }
1199
1200 bool
1201 intel_miptree_alloc_mcs(struct brw_context *brw,
1202 struct intel_mipmap_tree *mt,
1203 GLuint num_samples)
1204 {
1205 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1206 assert(mt->mcs_mt == NULL);
1207
1208 /* Choose the correct format for the MCS buffer. All that really matters
1209 * is that we allocate the right buffer size, since we'll always be
1210 * accessing this miptree using MCS-specific hardware mechanisms, which
1211 * infer the correct format based on num_samples.
1212 */
1213 gl_format format;
1214 switch (num_samples) {
1215 case 4:
1216 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1217 * each sample).
1218 */
1219 format = MESA_FORMAT_R8;
1220 break;
1221 case 8:
1222 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1223 * for each sample, plus 8 padding bits).
1224 */
1225 format = MESA_FORMAT_R_UINT32;
1226 break;
1227 default:
1228 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1229 return false;
1230 };
1231
1232 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1233 *
1234 * "The MCS surface must be stored as Tile Y."
1235 */
1236 mt->mcs_mt = intel_miptree_create(brw,
1237 mt->target,
1238 format,
1239 mt->first_level,
1240 mt->last_level,
1241 mt->logical_width0,
1242 mt->logical_height0,
1243 mt->logical_depth0,
1244 true,
1245 0 /* num_samples */,
1246 INTEL_MIPTREE_TILING_Y);
1247
1248 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1249 *
1250 * When MCS buffer is enabled and bound to MSRT, it is required that it
1251 * is cleared prior to any rendering.
1252 *
1253 * Since we don't use the MCS buffer for any purpose other than rendering,
1254 * it makes sense to just clear it immediately upon allocation.
1255 *
1256 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1257 */
1258 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1259 memset(data, 0xff, mt->mcs_mt->region->bo->size);
1260 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1261 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1262
1263 return mt->mcs_mt;
1264 }
1265
1266
1267 bool
1268 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1269 struct intel_mipmap_tree *mt)
1270 {
1271 assert(mt->mcs_mt == NULL);
1272
1273 /* The format of the MCS buffer is opaque to the driver; all that matters
1274 * is that we get its size and pitch right. We'll pretend that the format
1275 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1276 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1277 * the block width and then a further factor of 4. Since an MCS tile
1278 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1279 * we'll need to scale the height down by the block height and then a
1280 * further factor of 8.
1281 */
1282 const gl_format format = MESA_FORMAT_R_UINT32;
1283 unsigned block_width_px;
1284 unsigned block_height;
1285 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1286 unsigned width_divisor = block_width_px * 4;
1287 unsigned height_divisor = block_height * 8;
1288 unsigned mcs_width =
1289 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1290 unsigned mcs_height =
1291 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1292 assert(mt->logical_depth0 == 1);
1293 mt->mcs_mt = intel_miptree_create(brw,
1294 mt->target,
1295 format,
1296 mt->first_level,
1297 mt->last_level,
1298 mcs_width,
1299 mcs_height,
1300 mt->logical_depth0,
1301 true,
1302 0 /* num_samples */,
1303 INTEL_MIPTREE_TILING_Y);
1304
1305 return mt->mcs_mt;
1306 }
1307
1308
1309 /**
1310 * Helper for intel_miptree_alloc_hiz() that sets
1311 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1312 * \c has_hiz was set.
1313 */
1314 static bool
1315 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1316 struct intel_mipmap_tree *mt,
1317 uint32_t level,
1318 uint32_t layer)
1319 {
1320 assert(mt->hiz_mt);
1321
1322 if (brw->is_haswell) {
1323 const struct intel_mipmap_level *l = &mt->level[level];
1324
1325 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1326 * and the height is 4 aligned. This allows our HiZ support
1327 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1328 * we can grow the width & height to allow the HiZ op to
1329 * force the proper size alignments.
1330 */
1331 if (level > 0 && ((l->width & 7) || (l->height & 3))) {
1332 return false;
1333 }
1334 }
1335
1336 mt->level[level].slice[layer].has_hiz = true;
1337 return true;
1338 }
1339
1340
1341
1342 bool
1343 intel_miptree_alloc_hiz(struct brw_context *brw,
1344 struct intel_mipmap_tree *mt)
1345 {
1346 assert(mt->hiz_mt == NULL);
1347 mt->hiz_mt = intel_miptree_create(brw,
1348 mt->target,
1349 mt->format,
1350 mt->first_level,
1351 mt->last_level,
1352 mt->logical_width0,
1353 mt->logical_height0,
1354 mt->logical_depth0,
1355 true,
1356 mt->num_samples,
1357 INTEL_MIPTREE_TILING_ANY);
1358
1359 if (!mt->hiz_mt)
1360 return false;
1361
1362 /* Mark that all slices need a HiZ resolve. */
1363 struct intel_resolve_map *head = &mt->hiz_map;
1364 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1365 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1366 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1367 continue;
1368
1369 head->next = malloc(sizeof(*head->next));
1370 head->next->prev = head;
1371 head->next->next = NULL;
1372 head = head->next;
1373
1374 head->level = level;
1375 head->layer = layer;
1376 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1377 }
1378 }
1379
1380 return true;
1381 }
1382
1383 /**
1384 * Does the miptree slice have hiz enabled?
1385 */
1386 bool
1387 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1388 uint32_t level,
1389 uint32_t layer)
1390 {
1391 intel_miptree_check_level_layer(mt, level, layer);
1392 return mt->level[level].slice[layer].has_hiz;
1393 }
1394
1395 void
1396 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1397 uint32_t level,
1398 uint32_t layer)
1399 {
1400 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1401 return;
1402
1403 intel_resolve_map_set(&mt->hiz_map,
1404 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1405 }
1406
1407
1408 void
1409 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1410 uint32_t level,
1411 uint32_t layer)
1412 {
1413 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1414 return;
1415
1416 intel_resolve_map_set(&mt->hiz_map,
1417 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1418 }
1419
1420 void
1421 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1422 uint32_t level)
1423 {
1424 uint32_t layer;
1425 uint32_t end_layer = mt->level[level].depth;
1426
1427 for (layer = 0; layer < end_layer; layer++) {
1428 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1429 }
1430 }
1431
1432 static bool
1433 intel_miptree_slice_resolve(struct brw_context *brw,
1434 struct intel_mipmap_tree *mt,
1435 uint32_t level,
1436 uint32_t layer,
1437 enum gen6_hiz_op need)
1438 {
1439 intel_miptree_check_level_layer(mt, level, layer);
1440
1441 struct intel_resolve_map *item =
1442 intel_resolve_map_get(&mt->hiz_map, level, layer);
1443
1444 if (!item || item->need != need)
1445 return false;
1446
1447 intel_hiz_exec(brw, mt, level, layer, need);
1448 intel_resolve_map_remove(item);
1449 return true;
1450 }
1451
1452 bool
1453 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1454 struct intel_mipmap_tree *mt,
1455 uint32_t level,
1456 uint32_t layer)
1457 {
1458 return intel_miptree_slice_resolve(brw, mt, level, layer,
1459 GEN6_HIZ_OP_HIZ_RESOLVE);
1460 }
1461
1462 bool
1463 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1464 struct intel_mipmap_tree *mt,
1465 uint32_t level,
1466 uint32_t layer)
1467 {
1468 return intel_miptree_slice_resolve(brw, mt, level, layer,
1469 GEN6_HIZ_OP_DEPTH_RESOLVE);
1470 }
1471
1472 static bool
1473 intel_miptree_all_slices_resolve(struct brw_context *brw,
1474 struct intel_mipmap_tree *mt,
1475 enum gen6_hiz_op need)
1476 {
1477 bool did_resolve = false;
1478 struct intel_resolve_map *i, *next;
1479
1480 for (i = mt->hiz_map.next; i; i = next) {
1481 next = i->next;
1482 if (i->need != need)
1483 continue;
1484
1485 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1486 intel_resolve_map_remove(i);
1487 did_resolve = true;
1488 }
1489
1490 return did_resolve;
1491 }
1492
1493 bool
1494 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1495 struct intel_mipmap_tree *mt)
1496 {
1497 return intel_miptree_all_slices_resolve(brw, mt,
1498 GEN6_HIZ_OP_HIZ_RESOLVE);
1499 }
1500
1501 bool
1502 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1503 struct intel_mipmap_tree *mt)
1504 {
1505 return intel_miptree_all_slices_resolve(brw, mt,
1506 GEN6_HIZ_OP_DEPTH_RESOLVE);
1507 }
1508
1509
1510 void
1511 intel_miptree_resolve_color(struct brw_context *brw,
1512 struct intel_mipmap_tree *mt)
1513 {
1514 switch (mt->fast_clear_state) {
1515 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1516 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1517 /* No resolve needed */
1518 break;
1519 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1520 case INTEL_FAST_CLEAR_STATE_CLEAR:
1521 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1522 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1523 brw_blorp_resolve_color(brw, mt);
1524 break;
1525 }
1526 }
1527
1528
1529 /**
1530 * Make it possible to share the region backing the given miptree with another
1531 * process or another miptree.
1532 *
1533 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1534 * then discard the MCS buffer, if present. We also set the fast_clear_state
1535 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1536 * allocated in the future.
1537 */
1538 void
1539 intel_miptree_make_shareable(struct brw_context *brw,
1540 struct intel_mipmap_tree *mt)
1541 {
1542 /* MCS buffers are also used for multisample buffers, but we can't resolve
1543 * away a multisample MCS buffer because it's an integral part of how the
1544 * pixel data is stored. Fortunately this code path should never be
1545 * reached for multisample buffers.
1546 */
1547 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1548
1549 if (mt->mcs_mt) {
1550 intel_miptree_resolve_color(brw, mt);
1551 intel_miptree_release(&mt->mcs_mt);
1552 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1553 }
1554 }
1555
1556
1557 /**
1558 * \brief Get pointer offset into stencil buffer.
1559 *
1560 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1561 * must decode the tile's layout in software.
1562 *
1563 * See
1564 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1565 * Format.
1566 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1567 *
1568 * Even though the returned offset is always positive, the return type is
1569 * signed due to
1570 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1571 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1572 */
1573 static intptr_t
1574 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1575 {
1576 uint32_t tile_size = 4096;
1577 uint32_t tile_width = 64;
1578 uint32_t tile_height = 64;
1579 uint32_t row_size = 64 * stride;
1580
1581 uint32_t tile_x = x / tile_width;
1582 uint32_t tile_y = y / tile_height;
1583
1584 /* The byte's address relative to the tile's base addres. */
1585 uint32_t byte_x = x % tile_width;
1586 uint32_t byte_y = y % tile_height;
1587
1588 uintptr_t u = tile_y * row_size
1589 + tile_x * tile_size
1590 + 512 * (byte_x / 8)
1591 + 64 * (byte_y / 8)
1592 + 32 * ((byte_y / 4) % 2)
1593 + 16 * ((byte_x / 4) % 2)
1594 + 8 * ((byte_y / 2) % 2)
1595 + 4 * ((byte_x / 2) % 2)
1596 + 2 * (byte_y % 2)
1597 + 1 * (byte_x % 2);
1598
1599 if (swizzled) {
1600 /* adjust for bit6 swizzling */
1601 if (((byte_x / 8) % 2) == 1) {
1602 if (((byte_y / 8) % 2) == 0) {
1603 u += 64;
1604 } else {
1605 u -= 64;
1606 }
1607 }
1608 }
1609
1610 return u;
1611 }
1612
1613 static void
1614 intel_miptree_updownsample(struct brw_context *brw,
1615 struct intel_mipmap_tree *src,
1616 struct intel_mipmap_tree *dst,
1617 unsigned width,
1618 unsigned height)
1619 {
1620 int src_x0 = 0;
1621 int src_y0 = 0;
1622 int dst_x0 = 0;
1623 int dst_y0 = 0;
1624
1625 brw_blorp_blit_miptrees(brw,
1626 src, 0 /* level */, 0 /* layer */,
1627 dst, 0 /* level */, 0 /* layer */,
1628 src_x0, src_y0,
1629 width, height,
1630 dst_x0, dst_y0,
1631 width, height,
1632 GL_NEAREST, false, false /*mirror x, y*/);
1633
1634 if (src->stencil_mt) {
1635 brw_blorp_blit_miptrees(brw,
1636 src->stencil_mt, 0 /* level */, 0 /* layer */,
1637 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1638 src_x0, src_y0,
1639 width, height,
1640 dst_x0, dst_y0,
1641 width, height,
1642 GL_NEAREST, false, false /*mirror x, y*/);
1643 }
1644 }
1645
1646 static void
1647 assert_is_flat(struct intel_mipmap_tree *mt)
1648 {
1649 assert(mt->target == GL_TEXTURE_2D);
1650 assert(mt->first_level == 0);
1651 assert(mt->last_level == 0);
1652 }
1653
1654 /**
1655 * \brief Downsample from mt to mt->singlesample_mt.
1656 *
1657 * If the miptree needs no downsample, then skip.
1658 */
1659 void
1660 intel_miptree_downsample(struct brw_context *brw,
1661 struct intel_mipmap_tree *mt)
1662 {
1663 /* Only flat, renderbuffer-like miptrees are supported. */
1664 assert_is_flat(mt);
1665
1666 if (!mt->need_downsample)
1667 return;
1668 intel_miptree_updownsample(brw,
1669 mt, mt->singlesample_mt,
1670 mt->logical_width0,
1671 mt->logical_height0);
1672 mt->need_downsample = false;
1673 }
1674
1675 /**
1676 * \brief Upsample from mt->singlesample_mt to mt.
1677 *
1678 * The upsample is done unconditionally.
1679 */
1680 void
1681 intel_miptree_upsample(struct brw_context *brw,
1682 struct intel_mipmap_tree *mt)
1683 {
1684 /* Only flat, renderbuffer-like miptrees are supported. */
1685 assert_is_flat(mt);
1686 assert(!mt->need_downsample);
1687
1688 intel_miptree_updownsample(brw,
1689 mt->singlesample_mt, mt,
1690 mt->logical_width0,
1691 mt->logical_height0);
1692 }
1693
1694 void *
1695 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1696 {
1697 /* CPU accesses to color buffers don't understand fast color clears, so
1698 * resolve any pending fast color clears before we map.
1699 */
1700 intel_miptree_resolve_color(brw, mt);
1701
1702 drm_intel_bo *bo = mt->region->bo;
1703
1704 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1705 if (drm_intel_bo_busy(bo)) {
1706 perf_debug("Mapping a busy miptree, causing a stall on the GPU.\n");
1707 }
1708 }
1709
1710 intel_batchbuffer_flush(brw);
1711
1712 if (mt->region->tiling != I915_TILING_NONE)
1713 drm_intel_gem_bo_map_gtt(bo);
1714 else
1715 drm_intel_bo_map(bo, true);
1716
1717 return bo->virtual;
1718 }
1719
1720 void
1721 intel_miptree_unmap_raw(struct brw_context *brw,
1722 struct intel_mipmap_tree *mt)
1723 {
1724 drm_intel_bo_unmap(mt->region->bo);
1725 }
1726
1727 static void
1728 intel_miptree_map_gtt(struct brw_context *brw,
1729 struct intel_mipmap_tree *mt,
1730 struct intel_miptree_map *map,
1731 unsigned int level, unsigned int slice)
1732 {
1733 unsigned int bw, bh;
1734 void *base;
1735 unsigned int image_x, image_y;
1736 int x = map->x;
1737 int y = map->y;
1738
1739 /* For compressed formats, the stride is the number of bytes per
1740 * row of blocks. intel_miptree_get_image_offset() already does
1741 * the divide.
1742 */
1743 _mesa_get_format_block_size(mt->format, &bw, &bh);
1744 assert(y % bh == 0);
1745 y /= bh;
1746
1747 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1748
1749 if (base == NULL)
1750 map->ptr = NULL;
1751 else {
1752 /* Note that in the case of cube maps, the caller must have passed the
1753 * slice number referencing the face.
1754 */
1755 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1756 x += image_x;
1757 y += image_y;
1758
1759 map->stride = mt->region->pitch;
1760 map->ptr = base + y * map->stride + x * mt->cpp;
1761 }
1762
1763 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1764 map->x, map->y, map->w, map->h,
1765 mt, _mesa_get_format_name(mt->format),
1766 x, y, map->ptr, map->stride);
1767 }
1768
1769 static void
1770 intel_miptree_unmap_gtt(struct brw_context *brw,
1771 struct intel_mipmap_tree *mt,
1772 struct intel_miptree_map *map,
1773 unsigned int level,
1774 unsigned int slice)
1775 {
1776 intel_miptree_unmap_raw(brw, mt);
1777 }
1778
1779 static void
1780 intel_miptree_map_blit(struct brw_context *brw,
1781 struct intel_mipmap_tree *mt,
1782 struct intel_miptree_map *map,
1783 unsigned int level, unsigned int slice)
1784 {
1785 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1786 0, 0,
1787 map->w, map->h, 1,
1788 false, 0,
1789 INTEL_MIPTREE_TILING_NONE);
1790 if (!map->mt) {
1791 fprintf(stderr, "Failed to allocate blit temporary\n");
1792 goto fail;
1793 }
1794 map->stride = map->mt->region->pitch;
1795
1796 if (!intel_miptree_blit(brw,
1797 mt, level, slice,
1798 map->x, map->y, false,
1799 map->mt, 0, 0,
1800 0, 0, false,
1801 map->w, map->h, GL_COPY)) {
1802 fprintf(stderr, "Failed to blit\n");
1803 goto fail;
1804 }
1805
1806 map->ptr = intel_miptree_map_raw(brw, map->mt);
1807
1808 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1809 map->x, map->y, map->w, map->h,
1810 mt, _mesa_get_format_name(mt->format),
1811 level, slice, map->ptr, map->stride);
1812
1813 return;
1814
1815 fail:
1816 intel_miptree_release(&map->mt);
1817 map->ptr = NULL;
1818 map->stride = 0;
1819 }
1820
1821 static void
1822 intel_miptree_unmap_blit(struct brw_context *brw,
1823 struct intel_mipmap_tree *mt,
1824 struct intel_miptree_map *map,
1825 unsigned int level,
1826 unsigned int slice)
1827 {
1828 struct gl_context *ctx = &brw->ctx;
1829
1830 intel_miptree_unmap_raw(brw, map->mt);
1831
1832 if (map->mode & GL_MAP_WRITE_BIT) {
1833 bool ok = intel_miptree_blit(brw,
1834 map->mt, 0, 0,
1835 0, 0, false,
1836 mt, level, slice,
1837 map->x, map->y, false,
1838 map->w, map->h, GL_COPY);
1839 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1840 }
1841
1842 intel_miptree_release(&map->mt);
1843 }
1844
1845 #ifdef __SSE4_1__
1846 /**
1847 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1848 */
1849 static void
1850 intel_miptree_map_movntdqa(struct brw_context *brw,
1851 struct intel_mipmap_tree *mt,
1852 struct intel_miptree_map *map,
1853 unsigned int level, unsigned int slice)
1854 {
1855 assert(map->mode & GL_MAP_READ_BIT);
1856 assert(!(map->mode & GL_MAP_WRITE_BIT));
1857
1858 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1859 map->x, map->y, map->w, map->h,
1860 mt, _mesa_get_format_name(mt->format),
1861 level, slice, map->ptr, map->stride);
1862
1863 /* Map the original image */
1864 uint32_t image_x;
1865 uint32_t image_y;
1866 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1867 image_x += map->x;
1868 image_y += map->y;
1869
1870 void *src = intel_miptree_map_raw(brw, mt);
1871 if (!src)
1872 return;
1873 src += image_y * mt->region->pitch;
1874 src += image_x * mt->region->cpp;
1875
1876 /* Due to the pixel offsets for the particular image being mapped, our
1877 * src pointer may not be 16-byte aligned. However, if the pitch is
1878 * divisible by 16, then the amount by which it's misaligned will remain
1879 * consistent from row to row.
1880 */
1881 assert((mt->region->pitch % 16) == 0);
1882 const int misalignment = ((uintptr_t) src) & 15;
1883
1884 /* Create an untiled temporary buffer for the mapping. */
1885 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1886
1887 map->stride = ALIGN(misalignment + width_bytes, 16);
1888
1889 map->buffer = malloc(map->stride * map->h);
1890 /* Offset the destination so it has the same misalignment as src. */
1891 map->ptr = map->buffer + misalignment;
1892
1893 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1894
1895 for (uint32_t y = 0; y < map->h; y++) {
1896 void *dst_ptr = map->ptr + y * map->stride;
1897 void *src_ptr = src + y * mt->region->pitch;
1898
1899 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1900 }
1901
1902 intel_miptree_unmap_raw(brw, mt);
1903 }
1904
1905 static void
1906 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1907 struct intel_mipmap_tree *mt,
1908 struct intel_miptree_map *map,
1909 unsigned int level,
1910 unsigned int slice)
1911 {
1912 free(map->buffer);
1913 map->buffer = NULL;
1914 map->ptr = NULL;
1915 }
1916 #endif
1917
1918 static void
1919 intel_miptree_map_s8(struct brw_context *brw,
1920 struct intel_mipmap_tree *mt,
1921 struct intel_miptree_map *map,
1922 unsigned int level, unsigned int slice)
1923 {
1924 map->stride = map->w;
1925 map->buffer = map->ptr = malloc(map->stride * map->h);
1926 if (!map->buffer)
1927 return;
1928
1929 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1930 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1931 * invalidate is set, since we'll be writing the whole rectangle from our
1932 * temporary buffer back out.
1933 */
1934 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1935 uint8_t *untiled_s8_map = map->ptr;
1936 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1937 unsigned int image_x, image_y;
1938
1939 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1940
1941 for (uint32_t y = 0; y < map->h; y++) {
1942 for (uint32_t x = 0; x < map->w; x++) {
1943 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1944 x + image_x + map->x,
1945 y + image_y + map->y,
1946 brw->has_swizzling);
1947 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1948 }
1949 }
1950
1951 intel_miptree_unmap_raw(brw, mt);
1952
1953 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1954 map->x, map->y, map->w, map->h,
1955 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1956 } else {
1957 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1958 map->x, map->y, map->w, map->h,
1959 mt, map->ptr, map->stride);
1960 }
1961 }
1962
1963 static void
1964 intel_miptree_unmap_s8(struct brw_context *brw,
1965 struct intel_mipmap_tree *mt,
1966 struct intel_miptree_map *map,
1967 unsigned int level,
1968 unsigned int slice)
1969 {
1970 if (map->mode & GL_MAP_WRITE_BIT) {
1971 unsigned int image_x, image_y;
1972 uint8_t *untiled_s8_map = map->ptr;
1973 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1974
1975 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1976
1977 for (uint32_t y = 0; y < map->h; y++) {
1978 for (uint32_t x = 0; x < map->w; x++) {
1979 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1980 x + map->x,
1981 y + map->y,
1982 brw->has_swizzling);
1983 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1984 }
1985 }
1986
1987 intel_miptree_unmap_raw(brw, mt);
1988 }
1989
1990 free(map->buffer);
1991 }
1992
1993 static void
1994 intel_miptree_map_etc(struct brw_context *brw,
1995 struct intel_mipmap_tree *mt,
1996 struct intel_miptree_map *map,
1997 unsigned int level,
1998 unsigned int slice)
1999 {
2000 assert(mt->etc_format != MESA_FORMAT_NONE);
2001 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2002 assert(mt->format == MESA_FORMAT_RGBX8888_REV);
2003 }
2004
2005 assert(map->mode & GL_MAP_WRITE_BIT);
2006 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2007
2008 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2009 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2010 map->w, map->h, 1));
2011 map->ptr = map->buffer;
2012 }
2013
2014 static void
2015 intel_miptree_unmap_etc(struct brw_context *brw,
2016 struct intel_mipmap_tree *mt,
2017 struct intel_miptree_map *map,
2018 unsigned int level,
2019 unsigned int slice)
2020 {
2021 uint32_t image_x;
2022 uint32_t image_y;
2023 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2024
2025 image_x += map->x;
2026 image_y += map->y;
2027
2028 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2029 + image_y * mt->region->pitch
2030 + image_x * mt->region->cpp;
2031
2032 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2033 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
2034 map->ptr, map->stride,
2035 map->w, map->h);
2036 else
2037 _mesa_unpack_etc2_format(dst, mt->region->pitch,
2038 map->ptr, map->stride,
2039 map->w, map->h, mt->etc_format);
2040
2041 intel_miptree_unmap_raw(brw, mt);
2042 free(map->buffer);
2043 }
2044
2045 /**
2046 * Mapping function for packed depth/stencil miptrees backed by real separate
2047 * miptrees for depth and stencil.
2048 *
2049 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2050 * separate from the depth buffer. Yet at the GL API level, we have to expose
2051 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2052 * be able to map that memory for texture storage and glReadPixels-type
2053 * operations. We give Mesa core that access by mallocing a temporary and
2054 * copying the data between the actual backing store and the temporary.
2055 */
2056 static void
2057 intel_miptree_map_depthstencil(struct brw_context *brw,
2058 struct intel_mipmap_tree *mt,
2059 struct intel_miptree_map *map,
2060 unsigned int level, unsigned int slice)
2061 {
2062 struct intel_mipmap_tree *z_mt = mt;
2063 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2064 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
2065 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2066
2067 map->stride = map->w * packed_bpp;
2068 map->buffer = map->ptr = malloc(map->stride * map->h);
2069 if (!map->buffer)
2070 return;
2071
2072 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2073 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2074 * invalidate is set, since we'll be writing the whole rectangle from our
2075 * temporary buffer back out.
2076 */
2077 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2078 uint32_t *packed_map = map->ptr;
2079 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2080 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2081 unsigned int s_image_x, s_image_y;
2082 unsigned int z_image_x, z_image_y;
2083
2084 intel_miptree_get_image_offset(s_mt, level, slice,
2085 &s_image_x, &s_image_y);
2086 intel_miptree_get_image_offset(z_mt, level, slice,
2087 &z_image_x, &z_image_y);
2088
2089 for (uint32_t y = 0; y < map->h; y++) {
2090 for (uint32_t x = 0; x < map->w; x++) {
2091 int map_x = map->x + x, map_y = map->y + y;
2092 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2093 map_x + s_image_x,
2094 map_y + s_image_y,
2095 brw->has_swizzling);
2096 ptrdiff_t z_offset = ((map_y + z_image_y) *
2097 (z_mt->region->pitch / 4) +
2098 (map_x + z_image_x));
2099 uint8_t s = s_map[s_offset];
2100 uint32_t z = z_map[z_offset];
2101
2102 if (map_z32f_x24s8) {
2103 packed_map[(y * map->w + x) * 2 + 0] = z;
2104 packed_map[(y * map->w + x) * 2 + 1] = s;
2105 } else {
2106 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2107 }
2108 }
2109 }
2110
2111 intel_miptree_unmap_raw(brw, s_mt);
2112 intel_miptree_unmap_raw(brw, z_mt);
2113
2114 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2115 __FUNCTION__,
2116 map->x, map->y, map->w, map->h,
2117 z_mt, map->x + z_image_x, map->y + z_image_y,
2118 s_mt, map->x + s_image_x, map->y + s_image_y,
2119 map->ptr, map->stride);
2120 } else {
2121 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2122 map->x, map->y, map->w, map->h,
2123 mt, map->ptr, map->stride);
2124 }
2125 }
2126
2127 static void
2128 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2129 struct intel_mipmap_tree *mt,
2130 struct intel_miptree_map *map,
2131 unsigned int level,
2132 unsigned int slice)
2133 {
2134 struct intel_mipmap_tree *z_mt = mt;
2135 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2136 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT;
2137
2138 if (map->mode & GL_MAP_WRITE_BIT) {
2139 uint32_t *packed_map = map->ptr;
2140 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2141 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2142 unsigned int s_image_x, s_image_y;
2143 unsigned int z_image_x, z_image_y;
2144
2145 intel_miptree_get_image_offset(s_mt, level, slice,
2146 &s_image_x, &s_image_y);
2147 intel_miptree_get_image_offset(z_mt, level, slice,
2148 &z_image_x, &z_image_y);
2149
2150 for (uint32_t y = 0; y < map->h; y++) {
2151 for (uint32_t x = 0; x < map->w; x++) {
2152 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2153 x + s_image_x + map->x,
2154 y + s_image_y + map->y,
2155 brw->has_swizzling);
2156 ptrdiff_t z_offset = ((y + z_image_y) *
2157 (z_mt->region->pitch / 4) +
2158 (x + z_image_x));
2159
2160 if (map_z32f_x24s8) {
2161 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2162 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2163 } else {
2164 uint32_t packed = packed_map[y * map->w + x];
2165 s_map[s_offset] = packed >> 24;
2166 z_map[z_offset] = packed;
2167 }
2168 }
2169 }
2170
2171 intel_miptree_unmap_raw(brw, s_mt);
2172 intel_miptree_unmap_raw(brw, z_mt);
2173
2174 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2175 __FUNCTION__,
2176 map->x, map->y, map->w, map->h,
2177 z_mt, _mesa_get_format_name(z_mt->format),
2178 map->x + z_image_x, map->y + z_image_y,
2179 s_mt, map->x + s_image_x, map->y + s_image_y,
2180 map->ptr, map->stride);
2181 }
2182
2183 free(map->buffer);
2184 }
2185
2186 /**
2187 * Create and attach a map to the miptree at (level, slice). Return the
2188 * attached map.
2189 */
2190 static struct intel_miptree_map*
2191 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2192 unsigned int level,
2193 unsigned int slice,
2194 unsigned int x,
2195 unsigned int y,
2196 unsigned int w,
2197 unsigned int h,
2198 GLbitfield mode)
2199 {
2200 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2201
2202 if (!map)
2203 return NULL;
2204
2205 assert(mt->level[level].slice[slice].map == NULL);
2206 mt->level[level].slice[slice].map = map;
2207
2208 map->mode = mode;
2209 map->x = x;
2210 map->y = y;
2211 map->w = w;
2212 map->h = h;
2213
2214 return map;
2215 }
2216
2217 /**
2218 * Release the map at (level, slice).
2219 */
2220 static void
2221 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2222 unsigned int level,
2223 unsigned int slice)
2224 {
2225 struct intel_miptree_map **map;
2226
2227 map = &mt->level[level].slice[slice].map;
2228 free(*map);
2229 *map = NULL;
2230 }
2231
2232 static void
2233 intel_miptree_map_singlesample(struct brw_context *brw,
2234 struct intel_mipmap_tree *mt,
2235 unsigned int level,
2236 unsigned int slice,
2237 unsigned int x,
2238 unsigned int y,
2239 unsigned int w,
2240 unsigned int h,
2241 GLbitfield mode,
2242 void **out_ptr,
2243 int *out_stride)
2244 {
2245 struct intel_miptree_map *map;
2246
2247 assert(mt->num_samples <= 1);
2248
2249 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2250 if (!map){
2251 *out_ptr = NULL;
2252 *out_stride = 0;
2253 return;
2254 }
2255
2256 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2257 if (map->mode & GL_MAP_WRITE_BIT) {
2258 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2259 }
2260
2261 if (mt->format == MESA_FORMAT_S8) {
2262 intel_miptree_map_s8(brw, mt, map, level, slice);
2263 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2264 !(mode & BRW_MAP_DIRECT_BIT)) {
2265 intel_miptree_map_etc(brw, mt, map, level, slice);
2266 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2267 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2268 }
2269 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2270 else if (brw->has_llc &&
2271 !(mode & GL_MAP_WRITE_BIT) &&
2272 !mt->compressed &&
2273 (mt->region->tiling == I915_TILING_X ||
2274 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2275 mt->region->pitch < 32768) {
2276 intel_miptree_map_blit(brw, mt, map, level, slice);
2277 } else if (mt->region->tiling != I915_TILING_NONE &&
2278 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2279 assert(mt->region->pitch < 32768);
2280 intel_miptree_map_blit(brw, mt, map, level, slice);
2281 #ifdef __SSE4_1__
2282 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed) {
2283 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2284 #endif
2285 } else {
2286 intel_miptree_map_gtt(brw, mt, map, level, slice);
2287 }
2288
2289 *out_ptr = map->ptr;
2290 *out_stride = map->stride;
2291
2292 if (map->ptr == NULL)
2293 intel_miptree_release_map(mt, level, slice);
2294 }
2295
2296 static void
2297 intel_miptree_unmap_singlesample(struct brw_context *brw,
2298 struct intel_mipmap_tree *mt,
2299 unsigned int level,
2300 unsigned int slice)
2301 {
2302 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2303
2304 assert(mt->num_samples <= 1);
2305
2306 if (!map)
2307 return;
2308
2309 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2310 mt, _mesa_get_format_name(mt->format), level, slice);
2311
2312 if (mt->format == MESA_FORMAT_S8) {
2313 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2314 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2315 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2316 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2317 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2318 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2319 } else if (map->mt) {
2320 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2321 #ifdef __SSE4_1__
2322 } else if (map->buffer) {
2323 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2324 #endif
2325 } else {
2326 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2327 }
2328
2329 intel_miptree_release_map(mt, level, slice);
2330 }
2331
2332 static void
2333 intel_miptree_map_multisample(struct brw_context *brw,
2334 struct intel_mipmap_tree *mt,
2335 unsigned int level,
2336 unsigned int slice,
2337 unsigned int x,
2338 unsigned int y,
2339 unsigned int w,
2340 unsigned int h,
2341 GLbitfield mode,
2342 void **out_ptr,
2343 int *out_stride)
2344 {
2345 struct gl_context *ctx = &brw->ctx;
2346 struct intel_miptree_map *map;
2347
2348 assert(mt->num_samples > 1);
2349
2350 /* Only flat, renderbuffer-like miptrees are supported. */
2351 if (mt->target != GL_TEXTURE_2D ||
2352 mt->first_level != 0 ||
2353 mt->last_level != 0) {
2354 _mesa_problem(ctx, "attempt to map a multisample miptree for "
2355 "which (target, first_level, last_level != "
2356 "(GL_TEXTURE_2D, 0, 0)");
2357 goto fail;
2358 }
2359
2360 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2361 if (!map)
2362 goto fail;
2363
2364 if (!mt->singlesample_mt) {
2365 mt->singlesample_mt =
2366 intel_miptree_create_for_renderbuffer(brw,
2367 mt->format,
2368 mt->logical_width0,
2369 mt->logical_height0,
2370 0 /*num_samples*/);
2371 if (!mt->singlesample_mt)
2372 goto fail;
2373
2374 map->singlesample_mt_is_tmp = true;
2375 mt->need_downsample = true;
2376 }
2377
2378 intel_miptree_downsample(brw, mt);
2379 intel_miptree_map_singlesample(brw, mt->singlesample_mt,
2380 level, slice,
2381 x, y, w, h,
2382 mode,
2383 out_ptr, out_stride);
2384 return;
2385
2386 fail:
2387 intel_miptree_release_map(mt, level, slice);
2388 *out_ptr = NULL;
2389 *out_stride = 0;
2390 }
2391
2392 static void
2393 intel_miptree_unmap_multisample(struct brw_context *brw,
2394 struct intel_mipmap_tree *mt,
2395 unsigned int level,
2396 unsigned int slice)
2397 {
2398 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2399
2400 assert(mt->num_samples > 1);
2401
2402 if (!map)
2403 return;
2404
2405 intel_miptree_unmap_singlesample(brw, mt->singlesample_mt, level, slice);
2406
2407 mt->need_downsample = false;
2408 if (map->mode & GL_MAP_WRITE_BIT)
2409 intel_miptree_upsample(brw, mt);
2410
2411 if (map->singlesample_mt_is_tmp)
2412 intel_miptree_release(&mt->singlesample_mt);
2413
2414 intel_miptree_release_map(mt, level, slice);
2415 }
2416
2417 void
2418 intel_miptree_map(struct brw_context *brw,
2419 struct intel_mipmap_tree *mt,
2420 unsigned int level,
2421 unsigned int slice,
2422 unsigned int x,
2423 unsigned int y,
2424 unsigned int w,
2425 unsigned int h,
2426 GLbitfield mode,
2427 void **out_ptr,
2428 int *out_stride)
2429 {
2430 if (mt->num_samples <= 1)
2431 intel_miptree_map_singlesample(brw, mt,
2432 level, slice,
2433 x, y, w, h,
2434 mode,
2435 out_ptr, out_stride);
2436 else
2437 intel_miptree_map_multisample(brw, mt,
2438 level, slice,
2439 x, y, w, h,
2440 mode,
2441 out_ptr, out_stride);
2442 }
2443
2444 void
2445 intel_miptree_unmap(struct brw_context *brw,
2446 struct intel_mipmap_tree *mt,
2447 unsigned int level,
2448 unsigned int slice)
2449 {
2450 if (mt->num_samples <= 1)
2451 intel_miptree_unmap_singlesample(brw, mt, level, slice);
2452 else
2453 intel_miptree_unmap_multisample(brw, mt, level, slice);
2454 }