i965: Implement fast color clears using meta operations
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_resolve_map.h"
35 #include "intel_tex.h"
36 #include "intel_blit.h"
37 #include "intel_fbo.h"
38
39 #include "brw_blorp.h"
40 #include "brw_context.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49 #include "x86/common_x86_asm.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 /**
54 * Determine which MSAA layout should be used by the MSAA surface being
55 * created, based on the chip generation and the surface type.
56 */
57 static enum intel_msaa_layout
58 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
59 {
60 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
61 if (brw->gen < 7)
62 return INTEL_MSAA_LAYOUT_IMS;
63
64 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
65 switch (_mesa_get_format_base_format(format)) {
66 case GL_DEPTH_COMPONENT:
67 case GL_STENCIL_INDEX:
68 case GL_DEPTH_STENCIL:
69 return INTEL_MSAA_LAYOUT_IMS;
70 default:
71 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
72 *
73 * This field must be set to 0 for all SINT MSRTs when all RT channels
74 * are not written
75 *
76 * In practice this means that we have to disable MCS for all signed
77 * integer MSAA buffers. The alternative, to disable MCS only when one
78 * of the render target channels is disabled, is impractical because it
79 * would require converting between CMS and UMS MSAA layouts on the fly,
80 * which is expensive.
81 */
82 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
83 return INTEL_MSAA_LAYOUT_UMS;
84 } else {
85 return INTEL_MSAA_LAYOUT_CMS;
86 }
87 }
88 }
89
90
91 /**
92 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
93 * scaled-down bitfield representation of the color buffer which is capable of
94 * recording when blocks of the color buffer are equal to the clear value.
95 * This function returns the block size that will be used by the MCS buffer
96 * corresponding to a certain color miptree.
97 *
98 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
99 * beneath the "Fast Color Clear" bullet (p327):
100 *
101 * The following table describes the RT alignment
102 *
103 * Pixels Lines
104 * TiledY RT CL
105 * bpp
106 * 32 8 4
107 * 64 4 4
108 * 128 2 4
109 * TiledX RT CL
110 * bpp
111 * 32 16 2
112 * 64 8 2
113 * 128 4 2
114 *
115 * This alignment has the following uses:
116 *
117 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
118 * buffer contains 128 blocks horizontally and 256 blocks vertically.
119 *
120 * - For figuring out alignment restrictions for a fast clear operation. Fast
121 * clear operations must always clear aligned multiples of 16 blocks
122 * horizontally and 32 blocks vertically.
123 *
124 * - For scaling down the coordinates sent through the render pipeline during
125 * a fast clear. X coordinates must be scaled down by 8 times the block
126 * width, and Y coordinates by 16 times the block height.
127 *
128 * - For scaling down the coordinates sent through the render pipeline during
129 * a "Render Target Resolve" operation. X coordinates must be scaled down
130 * by half the block width, and Y coordinates by half the block height.
131 */
132 void
133 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
134 struct intel_mipmap_tree *mt,
135 unsigned *width_px, unsigned *height)
136 {
137 switch (mt->tiling) {
138 default:
139 unreachable("Non-MSRT MCS requires X or Y tiling");
140 /* In release builds, fall through */
141 case I915_TILING_Y:
142 *width_px = 32 / mt->cpp;
143 *height = 4;
144 break;
145 case I915_TILING_X:
146 *width_px = 64 / mt->cpp;
147 *height = 2;
148 }
149 }
150
151
152 /**
153 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
154 * can be used.
155 *
156 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
157 * beneath the "Fast Color Clear" bullet (p326):
158 *
159 * - Support is limited to tiled render targets.
160 * - Support is for non-mip-mapped and non-array surface types only.
161 *
162 * And then later, on p327:
163 *
164 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
165 * 64bpp, and 128bpp.
166 */
167 bool
168 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
169 struct intel_mipmap_tree *mt)
170 {
171 /* MCS support does not exist prior to Gen7 */
172 if (brw->gen < 7)
173 return false;
174
175 /* MCS is only supported for color buffers */
176 switch (_mesa_get_format_base_format(mt->format)) {
177 case GL_DEPTH_COMPONENT:
178 case GL_DEPTH_STENCIL:
179 case GL_STENCIL_INDEX:
180 return false;
181 }
182
183 if (mt->tiling != I915_TILING_X &&
184 mt->tiling != I915_TILING_Y)
185 return false;
186 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
187 return false;
188 if (mt->first_level != 0 || mt->last_level != 0)
189 return false;
190 if (mt->physical_depth0 != 1)
191 return false;
192
193 /* There's no point in using an MCS buffer if the surface isn't in a
194 * renderable format.
195 */
196 if (!brw->format_supported_as_render_target[mt->format])
197 return false;
198
199 return true;
200 }
201
202
203 /**
204 * Determine depth format corresponding to a depth+stencil format,
205 * for separate stencil.
206 */
207 mesa_format
208 intel_depth_format_for_depthstencil_format(mesa_format format) {
209 switch (format) {
210 case MESA_FORMAT_Z24_UNORM_S8_UINT:
211 return MESA_FORMAT_Z24_UNORM_X8_UINT;
212 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
213 return MESA_FORMAT_Z_FLOAT32;
214 default:
215 return format;
216 }
217 }
218
219
220 /**
221 * @param for_bo Indicates that the caller is
222 * intel_miptree_create_for_bo(). If true, then do not create
223 * \c stencil_mt.
224 */
225 struct intel_mipmap_tree *
226 intel_miptree_create_layout(struct brw_context *brw,
227 GLenum target,
228 mesa_format format,
229 GLuint first_level,
230 GLuint last_level,
231 GLuint width0,
232 GLuint height0,
233 GLuint depth0,
234 bool for_bo,
235 GLuint num_samples)
236 {
237 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
238 if (!mt)
239 return NULL;
240
241 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
242 _mesa_lookup_enum_by_nr(target),
243 _mesa_get_format_name(format),
244 first_level, last_level, depth0, mt);
245
246 if (target == GL_TEXTURE_1D_ARRAY) {
247 /* For a 1D Array texture the OpenGL API will treat the height0
248 * parameter as the number of array slices. For Intel hardware, we treat
249 * the 1D array as a 2D Array with a height of 1.
250 *
251 * So, when we first come through this path to create a 1D Array
252 * texture, height0 stores the number of slices, and depth0 is 1. In
253 * this case, we want to swap height0 and depth0.
254 *
255 * Since some miptrees will be created based on the base miptree, we may
256 * come through this path and see height0 as 1 and depth0 being the
257 * number of slices. In this case we don't need to do the swap.
258 */
259 assert(height0 == 1 || depth0 == 1);
260 if (height0 > 1) {
261 depth0 = height0;
262 height0 = 1;
263 }
264 }
265
266 mt->target = target;
267 mt->format = format;
268 mt->first_level = first_level;
269 mt->last_level = last_level;
270 mt->logical_width0 = width0;
271 mt->logical_height0 = height0;
272 mt->logical_depth0 = depth0;
273 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
274 exec_list_make_empty(&mt->hiz_map);
275
276 /* The cpp is bytes per (1, blockheight)-sized block for compressed
277 * textures. This is why you'll see divides by blockheight all over
278 */
279 unsigned bw, bh;
280 _mesa_get_format_block_size(format, &bw, &bh);
281 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
282 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
283
284 mt->num_samples = num_samples;
285 mt->compressed = _mesa_is_format_compressed(format);
286 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
287 mt->refcount = 1;
288
289 if (num_samples > 1) {
290 /* Adjust width/height/depth for MSAA */
291 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
292 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
293 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
294 *
295 * "Any of the other messages (sample*, LOD, load4) used with a
296 * (4x) multisampled surface will in-effect sample a surface with
297 * double the height and width as that indicated in the surface
298 * state. Each pixel position on the original-sized surface is
299 * replaced with a 2x2 of samples with the following arrangement:
300 *
301 * sample 0 sample 2
302 * sample 1 sample 3"
303 *
304 * Thus, when sampling from a multisampled texture, it behaves as
305 * though the layout in memory for (x,y,sample) is:
306 *
307 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
308 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
309 *
310 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
311 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
312 *
313 * However, the actual layout of multisampled data in memory is:
314 *
315 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
316 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
317 *
318 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
319 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
320 *
321 * This pattern repeats for each 2x2 pixel block.
322 *
323 * As a result, when calculating the size of our 4-sample buffer for
324 * an odd width or height, we have to align before scaling up because
325 * sample 3 is in that bottom right 2x2 block.
326 */
327 switch (num_samples) {
328 case 2:
329 assert(brw->gen >= 8);
330 width0 = ALIGN(width0, 2) * 2;
331 height0 = ALIGN(height0, 2);
332 break;
333 case 4:
334 width0 = ALIGN(width0, 2) * 2;
335 height0 = ALIGN(height0, 2) * 2;
336 break;
337 case 8:
338 width0 = ALIGN(width0, 2) * 4;
339 height0 = ALIGN(height0, 2) * 2;
340 break;
341 default:
342 /* num_samples should already have been quantized to 0, 1, 2, 4, or
343 * 8.
344 */
345 unreachable("not reached");
346 }
347 } else {
348 /* Non-interleaved */
349 depth0 *= num_samples;
350 }
351 }
352
353 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
354 * use it elsewhere?
355 */
356 switch (mt->msaa_layout) {
357 case INTEL_MSAA_LAYOUT_NONE:
358 case INTEL_MSAA_LAYOUT_IMS:
359 mt->array_spacing_lod0 = false;
360 break;
361 case INTEL_MSAA_LAYOUT_UMS:
362 case INTEL_MSAA_LAYOUT_CMS:
363 mt->array_spacing_lod0 = true;
364 break;
365 }
366
367 if (target == GL_TEXTURE_CUBE_MAP) {
368 assert(depth0 == 1);
369 depth0 = 6;
370 }
371
372 mt->physical_width0 = width0;
373 mt->physical_height0 = height0;
374 mt->physical_depth0 = depth0;
375
376 if (!for_bo &&
377 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
378 (brw->must_use_separate_stencil ||
379 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
380 mt->stencil_mt = intel_miptree_create(brw,
381 mt->target,
382 MESA_FORMAT_S_UINT8,
383 mt->first_level,
384 mt->last_level,
385 mt->logical_width0,
386 mt->logical_height0,
387 mt->logical_depth0,
388 true,
389 num_samples,
390 INTEL_MIPTREE_TILING_ANY);
391 if (!mt->stencil_mt) {
392 intel_miptree_release(&mt);
393 return NULL;
394 }
395
396 /* Fix up the Z miptree format for how we're splitting out separate
397 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
398 */
399 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
400 mt->cpp = 4;
401
402 if (format == mt->format) {
403 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
404 _mesa_get_format_name(mt->format));
405 }
406 }
407
408 brw_miptree_layout(brw, mt);
409
410 return mt;
411 }
412
413 /**
414 * \brief Helper function for intel_miptree_create().
415 */
416 static uint32_t
417 intel_miptree_choose_tiling(struct brw_context *brw,
418 mesa_format format,
419 uint32_t width0,
420 uint32_t num_samples,
421 enum intel_miptree_tiling_mode requested,
422 struct intel_mipmap_tree *mt)
423 {
424 if (format == MESA_FORMAT_S_UINT8) {
425 /* The stencil buffer is W tiled. However, we request from the kernel a
426 * non-tiled buffer because the GTT is incapable of W fencing.
427 */
428 return I915_TILING_NONE;
429 }
430
431 /* Some usages may want only one type of tiling, like depth miptrees (Y
432 * tiled), or temporary BOs for uploading data once (linear).
433 */
434 switch (requested) {
435 case INTEL_MIPTREE_TILING_ANY:
436 break;
437 case INTEL_MIPTREE_TILING_Y:
438 return I915_TILING_Y;
439 case INTEL_MIPTREE_TILING_NONE:
440 return I915_TILING_NONE;
441 }
442
443 if (num_samples > 1) {
444 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
445 * Surface"):
446 *
447 * [DevSNB+]: For multi-sample render targets, this field must be
448 * 1. MSRTs can only be tiled.
449 *
450 * Our usual reason for preferring X tiling (fast blits using the
451 * blitting engine) doesn't apply to MSAA, since we'll generally be
452 * downsampling or upsampling when blitting between the MSAA buffer
453 * and another buffer, and the blitting engine doesn't support that.
454 * So use Y tiling, since it makes better use of the cache.
455 */
456 return I915_TILING_Y;
457 }
458
459 GLenum base_format = _mesa_get_format_base_format(format);
460 if (base_format == GL_DEPTH_COMPONENT ||
461 base_format == GL_DEPTH_STENCIL_EXT)
462 return I915_TILING_Y;
463
464 int minimum_pitch = mt->total_width * mt->cpp;
465
466 /* If the width is much smaller than a tile, don't bother tiling. */
467 if (minimum_pitch < 64)
468 return I915_TILING_NONE;
469
470 if (ALIGN(minimum_pitch, 512) >= 32768 ||
471 mt->total_width >= 32768 || mt->total_height >= 32768) {
472 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
473 mt->total_width, mt->total_height);
474 return I915_TILING_NONE;
475 }
476
477 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
478 if (brw->gen < 6)
479 return I915_TILING_X;
480
481 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
482 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
483 * or Linear."
484 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
485 * all the way back to 965, but is explicitly permitted on Gen7.
486 */
487 if (brw->gen != 7 && mt->cpp >= 16)
488 return I915_TILING_X;
489
490 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
491 * messages), on p64, under the heading "Surface Vertical Alignment":
492 *
493 * This field must be set to VALIGN_4 for all tiled Y Render Target
494 * surfaces.
495 *
496 * So if the surface is renderable and uses a vertical alignment of 2,
497 * force it to be X tiled. This is somewhat conservative (it's possible
498 * that the client won't ever render to this surface), but it's difficult
499 * to know that ahead of time. And besides, since we use a vertical
500 * alignment of 4 as often as we can, this shouldn't happen very often.
501 */
502 if (brw->gen == 7 && mt->align_h == 2 &&
503 brw->format_supported_as_render_target[format]) {
504 return I915_TILING_X;
505 }
506
507 return I915_TILING_Y | I915_TILING_X;
508 }
509
510
511 /**
512 * Choose an appropriate uncompressed format for a requested
513 * compressed format, if unsupported.
514 */
515 mesa_format
516 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
517 {
518 /* No need to lower ETC formats on these platforms,
519 * they are supported natively.
520 */
521 if (brw->gen >= 8 || brw->is_baytrail)
522 return format;
523
524 switch (format) {
525 case MESA_FORMAT_ETC1_RGB8:
526 return MESA_FORMAT_R8G8B8X8_UNORM;
527 case MESA_FORMAT_ETC2_RGB8:
528 return MESA_FORMAT_R8G8B8X8_UNORM;
529 case MESA_FORMAT_ETC2_SRGB8:
530 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
531 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
532 return MESA_FORMAT_B8G8R8A8_SRGB;
533 case MESA_FORMAT_ETC2_RGBA8_EAC:
534 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
535 return MESA_FORMAT_R8G8B8A8_UNORM;
536 case MESA_FORMAT_ETC2_R11_EAC:
537 return MESA_FORMAT_R_UNORM16;
538 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
539 return MESA_FORMAT_R_SNORM16;
540 case MESA_FORMAT_ETC2_RG11_EAC:
541 return MESA_FORMAT_R16G16_UNORM;
542 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
543 return MESA_FORMAT_R16G16_SNORM;
544 default:
545 /* Non ETC1 / ETC2 format */
546 return format;
547 }
548 }
549
550
551 struct intel_mipmap_tree *
552 intel_miptree_create(struct brw_context *brw,
553 GLenum target,
554 mesa_format format,
555 GLuint first_level,
556 GLuint last_level,
557 GLuint width0,
558 GLuint height0,
559 GLuint depth0,
560 bool expect_accelerated_upload,
561 GLuint num_samples,
562 enum intel_miptree_tiling_mode requested_tiling)
563 {
564 struct intel_mipmap_tree *mt;
565 mesa_format tex_format = format;
566 mesa_format etc_format = MESA_FORMAT_NONE;
567 GLuint total_width, total_height;
568
569 format = intel_lower_compressed_format(brw, format);
570
571 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
572
573 mt = intel_miptree_create_layout(brw, target, format,
574 first_level, last_level, width0,
575 height0, depth0,
576 false, num_samples);
577 /*
578 * pitch == 0 || height == 0 indicates the null texture
579 */
580 if (!mt || !mt->total_width || !mt->total_height) {
581 intel_miptree_release(&mt);
582 return NULL;
583 }
584
585 total_width = mt->total_width;
586 total_height = mt->total_height;
587
588 if (format == MESA_FORMAT_S_UINT8) {
589 /* Align to size of W tile, 64x64. */
590 total_width = ALIGN(total_width, 64);
591 total_height = ALIGN(total_height, 64);
592 }
593
594 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
595 num_samples, requested_tiling,
596 mt);
597 bool y_or_x = false;
598
599 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
600 y_or_x = true;
601 mt->tiling = I915_TILING_Y;
602 } else {
603 mt->tiling = tiling;
604 }
605
606 unsigned long pitch;
607 mt->etc_format = etc_format;
608 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
609 total_width, total_height, mt->cpp,
610 &mt->tiling, &pitch,
611 (expect_accelerated_upload ?
612 BO_ALLOC_FOR_RENDER : 0));
613 mt->pitch = pitch;
614
615 /* If the BO is too large to fit in the aperture, we need to use the
616 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
617 * so we need to fall back to X.
618 */
619 if (y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
620 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
621 mt->total_width, mt->total_height);
622
623 mt->tiling = I915_TILING_X;
624 drm_intel_bo_unreference(mt->bo);
625 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
626 total_width, total_height, mt->cpp,
627 &mt->tiling, &pitch,
628 (expect_accelerated_upload ?
629 BO_ALLOC_FOR_RENDER : 0));
630 mt->pitch = pitch;
631 }
632
633 mt->offset = 0;
634
635 if (!mt->bo) {
636 intel_miptree_release(&mt);
637 return NULL;
638 }
639
640
641 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
642 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
643 intel_miptree_release(&mt);
644 return NULL;
645 }
646 }
647
648 /* If this miptree is capable of supporting fast color clears, set
649 * fast_clear_state appropriately to ensure that fast clears will occur.
650 * Allocation of the MCS miptree will be deferred until the first fast
651 * clear actually occurs.
652 */
653 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
654 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
655
656 return mt;
657 }
658
659 struct intel_mipmap_tree *
660 intel_miptree_create_for_bo(struct brw_context *brw,
661 drm_intel_bo *bo,
662 mesa_format format,
663 uint32_t offset,
664 uint32_t width,
665 uint32_t height,
666 int pitch)
667 {
668 struct intel_mipmap_tree *mt;
669 uint32_t tiling, swizzle;
670
671 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
672
673 /* Nothing will be able to use this miptree with the BO if the offset isn't
674 * aligned.
675 */
676 if (tiling != I915_TILING_NONE)
677 assert(offset % 4096 == 0);
678
679 /* miptrees can't handle negative pitch. If you need flipping of images,
680 * that's outside of the scope of the mt.
681 */
682 assert(pitch >= 0);
683
684 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
685 0, 0,
686 width, height, 1,
687 true, 0 /* num_samples */);
688 if (!mt) {
689 free(mt);
690 return mt;
691 }
692
693 drm_intel_bo_reference(bo);
694 mt->bo = bo;
695 mt->pitch = pitch;
696 mt->offset = offset;
697 mt->tiling = tiling;
698
699 return mt;
700 }
701
702 /**
703 * For a singlesample renderbuffer, this simply wraps the given BO with a
704 * miptree.
705 *
706 * For a multisample renderbuffer, this wraps the window system's
707 * (singlesample) BO with a singlesample miptree attached to the
708 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
709 * that will contain the actual rendering (which is lazily resolved to
710 * irb->singlesample_mt).
711 */
712 void
713 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
714 struct intel_renderbuffer *irb,
715 drm_intel_bo *bo,
716 uint32_t width, uint32_t height,
717 uint32_t pitch)
718 {
719 struct intel_mipmap_tree *singlesample_mt = NULL;
720 struct intel_mipmap_tree *multisample_mt = NULL;
721 struct gl_renderbuffer *rb = &irb->Base.Base;
722 mesa_format format = rb->Format;
723 int num_samples = rb->NumSamples;
724
725 /* Only the front and back buffers, which are color buffers, are allocated
726 * through the image loader.
727 */
728 assert(_mesa_get_format_base_format(format) == GL_RGB ||
729 _mesa_get_format_base_format(format) == GL_RGBA);
730
731 singlesample_mt = intel_miptree_create_for_bo(intel,
732 bo,
733 format,
734 0,
735 width,
736 height,
737 pitch);
738 if (!singlesample_mt)
739 goto fail;
740
741 /* If this miptree is capable of supporting fast color clears, set
742 * mcs_state appropriately to ensure that fast clears will occur.
743 * Allocation of the MCS miptree will be deferred until the first fast
744 * clear actually occurs.
745 */
746 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
747 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
748
749 if (num_samples == 0) {
750 intel_miptree_release(&irb->mt);
751 irb->mt = singlesample_mt;
752
753 assert(!irb->singlesample_mt);
754 } else {
755 intel_miptree_release(&irb->singlesample_mt);
756 irb->singlesample_mt = singlesample_mt;
757
758 if (!irb->mt ||
759 irb->mt->logical_width0 != width ||
760 irb->mt->logical_height0 != height) {
761 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
762 format,
763 width,
764 height,
765 num_samples);
766 if (!multisample_mt)
767 goto fail;
768
769 irb->need_downsample = false;
770 intel_miptree_release(&irb->mt);
771 irb->mt = multisample_mt;
772 }
773 }
774 return;
775
776 fail:
777 intel_miptree_release(&irb->singlesample_mt);
778 intel_miptree_release(&irb->mt);
779 return;
780 }
781
782 struct intel_mipmap_tree*
783 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
784 mesa_format format,
785 uint32_t width,
786 uint32_t height,
787 uint32_t num_samples)
788 {
789 struct intel_mipmap_tree *mt;
790 uint32_t depth = 1;
791 bool ok;
792 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
793
794 mt = intel_miptree_create(brw, target, format, 0, 0,
795 width, height, depth, true, num_samples,
796 INTEL_MIPTREE_TILING_ANY);
797 if (!mt)
798 goto fail;
799
800 if (brw_is_hiz_depth_format(brw, format)) {
801 ok = intel_miptree_alloc_hiz(brw, mt);
802 if (!ok)
803 goto fail;
804 }
805
806 return mt;
807
808 fail:
809 intel_miptree_release(&mt);
810 return NULL;
811 }
812
813 void
814 intel_miptree_reference(struct intel_mipmap_tree **dst,
815 struct intel_mipmap_tree *src)
816 {
817 if (*dst == src)
818 return;
819
820 intel_miptree_release(dst);
821
822 if (src) {
823 src->refcount++;
824 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
825 }
826
827 *dst = src;
828 }
829
830
831 void
832 intel_miptree_release(struct intel_mipmap_tree **mt)
833 {
834 if (!*mt)
835 return;
836
837 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
838 if (--(*mt)->refcount <= 0) {
839 GLuint i;
840
841 DBG("%s deleting %p\n", __FUNCTION__, *mt);
842
843 drm_intel_bo_unreference((*mt)->bo);
844 intel_miptree_release(&(*mt)->stencil_mt);
845 intel_miptree_release(&(*mt)->hiz_mt);
846 intel_miptree_release(&(*mt)->mcs_mt);
847 intel_resolve_map_clear(&(*mt)->hiz_map);
848
849 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
850 free((*mt)->level[i].slice);
851 }
852
853 free(*mt);
854 }
855 *mt = NULL;
856 }
857
858 void
859 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
860 int *width, int *height, int *depth)
861 {
862 switch (image->TexObject->Target) {
863 case GL_TEXTURE_1D_ARRAY:
864 *width = image->Width;
865 *height = 1;
866 *depth = image->Height;
867 break;
868 default:
869 *width = image->Width;
870 *height = image->Height;
871 *depth = image->Depth;
872 break;
873 }
874 }
875
876 /**
877 * Can the image be pulled into a unified mipmap tree? This mirrors
878 * the completeness test in a lot of ways.
879 *
880 * Not sure whether I want to pass gl_texture_image here.
881 */
882 bool
883 intel_miptree_match_image(struct intel_mipmap_tree *mt,
884 struct gl_texture_image *image)
885 {
886 struct intel_texture_image *intelImage = intel_texture_image(image);
887 GLuint level = intelImage->base.Base.Level;
888 int width, height, depth;
889
890 /* glTexImage* choose the texture object based on the target passed in, and
891 * objects can't change targets over their lifetimes, so this should be
892 * true.
893 */
894 assert(image->TexObject->Target == mt->target);
895
896 mesa_format mt_format = mt->format;
897 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
898 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
899 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
900 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
901 if (mt->etc_format != MESA_FORMAT_NONE)
902 mt_format = mt->etc_format;
903
904 if (image->TexFormat != mt_format)
905 return false;
906
907 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
908
909 if (mt->target == GL_TEXTURE_CUBE_MAP)
910 depth = 6;
911
912 int level_depth = mt->level[level].depth;
913 if (mt->num_samples > 1) {
914 switch (mt->msaa_layout) {
915 case INTEL_MSAA_LAYOUT_NONE:
916 case INTEL_MSAA_LAYOUT_IMS:
917 break;
918 case INTEL_MSAA_LAYOUT_UMS:
919 case INTEL_MSAA_LAYOUT_CMS:
920 level_depth /= mt->num_samples;
921 break;
922 }
923 }
924
925 /* Test image dimensions against the base level image adjusted for
926 * minification. This will also catch images not present in the
927 * tree, changed targets, etc.
928 */
929 if (width != minify(mt->logical_width0, level - mt->first_level) ||
930 height != minify(mt->logical_height0, level - mt->first_level) ||
931 depth != level_depth) {
932 return false;
933 }
934
935 if (image->NumSamples != mt->num_samples)
936 return false;
937
938 return true;
939 }
940
941
942 void
943 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
944 GLuint level,
945 GLuint x, GLuint y, GLuint d)
946 {
947 mt->level[level].depth = d;
948 mt->level[level].level_x = x;
949 mt->level[level].level_y = y;
950
951 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
952 level, d, x, y);
953
954 assert(mt->level[level].slice == NULL);
955
956 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
957 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
958 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
959 }
960
961
962 void
963 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
964 GLuint level, GLuint img,
965 GLuint x, GLuint y)
966 {
967 if (img == 0 && level == 0)
968 assert(x == 0 && y == 0);
969
970 assert(img < mt->level[level].depth);
971
972 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
973 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
974
975 DBG("%s level %d img %d pos %d,%d\n",
976 __FUNCTION__, level, img,
977 mt->level[level].slice[img].x_offset,
978 mt->level[level].slice[img].y_offset);
979 }
980
981 void
982 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
983 GLuint level, GLuint slice,
984 GLuint *x, GLuint *y)
985 {
986 assert(slice < mt->level[level].depth);
987
988 *x = mt->level[level].slice[slice].x_offset;
989 *y = mt->level[level].slice[slice].y_offset;
990 }
991
992 /**
993 * This function computes masks that may be used to select the bits of the X
994 * and Y coordinates that indicate the offset within a tile. If the BO is
995 * untiled, the masks are set to 0.
996 */
997 void
998 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
999 uint32_t *mask_x, uint32_t *mask_y,
1000 bool map_stencil_as_y_tiled)
1001 {
1002 int cpp = mt->cpp;
1003 uint32_t tiling = mt->tiling;
1004
1005 if (map_stencil_as_y_tiled)
1006 tiling = I915_TILING_Y;
1007
1008 switch (tiling) {
1009 default:
1010 unreachable("not reached");
1011 case I915_TILING_NONE:
1012 *mask_x = *mask_y = 0;
1013 break;
1014 case I915_TILING_X:
1015 *mask_x = 512 / cpp - 1;
1016 *mask_y = 7;
1017 break;
1018 case I915_TILING_Y:
1019 *mask_x = 128 / cpp - 1;
1020 *mask_y = 31;
1021 break;
1022 }
1023 }
1024
1025 /**
1026 * Compute the offset (in bytes) from the start of the BO to the given x
1027 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1028 * multiples of the tile size.
1029 */
1030 uint32_t
1031 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1032 uint32_t x, uint32_t y,
1033 bool map_stencil_as_y_tiled)
1034 {
1035 int cpp = mt->cpp;
1036 uint32_t pitch = mt->pitch;
1037 uint32_t tiling = mt->tiling;
1038
1039 if (map_stencil_as_y_tiled) {
1040 tiling = I915_TILING_Y;
1041
1042 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1043 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1044 * the resulting surface is twice the pitch of the original miptree,
1045 * since each row in the Y-tiled view corresponds to two rows in the
1046 * actual W-tiled surface. So we need to correct the pitch before
1047 * computing the offsets.
1048 */
1049 pitch *= 2;
1050 }
1051
1052 switch (tiling) {
1053 default:
1054 unreachable("not reached");
1055 case I915_TILING_NONE:
1056 return y * pitch + x * cpp;
1057 case I915_TILING_X:
1058 assert((x % (512 / cpp)) == 0);
1059 assert((y % 8) == 0);
1060 return y * pitch + x / (512 / cpp) * 4096;
1061 case I915_TILING_Y:
1062 assert((x % (128 / cpp)) == 0);
1063 assert((y % 32) == 0);
1064 return y * pitch + x / (128 / cpp) * 4096;
1065 }
1066 }
1067
1068 /**
1069 * Rendering with tiled buffers requires that the base address of the buffer
1070 * be aligned to a page boundary. For renderbuffers, and sometimes with
1071 * textures, we may want the surface to point at a texture image level that
1072 * isn't at a page boundary.
1073 *
1074 * This function returns an appropriately-aligned base offset
1075 * according to the tiling restrictions, plus any required x/y offset
1076 * from there.
1077 */
1078 uint32_t
1079 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1080 GLuint level, GLuint slice,
1081 uint32_t *tile_x,
1082 uint32_t *tile_y)
1083 {
1084 uint32_t x, y;
1085 uint32_t mask_x, mask_y;
1086
1087 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1088 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1089
1090 *tile_x = x & mask_x;
1091 *tile_y = y & mask_y;
1092
1093 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1094 }
1095
1096 static void
1097 intel_miptree_copy_slice_sw(struct brw_context *brw,
1098 struct intel_mipmap_tree *dst_mt,
1099 struct intel_mipmap_tree *src_mt,
1100 int level,
1101 int slice,
1102 int width,
1103 int height)
1104 {
1105 void *src, *dst;
1106 int src_stride, dst_stride;
1107 int cpp = dst_mt->cpp;
1108
1109 intel_miptree_map(brw, src_mt,
1110 level, slice,
1111 0, 0,
1112 width, height,
1113 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1114 &src, &src_stride);
1115
1116 intel_miptree_map(brw, dst_mt,
1117 level, slice,
1118 0, 0,
1119 width, height,
1120 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1121 BRW_MAP_DIRECT_BIT,
1122 &dst, &dst_stride);
1123
1124 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1125 _mesa_get_format_name(src_mt->format),
1126 src_mt, src, src_stride,
1127 _mesa_get_format_name(dst_mt->format),
1128 dst_mt, dst, dst_stride,
1129 width, height);
1130
1131 int row_size = cpp * width;
1132 if (src_stride == row_size &&
1133 dst_stride == row_size) {
1134 memcpy(dst, src, row_size * height);
1135 } else {
1136 for (int i = 0; i < height; i++) {
1137 memcpy(dst, src, row_size);
1138 dst += dst_stride;
1139 src += src_stride;
1140 }
1141 }
1142
1143 intel_miptree_unmap(brw, dst_mt, level, slice);
1144 intel_miptree_unmap(brw, src_mt, level, slice);
1145
1146 /* Don't forget to copy the stencil data over, too. We could have skipped
1147 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1148 * shuffling the two data sources in/out of temporary storage instead of
1149 * the direct mapping we get this way.
1150 */
1151 if (dst_mt->stencil_mt) {
1152 assert(src_mt->stencil_mt);
1153 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1154 level, slice, width, height);
1155 }
1156 }
1157
1158 static void
1159 intel_miptree_copy_slice(struct brw_context *brw,
1160 struct intel_mipmap_tree *dst_mt,
1161 struct intel_mipmap_tree *src_mt,
1162 int level,
1163 int face,
1164 int depth)
1165
1166 {
1167 mesa_format format = src_mt->format;
1168 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1169 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1170 int slice;
1171
1172 if (face > 0)
1173 slice = face;
1174 else
1175 slice = depth;
1176
1177 assert(depth < src_mt->level[level].depth);
1178 assert(src_mt->format == dst_mt->format);
1179
1180 if (dst_mt->compressed) {
1181 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1182 width = ALIGN(width, dst_mt->align_w);
1183 }
1184
1185 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1186 * below won't apply since we can't do the depth's Y tiling or the
1187 * stencil's W tiling in the blitter.
1188 */
1189 if (src_mt->stencil_mt) {
1190 intel_miptree_copy_slice_sw(brw,
1191 dst_mt, src_mt,
1192 level, slice,
1193 width, height);
1194 return;
1195 }
1196
1197 uint32_t dst_x, dst_y, src_x, src_y;
1198 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1199 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1200
1201 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1202 _mesa_get_format_name(src_mt->format),
1203 src_mt, src_x, src_y, src_mt->pitch,
1204 _mesa_get_format_name(dst_mt->format),
1205 dst_mt, dst_x, dst_y, dst_mt->pitch,
1206 width, height);
1207
1208 if (!intel_miptree_blit(brw,
1209 src_mt, level, slice, 0, 0, false,
1210 dst_mt, level, slice, 0, 0, false,
1211 width, height, GL_COPY)) {
1212 perf_debug("miptree validate blit for %s failed\n",
1213 _mesa_get_format_name(format));
1214
1215 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1216 width, height);
1217 }
1218 }
1219
1220 /**
1221 * Copies the image's current data to the given miptree, and associates that
1222 * miptree with the image.
1223 *
1224 * If \c invalidate is true, then the actual image data does not need to be
1225 * copied, but the image still needs to be associated to the new miptree (this
1226 * is set to true if we're about to clear the image).
1227 */
1228 void
1229 intel_miptree_copy_teximage(struct brw_context *brw,
1230 struct intel_texture_image *intelImage,
1231 struct intel_mipmap_tree *dst_mt,
1232 bool invalidate)
1233 {
1234 struct intel_mipmap_tree *src_mt = intelImage->mt;
1235 struct intel_texture_object *intel_obj =
1236 intel_texture_object(intelImage->base.Base.TexObject);
1237 int level = intelImage->base.Base.Level;
1238 int face = intelImage->base.Base.Face;
1239 GLuint depth = intelImage->base.Base.Depth;
1240
1241 if (!invalidate) {
1242 for (int slice = 0; slice < depth; slice++) {
1243 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1244 }
1245 }
1246
1247 intel_miptree_reference(&intelImage->mt, dst_mt);
1248 intel_obj->needs_validate = true;
1249 }
1250
1251 bool
1252 intel_miptree_alloc_mcs(struct brw_context *brw,
1253 struct intel_mipmap_tree *mt,
1254 GLuint num_samples)
1255 {
1256 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1257 assert(mt->mcs_mt == NULL);
1258
1259 /* Choose the correct format for the MCS buffer. All that really matters
1260 * is that we allocate the right buffer size, since we'll always be
1261 * accessing this miptree using MCS-specific hardware mechanisms, which
1262 * infer the correct format based on num_samples.
1263 */
1264 mesa_format format;
1265 switch (num_samples) {
1266 case 2:
1267 case 4:
1268 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1269 * each sample).
1270 */
1271 format = MESA_FORMAT_R_UNORM8;
1272 break;
1273 case 8:
1274 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1275 * for each sample, plus 8 padding bits).
1276 */
1277 format = MESA_FORMAT_R_UINT32;
1278 break;
1279 default:
1280 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1281 };
1282
1283 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1284 *
1285 * "The MCS surface must be stored as Tile Y."
1286 */
1287 mt->mcs_mt = intel_miptree_create(brw,
1288 mt->target,
1289 format,
1290 mt->first_level,
1291 mt->last_level,
1292 mt->logical_width0,
1293 mt->logical_height0,
1294 mt->logical_depth0,
1295 true,
1296 0 /* num_samples */,
1297 INTEL_MIPTREE_TILING_Y);
1298
1299 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1300 *
1301 * When MCS buffer is enabled and bound to MSRT, it is required that it
1302 * is cleared prior to any rendering.
1303 *
1304 * Since we don't use the MCS buffer for any purpose other than rendering,
1305 * it makes sense to just clear it immediately upon allocation.
1306 *
1307 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1308 */
1309 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1310 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1311 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1312 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1313
1314 return mt->mcs_mt;
1315 }
1316
1317
1318 bool
1319 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1320 struct intel_mipmap_tree *mt)
1321 {
1322 assert(mt->mcs_mt == NULL);
1323
1324 /* The format of the MCS buffer is opaque to the driver; all that matters
1325 * is that we get its size and pitch right. We'll pretend that the format
1326 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1327 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1328 * the block width and then a further factor of 4. Since an MCS tile
1329 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1330 * we'll need to scale the height down by the block height and then a
1331 * further factor of 8.
1332 */
1333 const mesa_format format = MESA_FORMAT_R_UINT32;
1334 unsigned block_width_px;
1335 unsigned block_height;
1336 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1337 unsigned width_divisor = block_width_px * 4;
1338 unsigned height_divisor = block_height * 8;
1339 unsigned mcs_width =
1340 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1341 unsigned mcs_height =
1342 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1343 assert(mt->logical_depth0 == 1);
1344 mt->mcs_mt = intel_miptree_create(brw,
1345 mt->target,
1346 format,
1347 mt->first_level,
1348 mt->last_level,
1349 mcs_width,
1350 mcs_height,
1351 mt->logical_depth0,
1352 true,
1353 0 /* num_samples */,
1354 INTEL_MIPTREE_TILING_Y);
1355
1356 return mt->mcs_mt;
1357 }
1358
1359
1360 /**
1361 * Helper for intel_miptree_alloc_hiz() that sets
1362 * \c mt->level[level].has_hiz. Return true if and only if
1363 * \c has_hiz was set.
1364 */
1365 static bool
1366 intel_miptree_level_enable_hiz(struct brw_context *brw,
1367 struct intel_mipmap_tree *mt,
1368 uint32_t level)
1369 {
1370 assert(mt->hiz_mt);
1371
1372 if (brw->gen >= 8 || brw->is_haswell) {
1373 uint32_t width = minify(mt->physical_width0, level);
1374 uint32_t height = minify(mt->physical_height0, level);
1375
1376 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1377 * and the height is 4 aligned. This allows our HiZ support
1378 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1379 * we can grow the width & height to allow the HiZ op to
1380 * force the proper size alignments.
1381 */
1382 if (level > 0 && ((width & 7) || (height & 3))) {
1383 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1384 return false;
1385 }
1386 }
1387
1388 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1389 mt->level[level].has_hiz = true;
1390 return true;
1391 }
1392
1393
1394
1395 bool
1396 intel_miptree_alloc_hiz(struct brw_context *brw,
1397 struct intel_mipmap_tree *mt)
1398 {
1399 assert(mt->hiz_mt == NULL);
1400 mt->hiz_mt = intel_miptree_create(brw,
1401 mt->target,
1402 mt->format,
1403 mt->first_level,
1404 mt->last_level,
1405 mt->logical_width0,
1406 mt->logical_height0,
1407 mt->logical_depth0,
1408 true,
1409 mt->num_samples,
1410 INTEL_MIPTREE_TILING_ANY);
1411
1412 if (!mt->hiz_mt)
1413 return false;
1414
1415 /* Mark that all slices need a HiZ resolve. */
1416 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1417 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1418 continue;
1419
1420 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1421 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1422 exec_node_init(&m->link);
1423 m->level = level;
1424 m->layer = layer;
1425 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1426
1427 exec_list_push_tail(&mt->hiz_map, &m->link);
1428 }
1429 }
1430
1431 return true;
1432 }
1433
1434 /**
1435 * Does the miptree slice have hiz enabled?
1436 */
1437 bool
1438 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1439 {
1440 intel_miptree_check_level_layer(mt, level, 0);
1441 return mt->level[level].has_hiz;
1442 }
1443
1444 void
1445 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1446 uint32_t level,
1447 uint32_t layer)
1448 {
1449 if (!intel_miptree_level_has_hiz(mt, level))
1450 return;
1451
1452 intel_resolve_map_set(&mt->hiz_map,
1453 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1454 }
1455
1456
1457 void
1458 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1459 uint32_t level,
1460 uint32_t layer)
1461 {
1462 if (!intel_miptree_level_has_hiz(mt, level))
1463 return;
1464
1465 intel_resolve_map_set(&mt->hiz_map,
1466 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1467 }
1468
1469 void
1470 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1471 uint32_t level)
1472 {
1473 uint32_t layer;
1474 uint32_t end_layer = mt->level[level].depth;
1475
1476 for (layer = 0; layer < end_layer; layer++) {
1477 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1478 }
1479 }
1480
1481 static bool
1482 intel_miptree_slice_resolve(struct brw_context *brw,
1483 struct intel_mipmap_tree *mt,
1484 uint32_t level,
1485 uint32_t layer,
1486 enum gen6_hiz_op need)
1487 {
1488 intel_miptree_check_level_layer(mt, level, layer);
1489
1490 struct intel_resolve_map *item =
1491 intel_resolve_map_get(&mt->hiz_map, level, layer);
1492
1493 if (!item || item->need != need)
1494 return false;
1495
1496 intel_hiz_exec(brw, mt, level, layer, need);
1497 intel_resolve_map_remove(item);
1498 return true;
1499 }
1500
1501 bool
1502 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1503 struct intel_mipmap_tree *mt,
1504 uint32_t level,
1505 uint32_t layer)
1506 {
1507 return intel_miptree_slice_resolve(brw, mt, level, layer,
1508 GEN6_HIZ_OP_HIZ_RESOLVE);
1509 }
1510
1511 bool
1512 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1513 struct intel_mipmap_tree *mt,
1514 uint32_t level,
1515 uint32_t layer)
1516 {
1517 return intel_miptree_slice_resolve(brw, mt, level, layer,
1518 GEN6_HIZ_OP_DEPTH_RESOLVE);
1519 }
1520
1521 static bool
1522 intel_miptree_all_slices_resolve(struct brw_context *brw,
1523 struct intel_mipmap_tree *mt,
1524 enum gen6_hiz_op need)
1525 {
1526 bool did_resolve = false;
1527
1528 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1529 if (map->need != need)
1530 continue;
1531
1532 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1533 intel_resolve_map_remove(map);
1534 did_resolve = true;
1535 }
1536
1537 return did_resolve;
1538 }
1539
1540 bool
1541 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1542 struct intel_mipmap_tree *mt)
1543 {
1544 return intel_miptree_all_slices_resolve(brw, mt,
1545 GEN6_HIZ_OP_HIZ_RESOLVE);
1546 }
1547
1548 bool
1549 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1550 struct intel_mipmap_tree *mt)
1551 {
1552 return intel_miptree_all_slices_resolve(brw, mt,
1553 GEN6_HIZ_OP_DEPTH_RESOLVE);
1554 }
1555
1556
1557 void
1558 intel_miptree_resolve_color(struct brw_context *brw,
1559 struct intel_mipmap_tree *mt)
1560 {
1561 switch (mt->fast_clear_state) {
1562 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1563 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1564 /* No resolve needed */
1565 break;
1566 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1567 case INTEL_FAST_CLEAR_STATE_CLEAR:
1568 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1569 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1570 brw_meta_resolve_color(brw, mt);
1571 break;
1572 }
1573 }
1574
1575
1576 /**
1577 * Make it possible to share the BO backing the given miptree with another
1578 * process or another miptree.
1579 *
1580 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1581 * then discard the MCS buffer, if present. We also set the fast_clear_state
1582 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1583 * allocated in the future.
1584 */
1585 void
1586 intel_miptree_make_shareable(struct brw_context *brw,
1587 struct intel_mipmap_tree *mt)
1588 {
1589 /* MCS buffers are also used for multisample buffers, but we can't resolve
1590 * away a multisample MCS buffer because it's an integral part of how the
1591 * pixel data is stored. Fortunately this code path should never be
1592 * reached for multisample buffers.
1593 */
1594 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1595
1596 if (mt->mcs_mt) {
1597 intel_miptree_resolve_color(brw, mt);
1598 intel_miptree_release(&mt->mcs_mt);
1599 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1600 }
1601 }
1602
1603
1604 /**
1605 * \brief Get pointer offset into stencil buffer.
1606 *
1607 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1608 * must decode the tile's layout in software.
1609 *
1610 * See
1611 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1612 * Format.
1613 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1614 *
1615 * Even though the returned offset is always positive, the return type is
1616 * signed due to
1617 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1618 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1619 */
1620 static intptr_t
1621 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1622 {
1623 uint32_t tile_size = 4096;
1624 uint32_t tile_width = 64;
1625 uint32_t tile_height = 64;
1626 uint32_t row_size = 64 * stride;
1627
1628 uint32_t tile_x = x / tile_width;
1629 uint32_t tile_y = y / tile_height;
1630
1631 /* The byte's address relative to the tile's base addres. */
1632 uint32_t byte_x = x % tile_width;
1633 uint32_t byte_y = y % tile_height;
1634
1635 uintptr_t u = tile_y * row_size
1636 + tile_x * tile_size
1637 + 512 * (byte_x / 8)
1638 + 64 * (byte_y / 8)
1639 + 32 * ((byte_y / 4) % 2)
1640 + 16 * ((byte_x / 4) % 2)
1641 + 8 * ((byte_y / 2) % 2)
1642 + 4 * ((byte_x / 2) % 2)
1643 + 2 * (byte_y % 2)
1644 + 1 * (byte_x % 2);
1645
1646 if (swizzled) {
1647 /* adjust for bit6 swizzling */
1648 if (((byte_x / 8) % 2) == 1) {
1649 if (((byte_y / 8) % 2) == 0) {
1650 u += 64;
1651 } else {
1652 u -= 64;
1653 }
1654 }
1655 }
1656
1657 return u;
1658 }
1659
1660 void
1661 intel_miptree_updownsample(struct brw_context *brw,
1662 struct intel_mipmap_tree *src,
1663 struct intel_mipmap_tree *dst)
1664 {
1665 if (brw->gen < 8) {
1666 brw_blorp_blit_miptrees(brw,
1667 src, 0 /* level */, 0 /* layer */,
1668 dst, 0 /* level */, 0 /* layer */,
1669 0, 0,
1670 src->logical_width0, src->logical_height0,
1671 0, 0,
1672 dst->logical_width0, dst->logical_height0,
1673 GL_NEAREST, false, false /*mirror x, y*/);
1674 } else if (src->format == MESA_FORMAT_S_UINT8) {
1675 brw_meta_stencil_updownsample(brw, src, dst);
1676 } else {
1677 brw_meta_updownsample(brw, src, dst);
1678 }
1679
1680 if (src->stencil_mt) {
1681 if (brw->gen >= 8) {
1682 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
1683 return;
1684 }
1685
1686 brw_blorp_blit_miptrees(brw,
1687 src->stencil_mt, 0 /* level */, 0 /* layer */,
1688 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1689 0, 0,
1690 src->logical_width0, src->logical_height0,
1691 0, 0,
1692 dst->logical_width0, dst->logical_height0,
1693 GL_NEAREST, false, false /*mirror x, y*/);
1694 }
1695 }
1696
1697 void *
1698 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1699 {
1700 /* CPU accesses to color buffers don't understand fast color clears, so
1701 * resolve any pending fast color clears before we map.
1702 */
1703 intel_miptree_resolve_color(brw, mt);
1704
1705 drm_intel_bo *bo = mt->bo;
1706
1707 if (drm_intel_bo_references(brw->batch.bo, bo))
1708 intel_batchbuffer_flush(brw);
1709
1710 if (mt->tiling != I915_TILING_NONE)
1711 brw_bo_map_gtt(brw, bo, "miptree");
1712 else
1713 brw_bo_map(brw, bo, true, "miptree");
1714
1715 return bo->virtual;
1716 }
1717
1718 void
1719 intel_miptree_unmap_raw(struct brw_context *brw,
1720 struct intel_mipmap_tree *mt)
1721 {
1722 drm_intel_bo_unmap(mt->bo);
1723 }
1724
1725 static void
1726 intel_miptree_map_gtt(struct brw_context *brw,
1727 struct intel_mipmap_tree *mt,
1728 struct intel_miptree_map *map,
1729 unsigned int level, unsigned int slice)
1730 {
1731 unsigned int bw, bh;
1732 void *base;
1733 unsigned int image_x, image_y;
1734 int x = map->x;
1735 int y = map->y;
1736
1737 /* For compressed formats, the stride is the number of bytes per
1738 * row of blocks. intel_miptree_get_image_offset() already does
1739 * the divide.
1740 */
1741 _mesa_get_format_block_size(mt->format, &bw, &bh);
1742 assert(y % bh == 0);
1743 y /= bh;
1744
1745 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1746
1747 if (base == NULL)
1748 map->ptr = NULL;
1749 else {
1750 /* Note that in the case of cube maps, the caller must have passed the
1751 * slice number referencing the face.
1752 */
1753 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1754 x += image_x;
1755 y += image_y;
1756
1757 map->stride = mt->pitch;
1758 map->ptr = base + y * map->stride + x * mt->cpp;
1759 }
1760
1761 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1762 map->x, map->y, map->w, map->h,
1763 mt, _mesa_get_format_name(mt->format),
1764 x, y, map->ptr, map->stride);
1765 }
1766
1767 static void
1768 intel_miptree_unmap_gtt(struct brw_context *brw,
1769 struct intel_mipmap_tree *mt,
1770 struct intel_miptree_map *map,
1771 unsigned int level,
1772 unsigned int slice)
1773 {
1774 intel_miptree_unmap_raw(brw, mt);
1775 }
1776
1777 static void
1778 intel_miptree_map_blit(struct brw_context *brw,
1779 struct intel_mipmap_tree *mt,
1780 struct intel_miptree_map *map,
1781 unsigned int level, unsigned int slice)
1782 {
1783 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1784 0, 0,
1785 map->w, map->h, 1,
1786 false, 0,
1787 INTEL_MIPTREE_TILING_NONE);
1788 if (!map->mt) {
1789 fprintf(stderr, "Failed to allocate blit temporary\n");
1790 goto fail;
1791 }
1792 map->stride = map->mt->pitch;
1793
1794 if (!intel_miptree_blit(brw,
1795 mt, level, slice,
1796 map->x, map->y, false,
1797 map->mt, 0, 0,
1798 0, 0, false,
1799 map->w, map->h, GL_COPY)) {
1800 fprintf(stderr, "Failed to blit\n");
1801 goto fail;
1802 }
1803
1804 map->ptr = intel_miptree_map_raw(brw, map->mt);
1805
1806 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1807 map->x, map->y, map->w, map->h,
1808 mt, _mesa_get_format_name(mt->format),
1809 level, slice, map->ptr, map->stride);
1810
1811 return;
1812
1813 fail:
1814 intel_miptree_release(&map->mt);
1815 map->ptr = NULL;
1816 map->stride = 0;
1817 }
1818
1819 static void
1820 intel_miptree_unmap_blit(struct brw_context *brw,
1821 struct intel_mipmap_tree *mt,
1822 struct intel_miptree_map *map,
1823 unsigned int level,
1824 unsigned int slice)
1825 {
1826 struct gl_context *ctx = &brw->ctx;
1827
1828 intel_miptree_unmap_raw(brw, map->mt);
1829
1830 if (map->mode & GL_MAP_WRITE_BIT) {
1831 bool ok = intel_miptree_blit(brw,
1832 map->mt, 0, 0,
1833 0, 0, false,
1834 mt, level, slice,
1835 map->x, map->y, false,
1836 map->w, map->h, GL_COPY);
1837 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1838 }
1839
1840 intel_miptree_release(&map->mt);
1841 }
1842
1843 /**
1844 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1845 */
1846 #if defined(USE_SSE41)
1847 static void
1848 intel_miptree_map_movntdqa(struct brw_context *brw,
1849 struct intel_mipmap_tree *mt,
1850 struct intel_miptree_map *map,
1851 unsigned int level, unsigned int slice)
1852 {
1853 assert(map->mode & GL_MAP_READ_BIT);
1854 assert(!(map->mode & GL_MAP_WRITE_BIT));
1855
1856 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1857 map->x, map->y, map->w, map->h,
1858 mt, _mesa_get_format_name(mt->format),
1859 level, slice, map->ptr, map->stride);
1860
1861 /* Map the original image */
1862 uint32_t image_x;
1863 uint32_t image_y;
1864 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1865 image_x += map->x;
1866 image_y += map->y;
1867
1868 void *src = intel_miptree_map_raw(brw, mt);
1869 if (!src)
1870 return;
1871 src += image_y * mt->pitch;
1872 src += image_x * mt->cpp;
1873
1874 /* Due to the pixel offsets for the particular image being mapped, our
1875 * src pointer may not be 16-byte aligned. However, if the pitch is
1876 * divisible by 16, then the amount by which it's misaligned will remain
1877 * consistent from row to row.
1878 */
1879 assert((mt->pitch % 16) == 0);
1880 const int misalignment = ((uintptr_t) src) & 15;
1881
1882 /* Create an untiled temporary buffer for the mapping. */
1883 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1884
1885 map->stride = ALIGN(misalignment + width_bytes, 16);
1886
1887 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
1888 /* Offset the destination so it has the same misalignment as src. */
1889 map->ptr = map->buffer + misalignment;
1890
1891 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1892
1893 for (uint32_t y = 0; y < map->h; y++) {
1894 void *dst_ptr = map->ptr + y * map->stride;
1895 void *src_ptr = src + y * mt->pitch;
1896
1897 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1898 }
1899
1900 intel_miptree_unmap_raw(brw, mt);
1901 }
1902
1903 static void
1904 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1905 struct intel_mipmap_tree *mt,
1906 struct intel_miptree_map *map,
1907 unsigned int level,
1908 unsigned int slice)
1909 {
1910 _mesa_align_free(map->buffer);
1911 map->buffer = NULL;
1912 map->ptr = NULL;
1913 }
1914 #endif
1915
1916 static void
1917 intel_miptree_map_s8(struct brw_context *brw,
1918 struct intel_mipmap_tree *mt,
1919 struct intel_miptree_map *map,
1920 unsigned int level, unsigned int slice)
1921 {
1922 map->stride = map->w;
1923 map->buffer = map->ptr = malloc(map->stride * map->h);
1924 if (!map->buffer)
1925 return;
1926
1927 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1928 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1929 * invalidate is set, since we'll be writing the whole rectangle from our
1930 * temporary buffer back out.
1931 */
1932 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1933 uint8_t *untiled_s8_map = map->ptr;
1934 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1935 unsigned int image_x, image_y;
1936
1937 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1938
1939 for (uint32_t y = 0; y < map->h; y++) {
1940 for (uint32_t x = 0; x < map->w; x++) {
1941 ptrdiff_t offset = intel_offset_S8(mt->pitch,
1942 x + image_x + map->x,
1943 y + image_y + map->y,
1944 brw->has_swizzling);
1945 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1946 }
1947 }
1948
1949 intel_miptree_unmap_raw(brw, mt);
1950
1951 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1952 map->x, map->y, map->w, map->h,
1953 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1954 } else {
1955 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1956 map->x, map->y, map->w, map->h,
1957 mt, map->ptr, map->stride);
1958 }
1959 }
1960
1961 static void
1962 intel_miptree_unmap_s8(struct brw_context *brw,
1963 struct intel_mipmap_tree *mt,
1964 struct intel_miptree_map *map,
1965 unsigned int level,
1966 unsigned int slice)
1967 {
1968 if (map->mode & GL_MAP_WRITE_BIT) {
1969 unsigned int image_x, image_y;
1970 uint8_t *untiled_s8_map = map->ptr;
1971 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1972
1973 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1974
1975 for (uint32_t y = 0; y < map->h; y++) {
1976 for (uint32_t x = 0; x < map->w; x++) {
1977 ptrdiff_t offset = intel_offset_S8(mt->pitch,
1978 x + map->x,
1979 y + map->y,
1980 brw->has_swizzling);
1981 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1982 }
1983 }
1984
1985 intel_miptree_unmap_raw(brw, mt);
1986 }
1987
1988 free(map->buffer);
1989 }
1990
1991 static void
1992 intel_miptree_map_etc(struct brw_context *brw,
1993 struct intel_mipmap_tree *mt,
1994 struct intel_miptree_map *map,
1995 unsigned int level,
1996 unsigned int slice)
1997 {
1998 assert(mt->etc_format != MESA_FORMAT_NONE);
1999 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2000 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2001 }
2002
2003 assert(map->mode & GL_MAP_WRITE_BIT);
2004 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2005
2006 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2007 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2008 map->w, map->h, 1));
2009 map->ptr = map->buffer;
2010 }
2011
2012 static void
2013 intel_miptree_unmap_etc(struct brw_context *brw,
2014 struct intel_mipmap_tree *mt,
2015 struct intel_miptree_map *map,
2016 unsigned int level,
2017 unsigned int slice)
2018 {
2019 uint32_t image_x;
2020 uint32_t image_y;
2021 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2022
2023 image_x += map->x;
2024 image_y += map->y;
2025
2026 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2027 + image_y * mt->pitch
2028 + image_x * mt->cpp;
2029
2030 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2031 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2032 map->ptr, map->stride,
2033 map->w, map->h);
2034 else
2035 _mesa_unpack_etc2_format(dst, mt->pitch,
2036 map->ptr, map->stride,
2037 map->w, map->h, mt->etc_format);
2038
2039 intel_miptree_unmap_raw(brw, mt);
2040 free(map->buffer);
2041 }
2042
2043 /**
2044 * Mapping function for packed depth/stencil miptrees backed by real separate
2045 * miptrees for depth and stencil.
2046 *
2047 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2048 * separate from the depth buffer. Yet at the GL API level, we have to expose
2049 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2050 * be able to map that memory for texture storage and glReadPixels-type
2051 * operations. We give Mesa core that access by mallocing a temporary and
2052 * copying the data between the actual backing store and the temporary.
2053 */
2054 static void
2055 intel_miptree_map_depthstencil(struct brw_context *brw,
2056 struct intel_mipmap_tree *mt,
2057 struct intel_miptree_map *map,
2058 unsigned int level, unsigned int slice)
2059 {
2060 struct intel_mipmap_tree *z_mt = mt;
2061 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2062 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2063 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2064
2065 map->stride = map->w * packed_bpp;
2066 map->buffer = map->ptr = malloc(map->stride * map->h);
2067 if (!map->buffer)
2068 return;
2069
2070 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2071 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2072 * invalidate is set, since we'll be writing the whole rectangle from our
2073 * temporary buffer back out.
2074 */
2075 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2076 uint32_t *packed_map = map->ptr;
2077 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2078 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2079 unsigned int s_image_x, s_image_y;
2080 unsigned int z_image_x, z_image_y;
2081
2082 intel_miptree_get_image_offset(s_mt, level, slice,
2083 &s_image_x, &s_image_y);
2084 intel_miptree_get_image_offset(z_mt, level, slice,
2085 &z_image_x, &z_image_y);
2086
2087 for (uint32_t y = 0; y < map->h; y++) {
2088 for (uint32_t x = 0; x < map->w; x++) {
2089 int map_x = map->x + x, map_y = map->y + y;
2090 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2091 map_x + s_image_x,
2092 map_y + s_image_y,
2093 brw->has_swizzling);
2094 ptrdiff_t z_offset = ((map_y + z_image_y) *
2095 (z_mt->pitch / 4) +
2096 (map_x + z_image_x));
2097 uint8_t s = s_map[s_offset];
2098 uint32_t z = z_map[z_offset];
2099
2100 if (map_z32f_x24s8) {
2101 packed_map[(y * map->w + x) * 2 + 0] = z;
2102 packed_map[(y * map->w + x) * 2 + 1] = s;
2103 } else {
2104 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2105 }
2106 }
2107 }
2108
2109 intel_miptree_unmap_raw(brw, s_mt);
2110 intel_miptree_unmap_raw(brw, z_mt);
2111
2112 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2113 __FUNCTION__,
2114 map->x, map->y, map->w, map->h,
2115 z_mt, map->x + z_image_x, map->y + z_image_y,
2116 s_mt, map->x + s_image_x, map->y + s_image_y,
2117 map->ptr, map->stride);
2118 } else {
2119 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2120 map->x, map->y, map->w, map->h,
2121 mt, map->ptr, map->stride);
2122 }
2123 }
2124
2125 static void
2126 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2127 struct intel_mipmap_tree *mt,
2128 struct intel_miptree_map *map,
2129 unsigned int level,
2130 unsigned int slice)
2131 {
2132 struct intel_mipmap_tree *z_mt = mt;
2133 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2134 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2135
2136 if (map->mode & GL_MAP_WRITE_BIT) {
2137 uint32_t *packed_map = map->ptr;
2138 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2139 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2140 unsigned int s_image_x, s_image_y;
2141 unsigned int z_image_x, z_image_y;
2142
2143 intel_miptree_get_image_offset(s_mt, level, slice,
2144 &s_image_x, &s_image_y);
2145 intel_miptree_get_image_offset(z_mt, level, slice,
2146 &z_image_x, &z_image_y);
2147
2148 for (uint32_t y = 0; y < map->h; y++) {
2149 for (uint32_t x = 0; x < map->w; x++) {
2150 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2151 x + s_image_x + map->x,
2152 y + s_image_y + map->y,
2153 brw->has_swizzling);
2154 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2155 (z_mt->pitch / 4) +
2156 (x + z_image_x + map->x));
2157
2158 if (map_z32f_x24s8) {
2159 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2160 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2161 } else {
2162 uint32_t packed = packed_map[y * map->w + x];
2163 s_map[s_offset] = packed >> 24;
2164 z_map[z_offset] = packed;
2165 }
2166 }
2167 }
2168
2169 intel_miptree_unmap_raw(brw, s_mt);
2170 intel_miptree_unmap_raw(brw, z_mt);
2171
2172 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2173 __FUNCTION__,
2174 map->x, map->y, map->w, map->h,
2175 z_mt, _mesa_get_format_name(z_mt->format),
2176 map->x + z_image_x, map->y + z_image_y,
2177 s_mt, map->x + s_image_x, map->y + s_image_y,
2178 map->ptr, map->stride);
2179 }
2180
2181 free(map->buffer);
2182 }
2183
2184 /**
2185 * Create and attach a map to the miptree at (level, slice). Return the
2186 * attached map.
2187 */
2188 static struct intel_miptree_map*
2189 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2190 unsigned int level,
2191 unsigned int slice,
2192 unsigned int x,
2193 unsigned int y,
2194 unsigned int w,
2195 unsigned int h,
2196 GLbitfield mode)
2197 {
2198 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2199
2200 if (!map)
2201 return NULL;
2202
2203 assert(mt->level[level].slice[slice].map == NULL);
2204 mt->level[level].slice[slice].map = map;
2205
2206 map->mode = mode;
2207 map->x = x;
2208 map->y = y;
2209 map->w = w;
2210 map->h = h;
2211
2212 return map;
2213 }
2214
2215 /**
2216 * Release the map at (level, slice).
2217 */
2218 static void
2219 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2220 unsigned int level,
2221 unsigned int slice)
2222 {
2223 struct intel_miptree_map **map;
2224
2225 map = &mt->level[level].slice[slice].map;
2226 free(*map);
2227 *map = NULL;
2228 }
2229
2230 static bool
2231 can_blit_slice(struct intel_mipmap_tree *mt,
2232 unsigned int level, unsigned int slice)
2233 {
2234 uint32_t image_x;
2235 uint32_t image_y;
2236 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2237 if (image_x >= 32768 || image_y >= 32768)
2238 return false;
2239
2240 if (mt->pitch >= 32768)
2241 return false;
2242
2243 return true;
2244 }
2245
2246 void
2247 intel_miptree_map(struct brw_context *brw,
2248 struct intel_mipmap_tree *mt,
2249 unsigned int level,
2250 unsigned int slice,
2251 unsigned int x,
2252 unsigned int y,
2253 unsigned int w,
2254 unsigned int h,
2255 GLbitfield mode,
2256 void **out_ptr,
2257 int *out_stride)
2258 {
2259 struct intel_miptree_map *map;
2260
2261 assert(mt->num_samples <= 1);
2262
2263 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2264 if (!map){
2265 *out_ptr = NULL;
2266 *out_stride = 0;
2267 return;
2268 }
2269
2270 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2271 if (map->mode & GL_MAP_WRITE_BIT) {
2272 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2273 }
2274
2275 if (mt->format == MESA_FORMAT_S_UINT8) {
2276 intel_miptree_map_s8(brw, mt, map, level, slice);
2277 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2278 !(mode & BRW_MAP_DIRECT_BIT)) {
2279 intel_miptree_map_etc(brw, mt, map, level, slice);
2280 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2281 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2282 }
2283 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2284 else if (brw->has_llc &&
2285 !(mode & GL_MAP_WRITE_BIT) &&
2286 !mt->compressed &&
2287 (mt->tiling == I915_TILING_X ||
2288 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2289 can_blit_slice(mt, level, slice)) {
2290 intel_miptree_map_blit(brw, mt, map, level, slice);
2291 } else if (mt->tiling != I915_TILING_NONE &&
2292 mt->bo->size >= brw->max_gtt_map_object_size) {
2293 assert(can_blit_slice(mt, level, slice));
2294 intel_miptree_map_blit(brw, mt, map, level, slice);
2295 #if defined(USE_SSE41)
2296 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2297 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2298 #endif
2299 } else {
2300 intel_miptree_map_gtt(brw, mt, map, level, slice);
2301 }
2302
2303 *out_ptr = map->ptr;
2304 *out_stride = map->stride;
2305
2306 if (map->ptr == NULL)
2307 intel_miptree_release_map(mt, level, slice);
2308 }
2309
2310 void
2311 intel_miptree_unmap(struct brw_context *brw,
2312 struct intel_mipmap_tree *mt,
2313 unsigned int level,
2314 unsigned int slice)
2315 {
2316 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2317
2318 assert(mt->num_samples <= 1);
2319
2320 if (!map)
2321 return;
2322
2323 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2324 mt, _mesa_get_format_name(mt->format), level, slice);
2325
2326 if (mt->format == MESA_FORMAT_S_UINT8) {
2327 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2328 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2329 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2330 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2331 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2332 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2333 } else if (map->mt) {
2334 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2335 #if defined(USE_SSE41)
2336 } else if (map->buffer && cpu_has_sse4_1) {
2337 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2338 #endif
2339 } else {
2340 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2341 }
2342
2343 intel_miptree_release_map(mt, level, slice);
2344 }