i965: Allow forcing miptree->array_layout = ALL_SLICES_AT_EACH_LOD
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_resolve_map.h"
35 #include "intel_tex.h"
36 #include "intel_blit.h"
37 #include "intel_fbo.h"
38
39 #include "brw_blorp.h"
40 #include "brw_context.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49 #include "x86/common_x86_asm.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 /**
54 * Determine which MSAA layout should be used by the MSAA surface being
55 * created, based on the chip generation and the surface type.
56 */
57 static enum intel_msaa_layout
58 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
59 {
60 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
61 if (brw->gen < 7)
62 return INTEL_MSAA_LAYOUT_IMS;
63
64 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
65 switch (_mesa_get_format_base_format(format)) {
66 case GL_DEPTH_COMPONENT:
67 case GL_STENCIL_INDEX:
68 case GL_DEPTH_STENCIL:
69 return INTEL_MSAA_LAYOUT_IMS;
70 default:
71 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
72 *
73 * This field must be set to 0 for all SINT MSRTs when all RT channels
74 * are not written
75 *
76 * In practice this means that we have to disable MCS for all signed
77 * integer MSAA buffers. The alternative, to disable MCS only when one
78 * of the render target channels is disabled, is impractical because it
79 * would require converting between CMS and UMS MSAA layouts on the fly,
80 * which is expensive.
81 */
82 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
83 return INTEL_MSAA_LAYOUT_UMS;
84 } else {
85 return INTEL_MSAA_LAYOUT_CMS;
86 }
87 }
88 }
89
90
91 /**
92 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
93 * scaled-down bitfield representation of the color buffer which is capable of
94 * recording when blocks of the color buffer are equal to the clear value.
95 * This function returns the block size that will be used by the MCS buffer
96 * corresponding to a certain color miptree.
97 *
98 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
99 * beneath the "Fast Color Clear" bullet (p327):
100 *
101 * The following table describes the RT alignment
102 *
103 * Pixels Lines
104 * TiledY RT CL
105 * bpp
106 * 32 8 4
107 * 64 4 4
108 * 128 2 4
109 * TiledX RT CL
110 * bpp
111 * 32 16 2
112 * 64 8 2
113 * 128 4 2
114 *
115 * This alignment has the following uses:
116 *
117 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
118 * buffer contains 128 blocks horizontally and 256 blocks vertically.
119 *
120 * - For figuring out alignment restrictions for a fast clear operation. Fast
121 * clear operations must always clear aligned multiples of 16 blocks
122 * horizontally and 32 blocks vertically.
123 *
124 * - For scaling down the coordinates sent through the render pipeline during
125 * a fast clear. X coordinates must be scaled down by 8 times the block
126 * width, and Y coordinates by 16 times the block height.
127 *
128 * - For scaling down the coordinates sent through the render pipeline during
129 * a "Render Target Resolve" operation. X coordinates must be scaled down
130 * by half the block width, and Y coordinates by half the block height.
131 */
132 void
133 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
134 struct intel_mipmap_tree *mt,
135 unsigned *width_px, unsigned *height)
136 {
137 switch (mt->tiling) {
138 default:
139 unreachable("Non-MSRT MCS requires X or Y tiling");
140 /* In release builds, fall through */
141 case I915_TILING_Y:
142 *width_px = 32 / mt->cpp;
143 *height = 4;
144 break;
145 case I915_TILING_X:
146 *width_px = 64 / mt->cpp;
147 *height = 2;
148 }
149 }
150
151
152 /**
153 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
154 * can be used.
155 *
156 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
157 * beneath the "Fast Color Clear" bullet (p326):
158 *
159 * - Support is limited to tiled render targets.
160 * - Support is for non-mip-mapped and non-array surface types only.
161 *
162 * And then later, on p327:
163 *
164 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
165 * 64bpp, and 128bpp.
166 */
167 bool
168 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
169 struct intel_mipmap_tree *mt)
170 {
171 /* MCS support does not exist prior to Gen7 */
172 if (brw->gen < 7)
173 return false;
174
175 /* MCS is only supported for color buffers */
176 switch (_mesa_get_format_base_format(mt->format)) {
177 case GL_DEPTH_COMPONENT:
178 case GL_DEPTH_STENCIL:
179 case GL_STENCIL_INDEX:
180 return false;
181 }
182
183 if (mt->tiling != I915_TILING_X &&
184 mt->tiling != I915_TILING_Y)
185 return false;
186 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
187 return false;
188 if (mt->first_level != 0 || mt->last_level != 0)
189 return false;
190 if (mt->physical_depth0 != 1)
191 return false;
192
193 /* There's no point in using an MCS buffer if the surface isn't in a
194 * renderable format.
195 */
196 if (!brw->format_supported_as_render_target[mt->format])
197 return false;
198
199 return true;
200 }
201
202
203 /**
204 * Determine depth format corresponding to a depth+stencil format,
205 * for separate stencil.
206 */
207 mesa_format
208 intel_depth_format_for_depthstencil_format(mesa_format format) {
209 switch (format) {
210 case MESA_FORMAT_Z24_UNORM_S8_UINT:
211 return MESA_FORMAT_Z24_UNORM_X8_UINT;
212 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
213 return MESA_FORMAT_Z_FLOAT32;
214 default:
215 return format;
216 }
217 }
218
219
220 /**
221 * @param for_bo Indicates that the caller is
222 * intel_miptree_create_for_bo(). If true, then do not create
223 * \c stencil_mt.
224 */
225 struct intel_mipmap_tree *
226 intel_miptree_create_layout(struct brw_context *brw,
227 GLenum target,
228 mesa_format format,
229 GLuint first_level,
230 GLuint last_level,
231 GLuint width0,
232 GLuint height0,
233 GLuint depth0,
234 bool for_bo,
235 GLuint num_samples,
236 bool force_all_slices_at_each_lod)
237 {
238 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
239 if (!mt)
240 return NULL;
241
242 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
243 _mesa_lookup_enum_by_nr(target),
244 _mesa_get_format_name(format),
245 first_level, last_level, depth0, mt);
246
247 if (target == GL_TEXTURE_1D_ARRAY) {
248 /* For a 1D Array texture the OpenGL API will treat the height0
249 * parameter as the number of array slices. For Intel hardware, we treat
250 * the 1D array as a 2D Array with a height of 1.
251 *
252 * So, when we first come through this path to create a 1D Array
253 * texture, height0 stores the number of slices, and depth0 is 1. In
254 * this case, we want to swap height0 and depth0.
255 *
256 * Since some miptrees will be created based on the base miptree, we may
257 * come through this path and see height0 as 1 and depth0 being the
258 * number of slices. In this case we don't need to do the swap.
259 */
260 assert(height0 == 1 || depth0 == 1);
261 if (height0 > 1) {
262 depth0 = height0;
263 height0 = 1;
264 }
265 }
266
267 mt->target = target;
268 mt->format = format;
269 mt->first_level = first_level;
270 mt->last_level = last_level;
271 mt->logical_width0 = width0;
272 mt->logical_height0 = height0;
273 mt->logical_depth0 = depth0;
274 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
275 exec_list_make_empty(&mt->hiz_map);
276
277 /* The cpp is bytes per (1, blockheight)-sized block for compressed
278 * textures. This is why you'll see divides by blockheight all over
279 */
280 unsigned bw, bh;
281 _mesa_get_format_block_size(format, &bw, &bh);
282 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
283 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
284
285 mt->num_samples = num_samples;
286 mt->compressed = _mesa_is_format_compressed(format);
287 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
288 mt->refcount = 1;
289
290 if (num_samples > 1) {
291 /* Adjust width/height/depth for MSAA */
292 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
293 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
294 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
295 *
296 * "Any of the other messages (sample*, LOD, load4) used with a
297 * (4x) multisampled surface will in-effect sample a surface with
298 * double the height and width as that indicated in the surface
299 * state. Each pixel position on the original-sized surface is
300 * replaced with a 2x2 of samples with the following arrangement:
301 *
302 * sample 0 sample 2
303 * sample 1 sample 3"
304 *
305 * Thus, when sampling from a multisampled texture, it behaves as
306 * though the layout in memory for (x,y,sample) is:
307 *
308 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
309 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
310 *
311 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
312 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
313 *
314 * However, the actual layout of multisampled data in memory is:
315 *
316 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
317 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
318 *
319 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
320 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
321 *
322 * This pattern repeats for each 2x2 pixel block.
323 *
324 * As a result, when calculating the size of our 4-sample buffer for
325 * an odd width or height, we have to align before scaling up because
326 * sample 3 is in that bottom right 2x2 block.
327 */
328 switch (num_samples) {
329 case 2:
330 assert(brw->gen >= 8);
331 width0 = ALIGN(width0, 2) * 2;
332 height0 = ALIGN(height0, 2);
333 break;
334 case 4:
335 width0 = ALIGN(width0, 2) * 2;
336 height0 = ALIGN(height0, 2) * 2;
337 break;
338 case 8:
339 width0 = ALIGN(width0, 2) * 4;
340 height0 = ALIGN(height0, 2) * 2;
341 break;
342 default:
343 /* num_samples should already have been quantized to 0, 1, 2, 4, or
344 * 8.
345 */
346 unreachable("not reached");
347 }
348 } else {
349 /* Non-interleaved */
350 depth0 *= num_samples;
351 }
352 }
353
354 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when gen7+ array_spacing_lod0
355 * can be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces.
356 * TODO: can we use it elsewhere?
357 */
358 switch (mt->msaa_layout) {
359 case INTEL_MSAA_LAYOUT_NONE:
360 case INTEL_MSAA_LAYOUT_IMS:
361 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
362 break;
363 case INTEL_MSAA_LAYOUT_UMS:
364 case INTEL_MSAA_LAYOUT_CMS:
365 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
366 break;
367 }
368
369 if (target == GL_TEXTURE_CUBE_MAP) {
370 assert(depth0 == 1);
371 depth0 = 6;
372 }
373
374 mt->physical_width0 = width0;
375 mt->physical_height0 = height0;
376 mt->physical_depth0 = depth0;
377
378 if (!for_bo &&
379 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
380 (brw->must_use_separate_stencil ||
381 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
382 mt->stencil_mt = intel_miptree_create(brw,
383 mt->target,
384 MESA_FORMAT_S_UINT8,
385 mt->first_level,
386 mt->last_level,
387 mt->logical_width0,
388 mt->logical_height0,
389 mt->logical_depth0,
390 true,
391 num_samples,
392 INTEL_MIPTREE_TILING_ANY,
393 false);
394 if (!mt->stencil_mt) {
395 intel_miptree_release(&mt);
396 return NULL;
397 }
398
399 /* Fix up the Z miptree format for how we're splitting out separate
400 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
401 */
402 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
403 mt->cpp = 4;
404
405 if (format == mt->format) {
406 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
407 _mesa_get_format_name(mt->format));
408 }
409 }
410
411 if (force_all_slices_at_each_lod)
412 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
413
414 brw_miptree_layout(brw, mt);
415
416 return mt;
417 }
418
419 /**
420 * \brief Helper function for intel_miptree_create().
421 */
422 static uint32_t
423 intel_miptree_choose_tiling(struct brw_context *brw,
424 mesa_format format,
425 uint32_t width0,
426 uint32_t num_samples,
427 enum intel_miptree_tiling_mode requested,
428 struct intel_mipmap_tree *mt)
429 {
430 if (format == MESA_FORMAT_S_UINT8) {
431 /* The stencil buffer is W tiled. However, we request from the kernel a
432 * non-tiled buffer because the GTT is incapable of W fencing.
433 */
434 return I915_TILING_NONE;
435 }
436
437 /* Some usages may want only one type of tiling, like depth miptrees (Y
438 * tiled), or temporary BOs for uploading data once (linear).
439 */
440 switch (requested) {
441 case INTEL_MIPTREE_TILING_ANY:
442 break;
443 case INTEL_MIPTREE_TILING_Y:
444 return I915_TILING_Y;
445 case INTEL_MIPTREE_TILING_NONE:
446 return I915_TILING_NONE;
447 }
448
449 if (num_samples > 1) {
450 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
451 * Surface"):
452 *
453 * [DevSNB+]: For multi-sample render targets, this field must be
454 * 1. MSRTs can only be tiled.
455 *
456 * Our usual reason for preferring X tiling (fast blits using the
457 * blitting engine) doesn't apply to MSAA, since we'll generally be
458 * downsampling or upsampling when blitting between the MSAA buffer
459 * and another buffer, and the blitting engine doesn't support that.
460 * So use Y tiling, since it makes better use of the cache.
461 */
462 return I915_TILING_Y;
463 }
464
465 GLenum base_format = _mesa_get_format_base_format(format);
466 if (base_format == GL_DEPTH_COMPONENT ||
467 base_format == GL_DEPTH_STENCIL_EXT)
468 return I915_TILING_Y;
469
470 int minimum_pitch = mt->total_width * mt->cpp;
471
472 /* If the width is much smaller than a tile, don't bother tiling. */
473 if (minimum_pitch < 64)
474 return I915_TILING_NONE;
475
476 if (ALIGN(minimum_pitch, 512) >= 32768 ||
477 mt->total_width >= 32768 || mt->total_height >= 32768) {
478 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
479 mt->total_width, mt->total_height);
480 return I915_TILING_NONE;
481 }
482
483 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
484 if (brw->gen < 6)
485 return I915_TILING_X;
486
487 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
488 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
489 * or Linear."
490 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
491 * all the way back to 965, but is explicitly permitted on Gen7.
492 */
493 if (brw->gen != 7 && mt->cpp >= 16)
494 return I915_TILING_X;
495
496 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
497 * messages), on p64, under the heading "Surface Vertical Alignment":
498 *
499 * This field must be set to VALIGN_4 for all tiled Y Render Target
500 * surfaces.
501 *
502 * So if the surface is renderable and uses a vertical alignment of 2,
503 * force it to be X tiled. This is somewhat conservative (it's possible
504 * that the client won't ever render to this surface), but it's difficult
505 * to know that ahead of time. And besides, since we use a vertical
506 * alignment of 4 as often as we can, this shouldn't happen very often.
507 */
508 if (brw->gen == 7 && mt->align_h == 2 &&
509 brw->format_supported_as_render_target[format]) {
510 return I915_TILING_X;
511 }
512
513 return I915_TILING_Y | I915_TILING_X;
514 }
515
516
517 /**
518 * Choose an appropriate uncompressed format for a requested
519 * compressed format, if unsupported.
520 */
521 mesa_format
522 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
523 {
524 /* No need to lower ETC formats on these platforms,
525 * they are supported natively.
526 */
527 if (brw->gen >= 8 || brw->is_baytrail)
528 return format;
529
530 switch (format) {
531 case MESA_FORMAT_ETC1_RGB8:
532 return MESA_FORMAT_R8G8B8X8_UNORM;
533 case MESA_FORMAT_ETC2_RGB8:
534 return MESA_FORMAT_R8G8B8X8_UNORM;
535 case MESA_FORMAT_ETC2_SRGB8:
536 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
537 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
538 return MESA_FORMAT_B8G8R8A8_SRGB;
539 case MESA_FORMAT_ETC2_RGBA8_EAC:
540 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
541 return MESA_FORMAT_R8G8B8A8_UNORM;
542 case MESA_FORMAT_ETC2_R11_EAC:
543 return MESA_FORMAT_R_UNORM16;
544 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
545 return MESA_FORMAT_R_SNORM16;
546 case MESA_FORMAT_ETC2_RG11_EAC:
547 return MESA_FORMAT_R16G16_UNORM;
548 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
549 return MESA_FORMAT_R16G16_SNORM;
550 default:
551 /* Non ETC1 / ETC2 format */
552 return format;
553 }
554 }
555
556
557 struct intel_mipmap_tree *
558 intel_miptree_create(struct brw_context *brw,
559 GLenum target,
560 mesa_format format,
561 GLuint first_level,
562 GLuint last_level,
563 GLuint width0,
564 GLuint height0,
565 GLuint depth0,
566 bool expect_accelerated_upload,
567 GLuint num_samples,
568 enum intel_miptree_tiling_mode requested_tiling,
569 bool force_all_slices_at_each_lod)
570 {
571 struct intel_mipmap_tree *mt;
572 mesa_format tex_format = format;
573 mesa_format etc_format = MESA_FORMAT_NONE;
574 GLuint total_width, total_height;
575
576 format = intel_lower_compressed_format(brw, format);
577
578 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
579
580 mt = intel_miptree_create_layout(brw, target, format,
581 first_level, last_level, width0,
582 height0, depth0,
583 false, num_samples,
584 force_all_slices_at_each_lod);
585 /*
586 * pitch == 0 || height == 0 indicates the null texture
587 */
588 if (!mt || !mt->total_width || !mt->total_height) {
589 intel_miptree_release(&mt);
590 return NULL;
591 }
592
593 total_width = mt->total_width;
594 total_height = mt->total_height;
595
596 if (format == MESA_FORMAT_S_UINT8) {
597 /* Align to size of W tile, 64x64. */
598 total_width = ALIGN(total_width, 64);
599 total_height = ALIGN(total_height, 64);
600 }
601
602 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
603 num_samples, requested_tiling,
604 mt);
605 bool y_or_x = false;
606
607 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
608 y_or_x = true;
609 mt->tiling = I915_TILING_Y;
610 } else {
611 mt->tiling = tiling;
612 }
613
614 unsigned long pitch;
615 mt->etc_format = etc_format;
616 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
617 total_width, total_height, mt->cpp,
618 &mt->tiling, &pitch,
619 (expect_accelerated_upload ?
620 BO_ALLOC_FOR_RENDER : 0));
621 mt->pitch = pitch;
622
623 /* If the BO is too large to fit in the aperture, we need to use the
624 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
625 * so we need to fall back to X.
626 */
627 if (y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
628 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
629 mt->total_width, mt->total_height);
630
631 mt->tiling = I915_TILING_X;
632 drm_intel_bo_unreference(mt->bo);
633 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
634 total_width, total_height, mt->cpp,
635 &mt->tiling, &pitch,
636 (expect_accelerated_upload ?
637 BO_ALLOC_FOR_RENDER : 0));
638 mt->pitch = pitch;
639 }
640
641 mt->offset = 0;
642
643 if (!mt->bo) {
644 intel_miptree_release(&mt);
645 return NULL;
646 }
647
648
649 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
650 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
651 intel_miptree_release(&mt);
652 return NULL;
653 }
654 }
655
656 /* If this miptree is capable of supporting fast color clears, set
657 * fast_clear_state appropriately to ensure that fast clears will occur.
658 * Allocation of the MCS miptree will be deferred until the first fast
659 * clear actually occurs.
660 */
661 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
662 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
663
664 return mt;
665 }
666
667 struct intel_mipmap_tree *
668 intel_miptree_create_for_bo(struct brw_context *brw,
669 drm_intel_bo *bo,
670 mesa_format format,
671 uint32_t offset,
672 uint32_t width,
673 uint32_t height,
674 int pitch)
675 {
676 struct intel_mipmap_tree *mt;
677 uint32_t tiling, swizzle;
678
679 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
680
681 /* Nothing will be able to use this miptree with the BO if the offset isn't
682 * aligned.
683 */
684 if (tiling != I915_TILING_NONE)
685 assert(offset % 4096 == 0);
686
687 /* miptrees can't handle negative pitch. If you need flipping of images,
688 * that's outside of the scope of the mt.
689 */
690 assert(pitch >= 0);
691
692 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
693 0, 0,
694 width, height, 1,
695 true, 0, false);
696 if (!mt) {
697 free(mt);
698 return mt;
699 }
700
701 drm_intel_bo_reference(bo);
702 mt->bo = bo;
703 mt->pitch = pitch;
704 mt->offset = offset;
705 mt->tiling = tiling;
706
707 return mt;
708 }
709
710 /**
711 * For a singlesample renderbuffer, this simply wraps the given BO with a
712 * miptree.
713 *
714 * For a multisample renderbuffer, this wraps the window system's
715 * (singlesample) BO with a singlesample miptree attached to the
716 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
717 * that will contain the actual rendering (which is lazily resolved to
718 * irb->singlesample_mt).
719 */
720 void
721 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
722 struct intel_renderbuffer *irb,
723 drm_intel_bo *bo,
724 uint32_t width, uint32_t height,
725 uint32_t pitch)
726 {
727 struct intel_mipmap_tree *singlesample_mt = NULL;
728 struct intel_mipmap_tree *multisample_mt = NULL;
729 struct gl_renderbuffer *rb = &irb->Base.Base;
730 mesa_format format = rb->Format;
731 int num_samples = rb->NumSamples;
732
733 /* Only the front and back buffers, which are color buffers, are allocated
734 * through the image loader.
735 */
736 assert(_mesa_get_format_base_format(format) == GL_RGB ||
737 _mesa_get_format_base_format(format) == GL_RGBA);
738
739 singlesample_mt = intel_miptree_create_for_bo(intel,
740 bo,
741 format,
742 0,
743 width,
744 height,
745 pitch);
746 if (!singlesample_mt)
747 goto fail;
748
749 /* If this miptree is capable of supporting fast color clears, set
750 * mcs_state appropriately to ensure that fast clears will occur.
751 * Allocation of the MCS miptree will be deferred until the first fast
752 * clear actually occurs.
753 */
754 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
755 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
756
757 if (num_samples == 0) {
758 intel_miptree_release(&irb->mt);
759 irb->mt = singlesample_mt;
760
761 assert(!irb->singlesample_mt);
762 } else {
763 intel_miptree_release(&irb->singlesample_mt);
764 irb->singlesample_mt = singlesample_mt;
765
766 if (!irb->mt ||
767 irb->mt->logical_width0 != width ||
768 irb->mt->logical_height0 != height) {
769 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
770 format,
771 width,
772 height,
773 num_samples);
774 if (!multisample_mt)
775 goto fail;
776
777 irb->need_downsample = false;
778 intel_miptree_release(&irb->mt);
779 irb->mt = multisample_mt;
780 }
781 }
782 return;
783
784 fail:
785 intel_miptree_release(&irb->singlesample_mt);
786 intel_miptree_release(&irb->mt);
787 return;
788 }
789
790 struct intel_mipmap_tree*
791 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
792 mesa_format format,
793 uint32_t width,
794 uint32_t height,
795 uint32_t num_samples)
796 {
797 struct intel_mipmap_tree *mt;
798 uint32_t depth = 1;
799 bool ok;
800 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
801
802 mt = intel_miptree_create(brw, target, format, 0, 0,
803 width, height, depth, true, num_samples,
804 INTEL_MIPTREE_TILING_ANY, false);
805 if (!mt)
806 goto fail;
807
808 if (brw_is_hiz_depth_format(brw, format)) {
809 ok = intel_miptree_alloc_hiz(brw, mt);
810 if (!ok)
811 goto fail;
812 }
813
814 return mt;
815
816 fail:
817 intel_miptree_release(&mt);
818 return NULL;
819 }
820
821 void
822 intel_miptree_reference(struct intel_mipmap_tree **dst,
823 struct intel_mipmap_tree *src)
824 {
825 if (*dst == src)
826 return;
827
828 intel_miptree_release(dst);
829
830 if (src) {
831 src->refcount++;
832 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
833 }
834
835 *dst = src;
836 }
837
838
839 void
840 intel_miptree_release(struct intel_mipmap_tree **mt)
841 {
842 if (!*mt)
843 return;
844
845 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
846 if (--(*mt)->refcount <= 0) {
847 GLuint i;
848
849 DBG("%s deleting %p\n", __FUNCTION__, *mt);
850
851 drm_intel_bo_unreference((*mt)->bo);
852 intel_miptree_release(&(*mt)->stencil_mt);
853 intel_miptree_release(&(*mt)->hiz_mt);
854 intel_miptree_release(&(*mt)->mcs_mt);
855 intel_resolve_map_clear(&(*mt)->hiz_map);
856
857 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
858 free((*mt)->level[i].slice);
859 }
860
861 free(*mt);
862 }
863 *mt = NULL;
864 }
865
866 void
867 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
868 int *width, int *height, int *depth)
869 {
870 switch (image->TexObject->Target) {
871 case GL_TEXTURE_1D_ARRAY:
872 *width = image->Width;
873 *height = 1;
874 *depth = image->Height;
875 break;
876 default:
877 *width = image->Width;
878 *height = image->Height;
879 *depth = image->Depth;
880 break;
881 }
882 }
883
884 /**
885 * Can the image be pulled into a unified mipmap tree? This mirrors
886 * the completeness test in a lot of ways.
887 *
888 * Not sure whether I want to pass gl_texture_image here.
889 */
890 bool
891 intel_miptree_match_image(struct intel_mipmap_tree *mt,
892 struct gl_texture_image *image)
893 {
894 struct intel_texture_image *intelImage = intel_texture_image(image);
895 GLuint level = intelImage->base.Base.Level;
896 int width, height, depth;
897
898 /* glTexImage* choose the texture object based on the target passed in, and
899 * objects can't change targets over their lifetimes, so this should be
900 * true.
901 */
902 assert(image->TexObject->Target == mt->target);
903
904 mesa_format mt_format = mt->format;
905 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
906 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
907 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
908 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
909 if (mt->etc_format != MESA_FORMAT_NONE)
910 mt_format = mt->etc_format;
911
912 if (image->TexFormat != mt_format)
913 return false;
914
915 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
916
917 if (mt->target == GL_TEXTURE_CUBE_MAP)
918 depth = 6;
919
920 int level_depth = mt->level[level].depth;
921 if (mt->num_samples > 1) {
922 switch (mt->msaa_layout) {
923 case INTEL_MSAA_LAYOUT_NONE:
924 case INTEL_MSAA_LAYOUT_IMS:
925 break;
926 case INTEL_MSAA_LAYOUT_UMS:
927 case INTEL_MSAA_LAYOUT_CMS:
928 level_depth /= mt->num_samples;
929 break;
930 }
931 }
932
933 /* Test image dimensions against the base level image adjusted for
934 * minification. This will also catch images not present in the
935 * tree, changed targets, etc.
936 */
937 if (width != minify(mt->logical_width0, level - mt->first_level) ||
938 height != minify(mt->logical_height0, level - mt->first_level) ||
939 depth != level_depth) {
940 return false;
941 }
942
943 if (image->NumSamples != mt->num_samples)
944 return false;
945
946 return true;
947 }
948
949
950 void
951 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
952 GLuint level,
953 GLuint x, GLuint y, GLuint d)
954 {
955 mt->level[level].depth = d;
956 mt->level[level].level_x = x;
957 mt->level[level].level_y = y;
958
959 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
960 level, d, x, y);
961
962 assert(mt->level[level].slice == NULL);
963
964 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
965 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
966 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
967 }
968
969
970 void
971 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
972 GLuint level, GLuint img,
973 GLuint x, GLuint y)
974 {
975 if (img == 0 && level == 0)
976 assert(x == 0 && y == 0);
977
978 assert(img < mt->level[level].depth);
979
980 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
981 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
982
983 DBG("%s level %d img %d pos %d,%d\n",
984 __FUNCTION__, level, img,
985 mt->level[level].slice[img].x_offset,
986 mt->level[level].slice[img].y_offset);
987 }
988
989 void
990 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
991 GLuint level, GLuint slice,
992 GLuint *x, GLuint *y)
993 {
994 assert(slice < mt->level[level].depth);
995
996 *x = mt->level[level].slice[slice].x_offset;
997 *y = mt->level[level].slice[slice].y_offset;
998 }
999
1000 /**
1001 * This function computes masks that may be used to select the bits of the X
1002 * and Y coordinates that indicate the offset within a tile. If the BO is
1003 * untiled, the masks are set to 0.
1004 */
1005 void
1006 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
1007 uint32_t *mask_x, uint32_t *mask_y,
1008 bool map_stencil_as_y_tiled)
1009 {
1010 int cpp = mt->cpp;
1011 uint32_t tiling = mt->tiling;
1012
1013 if (map_stencil_as_y_tiled)
1014 tiling = I915_TILING_Y;
1015
1016 switch (tiling) {
1017 default:
1018 unreachable("not reached");
1019 case I915_TILING_NONE:
1020 *mask_x = *mask_y = 0;
1021 break;
1022 case I915_TILING_X:
1023 *mask_x = 512 / cpp - 1;
1024 *mask_y = 7;
1025 break;
1026 case I915_TILING_Y:
1027 *mask_x = 128 / cpp - 1;
1028 *mask_y = 31;
1029 break;
1030 }
1031 }
1032
1033 /**
1034 * Compute the offset (in bytes) from the start of the BO to the given x
1035 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1036 * multiples of the tile size.
1037 */
1038 uint32_t
1039 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1040 uint32_t x, uint32_t y,
1041 bool map_stencil_as_y_tiled)
1042 {
1043 int cpp = mt->cpp;
1044 uint32_t pitch = mt->pitch;
1045 uint32_t tiling = mt->tiling;
1046
1047 if (map_stencil_as_y_tiled) {
1048 tiling = I915_TILING_Y;
1049
1050 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1051 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1052 * the resulting surface is twice the pitch of the original miptree,
1053 * since each row in the Y-tiled view corresponds to two rows in the
1054 * actual W-tiled surface. So we need to correct the pitch before
1055 * computing the offsets.
1056 */
1057 pitch *= 2;
1058 }
1059
1060 switch (tiling) {
1061 default:
1062 unreachable("not reached");
1063 case I915_TILING_NONE:
1064 return y * pitch + x * cpp;
1065 case I915_TILING_X:
1066 assert((x % (512 / cpp)) == 0);
1067 assert((y % 8) == 0);
1068 return y * pitch + x / (512 / cpp) * 4096;
1069 case I915_TILING_Y:
1070 assert((x % (128 / cpp)) == 0);
1071 assert((y % 32) == 0);
1072 return y * pitch + x / (128 / cpp) * 4096;
1073 }
1074 }
1075
1076 /**
1077 * Rendering with tiled buffers requires that the base address of the buffer
1078 * be aligned to a page boundary. For renderbuffers, and sometimes with
1079 * textures, we may want the surface to point at a texture image level that
1080 * isn't at a page boundary.
1081 *
1082 * This function returns an appropriately-aligned base offset
1083 * according to the tiling restrictions, plus any required x/y offset
1084 * from there.
1085 */
1086 uint32_t
1087 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1088 GLuint level, GLuint slice,
1089 uint32_t *tile_x,
1090 uint32_t *tile_y)
1091 {
1092 uint32_t x, y;
1093 uint32_t mask_x, mask_y;
1094
1095 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1096 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1097
1098 *tile_x = x & mask_x;
1099 *tile_y = y & mask_y;
1100
1101 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1102 }
1103
1104 static void
1105 intel_miptree_copy_slice_sw(struct brw_context *brw,
1106 struct intel_mipmap_tree *dst_mt,
1107 struct intel_mipmap_tree *src_mt,
1108 int level,
1109 int slice,
1110 int width,
1111 int height)
1112 {
1113 void *src, *dst;
1114 int src_stride, dst_stride;
1115 int cpp = dst_mt->cpp;
1116
1117 intel_miptree_map(brw, src_mt,
1118 level, slice,
1119 0, 0,
1120 width, height,
1121 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1122 &src, &src_stride);
1123
1124 intel_miptree_map(brw, dst_mt,
1125 level, slice,
1126 0, 0,
1127 width, height,
1128 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1129 BRW_MAP_DIRECT_BIT,
1130 &dst, &dst_stride);
1131
1132 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1133 _mesa_get_format_name(src_mt->format),
1134 src_mt, src, src_stride,
1135 _mesa_get_format_name(dst_mt->format),
1136 dst_mt, dst, dst_stride,
1137 width, height);
1138
1139 int row_size = cpp * width;
1140 if (src_stride == row_size &&
1141 dst_stride == row_size) {
1142 memcpy(dst, src, row_size * height);
1143 } else {
1144 for (int i = 0; i < height; i++) {
1145 memcpy(dst, src, row_size);
1146 dst += dst_stride;
1147 src += src_stride;
1148 }
1149 }
1150
1151 intel_miptree_unmap(brw, dst_mt, level, slice);
1152 intel_miptree_unmap(brw, src_mt, level, slice);
1153
1154 /* Don't forget to copy the stencil data over, too. We could have skipped
1155 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1156 * shuffling the two data sources in/out of temporary storage instead of
1157 * the direct mapping we get this way.
1158 */
1159 if (dst_mt->stencil_mt) {
1160 assert(src_mt->stencil_mt);
1161 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1162 level, slice, width, height);
1163 }
1164 }
1165
1166 static void
1167 intel_miptree_copy_slice(struct brw_context *brw,
1168 struct intel_mipmap_tree *dst_mt,
1169 struct intel_mipmap_tree *src_mt,
1170 int level,
1171 int face,
1172 int depth)
1173
1174 {
1175 mesa_format format = src_mt->format;
1176 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1177 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1178 int slice;
1179
1180 if (face > 0)
1181 slice = face;
1182 else
1183 slice = depth;
1184
1185 assert(depth < src_mt->level[level].depth);
1186 assert(src_mt->format == dst_mt->format);
1187
1188 if (dst_mt->compressed) {
1189 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1190 width = ALIGN(width, dst_mt->align_w);
1191 }
1192
1193 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1194 * below won't apply since we can't do the depth's Y tiling or the
1195 * stencil's W tiling in the blitter.
1196 */
1197 if (src_mt->stencil_mt) {
1198 intel_miptree_copy_slice_sw(brw,
1199 dst_mt, src_mt,
1200 level, slice,
1201 width, height);
1202 return;
1203 }
1204
1205 uint32_t dst_x, dst_y, src_x, src_y;
1206 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1207 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1208
1209 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1210 _mesa_get_format_name(src_mt->format),
1211 src_mt, src_x, src_y, src_mt->pitch,
1212 _mesa_get_format_name(dst_mt->format),
1213 dst_mt, dst_x, dst_y, dst_mt->pitch,
1214 width, height);
1215
1216 if (!intel_miptree_blit(brw,
1217 src_mt, level, slice, 0, 0, false,
1218 dst_mt, level, slice, 0, 0, false,
1219 width, height, GL_COPY)) {
1220 perf_debug("miptree validate blit for %s failed\n",
1221 _mesa_get_format_name(format));
1222
1223 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1224 width, height);
1225 }
1226 }
1227
1228 /**
1229 * Copies the image's current data to the given miptree, and associates that
1230 * miptree with the image.
1231 *
1232 * If \c invalidate is true, then the actual image data does not need to be
1233 * copied, but the image still needs to be associated to the new miptree (this
1234 * is set to true if we're about to clear the image).
1235 */
1236 void
1237 intel_miptree_copy_teximage(struct brw_context *brw,
1238 struct intel_texture_image *intelImage,
1239 struct intel_mipmap_tree *dst_mt,
1240 bool invalidate)
1241 {
1242 struct intel_mipmap_tree *src_mt = intelImage->mt;
1243 struct intel_texture_object *intel_obj =
1244 intel_texture_object(intelImage->base.Base.TexObject);
1245 int level = intelImage->base.Base.Level;
1246 int face = intelImage->base.Base.Face;
1247 GLuint depth = intelImage->base.Base.Depth;
1248
1249 if (!invalidate) {
1250 for (int slice = 0; slice < depth; slice++) {
1251 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1252 }
1253 }
1254
1255 intel_miptree_reference(&intelImage->mt, dst_mt);
1256 intel_obj->needs_validate = true;
1257 }
1258
1259 bool
1260 intel_miptree_alloc_mcs(struct brw_context *brw,
1261 struct intel_mipmap_tree *mt,
1262 GLuint num_samples)
1263 {
1264 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1265 assert(mt->mcs_mt == NULL);
1266
1267 /* Choose the correct format for the MCS buffer. All that really matters
1268 * is that we allocate the right buffer size, since we'll always be
1269 * accessing this miptree using MCS-specific hardware mechanisms, which
1270 * infer the correct format based on num_samples.
1271 */
1272 mesa_format format;
1273 switch (num_samples) {
1274 case 2:
1275 case 4:
1276 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1277 * each sample).
1278 */
1279 format = MESA_FORMAT_R_UNORM8;
1280 break;
1281 case 8:
1282 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1283 * for each sample, plus 8 padding bits).
1284 */
1285 format = MESA_FORMAT_R_UINT32;
1286 break;
1287 default:
1288 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1289 };
1290
1291 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1292 *
1293 * "The MCS surface must be stored as Tile Y."
1294 */
1295 mt->mcs_mt = intel_miptree_create(brw,
1296 mt->target,
1297 format,
1298 mt->first_level,
1299 mt->last_level,
1300 mt->logical_width0,
1301 mt->logical_height0,
1302 mt->logical_depth0,
1303 true,
1304 0 /* num_samples */,
1305 INTEL_MIPTREE_TILING_Y,
1306 false);
1307
1308 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1309 *
1310 * When MCS buffer is enabled and bound to MSRT, it is required that it
1311 * is cleared prior to any rendering.
1312 *
1313 * Since we don't use the MCS buffer for any purpose other than rendering,
1314 * it makes sense to just clear it immediately upon allocation.
1315 *
1316 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1317 */
1318 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1319 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1320 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1321 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1322
1323 return mt->mcs_mt;
1324 }
1325
1326
1327 bool
1328 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1329 struct intel_mipmap_tree *mt)
1330 {
1331 assert(mt->mcs_mt == NULL);
1332
1333 /* The format of the MCS buffer is opaque to the driver; all that matters
1334 * is that we get its size and pitch right. We'll pretend that the format
1335 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1336 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1337 * the block width and then a further factor of 4. Since an MCS tile
1338 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1339 * we'll need to scale the height down by the block height and then a
1340 * further factor of 8.
1341 */
1342 const mesa_format format = MESA_FORMAT_R_UINT32;
1343 unsigned block_width_px;
1344 unsigned block_height;
1345 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1346 unsigned width_divisor = block_width_px * 4;
1347 unsigned height_divisor = block_height * 8;
1348 unsigned mcs_width =
1349 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1350 unsigned mcs_height =
1351 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1352 assert(mt->logical_depth0 == 1);
1353 mt->mcs_mt = intel_miptree_create(brw,
1354 mt->target,
1355 format,
1356 mt->first_level,
1357 mt->last_level,
1358 mcs_width,
1359 mcs_height,
1360 mt->logical_depth0,
1361 true,
1362 0 /* num_samples */,
1363 INTEL_MIPTREE_TILING_Y,
1364 false);
1365
1366 return mt->mcs_mt;
1367 }
1368
1369
1370 /**
1371 * Helper for intel_miptree_alloc_hiz() that sets
1372 * \c mt->level[level].has_hiz. Return true if and only if
1373 * \c has_hiz was set.
1374 */
1375 static bool
1376 intel_miptree_level_enable_hiz(struct brw_context *brw,
1377 struct intel_mipmap_tree *mt,
1378 uint32_t level)
1379 {
1380 assert(mt->hiz_mt);
1381
1382 if (brw->gen >= 8 || brw->is_haswell) {
1383 uint32_t width = minify(mt->physical_width0, level);
1384 uint32_t height = minify(mt->physical_height0, level);
1385
1386 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1387 * and the height is 4 aligned. This allows our HiZ support
1388 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1389 * we can grow the width & height to allow the HiZ op to
1390 * force the proper size alignments.
1391 */
1392 if (level > 0 && ((width & 7) || (height & 3))) {
1393 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1394 return false;
1395 }
1396 }
1397
1398 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1399 mt->level[level].has_hiz = true;
1400 return true;
1401 }
1402
1403
1404
1405 bool
1406 intel_miptree_alloc_hiz(struct brw_context *brw,
1407 struct intel_mipmap_tree *mt)
1408 {
1409 assert(mt->hiz_mt == NULL);
1410 mt->hiz_mt = intel_miptree_create(brw,
1411 mt->target,
1412 mt->format,
1413 mt->first_level,
1414 mt->last_level,
1415 mt->logical_width0,
1416 mt->logical_height0,
1417 mt->logical_depth0,
1418 true,
1419 mt->num_samples,
1420 INTEL_MIPTREE_TILING_ANY,
1421 false);
1422
1423 if (!mt->hiz_mt)
1424 return false;
1425
1426 /* Mark that all slices need a HiZ resolve. */
1427 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1428 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1429 continue;
1430
1431 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1432 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1433 exec_node_init(&m->link);
1434 m->level = level;
1435 m->layer = layer;
1436 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1437
1438 exec_list_push_tail(&mt->hiz_map, &m->link);
1439 }
1440 }
1441
1442 return true;
1443 }
1444
1445 /**
1446 * Does the miptree slice have hiz enabled?
1447 */
1448 bool
1449 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1450 {
1451 intel_miptree_check_level_layer(mt, level, 0);
1452 return mt->level[level].has_hiz;
1453 }
1454
1455 void
1456 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1457 uint32_t level,
1458 uint32_t layer)
1459 {
1460 if (!intel_miptree_level_has_hiz(mt, level))
1461 return;
1462
1463 intel_resolve_map_set(&mt->hiz_map,
1464 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1465 }
1466
1467
1468 void
1469 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1470 uint32_t level,
1471 uint32_t layer)
1472 {
1473 if (!intel_miptree_level_has_hiz(mt, level))
1474 return;
1475
1476 intel_resolve_map_set(&mt->hiz_map,
1477 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1478 }
1479
1480 void
1481 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1482 uint32_t level)
1483 {
1484 uint32_t layer;
1485 uint32_t end_layer = mt->level[level].depth;
1486
1487 for (layer = 0; layer < end_layer; layer++) {
1488 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1489 }
1490 }
1491
1492 static bool
1493 intel_miptree_slice_resolve(struct brw_context *brw,
1494 struct intel_mipmap_tree *mt,
1495 uint32_t level,
1496 uint32_t layer,
1497 enum gen6_hiz_op need)
1498 {
1499 intel_miptree_check_level_layer(mt, level, layer);
1500
1501 struct intel_resolve_map *item =
1502 intel_resolve_map_get(&mt->hiz_map, level, layer);
1503
1504 if (!item || item->need != need)
1505 return false;
1506
1507 intel_hiz_exec(brw, mt, level, layer, need);
1508 intel_resolve_map_remove(item);
1509 return true;
1510 }
1511
1512 bool
1513 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1514 struct intel_mipmap_tree *mt,
1515 uint32_t level,
1516 uint32_t layer)
1517 {
1518 return intel_miptree_slice_resolve(brw, mt, level, layer,
1519 GEN6_HIZ_OP_HIZ_RESOLVE);
1520 }
1521
1522 bool
1523 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1524 struct intel_mipmap_tree *mt,
1525 uint32_t level,
1526 uint32_t layer)
1527 {
1528 return intel_miptree_slice_resolve(brw, mt, level, layer,
1529 GEN6_HIZ_OP_DEPTH_RESOLVE);
1530 }
1531
1532 static bool
1533 intel_miptree_all_slices_resolve(struct brw_context *brw,
1534 struct intel_mipmap_tree *mt,
1535 enum gen6_hiz_op need)
1536 {
1537 bool did_resolve = false;
1538
1539 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1540 if (map->need != need)
1541 continue;
1542
1543 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1544 intel_resolve_map_remove(map);
1545 did_resolve = true;
1546 }
1547
1548 return did_resolve;
1549 }
1550
1551 bool
1552 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1553 struct intel_mipmap_tree *mt)
1554 {
1555 return intel_miptree_all_slices_resolve(brw, mt,
1556 GEN6_HIZ_OP_HIZ_RESOLVE);
1557 }
1558
1559 bool
1560 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1561 struct intel_mipmap_tree *mt)
1562 {
1563 return intel_miptree_all_slices_resolve(brw, mt,
1564 GEN6_HIZ_OP_DEPTH_RESOLVE);
1565 }
1566
1567
1568 void
1569 intel_miptree_resolve_color(struct brw_context *brw,
1570 struct intel_mipmap_tree *mt)
1571 {
1572 switch (mt->fast_clear_state) {
1573 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1574 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1575 /* No resolve needed */
1576 break;
1577 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1578 case INTEL_FAST_CLEAR_STATE_CLEAR:
1579 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1580 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1581 brw_meta_resolve_color(brw, mt);
1582 break;
1583 }
1584 }
1585
1586
1587 /**
1588 * Make it possible to share the BO backing the given miptree with another
1589 * process or another miptree.
1590 *
1591 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1592 * then discard the MCS buffer, if present. We also set the fast_clear_state
1593 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1594 * allocated in the future.
1595 */
1596 void
1597 intel_miptree_make_shareable(struct brw_context *brw,
1598 struct intel_mipmap_tree *mt)
1599 {
1600 /* MCS buffers are also used for multisample buffers, but we can't resolve
1601 * away a multisample MCS buffer because it's an integral part of how the
1602 * pixel data is stored. Fortunately this code path should never be
1603 * reached for multisample buffers.
1604 */
1605 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1606
1607 if (mt->mcs_mt) {
1608 intel_miptree_resolve_color(brw, mt);
1609 intel_miptree_release(&mt->mcs_mt);
1610 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1611 }
1612 }
1613
1614
1615 /**
1616 * \brief Get pointer offset into stencil buffer.
1617 *
1618 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1619 * must decode the tile's layout in software.
1620 *
1621 * See
1622 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1623 * Format.
1624 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1625 *
1626 * Even though the returned offset is always positive, the return type is
1627 * signed due to
1628 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1629 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1630 */
1631 static intptr_t
1632 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1633 {
1634 uint32_t tile_size = 4096;
1635 uint32_t tile_width = 64;
1636 uint32_t tile_height = 64;
1637 uint32_t row_size = 64 * stride;
1638
1639 uint32_t tile_x = x / tile_width;
1640 uint32_t tile_y = y / tile_height;
1641
1642 /* The byte's address relative to the tile's base addres. */
1643 uint32_t byte_x = x % tile_width;
1644 uint32_t byte_y = y % tile_height;
1645
1646 uintptr_t u = tile_y * row_size
1647 + tile_x * tile_size
1648 + 512 * (byte_x / 8)
1649 + 64 * (byte_y / 8)
1650 + 32 * ((byte_y / 4) % 2)
1651 + 16 * ((byte_x / 4) % 2)
1652 + 8 * ((byte_y / 2) % 2)
1653 + 4 * ((byte_x / 2) % 2)
1654 + 2 * (byte_y % 2)
1655 + 1 * (byte_x % 2);
1656
1657 if (swizzled) {
1658 /* adjust for bit6 swizzling */
1659 if (((byte_x / 8) % 2) == 1) {
1660 if (((byte_y / 8) % 2) == 0) {
1661 u += 64;
1662 } else {
1663 u -= 64;
1664 }
1665 }
1666 }
1667
1668 return u;
1669 }
1670
1671 void
1672 intel_miptree_updownsample(struct brw_context *brw,
1673 struct intel_mipmap_tree *src,
1674 struct intel_mipmap_tree *dst)
1675 {
1676 if (brw->gen < 8) {
1677 brw_blorp_blit_miptrees(brw,
1678 src, 0 /* level */, 0 /* layer */,
1679 dst, 0 /* level */, 0 /* layer */,
1680 0, 0,
1681 src->logical_width0, src->logical_height0,
1682 0, 0,
1683 dst->logical_width0, dst->logical_height0,
1684 GL_NEAREST, false, false /*mirror x, y*/);
1685 } else if (src->format == MESA_FORMAT_S_UINT8) {
1686 brw_meta_stencil_updownsample(brw, src, dst);
1687 } else {
1688 brw_meta_updownsample(brw, src, dst);
1689 }
1690
1691 if (src->stencil_mt) {
1692 if (brw->gen >= 8) {
1693 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
1694 return;
1695 }
1696
1697 brw_blorp_blit_miptrees(brw,
1698 src->stencil_mt, 0 /* level */, 0 /* layer */,
1699 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1700 0, 0,
1701 src->logical_width0, src->logical_height0,
1702 0, 0,
1703 dst->logical_width0, dst->logical_height0,
1704 GL_NEAREST, false, false /*mirror x, y*/);
1705 }
1706 }
1707
1708 void *
1709 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1710 {
1711 /* CPU accesses to color buffers don't understand fast color clears, so
1712 * resolve any pending fast color clears before we map.
1713 */
1714 intel_miptree_resolve_color(brw, mt);
1715
1716 drm_intel_bo *bo = mt->bo;
1717
1718 if (drm_intel_bo_references(brw->batch.bo, bo))
1719 intel_batchbuffer_flush(brw);
1720
1721 if (mt->tiling != I915_TILING_NONE)
1722 brw_bo_map_gtt(brw, bo, "miptree");
1723 else
1724 brw_bo_map(brw, bo, true, "miptree");
1725
1726 return bo->virtual;
1727 }
1728
1729 void
1730 intel_miptree_unmap_raw(struct brw_context *brw,
1731 struct intel_mipmap_tree *mt)
1732 {
1733 drm_intel_bo_unmap(mt->bo);
1734 }
1735
1736 static void
1737 intel_miptree_map_gtt(struct brw_context *brw,
1738 struct intel_mipmap_tree *mt,
1739 struct intel_miptree_map *map,
1740 unsigned int level, unsigned int slice)
1741 {
1742 unsigned int bw, bh;
1743 void *base;
1744 unsigned int image_x, image_y;
1745 int x = map->x;
1746 int y = map->y;
1747
1748 /* For compressed formats, the stride is the number of bytes per
1749 * row of blocks. intel_miptree_get_image_offset() already does
1750 * the divide.
1751 */
1752 _mesa_get_format_block_size(mt->format, &bw, &bh);
1753 assert(y % bh == 0);
1754 y /= bh;
1755
1756 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1757
1758 if (base == NULL)
1759 map->ptr = NULL;
1760 else {
1761 /* Note that in the case of cube maps, the caller must have passed the
1762 * slice number referencing the face.
1763 */
1764 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1765 x += image_x;
1766 y += image_y;
1767
1768 map->stride = mt->pitch;
1769 map->ptr = base + y * map->stride + x * mt->cpp;
1770 }
1771
1772 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1773 map->x, map->y, map->w, map->h,
1774 mt, _mesa_get_format_name(mt->format),
1775 x, y, map->ptr, map->stride);
1776 }
1777
1778 static void
1779 intel_miptree_unmap_gtt(struct brw_context *brw,
1780 struct intel_mipmap_tree *mt,
1781 struct intel_miptree_map *map,
1782 unsigned int level,
1783 unsigned int slice)
1784 {
1785 intel_miptree_unmap_raw(brw, mt);
1786 }
1787
1788 static void
1789 intel_miptree_map_blit(struct brw_context *brw,
1790 struct intel_mipmap_tree *mt,
1791 struct intel_miptree_map *map,
1792 unsigned int level, unsigned int slice)
1793 {
1794 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1795 0, 0,
1796 map->w, map->h, 1,
1797 false, 0,
1798 INTEL_MIPTREE_TILING_NONE,
1799 false);
1800 if (!map->mt) {
1801 fprintf(stderr, "Failed to allocate blit temporary\n");
1802 goto fail;
1803 }
1804 map->stride = map->mt->pitch;
1805
1806 if (!intel_miptree_blit(brw,
1807 mt, level, slice,
1808 map->x, map->y, false,
1809 map->mt, 0, 0,
1810 0, 0, false,
1811 map->w, map->h, GL_COPY)) {
1812 fprintf(stderr, "Failed to blit\n");
1813 goto fail;
1814 }
1815
1816 map->ptr = intel_miptree_map_raw(brw, map->mt);
1817
1818 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1819 map->x, map->y, map->w, map->h,
1820 mt, _mesa_get_format_name(mt->format),
1821 level, slice, map->ptr, map->stride);
1822
1823 return;
1824
1825 fail:
1826 intel_miptree_release(&map->mt);
1827 map->ptr = NULL;
1828 map->stride = 0;
1829 }
1830
1831 static void
1832 intel_miptree_unmap_blit(struct brw_context *brw,
1833 struct intel_mipmap_tree *mt,
1834 struct intel_miptree_map *map,
1835 unsigned int level,
1836 unsigned int slice)
1837 {
1838 struct gl_context *ctx = &brw->ctx;
1839
1840 intel_miptree_unmap_raw(brw, map->mt);
1841
1842 if (map->mode & GL_MAP_WRITE_BIT) {
1843 bool ok = intel_miptree_blit(brw,
1844 map->mt, 0, 0,
1845 0, 0, false,
1846 mt, level, slice,
1847 map->x, map->y, false,
1848 map->w, map->h, GL_COPY);
1849 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1850 }
1851
1852 intel_miptree_release(&map->mt);
1853 }
1854
1855 /**
1856 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1857 */
1858 #if defined(USE_SSE41)
1859 static void
1860 intel_miptree_map_movntdqa(struct brw_context *brw,
1861 struct intel_mipmap_tree *mt,
1862 struct intel_miptree_map *map,
1863 unsigned int level, unsigned int slice)
1864 {
1865 assert(map->mode & GL_MAP_READ_BIT);
1866 assert(!(map->mode & GL_MAP_WRITE_BIT));
1867
1868 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1869 map->x, map->y, map->w, map->h,
1870 mt, _mesa_get_format_name(mt->format),
1871 level, slice, map->ptr, map->stride);
1872
1873 /* Map the original image */
1874 uint32_t image_x;
1875 uint32_t image_y;
1876 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1877 image_x += map->x;
1878 image_y += map->y;
1879
1880 void *src = intel_miptree_map_raw(brw, mt);
1881 if (!src)
1882 return;
1883 src += image_y * mt->pitch;
1884 src += image_x * mt->cpp;
1885
1886 /* Due to the pixel offsets for the particular image being mapped, our
1887 * src pointer may not be 16-byte aligned. However, if the pitch is
1888 * divisible by 16, then the amount by which it's misaligned will remain
1889 * consistent from row to row.
1890 */
1891 assert((mt->pitch % 16) == 0);
1892 const int misalignment = ((uintptr_t) src) & 15;
1893
1894 /* Create an untiled temporary buffer for the mapping. */
1895 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1896
1897 map->stride = ALIGN(misalignment + width_bytes, 16);
1898
1899 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
1900 /* Offset the destination so it has the same misalignment as src. */
1901 map->ptr = map->buffer + misalignment;
1902
1903 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1904
1905 for (uint32_t y = 0; y < map->h; y++) {
1906 void *dst_ptr = map->ptr + y * map->stride;
1907 void *src_ptr = src + y * mt->pitch;
1908
1909 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1910 }
1911
1912 intel_miptree_unmap_raw(brw, mt);
1913 }
1914
1915 static void
1916 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1917 struct intel_mipmap_tree *mt,
1918 struct intel_miptree_map *map,
1919 unsigned int level,
1920 unsigned int slice)
1921 {
1922 _mesa_align_free(map->buffer);
1923 map->buffer = NULL;
1924 map->ptr = NULL;
1925 }
1926 #endif
1927
1928 static void
1929 intel_miptree_map_s8(struct brw_context *brw,
1930 struct intel_mipmap_tree *mt,
1931 struct intel_miptree_map *map,
1932 unsigned int level, unsigned int slice)
1933 {
1934 map->stride = map->w;
1935 map->buffer = map->ptr = malloc(map->stride * map->h);
1936 if (!map->buffer)
1937 return;
1938
1939 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1940 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1941 * invalidate is set, since we'll be writing the whole rectangle from our
1942 * temporary buffer back out.
1943 */
1944 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1945 uint8_t *untiled_s8_map = map->ptr;
1946 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1947 unsigned int image_x, image_y;
1948
1949 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1950
1951 for (uint32_t y = 0; y < map->h; y++) {
1952 for (uint32_t x = 0; x < map->w; x++) {
1953 ptrdiff_t offset = intel_offset_S8(mt->pitch,
1954 x + image_x + map->x,
1955 y + image_y + map->y,
1956 brw->has_swizzling);
1957 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1958 }
1959 }
1960
1961 intel_miptree_unmap_raw(brw, mt);
1962
1963 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1964 map->x, map->y, map->w, map->h,
1965 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1966 } else {
1967 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1968 map->x, map->y, map->w, map->h,
1969 mt, map->ptr, map->stride);
1970 }
1971 }
1972
1973 static void
1974 intel_miptree_unmap_s8(struct brw_context *brw,
1975 struct intel_mipmap_tree *mt,
1976 struct intel_miptree_map *map,
1977 unsigned int level,
1978 unsigned int slice)
1979 {
1980 if (map->mode & GL_MAP_WRITE_BIT) {
1981 unsigned int image_x, image_y;
1982 uint8_t *untiled_s8_map = map->ptr;
1983 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1984
1985 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1986
1987 for (uint32_t y = 0; y < map->h; y++) {
1988 for (uint32_t x = 0; x < map->w; x++) {
1989 ptrdiff_t offset = intel_offset_S8(mt->pitch,
1990 x + map->x,
1991 y + map->y,
1992 brw->has_swizzling);
1993 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1994 }
1995 }
1996
1997 intel_miptree_unmap_raw(brw, mt);
1998 }
1999
2000 free(map->buffer);
2001 }
2002
2003 static void
2004 intel_miptree_map_etc(struct brw_context *brw,
2005 struct intel_mipmap_tree *mt,
2006 struct intel_miptree_map *map,
2007 unsigned int level,
2008 unsigned int slice)
2009 {
2010 assert(mt->etc_format != MESA_FORMAT_NONE);
2011 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2012 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2013 }
2014
2015 assert(map->mode & GL_MAP_WRITE_BIT);
2016 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2017
2018 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2019 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2020 map->w, map->h, 1));
2021 map->ptr = map->buffer;
2022 }
2023
2024 static void
2025 intel_miptree_unmap_etc(struct brw_context *brw,
2026 struct intel_mipmap_tree *mt,
2027 struct intel_miptree_map *map,
2028 unsigned int level,
2029 unsigned int slice)
2030 {
2031 uint32_t image_x;
2032 uint32_t image_y;
2033 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2034
2035 image_x += map->x;
2036 image_y += map->y;
2037
2038 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2039 + image_y * mt->pitch
2040 + image_x * mt->cpp;
2041
2042 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2043 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2044 map->ptr, map->stride,
2045 map->w, map->h);
2046 else
2047 _mesa_unpack_etc2_format(dst, mt->pitch,
2048 map->ptr, map->stride,
2049 map->w, map->h, mt->etc_format);
2050
2051 intel_miptree_unmap_raw(brw, mt);
2052 free(map->buffer);
2053 }
2054
2055 /**
2056 * Mapping function for packed depth/stencil miptrees backed by real separate
2057 * miptrees for depth and stencil.
2058 *
2059 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2060 * separate from the depth buffer. Yet at the GL API level, we have to expose
2061 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2062 * be able to map that memory for texture storage and glReadPixels-type
2063 * operations. We give Mesa core that access by mallocing a temporary and
2064 * copying the data between the actual backing store and the temporary.
2065 */
2066 static void
2067 intel_miptree_map_depthstencil(struct brw_context *brw,
2068 struct intel_mipmap_tree *mt,
2069 struct intel_miptree_map *map,
2070 unsigned int level, unsigned int slice)
2071 {
2072 struct intel_mipmap_tree *z_mt = mt;
2073 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2074 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2075 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2076
2077 map->stride = map->w * packed_bpp;
2078 map->buffer = map->ptr = malloc(map->stride * map->h);
2079 if (!map->buffer)
2080 return;
2081
2082 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2083 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2084 * invalidate is set, since we'll be writing the whole rectangle from our
2085 * temporary buffer back out.
2086 */
2087 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2088 uint32_t *packed_map = map->ptr;
2089 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2090 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2091 unsigned int s_image_x, s_image_y;
2092 unsigned int z_image_x, z_image_y;
2093
2094 intel_miptree_get_image_offset(s_mt, level, slice,
2095 &s_image_x, &s_image_y);
2096 intel_miptree_get_image_offset(z_mt, level, slice,
2097 &z_image_x, &z_image_y);
2098
2099 for (uint32_t y = 0; y < map->h; y++) {
2100 for (uint32_t x = 0; x < map->w; x++) {
2101 int map_x = map->x + x, map_y = map->y + y;
2102 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2103 map_x + s_image_x,
2104 map_y + s_image_y,
2105 brw->has_swizzling);
2106 ptrdiff_t z_offset = ((map_y + z_image_y) *
2107 (z_mt->pitch / 4) +
2108 (map_x + z_image_x));
2109 uint8_t s = s_map[s_offset];
2110 uint32_t z = z_map[z_offset];
2111
2112 if (map_z32f_x24s8) {
2113 packed_map[(y * map->w + x) * 2 + 0] = z;
2114 packed_map[(y * map->w + x) * 2 + 1] = s;
2115 } else {
2116 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2117 }
2118 }
2119 }
2120
2121 intel_miptree_unmap_raw(brw, s_mt);
2122 intel_miptree_unmap_raw(brw, z_mt);
2123
2124 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2125 __FUNCTION__,
2126 map->x, map->y, map->w, map->h,
2127 z_mt, map->x + z_image_x, map->y + z_image_y,
2128 s_mt, map->x + s_image_x, map->y + s_image_y,
2129 map->ptr, map->stride);
2130 } else {
2131 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2132 map->x, map->y, map->w, map->h,
2133 mt, map->ptr, map->stride);
2134 }
2135 }
2136
2137 static void
2138 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2139 struct intel_mipmap_tree *mt,
2140 struct intel_miptree_map *map,
2141 unsigned int level,
2142 unsigned int slice)
2143 {
2144 struct intel_mipmap_tree *z_mt = mt;
2145 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2146 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2147
2148 if (map->mode & GL_MAP_WRITE_BIT) {
2149 uint32_t *packed_map = map->ptr;
2150 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2151 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2152 unsigned int s_image_x, s_image_y;
2153 unsigned int z_image_x, z_image_y;
2154
2155 intel_miptree_get_image_offset(s_mt, level, slice,
2156 &s_image_x, &s_image_y);
2157 intel_miptree_get_image_offset(z_mt, level, slice,
2158 &z_image_x, &z_image_y);
2159
2160 for (uint32_t y = 0; y < map->h; y++) {
2161 for (uint32_t x = 0; x < map->w; x++) {
2162 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2163 x + s_image_x + map->x,
2164 y + s_image_y + map->y,
2165 brw->has_swizzling);
2166 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2167 (z_mt->pitch / 4) +
2168 (x + z_image_x + map->x));
2169
2170 if (map_z32f_x24s8) {
2171 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2172 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2173 } else {
2174 uint32_t packed = packed_map[y * map->w + x];
2175 s_map[s_offset] = packed >> 24;
2176 z_map[z_offset] = packed;
2177 }
2178 }
2179 }
2180
2181 intel_miptree_unmap_raw(brw, s_mt);
2182 intel_miptree_unmap_raw(brw, z_mt);
2183
2184 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2185 __FUNCTION__,
2186 map->x, map->y, map->w, map->h,
2187 z_mt, _mesa_get_format_name(z_mt->format),
2188 map->x + z_image_x, map->y + z_image_y,
2189 s_mt, map->x + s_image_x, map->y + s_image_y,
2190 map->ptr, map->stride);
2191 }
2192
2193 free(map->buffer);
2194 }
2195
2196 /**
2197 * Create and attach a map to the miptree at (level, slice). Return the
2198 * attached map.
2199 */
2200 static struct intel_miptree_map*
2201 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2202 unsigned int level,
2203 unsigned int slice,
2204 unsigned int x,
2205 unsigned int y,
2206 unsigned int w,
2207 unsigned int h,
2208 GLbitfield mode)
2209 {
2210 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2211
2212 if (!map)
2213 return NULL;
2214
2215 assert(mt->level[level].slice[slice].map == NULL);
2216 mt->level[level].slice[slice].map = map;
2217
2218 map->mode = mode;
2219 map->x = x;
2220 map->y = y;
2221 map->w = w;
2222 map->h = h;
2223
2224 return map;
2225 }
2226
2227 /**
2228 * Release the map at (level, slice).
2229 */
2230 static void
2231 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2232 unsigned int level,
2233 unsigned int slice)
2234 {
2235 struct intel_miptree_map **map;
2236
2237 map = &mt->level[level].slice[slice].map;
2238 free(*map);
2239 *map = NULL;
2240 }
2241
2242 static bool
2243 can_blit_slice(struct intel_mipmap_tree *mt,
2244 unsigned int level, unsigned int slice)
2245 {
2246 uint32_t image_x;
2247 uint32_t image_y;
2248 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2249 if (image_x >= 32768 || image_y >= 32768)
2250 return false;
2251
2252 if (mt->pitch >= 32768)
2253 return false;
2254
2255 return true;
2256 }
2257
2258 void
2259 intel_miptree_map(struct brw_context *brw,
2260 struct intel_mipmap_tree *mt,
2261 unsigned int level,
2262 unsigned int slice,
2263 unsigned int x,
2264 unsigned int y,
2265 unsigned int w,
2266 unsigned int h,
2267 GLbitfield mode,
2268 void **out_ptr,
2269 int *out_stride)
2270 {
2271 struct intel_miptree_map *map;
2272
2273 assert(mt->num_samples <= 1);
2274
2275 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2276 if (!map){
2277 *out_ptr = NULL;
2278 *out_stride = 0;
2279 return;
2280 }
2281
2282 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2283 if (map->mode & GL_MAP_WRITE_BIT) {
2284 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2285 }
2286
2287 if (mt->format == MESA_FORMAT_S_UINT8) {
2288 intel_miptree_map_s8(brw, mt, map, level, slice);
2289 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2290 !(mode & BRW_MAP_DIRECT_BIT)) {
2291 intel_miptree_map_etc(brw, mt, map, level, slice);
2292 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2293 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2294 }
2295 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2296 else if (brw->has_llc &&
2297 !(mode & GL_MAP_WRITE_BIT) &&
2298 !mt->compressed &&
2299 (mt->tiling == I915_TILING_X ||
2300 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2301 can_blit_slice(mt, level, slice)) {
2302 intel_miptree_map_blit(brw, mt, map, level, slice);
2303 } else if (mt->tiling != I915_TILING_NONE &&
2304 mt->bo->size >= brw->max_gtt_map_object_size) {
2305 assert(can_blit_slice(mt, level, slice));
2306 intel_miptree_map_blit(brw, mt, map, level, slice);
2307 #if defined(USE_SSE41)
2308 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2309 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2310 #endif
2311 } else {
2312 intel_miptree_map_gtt(brw, mt, map, level, slice);
2313 }
2314
2315 *out_ptr = map->ptr;
2316 *out_stride = map->stride;
2317
2318 if (map->ptr == NULL)
2319 intel_miptree_release_map(mt, level, slice);
2320 }
2321
2322 void
2323 intel_miptree_unmap(struct brw_context *brw,
2324 struct intel_mipmap_tree *mt,
2325 unsigned int level,
2326 unsigned int slice)
2327 {
2328 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2329
2330 assert(mt->num_samples <= 1);
2331
2332 if (!map)
2333 return;
2334
2335 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2336 mt, _mesa_get_format_name(mt->format), level, slice);
2337
2338 if (mt->format == MESA_FORMAT_S_UINT8) {
2339 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2340 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2341 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2342 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2343 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2344 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2345 } else if (map->mt) {
2346 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2347 #if defined(USE_SSE41)
2348 } else if (map->buffer && cpu_has_sse4_1) {
2349 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2350 #endif
2351 } else {
2352 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2353 }
2354
2355 intel_miptree_release_map(mt, level, slice);
2356 }