i965/miptree: Share alloc_flags in miptree_create
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 if (blt_pitch >= 32768) {
523 perf_debug("blt pitch %u too large to blit, falling back to untiled",
524 blt_pitch);
525 return true;
526 }
527
528 return false;
529 }
530
531 static bool
532 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
533 enum isl_tiling tiling)
534 {
535 const struct gen_device_info *devinfo = &brw->screen->devinfo;
536
537 /* If the BO is too large to fit in the aperture, we need to use the
538 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
539 * handle Y-tiling, so we need to fall back to X.
540 */
541 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
542 tiling == ISL_TILING_Y0)
543 return true;
544
545 return false;
546 }
547
548 static struct intel_mipmap_tree *
549 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
550 unsigned first_level, unsigned last_level,
551 unsigned width0, unsigned height0, unsigned depth0,
552 unsigned num_samples, isl_tiling_flags_t tiling_flags,
553 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
554 unsigned row_pitch, struct brw_bo *bo)
555 {
556 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
557 if (!mt)
558 return NULL;
559
560 if (!create_mapping_table(target, first_level, last_level, depth0,
561 mt->level)) {
562 free(mt);
563 return NULL;
564 }
565
566 mt->refcount = 1;
567
568 if (target == GL_TEXTURE_CUBE_MAP ||
569 target == GL_TEXTURE_CUBE_MAP_ARRAY)
570 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
571
572 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
573 __func__,
574 _mesa_enum_to_string(target),
575 _mesa_get_format_name(format),
576 num_samples, width0, height0, depth0,
577 first_level, last_level, mt);
578
579 struct isl_surf_init_info init_info = {
580 .dim = get_isl_surf_dim(target),
581 .format = translate_tex_format(brw, format, false),
582 .width = width0,
583 .height = height0,
584 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
585 .levels = last_level - first_level + 1,
586 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
587 .samples = num_samples,
588 .row_pitch = row_pitch,
589 .usage = isl_usage_flags,
590 .tiling_flags = tiling_flags,
591 };
592
593 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
594 goto fail;
595
596 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
597 * on gen7 platforms we also need to create Y-tiled copies of stencil for
598 * texturing since the hardware can't sample from W-tiled surfaces. For
599 * everything else, check for corner cases needing special treatment.
600 */
601 bool is_depth_stencil =
602 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
603 if (!is_depth_stencil) {
604 if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
605 mt->surf.tiling, mt->surf.samples)) {
606 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
607 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
608 goto fail;
609 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
610 init_info.tiling_flags = 1u << ISL_TILING_X;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 }
614 }
615
616 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
617 * the size may not be multiple of row_pitch.
618 * See isl_apply_surface_padding().
619 */
620 if (mt->surf.tiling != ISL_TILING_LINEAR)
621 assert(mt->surf.size % mt->surf.row_pitch == 0);
622
623 if (!bo) {
624 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
625 mt->surf.size,
626 BRW_MEMZONE_OTHER,
627 isl_tiling_to_i915_tiling(
628 mt->surf.tiling),
629 mt->surf.row_pitch, alloc_flags);
630 if (!mt->bo)
631 goto fail;
632 } else {
633 mt->bo = bo;
634 }
635
636 mt->first_level = first_level;
637 mt->last_level = last_level;
638 mt->target = target;
639 mt->format = format;
640 mt->aux_state = NULL;
641 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
642 mt->compressed = _mesa_is_format_compressed(format);
643 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
644
645 return mt;
646
647 fail:
648 intel_miptree_release(&mt);
649 return NULL;
650 }
651
652 static bool
653 make_separate_stencil_surface(struct brw_context *brw,
654 struct intel_mipmap_tree *mt)
655 {
656 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
657 0, mt->surf.levels - 1,
658 mt->surf.logical_level0_px.width,
659 mt->surf.logical_level0_px.height,
660 mt->surf.dim == ISL_SURF_DIM_3D ?
661 mt->surf.logical_level0_px.depth :
662 mt->surf.logical_level0_px.array_len,
663 mt->surf.samples, ISL_TILING_W_BIT,
664 ISL_SURF_USAGE_STENCIL_BIT |
665 ISL_SURF_USAGE_TEXTURE_BIT,
666 BO_ALLOC_BUSY, 0, NULL);
667
668 if (!mt->stencil_mt)
669 return false;
670
671 mt->stencil_mt->r8stencil_needs_update = true;
672
673 return true;
674 }
675
676 static struct intel_mipmap_tree *
677 miptree_create(struct brw_context *brw,
678 GLenum target,
679 mesa_format format,
680 GLuint first_level,
681 GLuint last_level,
682 GLuint width0,
683 GLuint height0,
684 GLuint depth0,
685 GLuint num_samples,
686 enum intel_miptree_create_flags flags)
687 {
688 const struct gen_device_info *devinfo = &brw->screen->devinfo;
689 const uint32_t alloc_flags = (flags & MIPTREE_CREATE_BUSY) ?
690 BO_ALLOC_BUSY : 0;
691 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
692
693 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
694 if (devinfo->gen < 6 && _mesa_is_format_color_format(format))
695 tiling_flags &= ~ISL_TILING_Y0_BIT;
696
697 mesa_format mt_fmt;
698 if (_mesa_is_format_color_format(format)) {
699 mt_fmt = intel_lower_compressed_format(brw, format);
700 } else {
701 /* Fix up the Z miptree format for how we're splitting out separate
702 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
703 */
704 mt_fmt = (devinfo->gen < 6) ? format :
705 intel_depth_format_for_depthstencil_format(format);
706 }
707
708 if (format == MESA_FORMAT_S_UINT8)
709 return make_surface(brw, target, mt_fmt, first_level, last_level,
710 width0, height0, depth0, num_samples,
711 tiling_flags,
712 ISL_SURF_USAGE_STENCIL_BIT |
713 ISL_SURF_USAGE_TEXTURE_BIT,
714 alloc_flags,
715 0,
716 NULL);
717
718 const GLenum base_format = _mesa_get_format_base_format(format);
719 if ((base_format == GL_DEPTH_COMPONENT ||
720 base_format == GL_DEPTH_STENCIL)) {
721 struct intel_mipmap_tree *mt = make_surface(
722 brw, target, mt_fmt,
723 first_level, last_level,
724 width0, height0, depth0, num_samples, tiling_flags,
725 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
726 alloc_flags, 0, NULL);
727
728 if (needs_separate_stencil(brw, mt, format) &&
729 !make_separate_stencil_surface(brw, mt)) {
730 intel_miptree_release(&mt);
731 return NULL;
732 }
733
734 if (!(flags & MIPTREE_CREATE_NO_AUX))
735 intel_miptree_choose_aux_usage(brw, mt);
736
737 return mt;
738 }
739
740 struct intel_mipmap_tree *mt = make_surface(
741 brw, target, mt_fmt,
742 first_level, last_level,
743 width0, height0, depth0,
744 num_samples, tiling_flags,
745 ISL_SURF_USAGE_RENDER_TARGET_BIT |
746 ISL_SURF_USAGE_TEXTURE_BIT,
747 alloc_flags, 0, NULL);
748 if (!mt)
749 return NULL;
750
751 mt->etc_format = (mt_fmt != format) ? format : MESA_FORMAT_NONE;
752
753 if (!(flags & MIPTREE_CREATE_NO_AUX))
754 intel_miptree_choose_aux_usage(brw, mt);
755
756 return mt;
757 }
758
759 struct intel_mipmap_tree *
760 intel_miptree_create(struct brw_context *brw,
761 GLenum target,
762 mesa_format format,
763 GLuint first_level,
764 GLuint last_level,
765 GLuint width0,
766 GLuint height0,
767 GLuint depth0,
768 GLuint num_samples,
769 enum intel_miptree_create_flags flags)
770 {
771 assert(num_samples > 0);
772
773 struct intel_mipmap_tree *mt = miptree_create(
774 brw, target, format,
775 first_level, last_level,
776 width0, height0, depth0, num_samples,
777 flags);
778 if (!mt)
779 return NULL;
780
781 mt->offset = 0;
782
783 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
784 * compress clear color so we wait until an actual fast-clear to allocate
785 * it.
786 */
787 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
788 !intel_miptree_alloc_aux(brw, mt)) {
789 intel_miptree_release(&mt);
790 return NULL;
791 }
792
793 return mt;
794 }
795
796 struct intel_mipmap_tree *
797 intel_miptree_create_for_bo(struct brw_context *brw,
798 struct brw_bo *bo,
799 mesa_format format,
800 uint32_t offset,
801 uint32_t width,
802 uint32_t height,
803 uint32_t depth,
804 int pitch,
805 enum isl_tiling tiling,
806 enum intel_miptree_create_flags flags)
807 {
808 const struct gen_device_info *devinfo = &brw->screen->devinfo;
809 struct intel_mipmap_tree *mt;
810 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
811 const GLenum base_format = _mesa_get_format_base_format(format);
812
813 if ((base_format == GL_DEPTH_COMPONENT ||
814 base_format == GL_DEPTH_STENCIL)) {
815 const mesa_format depth_only_format =
816 intel_depth_format_for_depthstencil_format(format);
817 mt = make_surface(brw, target,
818 devinfo->gen >= 6 ? depth_only_format : format,
819 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
820 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
821 0, pitch, bo);
822 if (!mt)
823 return NULL;
824
825 brw_bo_reference(bo);
826
827 if (!(flags & MIPTREE_CREATE_NO_AUX))
828 intel_miptree_choose_aux_usage(brw, mt);
829
830 return mt;
831 } else if (format == MESA_FORMAT_S_UINT8) {
832 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
833 0, 0, width, height, depth, 1,
834 ISL_TILING_W_BIT,
835 ISL_SURF_USAGE_STENCIL_BIT |
836 ISL_SURF_USAGE_TEXTURE_BIT,
837 0, pitch, bo);
838 if (!mt)
839 return NULL;
840
841 assert(bo->size >= mt->surf.size);
842
843 brw_bo_reference(bo);
844 return mt;
845 }
846
847 /* Nothing will be able to use this miptree with the BO if the offset isn't
848 * aligned.
849 */
850 if (tiling != ISL_TILING_LINEAR)
851 assert(offset % 4096 == 0);
852
853 /* miptrees can't handle negative pitch. If you need flipping of images,
854 * that's outside of the scope of the mt.
855 */
856 assert(pitch >= 0);
857
858 mt = make_surface(brw, target, format,
859 0, 0, width, height, depth, 1,
860 1lu << tiling,
861 ISL_SURF_USAGE_RENDER_TARGET_BIT |
862 ISL_SURF_USAGE_TEXTURE_BIT,
863 0, pitch, bo);
864 if (!mt)
865 return NULL;
866
867 brw_bo_reference(bo);
868 mt->bo = bo;
869 mt->offset = offset;
870
871 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
872 intel_miptree_choose_aux_usage(brw, mt);
873
874 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
875 * only compress clear color so we wait until an actual fast-clear to
876 * allocate it.
877 */
878 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
879 !intel_miptree_alloc_aux(brw, mt)) {
880 intel_miptree_release(&mt);
881 return NULL;
882 }
883 }
884
885 return mt;
886 }
887
888 static struct intel_mipmap_tree *
889 miptree_create_for_planar_image(struct brw_context *brw,
890 __DRIimage *image, GLenum target,
891 enum isl_tiling tiling)
892 {
893 const struct intel_image_format *f = image->planar_format;
894 struct intel_mipmap_tree *planar_mt = NULL;
895
896 for (int i = 0; i < f->nplanes; i++) {
897 const int index = f->planes[i].buffer_index;
898 const uint32_t dri_format = f->planes[i].dri_format;
899 const mesa_format format = driImageFormatToGLFormat(dri_format);
900 const uint32_t width = image->width >> f->planes[i].width_shift;
901 const uint32_t height = image->height >> f->planes[i].height_shift;
902
903 /* Disable creation of the texture's aux buffers because the driver
904 * exposes no EGL API to manage them. That is, there is no API for
905 * resolving the aux buffer's content to the main buffer nor for
906 * invalidating the aux buffer's content.
907 */
908 struct intel_mipmap_tree *mt =
909 intel_miptree_create_for_bo(brw, image->bo, format,
910 image->offsets[index],
911 width, height, 1,
912 image->strides[index],
913 tiling,
914 MIPTREE_CREATE_NO_AUX);
915 if (mt == NULL) {
916 intel_miptree_release(&planar_mt);
917 return NULL;
918 }
919
920 mt->target = target;
921
922 if (i == 0)
923 planar_mt = mt;
924 else
925 planar_mt->plane[i - 1] = mt;
926 }
927
928 planar_mt->drm_modifier = image->modifier;
929
930 return planar_mt;
931 }
932
933 static bool
934 create_ccs_buf_for_image(struct brw_context *brw,
935 __DRIimage *image,
936 struct intel_mipmap_tree *mt,
937 enum isl_aux_state initial_state)
938 {
939 struct isl_surf temp_ccs_surf;
940
941 /* CCS is only supported for very simple miptrees */
942 assert(image->aux_offset != 0 && image->aux_pitch != 0);
943 assert(image->tile_x == 0 && image->tile_y == 0);
944 assert(mt->surf.samples == 1);
945 assert(mt->surf.levels == 1);
946 assert(mt->surf.logical_level0_px.depth == 1);
947 assert(mt->surf.logical_level0_px.array_len == 1);
948 assert(mt->first_level == 0);
949 assert(mt->last_level == 0);
950
951 /* We shouldn't already have a CCS */
952 assert(!mt->aux_buf);
953
954 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
955 image->aux_pitch))
956 return false;
957
958 assert(image->aux_offset < image->bo->size);
959 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
960
961 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
962 if (mt->aux_buf == NULL)
963 return false;
964
965 mt->aux_state = create_aux_state_map(mt, initial_state);
966 if (!mt->aux_state) {
967 free(mt->aux_buf);
968 mt->aux_buf = NULL;
969 return false;
970 }
971
972 /* On gen10+ we start using an extra space in the aux buffer to store the
973 * indirect clear color. However, if we imported an image from the window
974 * system with CCS, we don't have the extra space at the end of the aux
975 * buffer. So create a new bo here that will store that clear color.
976 */
977 if (brw->isl_dev.ss.clear_color_state_size > 0) {
978 mt->aux_buf->clear_color_bo =
979 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
980 brw->isl_dev.ss.clear_color_state_size,
981 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
982 BO_ALLOC_ZEROED);
983 if (!mt->aux_buf->clear_color_bo) {
984 free(mt->aux_buf);
985 mt->aux_buf = NULL;
986 return false;
987 }
988 }
989
990 mt->aux_buf->bo = image->bo;
991 brw_bo_reference(image->bo);
992
993 mt->aux_buf->offset = image->aux_offset;
994 mt->aux_buf->surf = temp_ccs_surf;
995
996 return true;
997 }
998
999 struct intel_mipmap_tree *
1000 intel_miptree_create_for_dri_image(struct brw_context *brw,
1001 __DRIimage *image, GLenum target,
1002 mesa_format format,
1003 bool allow_internal_aux)
1004 {
1005 uint32_t bo_tiling, bo_swizzle;
1006 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1007
1008 const struct isl_drm_modifier_info *mod_info =
1009 isl_drm_modifier_get_info(image->modifier);
1010
1011 const enum isl_tiling tiling =
1012 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1013
1014 if (image->planar_format && image->planar_format->nplanes > 1)
1015 return miptree_create_for_planar_image(brw, image, target, tiling);
1016
1017 if (image->planar_format)
1018 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1019
1020 if (!brw->ctx.TextureFormatSupported[format]) {
1021 /* The texture storage paths in core Mesa detect if the driver does not
1022 * support the user-requested format, and then searches for a
1023 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1024 * do the fallbacks here for important formats.
1025 *
1026 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1027 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1028 * the Chrome OS compositor consumes as dma_buf EGLImages.
1029 */
1030 format = _mesa_format_fallback_rgbx_to_rgba(format);
1031 }
1032
1033 if (!brw->ctx.TextureFormatSupported[format])
1034 return NULL;
1035
1036 enum intel_miptree_create_flags mt_create_flags = 0;
1037
1038 /* If this image comes in from a window system, we have different
1039 * requirements than if it comes in via an EGL import operation. Window
1040 * system images can use any form of auxiliary compression we wish because
1041 * they get "flushed" before being handed off to the window system and we
1042 * have the opportunity to do resolves. Non window-system images, on the
1043 * other hand, have no resolve point so we can't have aux without a
1044 * modifier.
1045 */
1046 if (!allow_internal_aux)
1047 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1048
1049 /* If we have a modifier which specifies aux, don't create one yet */
1050 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1051 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1052
1053 /* Disable creation of the texture's aux buffers because the driver exposes
1054 * no EGL API to manage them. That is, there is no API for resolving the aux
1055 * buffer's content to the main buffer nor for invalidating the aux buffer's
1056 * content.
1057 */
1058 struct intel_mipmap_tree *mt =
1059 intel_miptree_create_for_bo(brw, image->bo, format,
1060 image->offset, image->width, image->height, 1,
1061 image->pitch, tiling, mt_create_flags);
1062 if (mt == NULL)
1063 return NULL;
1064
1065 mt->target = target;
1066 mt->level[0].level_x = image->tile_x;
1067 mt->level[0].level_y = image->tile_y;
1068 mt->drm_modifier = image->modifier;
1069
1070 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1071 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1072 * trouble resolving back to destination image due to alignment issues.
1073 */
1074 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1075 if (!devinfo->has_surface_tile_offset) {
1076 uint32_t draw_x, draw_y;
1077 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1078
1079 if (draw_x != 0 || draw_y != 0) {
1080 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1081 intel_miptree_release(&mt);
1082 return NULL;
1083 }
1084 }
1085
1086 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1087 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1088
1089 mt->aux_usage = mod_info->aux_usage;
1090 /* If we are a window system buffer, then we can support fast-clears
1091 * even if the modifier doesn't support them by doing a partial resolve
1092 * as part of the flush operation.
1093 */
1094 mt->supports_fast_clear =
1095 allow_internal_aux || mod_info->supports_clear_color;
1096
1097 /* We don't know the actual state of the surface when we get it but we
1098 * can make a pretty good guess based on the modifier. What we do know
1099 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1100 * a worst case of compression.
1101 */
1102 enum isl_aux_state initial_state =
1103 isl_drm_modifier_get_default_aux_state(image->modifier);
1104
1105 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1106 intel_miptree_release(&mt);
1107 return NULL;
1108 }
1109 }
1110
1111 /* Don't assume coherency for imported EGLimages. We don't know what
1112 * external clients are going to do with it. They may scan it out.
1113 */
1114 image->bo->cache_coherent = false;
1115
1116 return mt;
1117 }
1118
1119 /**
1120 * For a singlesample renderbuffer, this simply wraps the given BO with a
1121 * miptree.
1122 *
1123 * For a multisample renderbuffer, this wraps the window system's
1124 * (singlesample) BO with a singlesample miptree attached to the
1125 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1126 * that will contain the actual rendering (which is lazily resolved to
1127 * irb->singlesample_mt).
1128 */
1129 bool
1130 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1131 struct intel_renderbuffer *irb,
1132 struct intel_mipmap_tree *singlesample_mt,
1133 uint32_t width, uint32_t height,
1134 uint32_t pitch)
1135 {
1136 struct intel_mipmap_tree *multisample_mt = NULL;
1137 struct gl_renderbuffer *rb = &irb->Base.Base;
1138 mesa_format format = rb->Format;
1139 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1140
1141 /* Only the front and back buffers, which are color buffers, are allocated
1142 * through the image loader.
1143 */
1144 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1145 _mesa_get_format_base_format(format) == GL_RGBA);
1146
1147 assert(singlesample_mt);
1148
1149 if (num_samples == 1) {
1150 intel_miptree_release(&irb->mt);
1151 irb->mt = singlesample_mt;
1152
1153 assert(!irb->singlesample_mt);
1154 } else {
1155 intel_miptree_release(&irb->singlesample_mt);
1156 irb->singlesample_mt = singlesample_mt;
1157
1158 if (!irb->mt ||
1159 irb->mt->surf.logical_level0_px.width != width ||
1160 irb->mt->surf.logical_level0_px.height != height) {
1161 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1162 format,
1163 width,
1164 height,
1165 num_samples);
1166 if (!multisample_mt)
1167 goto fail;
1168
1169 irb->need_downsample = false;
1170 intel_miptree_release(&irb->mt);
1171 irb->mt = multisample_mt;
1172 }
1173 }
1174 return true;
1175
1176 fail:
1177 intel_miptree_release(&irb->mt);
1178 return false;
1179 }
1180
1181 struct intel_mipmap_tree*
1182 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1183 mesa_format format,
1184 uint32_t width,
1185 uint32_t height,
1186 uint32_t num_samples)
1187 {
1188 struct intel_mipmap_tree *mt;
1189 uint32_t depth = 1;
1190 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1191
1192 mt = intel_miptree_create(brw, target, format, 0, 0,
1193 width, height, depth, num_samples,
1194 MIPTREE_CREATE_BUSY);
1195 if (!mt)
1196 goto fail;
1197
1198 return mt;
1199
1200 fail:
1201 intel_miptree_release(&mt);
1202 return NULL;
1203 }
1204
1205 void
1206 intel_miptree_reference(struct intel_mipmap_tree **dst,
1207 struct intel_mipmap_tree *src)
1208 {
1209 if (*dst == src)
1210 return;
1211
1212 intel_miptree_release(dst);
1213
1214 if (src) {
1215 src->refcount++;
1216 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1217 }
1218
1219 *dst = src;
1220 }
1221
1222 static void
1223 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1224 {
1225 if (aux_buf == NULL)
1226 return;
1227
1228 brw_bo_unreference(aux_buf->bo);
1229 brw_bo_unreference(aux_buf->clear_color_bo);
1230
1231 free(aux_buf);
1232 }
1233
1234 void
1235 intel_miptree_release(struct intel_mipmap_tree **mt)
1236 {
1237 if (!*mt)
1238 return;
1239
1240 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1241 if (--(*mt)->refcount <= 0) {
1242 GLuint i;
1243
1244 DBG("%s deleting %p\n", __func__, *mt);
1245
1246 brw_bo_unreference((*mt)->bo);
1247 intel_miptree_release(&(*mt)->stencil_mt);
1248 intel_miptree_release(&(*mt)->r8stencil_mt);
1249 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1250 free_aux_state_map((*mt)->aux_state);
1251
1252 intel_miptree_release(&(*mt)->plane[0]);
1253 intel_miptree_release(&(*mt)->plane[1]);
1254
1255 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1256 free((*mt)->level[i].slice);
1257 }
1258
1259 free(*mt);
1260 }
1261 *mt = NULL;
1262 }
1263
1264
1265 void
1266 intel_get_image_dims(struct gl_texture_image *image,
1267 int *width, int *height, int *depth)
1268 {
1269 switch (image->TexObject->Target) {
1270 case GL_TEXTURE_1D_ARRAY:
1271 /* For a 1D Array texture the OpenGL API will treat the image height as
1272 * the number of array slices. For Intel hardware, we treat the 1D array
1273 * as a 2D Array with a height of 1. So, here we want to swap image
1274 * height and depth.
1275 */
1276 assert(image->Depth == 1);
1277 *width = image->Width;
1278 *height = 1;
1279 *depth = image->Height;
1280 break;
1281 case GL_TEXTURE_CUBE_MAP:
1282 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1283 * though we really have 6 slices.
1284 */
1285 assert(image->Depth == 1);
1286 *width = image->Width;
1287 *height = image->Height;
1288 *depth = 6;
1289 break;
1290 default:
1291 *width = image->Width;
1292 *height = image->Height;
1293 *depth = image->Depth;
1294 break;
1295 }
1296 }
1297
1298 /**
1299 * Can the image be pulled into a unified mipmap tree? This mirrors
1300 * the completeness test in a lot of ways.
1301 *
1302 * Not sure whether I want to pass gl_texture_image here.
1303 */
1304 bool
1305 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1306 struct gl_texture_image *image)
1307 {
1308 struct intel_texture_image *intelImage = intel_texture_image(image);
1309 GLuint level = intelImage->base.Base.Level;
1310 int width, height, depth;
1311
1312 /* glTexImage* choose the texture object based on the target passed in, and
1313 * objects can't change targets over their lifetimes, so this should be
1314 * true.
1315 */
1316 assert(image->TexObject->Target == mt->target);
1317
1318 mesa_format mt_format = mt->format;
1319 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1320 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1321 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1322 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1323 if (mt->etc_format != MESA_FORMAT_NONE)
1324 mt_format = mt->etc_format;
1325
1326 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1327 _mesa_get_srgb_format_linear(mt_format))
1328 return false;
1329
1330 intel_get_image_dims(image, &width, &height, &depth);
1331
1332 if (mt->target == GL_TEXTURE_CUBE_MAP)
1333 depth = 6;
1334
1335 if (level >= mt->surf.levels)
1336 return false;
1337
1338 const unsigned level_depth =
1339 mt->surf.dim == ISL_SURF_DIM_3D ?
1340 minify(mt->surf.logical_level0_px.depth, level) :
1341 mt->surf.logical_level0_px.array_len;
1342
1343 return width == minify(mt->surf.logical_level0_px.width, level) &&
1344 height == minify(mt->surf.logical_level0_px.height, level) &&
1345 depth == level_depth &&
1346 MAX2(image->NumSamples, 1) == mt->surf.samples;
1347 }
1348
1349 void
1350 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1351 GLuint level, GLuint slice,
1352 GLuint *x, GLuint *y)
1353 {
1354 if (level == 0 && slice == 0) {
1355 *x = mt->level[0].level_x;
1356 *y = mt->level[0].level_y;
1357 return;
1358 }
1359
1360 uint32_t x_offset_sa, y_offset_sa;
1361
1362 /* Miptree itself can have an offset only if it represents a single
1363 * slice in an imported buffer object.
1364 * See intel_miptree_create_for_dri_image().
1365 */
1366 assert(mt->level[0].level_x == 0);
1367 assert(mt->level[0].level_y == 0);
1368
1369 /* Given level is relative to level zero while the miptree may be
1370 * represent just a subset of all levels starting from 'first_level'.
1371 */
1372 assert(level >= mt->first_level);
1373 level -= mt->first_level;
1374
1375 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1376 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1377 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1378 &x_offset_sa, &y_offset_sa);
1379
1380 *x = x_offset_sa;
1381 *y = y_offset_sa;
1382 }
1383
1384
1385 /**
1386 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1387 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1388 * and tile_h is set to 1.
1389 */
1390 void
1391 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1392 uint32_t *tile_w, uint32_t *tile_h)
1393 {
1394 switch (tiling) {
1395 case ISL_TILING_X:
1396 *tile_w = 512;
1397 *tile_h = 8;
1398 break;
1399 case ISL_TILING_Y0:
1400 *tile_w = 128;
1401 *tile_h = 32;
1402 break;
1403 case ISL_TILING_LINEAR:
1404 *tile_w = cpp;
1405 *tile_h = 1;
1406 break;
1407 default:
1408 unreachable("not reached");
1409 }
1410 }
1411
1412
1413 /**
1414 * This function computes masks that may be used to select the bits of the X
1415 * and Y coordinates that indicate the offset within a tile. If the BO is
1416 * untiled, the masks are set to 0.
1417 */
1418 void
1419 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1420 uint32_t *mask_x, uint32_t *mask_y)
1421 {
1422 uint32_t tile_w_bytes, tile_h;
1423
1424 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1425
1426 *mask_x = tile_w_bytes / cpp - 1;
1427 *mask_y = tile_h - 1;
1428 }
1429
1430 /**
1431 * Compute the offset (in bytes) from the start of the BO to the given x
1432 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1433 * multiples of the tile size.
1434 */
1435 uint32_t
1436 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1437 uint32_t x, uint32_t y)
1438 {
1439 int cpp = mt->cpp;
1440 uint32_t pitch = mt->surf.row_pitch;
1441
1442 switch (mt->surf.tiling) {
1443 default:
1444 unreachable("not reached");
1445 case ISL_TILING_LINEAR:
1446 return y * pitch + x * cpp;
1447 case ISL_TILING_X:
1448 assert((x % (512 / cpp)) == 0);
1449 assert((y % 8) == 0);
1450 return y * pitch + x / (512 / cpp) * 4096;
1451 case ISL_TILING_Y0:
1452 assert((x % (128 / cpp)) == 0);
1453 assert((y % 32) == 0);
1454 return y * pitch + x / (128 / cpp) * 4096;
1455 }
1456 }
1457
1458 /**
1459 * Rendering with tiled buffers requires that the base address of the buffer
1460 * be aligned to a page boundary. For renderbuffers, and sometimes with
1461 * textures, we may want the surface to point at a texture image level that
1462 * isn't at a page boundary.
1463 *
1464 * This function returns an appropriately-aligned base offset
1465 * according to the tiling restrictions, plus any required x/y offset
1466 * from there.
1467 */
1468 uint32_t
1469 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1470 GLuint level, GLuint slice,
1471 uint32_t *tile_x,
1472 uint32_t *tile_y)
1473 {
1474 uint32_t x, y;
1475 uint32_t mask_x, mask_y;
1476
1477 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1478 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1479
1480 *tile_x = x & mask_x;
1481 *tile_y = y & mask_y;
1482
1483 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1484 }
1485
1486 static void
1487 intel_miptree_copy_slice_sw(struct brw_context *brw,
1488 struct intel_mipmap_tree *src_mt,
1489 unsigned src_level, unsigned src_layer,
1490 struct intel_mipmap_tree *dst_mt,
1491 unsigned dst_level, unsigned dst_layer,
1492 unsigned width, unsigned height)
1493 {
1494 void *src, *dst;
1495 ptrdiff_t src_stride, dst_stride;
1496 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1497
1498 intel_miptree_map(brw, src_mt,
1499 src_level, src_layer,
1500 0, 0,
1501 width, height,
1502 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1503 &src, &src_stride);
1504
1505 intel_miptree_map(brw, dst_mt,
1506 dst_level, dst_layer,
1507 0, 0,
1508 width, height,
1509 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1510 BRW_MAP_DIRECT_BIT,
1511 &dst, &dst_stride);
1512
1513 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1514 _mesa_get_format_name(src_mt->format),
1515 src_mt, src, src_stride,
1516 _mesa_get_format_name(dst_mt->format),
1517 dst_mt, dst, dst_stride,
1518 width, height);
1519
1520 int row_size = cpp * width;
1521 if (src_stride == row_size &&
1522 dst_stride == row_size) {
1523 memcpy(dst, src, row_size * height);
1524 } else {
1525 for (int i = 0; i < height; i++) {
1526 memcpy(dst, src, row_size);
1527 dst += dst_stride;
1528 src += src_stride;
1529 }
1530 }
1531
1532 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1533 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1534
1535 /* Don't forget to copy the stencil data over, too. We could have skipped
1536 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1537 * shuffling the two data sources in/out of temporary storage instead of
1538 * the direct mapping we get this way.
1539 */
1540 if (dst_mt->stencil_mt) {
1541 assert(src_mt->stencil_mt);
1542 intel_miptree_copy_slice_sw(brw,
1543 src_mt->stencil_mt, src_level, src_layer,
1544 dst_mt->stencil_mt, dst_level, dst_layer,
1545 width, height);
1546 }
1547 }
1548
1549 void
1550 intel_miptree_copy_slice(struct brw_context *brw,
1551 struct intel_mipmap_tree *src_mt,
1552 unsigned src_level, unsigned src_layer,
1553 struct intel_mipmap_tree *dst_mt,
1554 unsigned dst_level, unsigned dst_layer)
1555
1556 {
1557 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1558 mesa_format format = src_mt->format;
1559 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1560 src_level - src_mt->first_level);
1561 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1562 src_level - src_mt->first_level);
1563
1564 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1565 src_level - src_mt->first_level));
1566
1567 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1568 _mesa_get_srgb_format_linear(dst_mt->format));
1569
1570 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1571 _mesa_get_format_name(src_mt->format),
1572 src_mt, src_level, src_layer,
1573 _mesa_get_format_name(dst_mt->format),
1574 dst_mt, dst_level, dst_layer,
1575 width, height);
1576
1577 if (devinfo->gen >= 6) {
1578 /* On gen6 and above, we just use blorp. It's faster than the blitter
1579 * and can handle everything without software fallbacks.
1580 */
1581 brw_blorp_copy_miptrees(brw,
1582 src_mt, src_level, src_layer,
1583 dst_mt, dst_level, dst_layer,
1584 0, 0, 0, 0, width, height);
1585
1586 if (src_mt->stencil_mt) {
1587 assert(dst_mt->stencil_mt);
1588 brw_blorp_copy_miptrees(brw,
1589 src_mt->stencil_mt, src_level, src_layer,
1590 dst_mt->stencil_mt, dst_level, dst_layer,
1591 0, 0, 0, 0, width, height);
1592 }
1593 return;
1594 }
1595
1596 if (dst_mt->compressed) {
1597 unsigned int i, j;
1598 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1599 height = ALIGN_NPOT(height, j) / j;
1600 width = ALIGN_NPOT(width, i) / i;
1601 }
1602
1603 /* Gen4-5 doesn't support separate stencil */
1604 assert(!src_mt->stencil_mt);
1605
1606 uint32_t dst_x, dst_y, src_x, src_y;
1607 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1608 &dst_x, &dst_y);
1609 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1610 &src_x, &src_y);
1611
1612 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1613 _mesa_get_format_name(src_mt->format),
1614 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1615 _mesa_get_format_name(dst_mt->format),
1616 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1617 width, height);
1618
1619 if (!intel_miptree_blit(brw,
1620 src_mt, src_level, src_layer, 0, 0, false,
1621 dst_mt, dst_level, dst_layer, 0, 0, false,
1622 width, height, COLOR_LOGICOP_COPY)) {
1623 perf_debug("miptree validate blit for %s failed\n",
1624 _mesa_get_format_name(format));
1625
1626 intel_miptree_copy_slice_sw(brw,
1627 src_mt, src_level, src_layer,
1628 dst_mt, dst_level, dst_layer,
1629 width, height);
1630 }
1631 }
1632
1633 /**
1634 * Copies the image's current data to the given miptree, and associates that
1635 * miptree with the image.
1636 */
1637 void
1638 intel_miptree_copy_teximage(struct brw_context *brw,
1639 struct intel_texture_image *intelImage,
1640 struct intel_mipmap_tree *dst_mt)
1641 {
1642 struct intel_mipmap_tree *src_mt = intelImage->mt;
1643 struct intel_texture_object *intel_obj =
1644 intel_texture_object(intelImage->base.Base.TexObject);
1645 int level = intelImage->base.Base.Level;
1646 const unsigned face = intelImage->base.Base.Face;
1647 unsigned start_layer, end_layer;
1648
1649 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1650 assert(face == 0);
1651 assert(intelImage->base.Base.Height);
1652 start_layer = 0;
1653 end_layer = intelImage->base.Base.Height - 1;
1654 } else if (face > 0) {
1655 start_layer = face;
1656 end_layer = face;
1657 } else {
1658 assert(intelImage->base.Base.Depth);
1659 start_layer = 0;
1660 end_layer = intelImage->base.Base.Depth - 1;
1661 }
1662
1663 for (unsigned i = start_layer; i <= end_layer; i++) {
1664 intel_miptree_copy_slice(brw,
1665 src_mt, level, i,
1666 dst_mt, level, i);
1667 }
1668
1669 intel_miptree_reference(&intelImage->mt, dst_mt);
1670 intel_obj->needs_validate = true;
1671 }
1672
1673 static struct intel_miptree_aux_buffer *
1674 intel_alloc_aux_buffer(struct brw_context *brw,
1675 const struct isl_surf *aux_surf,
1676 bool wants_memset,
1677 uint8_t memset_value)
1678 {
1679 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1680 if (!buf)
1681 return false;
1682
1683 uint64_t size = aux_surf->size;
1684
1685 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1686 if (has_indirect_clear) {
1687 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1688 * will set a pointer to a dword somewhere that contains the color. So,
1689 * allocate the space for the clear color value here on the aux buffer.
1690 */
1691 buf->clear_color_offset = size;
1692 size += brw->isl_dev.ss.clear_color_state_size;
1693 }
1694
1695 /* If the buffer needs to be initialised (requiring the buffer to be
1696 * immediately mapped to cpu space for writing), do not use the gpu access
1697 * flag which can cause an unnecessary delay if the backing pages happened
1698 * to be just used by the GPU.
1699 */
1700 const bool alloc_zeroed = wants_memset && memset_value == 0;
1701 const bool needs_memset =
1702 !alloc_zeroed && (wants_memset || has_indirect_clear);
1703 const uint32_t alloc_flags =
1704 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1705
1706 /* ISL has stricter set of alignment rules then the drm allocator.
1707 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1708 * trying to recalculate based on different format block sizes.
1709 */
1710 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1711 BRW_MEMZONE_OTHER, I915_TILING_Y,
1712 aux_surf->row_pitch, alloc_flags);
1713 if (!buf->bo) {
1714 free(buf);
1715 return NULL;
1716 }
1717
1718 /* Initialize the bo to the desired value */
1719 if (needs_memset) {
1720 assert(!(alloc_flags & BO_ALLOC_BUSY));
1721
1722 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1723 if (map == NULL) {
1724 intel_miptree_aux_buffer_free(buf);
1725 return NULL;
1726 }
1727
1728 /* Memset the aux_surf portion of the BO. */
1729 if (wants_memset)
1730 memset(map, memset_value, aux_surf->size);
1731
1732 /* Zero the indirect clear color to match ::fast_clear_color. */
1733 if (has_indirect_clear) {
1734 memset((char *)map + buf->clear_color_offset, 0,
1735 brw->isl_dev.ss.clear_color_state_size);
1736 }
1737
1738 brw_bo_unmap(buf->bo);
1739 }
1740
1741 if (has_indirect_clear) {
1742 buf->clear_color_bo = buf->bo;
1743 brw_bo_reference(buf->clear_color_bo);
1744 }
1745
1746 buf->surf = *aux_surf;
1747
1748 return buf;
1749 }
1750
1751
1752 /**
1753 * Helper for intel_miptree_alloc_aux() that sets
1754 * \c mt->level[level].has_hiz. Return true if and only if
1755 * \c has_hiz was set.
1756 */
1757 static bool
1758 intel_miptree_level_enable_hiz(struct brw_context *brw,
1759 struct intel_mipmap_tree *mt,
1760 uint32_t level)
1761 {
1762 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1763
1764 assert(mt->aux_buf);
1765 assert(mt->surf.size > 0);
1766
1767 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1768 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1769 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1770
1771 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1772 * and the height is 4 aligned. This allows our HiZ support
1773 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1774 * we can grow the width & height to allow the HiZ op to
1775 * force the proper size alignments.
1776 */
1777 if (level > 0 && ((width & 7) || (height & 3))) {
1778 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1779 return false;
1780 }
1781 }
1782
1783 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1784 mt->level[level].has_hiz = true;
1785 return true;
1786 }
1787
1788
1789 /**
1790 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1791 *
1792 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1793 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1794 * compress clear color so we wait until an actual fast-clear to allocate it.
1795 */
1796 bool
1797 intel_miptree_alloc_aux(struct brw_context *brw,
1798 struct intel_mipmap_tree *mt)
1799 {
1800 assert(mt->aux_buf == NULL);
1801
1802 /* Get the aux buf allocation parameters for this miptree. */
1803 enum isl_aux_state initial_state;
1804 uint8_t memset_value;
1805 struct isl_surf aux_surf;
1806 MAYBE_UNUSED bool aux_surf_ok;
1807
1808 switch (mt->aux_usage) {
1809 case ISL_AUX_USAGE_NONE:
1810 aux_surf.size = 0;
1811 aux_surf_ok = true;
1812 break;
1813 case ISL_AUX_USAGE_HIZ:
1814 initial_state = ISL_AUX_STATE_AUX_INVALID;
1815 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1816 break;
1817 case ISL_AUX_USAGE_MCS:
1818 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1819 *
1820 * When MCS buffer is enabled and bound to MSRT, it is required that
1821 * it is cleared prior to any rendering.
1822 *
1823 * Since we don't use the MCS buffer for any purpose other than
1824 * rendering, it makes sense to just clear it immediately upon
1825 * allocation.
1826 *
1827 * Note: the clear value for MCS buffers is all 1's, so we memset to
1828 * 0xff.
1829 */
1830 initial_state = ISL_AUX_STATE_CLEAR;
1831 memset_value = 0xFF;
1832 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1833 break;
1834 case ISL_AUX_USAGE_CCS_D:
1835 case ISL_AUX_USAGE_CCS_E:
1836 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1837 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1838 * Target(s)":
1839 *
1840 * "If Software wants to enable Color Compression without Fast
1841 * clear, Software needs to initialize MCS with zeros."
1842 *
1843 * A CCS value of 0 indicates that the corresponding block is in the
1844 * pass-through state which is what we want.
1845 *
1846 * For CCS_D, do the same thing. On gen9+, this avoids having any
1847 * undefined bits in the aux buffer.
1848 */
1849 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1850 memset_value = 0;
1851 aux_surf_ok =
1852 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1853 break;
1854 }
1855
1856 /* We should have a valid aux_surf. */
1857 assert(aux_surf_ok);
1858
1859 /* No work is needed for a zero-sized auxiliary buffer. */
1860 if (aux_surf.size == 0)
1861 return true;
1862
1863 /* Create the aux_state for the auxiliary buffer. */
1864 mt->aux_state = create_aux_state_map(mt, initial_state);
1865 if (mt->aux_state == NULL)
1866 return false;
1867
1868 /* Allocate the auxiliary buffer. */
1869 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1870 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1871 memset_value);
1872 if (mt->aux_buf == NULL) {
1873 free_aux_state_map(mt->aux_state);
1874 mt->aux_state = NULL;
1875 return false;
1876 }
1877
1878 /* Perform aux_usage-specific initialization. */
1879 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1880 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1881 intel_miptree_level_enable_hiz(brw, mt, level);
1882 }
1883
1884 return true;
1885 }
1886
1887
1888 /**
1889 * Can the miptree sample using the hiz buffer?
1890 */
1891 bool
1892 intel_miptree_sample_with_hiz(struct brw_context *brw,
1893 struct intel_mipmap_tree *mt)
1894 {
1895 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1896
1897 if (!devinfo->has_sample_with_hiz) {
1898 return false;
1899 }
1900
1901 if (!mt->aux_buf) {
1902 return false;
1903 }
1904
1905 /* It seems the hardware won't fallback to the depth buffer if some of the
1906 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1907 * of the texture to be HiZ enabled.
1908 */
1909 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1910 if (!intel_miptree_level_has_hiz(mt, level))
1911 return false;
1912 }
1913
1914 /* If compressed multisampling is enabled, then we use it for the auxiliary
1915 * buffer instead.
1916 *
1917 * From the BDW PRM (Volume 2d: Command Reference: Structures
1918 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1919 *
1920 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1921 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1922 *
1923 * There is no such blurb for 1D textures, but there is sufficient evidence
1924 * that this is broken on SKL+.
1925 */
1926 return (mt->surf.samples == 1 &&
1927 mt->target != GL_TEXTURE_3D &&
1928 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1929 }
1930
1931 /**
1932 * Does the miptree slice have hiz enabled?
1933 */
1934 bool
1935 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1936 {
1937 intel_miptree_check_level_layer(mt, level, 0);
1938 return mt->level[level].has_hiz;
1939 }
1940
1941 static inline uint32_t
1942 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1943 uint32_t start_level, uint32_t num_levels)
1944 {
1945 assert(start_level >= mt->first_level);
1946 assert(start_level <= mt->last_level);
1947
1948 if (num_levels == INTEL_REMAINING_LAYERS)
1949 num_levels = mt->last_level - start_level + 1;
1950 /* Check for overflow */
1951 assert(start_level + num_levels >= start_level);
1952 assert(start_level + num_levels <= mt->last_level + 1);
1953
1954 return num_levels;
1955 }
1956
1957 static inline uint32_t
1958 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1959 uint32_t start_layer, uint32_t num_layers)
1960 {
1961 assert(level <= mt->last_level);
1962
1963 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1964 assert(start_layer < total_num_layers);
1965 if (num_layers == INTEL_REMAINING_LAYERS)
1966 num_layers = total_num_layers - start_layer;
1967 /* Check for overflow */
1968 assert(start_layer + num_layers >= start_layer);
1969 assert(start_layer + num_layers <= total_num_layers);
1970
1971 return num_layers;
1972 }
1973
1974 bool
1975 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1976 unsigned start_level, unsigned num_levels,
1977 unsigned start_layer, unsigned num_layers)
1978 {
1979 assert(_mesa_is_format_color_format(mt->format));
1980
1981 if (!mt->aux_buf)
1982 return false;
1983
1984 /* Clamp the level range to fit the miptree */
1985 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1986
1987 for (uint32_t l = 0; l < num_levels; l++) {
1988 const uint32_t level = start_level + l;
1989 const uint32_t level_layers =
1990 miptree_layer_range_length(mt, level, start_layer, num_layers);
1991 for (unsigned a = 0; a < level_layers; a++) {
1992 enum isl_aux_state aux_state =
1993 intel_miptree_get_aux_state(mt, level, start_layer + a);
1994 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1995 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1996 return true;
1997 }
1998 }
1999
2000 return false;
2001 }
2002
2003 static void
2004 intel_miptree_check_color_resolve(const struct brw_context *brw,
2005 const struct intel_mipmap_tree *mt,
2006 unsigned level, unsigned layer)
2007 {
2008 if (!mt->aux_buf)
2009 return;
2010
2011 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2012 assert(brw->screen->devinfo.gen >= 8 ||
2013 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2014
2015 /* Compression of arrayed msaa surfaces is supported. */
2016 if (mt->surf.samples > 1)
2017 return;
2018
2019 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2020 assert(brw->screen->devinfo.gen >= 8 ||
2021 (layer == 0 &&
2022 mt->surf.logical_level0_px.depth == 1 &&
2023 mt->surf.logical_level0_px.array_len == 1));
2024
2025 (void)level;
2026 (void)layer;
2027 }
2028
2029 static enum isl_aux_op
2030 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2031 enum isl_aux_usage aux_usage,
2032 bool fast_clear_supported)
2033 {
2034 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2035
2036 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2037
2038 assert(ccs_supported == fast_clear_supported);
2039
2040 switch (aux_state) {
2041 case ISL_AUX_STATE_CLEAR:
2042 case ISL_AUX_STATE_PARTIAL_CLEAR:
2043 if (!ccs_supported)
2044 return ISL_AUX_OP_FULL_RESOLVE;
2045 else
2046 return ISL_AUX_OP_NONE;
2047
2048 case ISL_AUX_STATE_PASS_THROUGH:
2049 return ISL_AUX_OP_NONE;
2050
2051 case ISL_AUX_STATE_RESOLVED:
2052 case ISL_AUX_STATE_AUX_INVALID:
2053 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2054 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2055 break;
2056 }
2057
2058 unreachable("Invalid aux state for CCS_D");
2059 }
2060
2061 static enum isl_aux_op
2062 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2063 enum isl_aux_usage aux_usage,
2064 bool fast_clear_supported)
2065 {
2066 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2067 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2068 aux_usage == ISL_AUX_USAGE_CCS_D ||
2069 aux_usage == ISL_AUX_USAGE_CCS_E);
2070
2071 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2072 assert(fast_clear_supported);
2073
2074 switch (aux_state) {
2075 case ISL_AUX_STATE_CLEAR:
2076 case ISL_AUX_STATE_PARTIAL_CLEAR:
2077 if (fast_clear_supported)
2078 return ISL_AUX_OP_NONE;
2079 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2080 return ISL_AUX_OP_PARTIAL_RESOLVE;
2081 else
2082 return ISL_AUX_OP_FULL_RESOLVE;
2083
2084 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2085 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2086 return ISL_AUX_OP_FULL_RESOLVE;
2087 else if (!fast_clear_supported)
2088 return ISL_AUX_OP_PARTIAL_RESOLVE;
2089 else
2090 return ISL_AUX_OP_NONE;
2091
2092 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2093 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2094 return ISL_AUX_OP_FULL_RESOLVE;
2095 else
2096 return ISL_AUX_OP_NONE;
2097
2098 case ISL_AUX_STATE_PASS_THROUGH:
2099 return ISL_AUX_OP_NONE;
2100
2101 case ISL_AUX_STATE_RESOLVED:
2102 case ISL_AUX_STATE_AUX_INVALID:
2103 break;
2104 }
2105
2106 unreachable("Invalid aux state for CCS_E");
2107 }
2108
2109 static void
2110 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2111 struct intel_mipmap_tree *mt,
2112 uint32_t level, uint32_t layer,
2113 enum isl_aux_usage aux_usage,
2114 bool fast_clear_supported)
2115 {
2116 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2117
2118 enum isl_aux_op resolve_op;
2119 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2120 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2121 fast_clear_supported);
2122 } else {
2123 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2124 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2125 fast_clear_supported);
2126 }
2127
2128 if (resolve_op != ISL_AUX_OP_NONE) {
2129 intel_miptree_check_color_resolve(brw, mt, level, layer);
2130 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2131
2132 switch (resolve_op) {
2133 case ISL_AUX_OP_FULL_RESOLVE:
2134 /* The CCS full resolve operation destroys the CCS and sets it to the
2135 * pass-through state. (You can also think of this as being both a
2136 * resolve and an ambiguate in one operation.)
2137 */
2138 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2139 ISL_AUX_STATE_PASS_THROUGH);
2140 break;
2141
2142 case ISL_AUX_OP_PARTIAL_RESOLVE:
2143 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2144 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2145 break;
2146
2147 default:
2148 unreachable("Invalid resolve op");
2149 }
2150 }
2151 }
2152
2153 static void
2154 intel_miptree_finish_ccs_write(struct brw_context *brw,
2155 struct intel_mipmap_tree *mt,
2156 uint32_t level, uint32_t layer,
2157 enum isl_aux_usage aux_usage)
2158 {
2159 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2160 aux_usage == ISL_AUX_USAGE_CCS_D ||
2161 aux_usage == ISL_AUX_USAGE_CCS_E);
2162
2163 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2164
2165 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2166 switch (aux_state) {
2167 case ISL_AUX_STATE_CLEAR:
2168 case ISL_AUX_STATE_PARTIAL_CLEAR:
2169 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2170 aux_usage == ISL_AUX_USAGE_CCS_D);
2171
2172 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2173 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2174 ISL_AUX_STATE_COMPRESSED_CLEAR);
2175 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2176 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2177 ISL_AUX_STATE_PARTIAL_CLEAR);
2178 }
2179 break;
2180
2181 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2182 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2183 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2184 break; /* Nothing to do */
2185
2186 case ISL_AUX_STATE_PASS_THROUGH:
2187 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2188 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2189 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2190 } else {
2191 /* Nothing to do */
2192 }
2193 break;
2194
2195 case ISL_AUX_STATE_RESOLVED:
2196 case ISL_AUX_STATE_AUX_INVALID:
2197 unreachable("Invalid aux state for CCS_E");
2198 }
2199 } else {
2200 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2201 /* CCS_D is a bit simpler */
2202 switch (aux_state) {
2203 case ISL_AUX_STATE_CLEAR:
2204 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2205 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2206 ISL_AUX_STATE_PARTIAL_CLEAR);
2207 break;
2208
2209 case ISL_AUX_STATE_PARTIAL_CLEAR:
2210 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2211 break; /* Nothing to do */
2212
2213 case ISL_AUX_STATE_PASS_THROUGH:
2214 /* Nothing to do */
2215 break;
2216
2217 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2218 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2219 case ISL_AUX_STATE_RESOLVED:
2220 case ISL_AUX_STATE_AUX_INVALID:
2221 unreachable("Invalid aux state for CCS_D");
2222 }
2223 }
2224 }
2225
2226 static void
2227 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2228 struct intel_mipmap_tree *mt,
2229 uint32_t layer,
2230 enum isl_aux_usage aux_usage,
2231 bool fast_clear_supported)
2232 {
2233 assert(aux_usage == ISL_AUX_USAGE_MCS);
2234
2235 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2236 case ISL_AUX_STATE_CLEAR:
2237 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2238 if (!fast_clear_supported) {
2239 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2240 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2241 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2242 }
2243 break;
2244
2245 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2246 break; /* Nothing to do */
2247
2248 case ISL_AUX_STATE_RESOLVED:
2249 case ISL_AUX_STATE_PASS_THROUGH:
2250 case ISL_AUX_STATE_AUX_INVALID:
2251 case ISL_AUX_STATE_PARTIAL_CLEAR:
2252 unreachable("Invalid aux state for MCS");
2253 }
2254 }
2255
2256 static void
2257 intel_miptree_finish_mcs_write(struct brw_context *brw,
2258 struct intel_mipmap_tree *mt,
2259 uint32_t layer,
2260 enum isl_aux_usage aux_usage)
2261 {
2262 assert(aux_usage == ISL_AUX_USAGE_MCS);
2263
2264 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2265 case ISL_AUX_STATE_CLEAR:
2266 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2267 ISL_AUX_STATE_COMPRESSED_CLEAR);
2268 break;
2269
2270 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2271 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2272 break; /* Nothing to do */
2273
2274 case ISL_AUX_STATE_RESOLVED:
2275 case ISL_AUX_STATE_PASS_THROUGH:
2276 case ISL_AUX_STATE_AUX_INVALID:
2277 case ISL_AUX_STATE_PARTIAL_CLEAR:
2278 unreachable("Invalid aux state for MCS");
2279 }
2280 }
2281
2282 static void
2283 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2284 struct intel_mipmap_tree *mt,
2285 uint32_t level, uint32_t layer,
2286 enum isl_aux_usage aux_usage,
2287 bool fast_clear_supported)
2288 {
2289 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2290
2291 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2292 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2293 case ISL_AUX_STATE_CLEAR:
2294 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2295 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2296 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2297 break;
2298
2299 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2300 if (aux_usage != ISL_AUX_USAGE_HIZ)
2301 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2302 break;
2303
2304 case ISL_AUX_STATE_PASS_THROUGH:
2305 case ISL_AUX_STATE_RESOLVED:
2306 break;
2307
2308 case ISL_AUX_STATE_AUX_INVALID:
2309 if (aux_usage == ISL_AUX_USAGE_HIZ)
2310 hiz_op = ISL_AUX_OP_AMBIGUATE;
2311 break;
2312
2313 case ISL_AUX_STATE_PARTIAL_CLEAR:
2314 unreachable("Invalid HiZ state");
2315 }
2316
2317 if (hiz_op != ISL_AUX_OP_NONE) {
2318 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2319
2320 switch (hiz_op) {
2321 case ISL_AUX_OP_FULL_RESOLVE:
2322 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2323 ISL_AUX_STATE_RESOLVED);
2324 break;
2325
2326 case ISL_AUX_OP_AMBIGUATE:
2327 /* The HiZ resolve operation is actually an ambiguate */
2328 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2329 ISL_AUX_STATE_PASS_THROUGH);
2330 break;
2331
2332 default:
2333 unreachable("Invalid HiZ op");
2334 }
2335 }
2336 }
2337
2338 static void
2339 intel_miptree_finish_hiz_write(struct brw_context *brw,
2340 struct intel_mipmap_tree *mt,
2341 uint32_t level, uint32_t layer,
2342 enum isl_aux_usage aux_usage)
2343 {
2344 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2345
2346 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2347 case ISL_AUX_STATE_CLEAR:
2348 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2349 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2350 ISL_AUX_STATE_COMPRESSED_CLEAR);
2351 break;
2352
2353 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2354 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2355 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2356 break; /* Nothing to do */
2357
2358 case ISL_AUX_STATE_RESOLVED:
2359 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2360 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2361 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2362 } else {
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_AUX_INVALID);
2365 }
2366 break;
2367
2368 case ISL_AUX_STATE_PASS_THROUGH:
2369 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2370 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2371 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2372 }
2373 break;
2374
2375 case ISL_AUX_STATE_AUX_INVALID:
2376 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2377 break;
2378
2379 case ISL_AUX_STATE_PARTIAL_CLEAR:
2380 unreachable("Invalid HiZ state");
2381 }
2382 }
2383
2384 void
2385 intel_miptree_prepare_access(struct brw_context *brw,
2386 struct intel_mipmap_tree *mt,
2387 uint32_t start_level, uint32_t num_levels,
2388 uint32_t start_layer, uint32_t num_layers,
2389 enum isl_aux_usage aux_usage,
2390 bool fast_clear_supported)
2391 {
2392 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2393
2394 switch (mt->aux_usage) {
2395 case ISL_AUX_USAGE_NONE:
2396 /* Nothing to do */
2397 break;
2398
2399 case ISL_AUX_USAGE_MCS:
2400 assert(mt->aux_buf);
2401 assert(start_level == 0 && num_levels == 1);
2402 const uint32_t level_layers =
2403 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2404 for (uint32_t a = 0; a < level_layers; a++) {
2405 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2406 aux_usage, fast_clear_supported);
2407 }
2408 break;
2409
2410 case ISL_AUX_USAGE_CCS_D:
2411 case ISL_AUX_USAGE_CCS_E:
2412 if (!mt->aux_buf)
2413 return;
2414
2415 for (uint32_t l = 0; l < num_levels; l++) {
2416 const uint32_t level = start_level + l;
2417 const uint32_t level_layers =
2418 miptree_layer_range_length(mt, level, start_layer, num_layers);
2419 for (uint32_t a = 0; a < level_layers; a++) {
2420 intel_miptree_prepare_ccs_access(brw, mt, level,
2421 start_layer + a,
2422 aux_usage, fast_clear_supported);
2423 }
2424 }
2425 break;
2426
2427 case ISL_AUX_USAGE_HIZ:
2428 assert(mt->aux_buf);
2429 for (uint32_t l = 0; l < num_levels; l++) {
2430 const uint32_t level = start_level + l;
2431 if (!intel_miptree_level_has_hiz(mt, level))
2432 continue;
2433
2434 const uint32_t level_layers =
2435 miptree_layer_range_length(mt, level, start_layer, num_layers);
2436 for (uint32_t a = 0; a < level_layers; a++) {
2437 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2438 aux_usage, fast_clear_supported);
2439 }
2440 }
2441 break;
2442
2443 default:
2444 unreachable("Invalid aux usage");
2445 }
2446 }
2447
2448 void
2449 intel_miptree_finish_write(struct brw_context *brw,
2450 struct intel_mipmap_tree *mt, uint32_t level,
2451 uint32_t start_layer, uint32_t num_layers,
2452 enum isl_aux_usage aux_usage)
2453 {
2454 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2455 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2456
2457 switch (mt->aux_usage) {
2458 case ISL_AUX_USAGE_NONE:
2459 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->gen <= 7)
2460 mt->r8stencil_needs_update = true;
2461 break;
2462
2463 case ISL_AUX_USAGE_MCS:
2464 assert(mt->aux_buf);
2465 for (uint32_t a = 0; a < num_layers; a++) {
2466 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2467 aux_usage);
2468 }
2469 break;
2470
2471 case ISL_AUX_USAGE_CCS_D:
2472 case ISL_AUX_USAGE_CCS_E:
2473 if (!mt->aux_buf)
2474 return;
2475
2476 for (uint32_t a = 0; a < num_layers; a++) {
2477 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2478 aux_usage);
2479 }
2480 break;
2481
2482 case ISL_AUX_USAGE_HIZ:
2483 if (!intel_miptree_level_has_hiz(mt, level))
2484 return;
2485
2486 for (uint32_t a = 0; a < num_layers; a++) {
2487 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2488 aux_usage);
2489 }
2490 break;
2491
2492 default:
2493 unreachable("Invavlid aux usage");
2494 }
2495 }
2496
2497 enum isl_aux_state
2498 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2499 uint32_t level, uint32_t layer)
2500 {
2501 intel_miptree_check_level_layer(mt, level, layer);
2502
2503 if (_mesa_is_format_color_format(mt->format)) {
2504 assert(mt->aux_buf != NULL);
2505 assert(mt->surf.samples == 1 ||
2506 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2507 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2508 unreachable("Cannot get aux state for stencil");
2509 } else {
2510 assert(intel_miptree_level_has_hiz(mt, level));
2511 }
2512
2513 return mt->aux_state[level][layer];
2514 }
2515
2516 void
2517 intel_miptree_set_aux_state(struct brw_context *brw,
2518 struct intel_mipmap_tree *mt, uint32_t level,
2519 uint32_t start_layer, uint32_t num_layers,
2520 enum isl_aux_state aux_state)
2521 {
2522 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2523
2524 if (_mesa_is_format_color_format(mt->format)) {
2525 assert(mt->aux_buf != NULL);
2526 assert(mt->surf.samples == 1 ||
2527 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2528 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2529 unreachable("Cannot get aux state for stencil");
2530 } else {
2531 assert(intel_miptree_level_has_hiz(mt, level));
2532 }
2533
2534 for (unsigned a = 0; a < num_layers; a++) {
2535 if (mt->aux_state[level][start_layer + a] != aux_state) {
2536 mt->aux_state[level][start_layer + a] = aux_state;
2537 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2538 }
2539 }
2540 }
2541
2542 /* On Gen9 color buffers may be compressed by the hardware (lossless
2543 * compression). There are, however, format restrictions and care needs to be
2544 * taken that the sampler engine is capable for re-interpreting a buffer with
2545 * format different the buffer was originally written with.
2546 *
2547 * For example, SRGB formats are not compressible and the sampler engine isn't
2548 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2549 * color buffer needs to be resolved so that the sampling surface can be
2550 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2551 * set).
2552 */
2553 static bool
2554 can_texture_with_ccs(struct brw_context *brw,
2555 struct intel_mipmap_tree *mt,
2556 enum isl_format view_format)
2557 {
2558 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2559 return false;
2560
2561 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2562 mt, view_format)) {
2563 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2564 isl_format_get_layout(view_format)->name,
2565 _mesa_get_format_name(mt->format));
2566 return false;
2567 }
2568
2569 return true;
2570 }
2571
2572 enum isl_aux_usage
2573 intel_miptree_texture_aux_usage(struct brw_context *brw,
2574 struct intel_mipmap_tree *mt,
2575 enum isl_format view_format)
2576 {
2577 switch (mt->aux_usage) {
2578 case ISL_AUX_USAGE_HIZ:
2579 if (intel_miptree_sample_with_hiz(brw, mt))
2580 return ISL_AUX_USAGE_HIZ;
2581 break;
2582
2583 case ISL_AUX_USAGE_MCS:
2584 return ISL_AUX_USAGE_MCS;
2585
2586 case ISL_AUX_USAGE_CCS_D:
2587 case ISL_AUX_USAGE_CCS_E:
2588 if (!mt->aux_buf) {
2589 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2590 return ISL_AUX_USAGE_NONE;
2591 }
2592
2593 /* If we don't have any unresolved color, report an aux usage of
2594 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2595 * aux surface and we can save some bandwidth.
2596 */
2597 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2598 0, INTEL_REMAINING_LAYERS))
2599 return ISL_AUX_USAGE_NONE;
2600
2601 if (can_texture_with_ccs(brw, mt, view_format))
2602 return ISL_AUX_USAGE_CCS_E;
2603 break;
2604
2605 default:
2606 break;
2607 }
2608
2609 return ISL_AUX_USAGE_NONE;
2610 }
2611
2612 static bool
2613 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2614 {
2615 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2616 * values so sRGB curve application was a no-op for all fast-clearable
2617 * formats.
2618 *
2619 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2620 * values, the hardware interprets the floats, not as what would be
2621 * returned from the sampler (or written by the shader), but as being
2622 * between format conversion and sRGB curve application. This means that
2623 * we can switch between sRGB and UNORM without having to whack the clear
2624 * color.
2625 */
2626 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2627 }
2628
2629 void
2630 intel_miptree_prepare_texture(struct brw_context *brw,
2631 struct intel_mipmap_tree *mt,
2632 enum isl_format view_format,
2633 uint32_t start_level, uint32_t num_levels,
2634 uint32_t start_layer, uint32_t num_layers)
2635 {
2636 enum isl_aux_usage aux_usage =
2637 intel_miptree_texture_aux_usage(brw, mt, view_format);
2638 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2639
2640 /* Clear color is specified as ints or floats and the conversion is done by
2641 * the sampler. If we have a texture view, we would have to perform the
2642 * clear color conversion manually. Just disable clear color.
2643 */
2644 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2645 clear_supported = false;
2646
2647 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2648 start_layer, num_layers,
2649 aux_usage, clear_supported);
2650 }
2651
2652 void
2653 intel_miptree_prepare_image(struct brw_context *brw,
2654 struct intel_mipmap_tree *mt)
2655 {
2656 /* The data port doesn't understand any compression */
2657 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2658 0, INTEL_REMAINING_LAYERS,
2659 ISL_AUX_USAGE_NONE, false);
2660 }
2661
2662 enum isl_aux_usage
2663 intel_miptree_render_aux_usage(struct brw_context *brw,
2664 struct intel_mipmap_tree *mt,
2665 enum isl_format render_format,
2666 bool blend_enabled,
2667 bool draw_aux_disabled)
2668 {
2669 struct gen_device_info *devinfo = &brw->screen->devinfo;
2670
2671 if (draw_aux_disabled)
2672 return ISL_AUX_USAGE_NONE;
2673
2674 switch (mt->aux_usage) {
2675 case ISL_AUX_USAGE_MCS:
2676 assert(mt->aux_buf);
2677 return ISL_AUX_USAGE_MCS;
2678
2679 case ISL_AUX_USAGE_CCS_D:
2680 case ISL_AUX_USAGE_CCS_E:
2681 if (!mt->aux_buf) {
2682 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2683 return ISL_AUX_USAGE_NONE;
2684 }
2685
2686 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2687 * formats. However, there are issues with blending where it doesn't
2688 * properly apply the sRGB curve to the clear color when blending.
2689 */
2690 if (devinfo->gen >= 9 && blend_enabled &&
2691 isl_format_is_srgb(render_format) &&
2692 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2693 return ISL_AUX_USAGE_NONE;
2694
2695 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2696 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2697 mt, render_format))
2698 return ISL_AUX_USAGE_CCS_E;
2699
2700 /* Otherwise, we have to fall back to CCS_D */
2701 return ISL_AUX_USAGE_CCS_D;
2702
2703 default:
2704 return ISL_AUX_USAGE_NONE;
2705 }
2706 }
2707
2708 void
2709 intel_miptree_prepare_render(struct brw_context *brw,
2710 struct intel_mipmap_tree *mt, uint32_t level,
2711 uint32_t start_layer, uint32_t layer_count,
2712 enum isl_aux_usage aux_usage)
2713 {
2714 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2715 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2716 }
2717
2718 void
2719 intel_miptree_finish_render(struct brw_context *brw,
2720 struct intel_mipmap_tree *mt, uint32_t level,
2721 uint32_t start_layer, uint32_t layer_count,
2722 enum isl_aux_usage aux_usage)
2723 {
2724 assert(_mesa_is_format_color_format(mt->format));
2725
2726 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2727 aux_usage);
2728 }
2729
2730 void
2731 intel_miptree_prepare_depth(struct brw_context *brw,
2732 struct intel_mipmap_tree *mt, uint32_t level,
2733 uint32_t start_layer, uint32_t layer_count)
2734 {
2735 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2736 mt->aux_usage, mt->aux_buf != NULL);
2737 }
2738
2739 void
2740 intel_miptree_finish_depth(struct brw_context *brw,
2741 struct intel_mipmap_tree *mt, uint32_t level,
2742 uint32_t start_layer, uint32_t layer_count,
2743 bool depth_written)
2744 {
2745 if (depth_written) {
2746 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2747 mt->aux_buf != NULL);
2748 }
2749 }
2750
2751 void
2752 intel_miptree_prepare_external(struct brw_context *brw,
2753 struct intel_mipmap_tree *mt)
2754 {
2755 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2756 bool supports_fast_clear = false;
2757
2758 const struct isl_drm_modifier_info *mod_info =
2759 isl_drm_modifier_get_info(mt->drm_modifier);
2760
2761 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2762 /* CCS_E is the only supported aux for external images and it's only
2763 * supported on very simple images.
2764 */
2765 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2766 assert(_mesa_is_format_color_format(mt->format));
2767 assert(mt->first_level == 0 && mt->last_level == 0);
2768 assert(mt->surf.logical_level0_px.depth == 1);
2769 assert(mt->surf.logical_level0_px.array_len == 1);
2770 assert(mt->surf.samples == 1);
2771 assert(mt->aux_buf != NULL);
2772
2773 aux_usage = mod_info->aux_usage;
2774 supports_fast_clear = mod_info->supports_clear_color;
2775 }
2776
2777 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2778 0, INTEL_REMAINING_LAYERS,
2779 aux_usage, supports_fast_clear);
2780 }
2781
2782 void
2783 intel_miptree_finish_external(struct brw_context *brw,
2784 struct intel_mipmap_tree *mt)
2785 {
2786 if (!mt->aux_buf)
2787 return;
2788
2789 /* We don't know the actual aux state of the aux surface. The previous
2790 * owner could have given it to us in a number of different states.
2791 * Because we don't know the aux state, we reset the aux state to the
2792 * least common denominator of possible valid states.
2793 */
2794 enum isl_aux_state default_aux_state =
2795 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2796 assert(mt->last_level == mt->first_level);
2797 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2798 default_aux_state);
2799 }
2800
2801 /**
2802 * Make it possible to share the BO backing the given miptree with another
2803 * process or another miptree.
2804 *
2805 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2806 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2807 * ensure that no MCS buffer gets allocated in the future.
2808 *
2809 * HiZ is similarly unsafe with shared buffers.
2810 */
2811 void
2812 intel_miptree_make_shareable(struct brw_context *brw,
2813 struct intel_mipmap_tree *mt)
2814 {
2815 /* MCS buffers are also used for multisample buffers, but we can't resolve
2816 * away a multisample MCS buffer because it's an integral part of how the
2817 * pixel data is stored. Fortunately this code path should never be
2818 * reached for multisample buffers.
2819 */
2820 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2821 mt->surf.samples == 1);
2822
2823 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2824 0, INTEL_REMAINING_LAYERS,
2825 ISL_AUX_USAGE_NONE, false);
2826
2827 if (mt->aux_buf) {
2828 intel_miptree_aux_buffer_free(mt->aux_buf);
2829 mt->aux_buf = NULL;
2830
2831 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2832 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2833 mt->level[l].has_hiz = false;
2834 }
2835
2836 free(mt->aux_state);
2837 mt->aux_state = NULL;
2838 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2839 }
2840
2841 mt->aux_usage = ISL_AUX_USAGE_NONE;
2842 mt->supports_fast_clear = false;
2843 }
2844
2845
2846 /**
2847 * \brief Get pointer offset into stencil buffer.
2848 *
2849 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2850 * must decode the tile's layout in software.
2851 *
2852 * See
2853 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2854 * Format.
2855 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2856 *
2857 * Even though the returned offset is always positive, the return type is
2858 * signed due to
2859 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2860 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2861 */
2862 static intptr_t
2863 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2864 {
2865 uint32_t tile_size = 4096;
2866 uint32_t tile_width = 64;
2867 uint32_t tile_height = 64;
2868 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2869
2870 uint32_t tile_x = x / tile_width;
2871 uint32_t tile_y = y / tile_height;
2872
2873 /* The byte's address relative to the tile's base addres. */
2874 uint32_t byte_x = x % tile_width;
2875 uint32_t byte_y = y % tile_height;
2876
2877 uintptr_t u = tile_y * row_size
2878 + tile_x * tile_size
2879 + 512 * (byte_x / 8)
2880 + 64 * (byte_y / 8)
2881 + 32 * ((byte_y / 4) % 2)
2882 + 16 * ((byte_x / 4) % 2)
2883 + 8 * ((byte_y / 2) % 2)
2884 + 4 * ((byte_x / 2) % 2)
2885 + 2 * (byte_y % 2)
2886 + 1 * (byte_x % 2);
2887
2888 if (swizzled) {
2889 /* adjust for bit6 swizzling */
2890 if (((byte_x / 8) % 2) == 1) {
2891 if (((byte_y / 8) % 2) == 0) {
2892 u += 64;
2893 } else {
2894 u -= 64;
2895 }
2896 }
2897 }
2898
2899 return u;
2900 }
2901
2902 void
2903 intel_miptree_updownsample(struct brw_context *brw,
2904 struct intel_mipmap_tree *src,
2905 struct intel_mipmap_tree *dst)
2906 {
2907 unsigned src_w = src->surf.logical_level0_px.width;
2908 unsigned src_h = src->surf.logical_level0_px.height;
2909 unsigned dst_w = dst->surf.logical_level0_px.width;
2910 unsigned dst_h = dst->surf.logical_level0_px.height;
2911
2912 brw_blorp_blit_miptrees(brw,
2913 src, 0 /* level */, 0 /* layer */,
2914 src->format, SWIZZLE_XYZW,
2915 dst, 0 /* level */, 0 /* layer */, dst->format,
2916 0, 0, src_w, src_h,
2917 0, 0, dst_w, dst_h,
2918 GL_NEAREST, false, false /*mirror x, y*/,
2919 false, false);
2920
2921 if (src->stencil_mt) {
2922 src_w = src->stencil_mt->surf.logical_level0_px.width;
2923 src_h = src->stencil_mt->surf.logical_level0_px.height;
2924 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2925 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2926
2927 brw_blorp_blit_miptrees(brw,
2928 src->stencil_mt, 0 /* level */, 0 /* layer */,
2929 src->stencil_mt->format, SWIZZLE_XYZW,
2930 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2931 dst->stencil_mt->format,
2932 0, 0, src_w, src_h,
2933 0, 0, dst_w, dst_h,
2934 GL_NEAREST, false, false /*mirror x, y*/,
2935 false, false /* decode/encode srgb */);
2936 }
2937 }
2938
2939 void
2940 intel_update_r8stencil(struct brw_context *brw,
2941 struct intel_mipmap_tree *mt)
2942 {
2943 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2944
2945 assert(devinfo->gen >= 7);
2946 struct intel_mipmap_tree *src =
2947 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2948 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2949 return;
2950
2951 assert(src->surf.size > 0);
2952
2953 if (!mt->r8stencil_mt) {
2954 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2955 mt->r8stencil_mt = make_surface(
2956 brw,
2957 src->target,
2958 MESA_FORMAT_R_UINT8,
2959 src->first_level, src->last_level,
2960 src->surf.logical_level0_px.width,
2961 src->surf.logical_level0_px.height,
2962 src->surf.dim == ISL_SURF_DIM_3D ?
2963 src->surf.logical_level0_px.depth :
2964 src->surf.logical_level0_px.array_len,
2965 src->surf.samples,
2966 ISL_TILING_Y0_BIT,
2967 ISL_SURF_USAGE_TEXTURE_BIT,
2968 BO_ALLOC_BUSY, 0, NULL);
2969 assert(mt->r8stencil_mt);
2970 }
2971
2972 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2973
2974 for (int level = src->first_level; level <= src->last_level; level++) {
2975 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2976 minify(src->surf.phys_level0_sa.depth, level) :
2977 src->surf.phys_level0_sa.array_len;
2978
2979 for (unsigned layer = 0; layer < depth; layer++) {
2980 brw_blorp_copy_miptrees(brw,
2981 src, level, layer,
2982 dst, level, layer,
2983 0, 0, 0, 0,
2984 minify(src->surf.logical_level0_px.width,
2985 level),
2986 minify(src->surf.logical_level0_px.height,
2987 level));
2988 }
2989 }
2990
2991 brw_cache_flush_for_read(brw, dst->bo);
2992 src->r8stencil_needs_update = false;
2993 }
2994
2995 static void *
2996 intel_miptree_map_raw(struct brw_context *brw,
2997 struct intel_mipmap_tree *mt,
2998 GLbitfield mode)
2999 {
3000 struct brw_bo *bo = mt->bo;
3001
3002 if (brw_batch_references(&brw->batch, bo))
3003 intel_batchbuffer_flush(brw);
3004
3005 return brw_bo_map(brw, bo, mode);
3006 }
3007
3008 static void
3009 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3010 {
3011 brw_bo_unmap(mt->bo);
3012 }
3013
3014 static void
3015 intel_miptree_unmap_gtt(struct brw_context *brw,
3016 struct intel_mipmap_tree *mt,
3017 struct intel_miptree_map *map,
3018 unsigned int level, unsigned int slice)
3019 {
3020 intel_miptree_unmap_raw(mt);
3021 }
3022
3023 static void
3024 intel_miptree_map_gtt(struct brw_context *brw,
3025 struct intel_mipmap_tree *mt,
3026 struct intel_miptree_map *map,
3027 unsigned int level, unsigned int slice)
3028 {
3029 unsigned int bw, bh;
3030 void *base;
3031 unsigned int image_x, image_y;
3032 intptr_t x = map->x;
3033 intptr_t y = map->y;
3034
3035 /* For compressed formats, the stride is the number of bytes per
3036 * row of blocks. intel_miptree_get_image_offset() already does
3037 * the divide.
3038 */
3039 _mesa_get_format_block_size(mt->format, &bw, &bh);
3040 assert(y % bh == 0);
3041 assert(x % bw == 0);
3042 y /= bh;
3043 x /= bw;
3044
3045 intel_miptree_access_raw(brw, mt, level, slice,
3046 map->mode & GL_MAP_WRITE_BIT);
3047
3048 base = intel_miptree_map_raw(brw, mt, map->mode);
3049
3050 if (base == NULL)
3051 map->ptr = NULL;
3052 else {
3053 base += mt->offset;
3054
3055 /* Note that in the case of cube maps, the caller must have passed the
3056 * slice number referencing the face.
3057 */
3058 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3059 x += image_x;
3060 y += image_y;
3061
3062 map->stride = mt->surf.row_pitch;
3063 map->ptr = base + y * map->stride + x * mt->cpp;
3064 }
3065
3066 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3067 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3068 map->x, map->y, map->w, map->h,
3069 mt, _mesa_get_format_name(mt->format),
3070 x, y, map->ptr, map->stride);
3071
3072 map->unmap = intel_miptree_unmap_gtt;
3073 }
3074
3075 static void
3076 intel_miptree_unmap_blit(struct brw_context *brw,
3077 struct intel_mipmap_tree *mt,
3078 struct intel_miptree_map *map,
3079 unsigned int level,
3080 unsigned int slice)
3081 {
3082 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3083 struct gl_context *ctx = &brw->ctx;
3084
3085 intel_miptree_unmap_raw(map->linear_mt);
3086
3087 if (map->mode & GL_MAP_WRITE_BIT) {
3088 if (devinfo->gen >= 6) {
3089 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
3090 mt, level, slice,
3091 0, 0, map->x, map->y, map->w, map->h);
3092 } else {
3093 bool ok = intel_miptree_copy(brw,
3094 map->linear_mt, 0, 0, 0, 0,
3095 mt, level, slice, map->x, map->y,
3096 map->w, map->h);
3097 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3098 }
3099 }
3100
3101 intel_miptree_release(&map->linear_mt);
3102 }
3103
3104 static void
3105 intel_miptree_map_blit(struct brw_context *brw,
3106 struct intel_mipmap_tree *mt,
3107 struct intel_miptree_map *map,
3108 unsigned int level, unsigned int slice)
3109 {
3110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3111 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
3112 0, 0, map->w, map->h, 1, 1,
3113 ISL_TILING_LINEAR_BIT,
3114 ISL_SURF_USAGE_RENDER_TARGET_BIT |
3115 ISL_SURF_USAGE_TEXTURE_BIT,
3116 0, 0, NULL);
3117
3118 if (!map->linear_mt) {
3119 fprintf(stderr, "Failed to allocate blit temporary\n");
3120 goto fail;
3121 }
3122 map->stride = map->linear_mt->surf.row_pitch;
3123
3124 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3125 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3126 * invalidate is set, since we'll be writing the whole rectangle from our
3127 * temporary buffer back out.
3128 */
3129 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3130 if (devinfo->gen >= 6) {
3131 brw_blorp_copy_miptrees(brw, mt, level, slice,
3132 map->linear_mt, 0, 0,
3133 map->x, map->y, 0, 0, map->w, map->h);
3134 } else {
3135 if (!intel_miptree_copy(brw,
3136 mt, level, slice, map->x, map->y,
3137 map->linear_mt, 0, 0, 0, 0,
3138 map->w, map->h)) {
3139 fprintf(stderr, "Failed to blit\n");
3140 goto fail;
3141 }
3142 }
3143 }
3144
3145 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3146
3147 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3148 map->x, map->y, map->w, map->h,
3149 mt, _mesa_get_format_name(mt->format),
3150 level, slice, map->ptr, map->stride);
3151
3152 map->unmap = intel_miptree_unmap_blit;
3153 return;
3154
3155 fail:
3156 intel_miptree_release(&map->linear_mt);
3157 map->ptr = NULL;
3158 map->stride = 0;
3159 }
3160
3161 /**
3162 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3163 */
3164 #if defined(USE_SSE41)
3165 static void
3166 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3167 struct intel_mipmap_tree *mt,
3168 struct intel_miptree_map *map,
3169 unsigned int level,
3170 unsigned int slice)
3171 {
3172 _mesa_align_free(map->buffer);
3173 map->buffer = NULL;
3174 map->ptr = NULL;
3175 }
3176
3177 static void
3178 intel_miptree_map_movntdqa(struct brw_context *brw,
3179 struct intel_mipmap_tree *mt,
3180 struct intel_miptree_map *map,
3181 unsigned int level, unsigned int slice)
3182 {
3183 assert(map->mode & GL_MAP_READ_BIT);
3184 assert(!(map->mode & GL_MAP_WRITE_BIT));
3185
3186 intel_miptree_access_raw(brw, mt, level, slice, false);
3187
3188 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3189 map->x, map->y, map->w, map->h,
3190 mt, _mesa_get_format_name(mt->format),
3191 level, slice, map->ptr, map->stride);
3192
3193 /* Map the original image */
3194 uint32_t image_x;
3195 uint32_t image_y;
3196 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3197 image_x += map->x;
3198 image_y += map->y;
3199
3200 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3201 if (!src)
3202 return;
3203
3204 src += mt->offset;
3205
3206 src += image_y * mt->surf.row_pitch;
3207 src += image_x * mt->cpp;
3208
3209 /* Due to the pixel offsets for the particular image being mapped, our
3210 * src pointer may not be 16-byte aligned. However, if the pitch is
3211 * divisible by 16, then the amount by which it's misaligned will remain
3212 * consistent from row to row.
3213 */
3214 assert((mt->surf.row_pitch % 16) == 0);
3215 const int misalignment = ((uintptr_t) src) & 15;
3216
3217 /* Create an untiled temporary buffer for the mapping. */
3218 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3219
3220 map->stride = ALIGN(misalignment + width_bytes, 16);
3221
3222 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3223 /* Offset the destination so it has the same misalignment as src. */
3224 map->ptr = map->buffer + misalignment;
3225
3226 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3227
3228 for (uint32_t y = 0; y < map->h; y++) {
3229 void *dst_ptr = map->ptr + y * map->stride;
3230 void *src_ptr = src + y * mt->surf.row_pitch;
3231
3232 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3233 }
3234
3235 intel_miptree_unmap_raw(mt);
3236
3237 map->unmap = intel_miptree_unmap_movntdqa;
3238 }
3239 #endif
3240
3241 static void
3242 intel_miptree_unmap_s8(struct brw_context *brw,
3243 struct intel_mipmap_tree *mt,
3244 struct intel_miptree_map *map,
3245 unsigned int level,
3246 unsigned int slice)
3247 {
3248 if (map->mode & GL_MAP_WRITE_BIT) {
3249 unsigned int image_x, image_y;
3250 uint8_t *untiled_s8_map = map->ptr;
3251 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3252
3253 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3254
3255 for (uint32_t y = 0; y < map->h; y++) {
3256 for (uint32_t x = 0; x < map->w; x++) {
3257 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3258 image_x + x + map->x,
3259 image_y + y + map->y,
3260 brw->has_swizzling);
3261 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3262 }
3263 }
3264
3265 intel_miptree_unmap_raw(mt);
3266 }
3267
3268 free(map->buffer);
3269 }
3270
3271 static void
3272 intel_miptree_map_s8(struct brw_context *brw,
3273 struct intel_mipmap_tree *mt,
3274 struct intel_miptree_map *map,
3275 unsigned int level, unsigned int slice)
3276 {
3277 map->stride = map->w;
3278 map->buffer = map->ptr = malloc(map->stride * map->h);
3279 if (!map->buffer)
3280 return;
3281
3282 intel_miptree_access_raw(brw, mt, level, slice,
3283 map->mode & GL_MAP_WRITE_BIT);
3284
3285 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3286 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3287 * invalidate is set, since we'll be writing the whole rectangle from our
3288 * temporary buffer back out.
3289 */
3290 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3291 uint8_t *untiled_s8_map = map->ptr;
3292 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3293 unsigned int image_x, image_y;
3294
3295 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3296
3297 for (uint32_t y = 0; y < map->h; y++) {
3298 for (uint32_t x = 0; x < map->w; x++) {
3299 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3300 x + image_x + map->x,
3301 y + image_y + map->y,
3302 brw->has_swizzling);
3303 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3304 }
3305 }
3306
3307 intel_miptree_unmap_raw(mt);
3308
3309 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3310 map->x, map->y, map->w, map->h,
3311 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3312 } else {
3313 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3314 map->x, map->y, map->w, map->h,
3315 mt, map->ptr, map->stride);
3316 }
3317
3318 map->unmap = intel_miptree_unmap_s8;
3319 }
3320
3321 static void
3322 intel_miptree_unmap_etc(struct brw_context *brw,
3323 struct intel_mipmap_tree *mt,
3324 struct intel_miptree_map *map,
3325 unsigned int level,
3326 unsigned int slice)
3327 {
3328 uint32_t image_x;
3329 uint32_t image_y;
3330 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3331
3332 image_x += map->x;
3333 image_y += map->y;
3334
3335 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3336 + image_y * mt->surf.row_pitch
3337 + image_x * mt->cpp;
3338
3339 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3340 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3341 map->ptr, map->stride,
3342 map->w, map->h);
3343 else
3344 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3345 map->ptr, map->stride,
3346 map->w, map->h, mt->etc_format, true);
3347
3348 intel_miptree_unmap_raw(mt);
3349 free(map->buffer);
3350 }
3351
3352 static void
3353 intel_miptree_map_etc(struct brw_context *brw,
3354 struct intel_mipmap_tree *mt,
3355 struct intel_miptree_map *map,
3356 unsigned int level,
3357 unsigned int slice)
3358 {
3359 assert(mt->etc_format != MESA_FORMAT_NONE);
3360 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3361 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3362 }
3363
3364 assert(map->mode & GL_MAP_WRITE_BIT);
3365 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3366
3367 intel_miptree_access_raw(brw, mt, level, slice, true);
3368
3369 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3370 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3371 map->w, map->h, 1));
3372 map->ptr = map->buffer;
3373 map->unmap = intel_miptree_unmap_etc;
3374 }
3375
3376 /**
3377 * Mapping functions for packed depth/stencil miptrees backed by real separate
3378 * miptrees for depth and stencil.
3379 *
3380 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3381 * separate from the depth buffer. Yet at the GL API level, we have to expose
3382 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3383 * be able to map that memory for texture storage and glReadPixels-type
3384 * operations. We give Mesa core that access by mallocing a temporary and
3385 * copying the data between the actual backing store and the temporary.
3386 */
3387 static void
3388 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3389 struct intel_mipmap_tree *mt,
3390 struct intel_miptree_map *map,
3391 unsigned int level,
3392 unsigned int slice)
3393 {
3394 struct intel_mipmap_tree *z_mt = mt;
3395 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3396 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3397
3398 if (map->mode & GL_MAP_WRITE_BIT) {
3399 uint32_t *packed_map = map->ptr;
3400 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3401 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3402 unsigned int s_image_x, s_image_y;
3403 unsigned int z_image_x, z_image_y;
3404
3405 intel_miptree_get_image_offset(s_mt, level, slice,
3406 &s_image_x, &s_image_y);
3407 intel_miptree_get_image_offset(z_mt, level, slice,
3408 &z_image_x, &z_image_y);
3409
3410 for (uint32_t y = 0; y < map->h; y++) {
3411 for (uint32_t x = 0; x < map->w; x++) {
3412 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3413 x + s_image_x + map->x,
3414 y + s_image_y + map->y,
3415 brw->has_swizzling);
3416 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3417 (z_mt->surf.row_pitch / 4) +
3418 (x + z_image_x + map->x));
3419
3420 if (map_z32f_x24s8) {
3421 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3422 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3423 } else {
3424 uint32_t packed = packed_map[y * map->w + x];
3425 s_map[s_offset] = packed >> 24;
3426 z_map[z_offset] = packed;
3427 }
3428 }
3429 }
3430
3431 intel_miptree_unmap_raw(s_mt);
3432 intel_miptree_unmap_raw(z_mt);
3433
3434 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3435 __func__,
3436 map->x, map->y, map->w, map->h,
3437 z_mt, _mesa_get_format_name(z_mt->format),
3438 map->x + z_image_x, map->y + z_image_y,
3439 s_mt, map->x + s_image_x, map->y + s_image_y,
3440 map->ptr, map->stride);
3441 }
3442
3443 free(map->buffer);
3444 }
3445
3446 static void
3447 intel_miptree_map_depthstencil(struct brw_context *brw,
3448 struct intel_mipmap_tree *mt,
3449 struct intel_miptree_map *map,
3450 unsigned int level, unsigned int slice)
3451 {
3452 struct intel_mipmap_tree *z_mt = mt;
3453 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3454 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3455 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3456
3457 map->stride = map->w * packed_bpp;
3458 map->buffer = map->ptr = malloc(map->stride * map->h);
3459 if (!map->buffer)
3460 return;
3461
3462 intel_miptree_access_raw(brw, z_mt, level, slice,
3463 map->mode & GL_MAP_WRITE_BIT);
3464 intel_miptree_access_raw(brw, s_mt, level, slice,
3465 map->mode & GL_MAP_WRITE_BIT);
3466
3467 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3468 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3469 * invalidate is set, since we'll be writing the whole rectangle from our
3470 * temporary buffer back out.
3471 */
3472 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3473 uint32_t *packed_map = map->ptr;
3474 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3475 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3476 unsigned int s_image_x, s_image_y;
3477 unsigned int z_image_x, z_image_y;
3478
3479 intel_miptree_get_image_offset(s_mt, level, slice,
3480 &s_image_x, &s_image_y);
3481 intel_miptree_get_image_offset(z_mt, level, slice,
3482 &z_image_x, &z_image_y);
3483
3484 for (uint32_t y = 0; y < map->h; y++) {
3485 for (uint32_t x = 0; x < map->w; x++) {
3486 int map_x = map->x + x, map_y = map->y + y;
3487 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3488 map_x + s_image_x,
3489 map_y + s_image_y,
3490 brw->has_swizzling);
3491 ptrdiff_t z_offset = ((map_y + z_image_y) *
3492 (z_mt->surf.row_pitch / 4) +
3493 (map_x + z_image_x));
3494 uint8_t s = s_map[s_offset];
3495 uint32_t z = z_map[z_offset];
3496
3497 if (map_z32f_x24s8) {
3498 packed_map[(y * map->w + x) * 2 + 0] = z;
3499 packed_map[(y * map->w + x) * 2 + 1] = s;
3500 } else {
3501 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3502 }
3503 }
3504 }
3505
3506 intel_miptree_unmap_raw(s_mt);
3507 intel_miptree_unmap_raw(z_mt);
3508
3509 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3510 __func__,
3511 map->x, map->y, map->w, map->h,
3512 z_mt, map->x + z_image_x, map->y + z_image_y,
3513 s_mt, map->x + s_image_x, map->y + s_image_y,
3514 map->ptr, map->stride);
3515 } else {
3516 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3517 map->x, map->y, map->w, map->h,
3518 mt, map->ptr, map->stride);
3519 }
3520
3521 map->unmap = intel_miptree_unmap_depthstencil;
3522 }
3523
3524 /**
3525 * Create and attach a map to the miptree at (level, slice). Return the
3526 * attached map.
3527 */
3528 static struct intel_miptree_map*
3529 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3530 unsigned int level,
3531 unsigned int slice,
3532 unsigned int x,
3533 unsigned int y,
3534 unsigned int w,
3535 unsigned int h,
3536 GLbitfield mode)
3537 {
3538 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3539
3540 if (!map)
3541 return NULL;
3542
3543 assert(mt->level[level].slice[slice].map == NULL);
3544 mt->level[level].slice[slice].map = map;
3545
3546 map->mode = mode;
3547 map->x = x;
3548 map->y = y;
3549 map->w = w;
3550 map->h = h;
3551
3552 return map;
3553 }
3554
3555 /**
3556 * Release the map at (level, slice).
3557 */
3558 static void
3559 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3560 unsigned int level,
3561 unsigned int slice)
3562 {
3563 struct intel_miptree_map **map;
3564
3565 map = &mt->level[level].slice[slice].map;
3566 free(*map);
3567 *map = NULL;
3568 }
3569
3570 static bool
3571 can_blit_slice(struct intel_mipmap_tree *mt,
3572 unsigned int level, unsigned int slice)
3573 {
3574 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3575 if (intel_miptree_blt_pitch(mt) >= 32768)
3576 return false;
3577
3578 return true;
3579 }
3580
3581 static bool
3582 use_intel_mipree_map_blit(struct brw_context *brw,
3583 struct intel_mipmap_tree *mt,
3584 GLbitfield mode,
3585 unsigned int level,
3586 unsigned int slice)
3587 {
3588 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3589
3590 if (devinfo->has_llc &&
3591 /* It's probably not worth swapping to the blit ring because of
3592 * all the overhead involved.
3593 */
3594 !(mode & GL_MAP_WRITE_BIT) &&
3595 !mt->compressed &&
3596 (mt->surf.tiling == ISL_TILING_X ||
3597 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3598 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3599 /* Fast copy blit on skl+ supports all tiling formats. */
3600 devinfo->gen >= 9) &&
3601 can_blit_slice(mt, level, slice))
3602 return true;
3603
3604 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3605 mt->bo->size >= brw->max_gtt_map_object_size) {
3606 assert(can_blit_slice(mt, level, slice));
3607 return true;
3608 }
3609
3610 return false;
3611 }
3612
3613 /**
3614 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3615 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3616 * arithmetic overflow.
3617 *
3618 * If you call this function and use \a out_stride, then you're doing pointer
3619 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3620 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3621 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3622 * which usually have type uint32_t or GLuint.
3623 */
3624 void
3625 intel_miptree_map(struct brw_context *brw,
3626 struct intel_mipmap_tree *mt,
3627 unsigned int level,
3628 unsigned int slice,
3629 unsigned int x,
3630 unsigned int y,
3631 unsigned int w,
3632 unsigned int h,
3633 GLbitfield mode,
3634 void **out_ptr,
3635 ptrdiff_t *out_stride)
3636 {
3637 struct intel_miptree_map *map;
3638
3639 assert(mt->surf.samples == 1);
3640
3641 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3642 if (!map){
3643 *out_ptr = NULL;
3644 *out_stride = 0;
3645 return;
3646 }
3647
3648 if (mt->format == MESA_FORMAT_S_UINT8) {
3649 intel_miptree_map_s8(brw, mt, map, level, slice);
3650 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3651 !(mode & BRW_MAP_DIRECT_BIT)) {
3652 intel_miptree_map_etc(brw, mt, map, level, slice);
3653 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3654 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3655 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3656 intel_miptree_map_blit(brw, mt, map, level, slice);
3657 #if defined(USE_SSE41)
3658 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3659 !mt->compressed && cpu_has_sse4_1 &&
3660 (mt->surf.row_pitch % 16 == 0)) {
3661 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3662 #endif
3663 } else {
3664 intel_miptree_map_gtt(brw, mt, map, level, slice);
3665 }
3666
3667 *out_ptr = map->ptr;
3668 *out_stride = map->stride;
3669
3670 if (map->ptr == NULL)
3671 intel_miptree_release_map(mt, level, slice);
3672 }
3673
3674 void
3675 intel_miptree_unmap(struct brw_context *brw,
3676 struct intel_mipmap_tree *mt,
3677 unsigned int level,
3678 unsigned int slice)
3679 {
3680 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3681
3682 assert(mt->surf.samples == 1);
3683
3684 if (!map)
3685 return;
3686
3687 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3688 mt, _mesa_get_format_name(mt->format), level, slice);
3689
3690 if (map->unmap)
3691 map->unmap(brw, mt, map, level, slice);
3692
3693 intel_miptree_release_map(mt, level, slice);
3694 }
3695
3696 enum isl_surf_dim
3697 get_isl_surf_dim(GLenum target)
3698 {
3699 switch (target) {
3700 case GL_TEXTURE_1D:
3701 case GL_TEXTURE_1D_ARRAY:
3702 return ISL_SURF_DIM_1D;
3703
3704 case GL_TEXTURE_2D:
3705 case GL_TEXTURE_2D_ARRAY:
3706 case GL_TEXTURE_RECTANGLE:
3707 case GL_TEXTURE_CUBE_MAP:
3708 case GL_TEXTURE_CUBE_MAP_ARRAY:
3709 case GL_TEXTURE_2D_MULTISAMPLE:
3710 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3711 case GL_TEXTURE_EXTERNAL_OES:
3712 return ISL_SURF_DIM_2D;
3713
3714 case GL_TEXTURE_3D:
3715 return ISL_SURF_DIM_3D;
3716 }
3717
3718 unreachable("Invalid texture target");
3719 }
3720
3721 enum isl_dim_layout
3722 get_isl_dim_layout(const struct gen_device_info *devinfo,
3723 enum isl_tiling tiling, GLenum target)
3724 {
3725 switch (target) {
3726 case GL_TEXTURE_1D:
3727 case GL_TEXTURE_1D_ARRAY:
3728 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3729 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3730
3731 case GL_TEXTURE_2D:
3732 case GL_TEXTURE_2D_ARRAY:
3733 case GL_TEXTURE_RECTANGLE:
3734 case GL_TEXTURE_2D_MULTISAMPLE:
3735 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3736 case GL_TEXTURE_EXTERNAL_OES:
3737 return ISL_DIM_LAYOUT_GEN4_2D;
3738
3739 case GL_TEXTURE_CUBE_MAP:
3740 case GL_TEXTURE_CUBE_MAP_ARRAY:
3741 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3742 ISL_DIM_LAYOUT_GEN4_2D);
3743
3744 case GL_TEXTURE_3D:
3745 return (devinfo->gen >= 9 ?
3746 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3747 }
3748
3749 unreachable("Invalid texture target");
3750 }
3751
3752 bool
3753 intel_miptree_set_clear_color(struct brw_context *brw,
3754 struct intel_mipmap_tree *mt,
3755 union isl_color_value clear_color)
3756 {
3757 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3758 mt->fast_clear_color = clear_color;
3759 if (mt->aux_buf->clear_color_bo) {
3760 /* We can't update the clear color while the hardware is still using
3761 * the previous one for a resolve or sampling from it. Make sure that
3762 * there are no pending commands at this point.
3763 */
3764 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3765 for (int i = 0; i < 4; i++) {
3766 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3767 mt->aux_buf->clear_color_offset + i * 4,
3768 mt->fast_clear_color.u32[i]);
3769 }
3770 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3771 }
3772 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3773 return true;
3774 }
3775 return false;
3776 }
3777
3778 union isl_color_value
3779 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3780 const struct intel_mipmap_tree *mt,
3781 enum isl_format view_format, bool sampling,
3782 struct brw_bo **clear_color_bo,
3783 uint32_t *clear_color_offset)
3784 {
3785 assert(mt->aux_buf);
3786
3787 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3788 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3789 * we switch to using the inline clear color and do the sRGB color
3790 * conversion process defined in the OpenGL spec. The red, green, and
3791 * blue channels take part in gamma correction, while the alpha channel
3792 * is unchanged.
3793 */
3794 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3795 for (unsigned i = 0; i < 3; i++) {
3796 srgb_decoded_value.f32[i] =
3797 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3798 }
3799 *clear_color_bo = 0;
3800 *clear_color_offset = 0;
3801 return srgb_decoded_value;
3802 } else {
3803 *clear_color_bo = mt->aux_buf->clear_color_bo;
3804 *clear_color_offset = mt->aux_buf->clear_color_offset;
3805 return mt->fast_clear_color;
3806 }
3807 }