i965: Delete most of the old resolve interface
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_mcs(struct brw_context *brw,
59 struct intel_mipmap_tree *mt,
60 GLuint num_samples);
61
62 /**
63 * Determine which MSAA layout should be used by the MSAA surface being
64 * created, based on the chip generation and the surface type.
65 */
66 static enum intel_msaa_layout
67 compute_msaa_layout(struct brw_context *brw, mesa_format format,
68 enum intel_aux_disable aux_disable)
69 {
70 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
71 if (brw->gen < 7)
72 return INTEL_MSAA_LAYOUT_IMS;
73
74 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
75 switch (_mesa_get_format_base_format(format)) {
76 case GL_DEPTH_COMPONENT:
77 case GL_STENCIL_INDEX:
78 case GL_DEPTH_STENCIL:
79 return INTEL_MSAA_LAYOUT_IMS;
80 default:
81 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
82 *
83 * This field must be set to 0 for all SINT MSRTs when all RT channels
84 * are not written
85 *
86 * In practice this means that we have to disable MCS for all signed
87 * integer MSAA buffers. The alternative, to disable MCS only when one
88 * of the render target channels is disabled, is impractical because it
89 * would require converting between CMS and UMS MSAA layouts on the fly,
90 * which is expensive.
91 */
92 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
95 /* We can't use the CMS layout because it uses an aux buffer, the MCS
96 * buffer. So fallback to UMS, which is identical to CMS without the
97 * MCS. */
98 return INTEL_MSAA_LAYOUT_UMS;
99 } else {
100 return INTEL_MSAA_LAYOUT_CMS;
101 }
102 }
103 }
104
105 bool
106 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
107 unsigned tiling)
108 {
109 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
110 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
111 *
112 * - Support is limited to tiled render targets.
113 *
114 * Gen9 changes the restriction to Y-tile only.
115 */
116 if (brw->gen >= 9)
117 return tiling == I915_TILING_Y;
118 else if (brw->gen >= 7)
119 return tiling != I915_TILING_NONE;
120 else
121 return false;
122 }
123
124 /**
125 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
126 * can be used. This doesn't (and should not) inspect any of the properties of
127 * the miptree's BO.
128 *
129 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
130 * beneath the "Fast Color Clear" bullet (p326):
131 *
132 * - Support is for non-mip-mapped and non-array surface types only.
133 *
134 * And then later, on p327:
135 *
136 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
137 * 64bpp, and 128bpp.
138 *
139 * From the Skylake documentation, it is made clear that X-tiling is no longer
140 * supported:
141 *
142 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
143 * non-MSRTs only.
144 */
145 bool
146 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
147 const struct intel_mipmap_tree *mt)
148 {
149 /* MCS support does not exist prior to Gen7 */
150 if (brw->gen < 7)
151 return false;
152
153 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
154 return false;
155
156 /* This function applies only to non-multisampled render targets. */
157 if (mt->num_samples > 1)
158 return false;
159
160 /* MCS is only supported for color buffers */
161 switch (_mesa_get_format_base_format(mt->format)) {
162 case GL_DEPTH_COMPONENT:
163 case GL_DEPTH_STENCIL:
164 case GL_STENCIL_INDEX:
165 return false;
166 }
167
168 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
169 return false;
170
171 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
172 const bool arrayed = mt->physical_depth0 != 1;
173
174 if (arrayed) {
175 /* Multisample surfaces with the CMS layout are not layered surfaces,
176 * yet still have physical_depth0 > 1. Assert that we don't
177 * accidentally reject a multisampled surface here. We should have
178 * rejected it earlier by explicitly checking the sample count.
179 */
180 assert(mt->num_samples <= 1);
181 }
182
183 /* Handle the hardware restrictions...
184 *
185 * All GENs have the following restriction: "MCS buffer for non-MSRT is
186 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
187 *
188 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
189 * Non-MultiSampler Render Target Restrictions) Support is for
190 * non-mip-mapped and non-array surface types only.
191 *
192 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
193 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
194 * surfaces are supported with MCS buffer layout with these alignments in
195 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
196 *
197 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
198 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
199 * surfaces are supported with MCS buffer layout with these alignments in
200 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
201 */
202 if (brw->gen < 8 && (mip_mapped || arrayed))
203 return false;
204
205 /* There's no point in using an MCS buffer if the surface isn't in a
206 * renderable format.
207 */
208 if (!brw->format_supported_as_render_target[mt->format])
209 return false;
210
211 if (brw->gen >= 9) {
212 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
213 const enum isl_format isl_format =
214 brw_isl_format_for_mesa_format(linear_format);
215 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
216 } else
217 return true;
218 }
219
220 /* On Gen9 support for color buffer compression was extended to single
221 * sampled surfaces. This is a helper considering both auxiliary buffer
222 * type and number of samples telling if the given miptree represents
223 * the new single sampled case - also called lossless compression.
224 */
225 bool
226 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 /* Only available from Gen9 onwards. */
230 if (brw->gen < 9)
231 return false;
232
233 /* Compression always requires auxiliary buffer. */
234 if (!mt->mcs_buf)
235 return false;
236
237 /* Single sample compression is represented re-using msaa compression
238 * layout type: "Compressed Multisampled Surfaces".
239 */
240 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
241 return false;
242
243 /* And finally distinguish between msaa and single sample case. */
244 return mt->num_samples <= 1;
245 }
246
247 bool
248 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
249 const struct intel_mipmap_tree *mt)
250 {
251 /* For now compression is only enabled for integer formats even though
252 * there exist supported floating point formats also. This is a heuristic
253 * decision based on current public benchmarks. In none of the cases these
254 * formats provided any improvement but a few cases were seen to regress.
255 * Hence these are left to to be enabled in the future when they are known
256 * to improve things.
257 */
258 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
259 return false;
260
261 /* Fast clear mechanism and lossless compression go hand in hand. */
262 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
263 return false;
264
265 /* Fast clear can be also used to clear srgb surfaces by using equivalent
266 * linear format. This trick, however, can't be extended to be used with
267 * lossless compression and therefore a check is needed to see if the format
268 * really is linear.
269 */
270 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
271 }
272
273 /**
274 * Determine depth format corresponding to a depth+stencil format,
275 * for separate stencil.
276 */
277 mesa_format
278 intel_depth_format_for_depthstencil_format(mesa_format format) {
279 switch (format) {
280 case MESA_FORMAT_Z24_UNORM_S8_UINT:
281 return MESA_FORMAT_Z24_UNORM_X8_UINT;
282 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
283 return MESA_FORMAT_Z_FLOAT32;
284 default:
285 return format;
286 }
287 }
288
289
290 /**
291 * @param for_bo Indicates that the caller is
292 * intel_miptree_create_for_bo(). If true, then do not create
293 * \c stencil_mt.
294 */
295 static struct intel_mipmap_tree *
296 intel_miptree_create_layout(struct brw_context *brw,
297 GLenum target,
298 mesa_format format,
299 GLuint first_level,
300 GLuint last_level,
301 GLuint width0,
302 GLuint height0,
303 GLuint depth0,
304 GLuint num_samples,
305 uint32_t layout_flags)
306 {
307 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
308 if (!mt)
309 return NULL;
310
311 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
312 _mesa_enum_to_string(target),
313 _mesa_get_format_name(format),
314 first_level, last_level, depth0, mt);
315
316 if (target == GL_TEXTURE_1D_ARRAY)
317 assert(height0 == 1);
318
319 mt->target = target;
320 mt->format = format;
321 mt->first_level = first_level;
322 mt->last_level = last_level;
323 mt->logical_width0 = width0;
324 mt->logical_height0 = height0;
325 mt->logical_depth0 = depth0;
326 mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
327 INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
328 mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
329 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
330 exec_list_make_empty(&mt->hiz_map);
331 exec_list_make_empty(&mt->color_resolve_map);
332 mt->cpp = _mesa_get_format_bytes(format);
333 mt->num_samples = num_samples;
334 mt->compressed = _mesa_is_format_compressed(format);
335 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
336 mt->refcount = 1;
337
338 int depth_multiply = 1;
339 if (num_samples > 1) {
340 /* Adjust width/height/depth for MSAA */
341 mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
342 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
343 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
344 * "If the surface is multisampled and it is a depth or stencil
345 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
346 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
347 * proceeding:
348 *
349 * +----------------------------------------------------------------+
350 * | Num Multisamples | W_l = | H_l = |
351 * +----------------------------------------------------------------+
352 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
353 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
354 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
355 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
356 * +----------------------------------------------------------------+
357 * "
358 *
359 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
360 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
361 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
362 *
363 * Another more complicated explanation for these adjustments comes
364 * from the Sandybridge PRM, volume 4, part 1, page 31:
365 *
366 * "Any of the other messages (sample*, LOD, load4) used with a
367 * (4x) multisampled surface will in-effect sample a surface with
368 * double the height and width as that indicated in the surface
369 * state. Each pixel position on the original-sized surface is
370 * replaced with a 2x2 of samples with the following arrangement:
371 *
372 * sample 0 sample 2
373 * sample 1 sample 3"
374 *
375 * Thus, when sampling from a multisampled texture, it behaves as
376 * though the layout in memory for (x,y,sample) is:
377 *
378 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
379 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
380 *
381 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
382 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
383 *
384 * However, the actual layout of multisampled data in memory is:
385 *
386 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
387 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
388 *
389 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
390 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
391 *
392 * This pattern repeats for each 2x2 pixel block.
393 *
394 * As a result, when calculating the size of our 4-sample buffer for
395 * an odd width or height, we have to align before scaling up because
396 * sample 3 is in that bottom right 2x2 block.
397 */
398 switch (num_samples) {
399 case 2:
400 assert(brw->gen >= 8);
401 width0 = ALIGN(width0, 2) * 2;
402 height0 = ALIGN(height0, 2);
403 break;
404 case 4:
405 width0 = ALIGN(width0, 2) * 2;
406 height0 = ALIGN(height0, 2) * 2;
407 break;
408 case 8:
409 width0 = ALIGN(width0, 2) * 4;
410 height0 = ALIGN(height0, 2) * 2;
411 break;
412 case 16:
413 width0 = ALIGN(width0, 2) * 4;
414 height0 = ALIGN(height0, 2) * 4;
415 break;
416 default:
417 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
418 * or 16.
419 */
420 unreachable("not reached");
421 }
422 } else {
423 /* Non-interleaved */
424 depth_multiply = num_samples;
425 depth0 *= depth_multiply;
426 }
427 }
428
429 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
430 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
431 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
432 * used on Gen8 to make it pick a qpitch value which doesn't include space
433 * for the mipmaps. On Gen9 this is not necessary because it will
434 * automatically pick a packed qpitch value whenever mt->first_level ==
435 * mt->last_level.
436 * TODO: can we use it elsewhere?
437 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
438 */
439 if (brw->gen >= 9) {
440 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
441 } else {
442 switch (mt->msaa_layout) {
443 case INTEL_MSAA_LAYOUT_NONE:
444 case INTEL_MSAA_LAYOUT_IMS:
445 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
446 break;
447 case INTEL_MSAA_LAYOUT_UMS:
448 case INTEL_MSAA_LAYOUT_CMS:
449 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
450 break;
451 }
452 }
453
454 if (target == GL_TEXTURE_CUBE_MAP)
455 assert(depth0 == 6 * depth_multiply);
456
457 mt->physical_width0 = width0;
458 mt->physical_height0 = height0;
459 mt->physical_depth0 = depth0;
460
461 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
462 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
463 (brw->must_use_separate_stencil ||
464 (brw->has_separate_stencil &&
465 intel_miptree_wants_hiz_buffer(brw, mt)))) {
466 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
467 if (brw->gen == 6) {
468 stencil_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL |
469 MIPTREE_LAYOUT_TILING_ANY;
470 }
471
472 mt->stencil_mt = intel_miptree_create(brw,
473 mt->target,
474 MESA_FORMAT_S_UINT8,
475 mt->first_level,
476 mt->last_level,
477 mt->logical_width0,
478 mt->logical_height0,
479 mt->logical_depth0,
480 num_samples,
481 stencil_flags);
482
483 if (!mt->stencil_mt) {
484 intel_miptree_release(&mt);
485 return NULL;
486 }
487 mt->stencil_mt->r8stencil_needs_update = true;
488
489 /* Fix up the Z miptree format for how we're splitting out separate
490 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
491 */
492 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
493 mt->cpp = 4;
494
495 if (format == mt->format) {
496 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
497 _mesa_get_format_name(mt->format));
498 }
499 }
500
501 if (layout_flags & MIPTREE_LAYOUT_GEN6_HIZ_STENCIL)
502 mt->array_layout = GEN6_HIZ_STENCIL;
503
504 /*
505 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
506 * multisampled or have an AUX buffer attached to it.
507 *
508 * GEN | MSRT | AUX_CCS_* or AUX_MCS
509 * -------------------------------------------
510 * 9 | HALIGN_16 | HALIGN_16
511 * 8 | HALIGN_ANY | HALIGN_16
512 * 7 | ? | ?
513 * 6 | ? | ?
514 */
515 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
516 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
517 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
518 } else if (brw->gen >= 9 && num_samples > 1) {
519 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
520 } else {
521 const UNUSED bool is_lossless_compressed_aux =
522 brw->gen >= 9 && num_samples == 1 &&
523 mt->format == MESA_FORMAT_R_UINT32;
524
525 /* For now, nothing else has this requirement */
526 assert(is_lossless_compressed_aux ||
527 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
528 }
529
530 if (!brw_miptree_layout(brw, mt, layout_flags)) {
531 intel_miptree_release(&mt);
532 return NULL;
533 }
534
535 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
536 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
537
538 return mt;
539 }
540
541
542 /**
543 * Choose an appropriate uncompressed format for a requested
544 * compressed format, if unsupported.
545 */
546 mesa_format
547 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
548 {
549 /* No need to lower ETC formats on these platforms,
550 * they are supported natively.
551 */
552 if (brw->gen >= 8 || brw->is_baytrail)
553 return format;
554
555 switch (format) {
556 case MESA_FORMAT_ETC1_RGB8:
557 return MESA_FORMAT_R8G8B8X8_UNORM;
558 case MESA_FORMAT_ETC2_RGB8:
559 return MESA_FORMAT_R8G8B8X8_UNORM;
560 case MESA_FORMAT_ETC2_SRGB8:
561 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
562 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
563 return MESA_FORMAT_B8G8R8A8_SRGB;
564 case MESA_FORMAT_ETC2_RGBA8_EAC:
565 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
566 return MESA_FORMAT_R8G8B8A8_UNORM;
567 case MESA_FORMAT_ETC2_R11_EAC:
568 return MESA_FORMAT_R_UNORM16;
569 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
570 return MESA_FORMAT_R_SNORM16;
571 case MESA_FORMAT_ETC2_RG11_EAC:
572 return MESA_FORMAT_R16G16_UNORM;
573 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
574 return MESA_FORMAT_R16G16_SNORM;
575 default:
576 /* Non ETC1 / ETC2 format */
577 return format;
578 }
579 }
580
581 static struct intel_mipmap_tree *
582 miptree_create(struct brw_context *brw,
583 GLenum target,
584 mesa_format format,
585 GLuint first_level,
586 GLuint last_level,
587 GLuint width0,
588 GLuint height0,
589 GLuint depth0,
590 GLuint num_samples,
591 uint32_t layout_flags)
592 {
593 struct intel_mipmap_tree *mt;
594 mesa_format tex_format = format;
595 mesa_format etc_format = MESA_FORMAT_NONE;
596 uint32_t alloc_flags = 0;
597
598 format = intel_lower_compressed_format(brw, format);
599
600 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
601
602 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
603 mt = intel_miptree_create_layout(brw, target, format,
604 first_level, last_level, width0,
605 height0, depth0, num_samples,
606 layout_flags);
607 if (!mt)
608 return NULL;
609
610 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
611 mt->tiling = I915_TILING_Y;
612
613 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
614 alloc_flags |= BO_ALLOC_FOR_RENDER;
615
616 mt->etc_format = etc_format;
617
618 if (format == MESA_FORMAT_S_UINT8) {
619 /* Align to size of W tile, 64x64. */
620 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
621 ALIGN(mt->total_width, 64),
622 ALIGN(mt->total_height, 64),
623 mt->cpp, mt->tiling, &mt->pitch,
624 alloc_flags);
625 } else {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
627 mt->total_width, mt->total_height,
628 mt->cpp, mt->tiling, &mt->pitch,
629 alloc_flags);
630 }
631
632 if (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT)
633 mt->bo->cache_coherent = false;
634
635 return mt;
636 }
637
638 struct intel_mipmap_tree *
639 intel_miptree_create(struct brw_context *brw,
640 GLenum target,
641 mesa_format format,
642 GLuint first_level,
643 GLuint last_level,
644 GLuint width0,
645 GLuint height0,
646 GLuint depth0,
647 GLuint num_samples,
648 uint32_t layout_flags)
649 {
650 struct intel_mipmap_tree *mt = miptree_create(
651 brw, target, format,
652 first_level, last_level,
653 width0, height0, depth0, num_samples,
654 layout_flags);
655
656 /* If the BO is too large to fit in the aperture, we need to use the
657 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
658 * handle Y-tiling, so we need to fall back to X.
659 */
660 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
661 mt->tiling == I915_TILING_Y) {
662 const uint32_t alloc_flags =
663 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
664 BO_ALLOC_FOR_RENDER : 0;
665 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
666 mt->total_width, mt->total_height);
667
668 mt->tiling = I915_TILING_X;
669 brw_bo_unreference(mt->bo);
670 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
671 mt->total_width, mt->total_height, mt->cpp,
672 mt->tiling, &mt->pitch, alloc_flags);
673 }
674
675 mt->offset = 0;
676
677 if (!mt->bo) {
678 intel_miptree_release(&mt);
679 return NULL;
680 }
681
682
683 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
684 assert(mt->num_samples > 1);
685 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
686 intel_miptree_release(&mt);
687 return NULL;
688 }
689 }
690
691 /* If this miptree is capable of supporting fast color clears, set
692 * fast_clear_state appropriately to ensure that fast clears will occur.
693 * Allocation of the MCS miptree will be deferred until the first fast
694 * clear actually occurs or when compressed single sampled buffer is
695 * written by the GPU for the first time.
696 */
697 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
698 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
699 mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
700 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
701
702 /* On Gen9+ clients are not currently capable of consuming compressed
703 * single-sampled buffers. Disabling compression allows us to skip
704 * resolves.
705 */
706 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
707 const bool is_lossless_compressed =
708 unlikely(!lossless_compression_disabled) &&
709 brw->gen >= 9 && !mt->is_scanout &&
710 intel_miptree_supports_lossless_compressed(brw, mt);
711
712 if (is_lossless_compressed) {
713 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
714 }
715 }
716
717 return mt;
718 }
719
720 struct intel_mipmap_tree *
721 intel_miptree_create_for_bo(struct brw_context *brw,
722 struct brw_bo *bo,
723 mesa_format format,
724 uint32_t offset,
725 uint32_t width,
726 uint32_t height,
727 uint32_t depth,
728 int pitch,
729 uint32_t layout_flags)
730 {
731 struct intel_mipmap_tree *mt;
732 uint32_t tiling, swizzle;
733 GLenum target;
734
735 brw_bo_get_tiling(bo, &tiling, &swizzle);
736
737 /* Nothing will be able to use this miptree with the BO if the offset isn't
738 * aligned.
739 */
740 if (tiling != I915_TILING_NONE)
741 assert(offset % 4096 == 0);
742
743 /* miptrees can't handle negative pitch. If you need flipping of images,
744 * that's outside of the scope of the mt.
745 */
746 assert(pitch >= 0);
747
748 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
749
750 /* The BO already has a tiling format and we shouldn't confuse the lower
751 * layers by making it try to find a tiling format again.
752 */
753 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
754 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
755
756 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
757 mt = intel_miptree_create_layout(brw, target, format,
758 0, 0,
759 width, height, depth, 0,
760 layout_flags);
761 if (!mt)
762 return NULL;
763
764 brw_bo_reference(bo);
765 mt->bo = bo;
766 mt->pitch = pitch;
767 mt->offset = offset;
768 mt->tiling = tiling;
769
770 return mt;
771 }
772
773 /**
774 * For a singlesample renderbuffer, this simply wraps the given BO with a
775 * miptree.
776 *
777 * For a multisample renderbuffer, this wraps the window system's
778 * (singlesample) BO with a singlesample miptree attached to the
779 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
780 * that will contain the actual rendering (which is lazily resolved to
781 * irb->singlesample_mt).
782 */
783 void
784 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
785 struct intel_renderbuffer *irb,
786 struct brw_bo *bo,
787 uint32_t width, uint32_t height,
788 uint32_t pitch)
789 {
790 struct intel_mipmap_tree *singlesample_mt = NULL;
791 struct intel_mipmap_tree *multisample_mt = NULL;
792 struct gl_renderbuffer *rb = &irb->Base.Base;
793 mesa_format format = rb->Format;
794 int num_samples = rb->NumSamples;
795
796 /* Only the front and back buffers, which are color buffers, are allocated
797 * through the image loader.
798 */
799 assert(_mesa_get_format_base_format(format) == GL_RGB ||
800 _mesa_get_format_base_format(format) == GL_RGBA);
801
802 singlesample_mt = intel_miptree_create_for_bo(intel,
803 bo,
804 format,
805 0,
806 width,
807 height,
808 1,
809 pitch,
810 MIPTREE_LAYOUT_FOR_SCANOUT);
811 if (!singlesample_mt)
812 goto fail;
813
814 /* If this miptree is capable of supporting fast color clears, set
815 * mcs_state appropriately to ensure that fast clears will occur.
816 * Allocation of the MCS miptree will be deferred until the first fast
817 * clear actually occurs.
818 */
819 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
820 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
821 singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
822 }
823
824 if (num_samples == 0) {
825 intel_miptree_release(&irb->mt);
826 irb->mt = singlesample_mt;
827
828 assert(!irb->singlesample_mt);
829 } else {
830 intel_miptree_release(&irb->singlesample_mt);
831 irb->singlesample_mt = singlesample_mt;
832
833 if (!irb->mt ||
834 irb->mt->logical_width0 != width ||
835 irb->mt->logical_height0 != height) {
836 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
837 format,
838 width,
839 height,
840 num_samples);
841 if (!multisample_mt)
842 goto fail;
843
844 irb->need_downsample = false;
845 intel_miptree_release(&irb->mt);
846 irb->mt = multisample_mt;
847 }
848 }
849 return;
850
851 fail:
852 intel_miptree_release(&irb->singlesample_mt);
853 intel_miptree_release(&irb->mt);
854 return;
855 }
856
857 struct intel_mipmap_tree*
858 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
859 mesa_format format,
860 uint32_t width,
861 uint32_t height,
862 uint32_t num_samples)
863 {
864 struct intel_mipmap_tree *mt;
865 uint32_t depth = 1;
866 bool ok;
867 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
868 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
869 MIPTREE_LAYOUT_TILING_ANY |
870 MIPTREE_LAYOUT_FOR_SCANOUT;
871
872 mt = intel_miptree_create(brw, target, format, 0, 0,
873 width, height, depth, num_samples,
874 layout_flags);
875 if (!mt)
876 goto fail;
877
878 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
879 ok = intel_miptree_alloc_hiz(brw, mt);
880 if (!ok)
881 goto fail;
882 }
883
884 return mt;
885
886 fail:
887 intel_miptree_release(&mt);
888 return NULL;
889 }
890
891 void
892 intel_miptree_reference(struct intel_mipmap_tree **dst,
893 struct intel_mipmap_tree *src)
894 {
895 if (*dst == src)
896 return;
897
898 intel_miptree_release(dst);
899
900 if (src) {
901 src->refcount++;
902 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
903 }
904
905 *dst = src;
906 }
907
908 static void
909 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
910 {
911 if (hiz_buf == NULL)
912 return;
913
914 if (hiz_buf->mt)
915 intel_miptree_release(&hiz_buf->mt);
916 else
917 brw_bo_unreference(hiz_buf->aux_base.bo);
918
919 free(hiz_buf);
920 }
921
922 void
923 intel_miptree_release(struct intel_mipmap_tree **mt)
924 {
925 if (!*mt)
926 return;
927
928 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
929 if (--(*mt)->refcount <= 0) {
930 GLuint i;
931
932 DBG("%s deleting %p\n", __func__, *mt);
933
934 brw_bo_unreference((*mt)->bo);
935 intel_miptree_release(&(*mt)->stencil_mt);
936 intel_miptree_release(&(*mt)->r8stencil_mt);
937 intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
938 if ((*mt)->mcs_buf) {
939 brw_bo_unreference((*mt)->mcs_buf->bo);
940 free((*mt)->mcs_buf);
941 }
942 intel_resolve_map_clear(&(*mt)->hiz_map);
943 intel_resolve_map_clear(&(*mt)->color_resolve_map);
944
945 intel_miptree_release(&(*mt)->plane[0]);
946 intel_miptree_release(&(*mt)->plane[1]);
947
948 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
949 free((*mt)->level[i].slice);
950 }
951
952 free(*mt);
953 }
954 *mt = NULL;
955 }
956
957
958 void
959 intel_get_image_dims(struct gl_texture_image *image,
960 int *width, int *height, int *depth)
961 {
962 switch (image->TexObject->Target) {
963 case GL_TEXTURE_1D_ARRAY:
964 /* For a 1D Array texture the OpenGL API will treat the image height as
965 * the number of array slices. For Intel hardware, we treat the 1D array
966 * as a 2D Array with a height of 1. So, here we want to swap image
967 * height and depth.
968 */
969 assert(image->Depth == 1);
970 *width = image->Width;
971 *height = 1;
972 *depth = image->Height;
973 break;
974 case GL_TEXTURE_CUBE_MAP:
975 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
976 * though we really have 6 slices.
977 */
978 assert(image->Depth == 1);
979 *width = image->Width;
980 *height = image->Height;
981 *depth = 6;
982 break;
983 default:
984 *width = image->Width;
985 *height = image->Height;
986 *depth = image->Depth;
987 break;
988 }
989 }
990
991 /**
992 * Can the image be pulled into a unified mipmap tree? This mirrors
993 * the completeness test in a lot of ways.
994 *
995 * Not sure whether I want to pass gl_texture_image here.
996 */
997 bool
998 intel_miptree_match_image(struct intel_mipmap_tree *mt,
999 struct gl_texture_image *image)
1000 {
1001 struct intel_texture_image *intelImage = intel_texture_image(image);
1002 GLuint level = intelImage->base.Base.Level;
1003 int width, height, depth;
1004
1005 /* glTexImage* choose the texture object based on the target passed in, and
1006 * objects can't change targets over their lifetimes, so this should be
1007 * true.
1008 */
1009 assert(image->TexObject->Target == mt->target);
1010
1011 mesa_format mt_format = mt->format;
1012 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1013 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1014 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1015 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1016 if (mt->etc_format != MESA_FORMAT_NONE)
1017 mt_format = mt->etc_format;
1018
1019 if (image->TexFormat != mt_format)
1020 return false;
1021
1022 intel_get_image_dims(image, &width, &height, &depth);
1023
1024 if (mt->target == GL_TEXTURE_CUBE_MAP)
1025 depth = 6;
1026
1027 int level_depth = mt->level[level].depth;
1028 if (mt->num_samples > 1) {
1029 switch (mt->msaa_layout) {
1030 case INTEL_MSAA_LAYOUT_NONE:
1031 case INTEL_MSAA_LAYOUT_IMS:
1032 break;
1033 case INTEL_MSAA_LAYOUT_UMS:
1034 case INTEL_MSAA_LAYOUT_CMS:
1035 level_depth /= mt->num_samples;
1036 break;
1037 }
1038 }
1039
1040 /* Test image dimensions against the base level image adjusted for
1041 * minification. This will also catch images not present in the
1042 * tree, changed targets, etc.
1043 */
1044 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1045 height != minify(mt->logical_height0, level - mt->first_level) ||
1046 depth != level_depth) {
1047 return false;
1048 }
1049
1050 if (image->NumSamples != mt->num_samples)
1051 return false;
1052
1053 return true;
1054 }
1055
1056
1057 void
1058 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1059 GLuint level,
1060 GLuint x, GLuint y, GLuint d)
1061 {
1062 mt->level[level].depth = d;
1063 mt->level[level].level_x = x;
1064 mt->level[level].level_y = y;
1065
1066 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1067 level, d, x, y);
1068
1069 assert(mt->level[level].slice == NULL);
1070
1071 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1072 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1073 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1074 }
1075
1076
1077 void
1078 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1079 GLuint level, GLuint img,
1080 GLuint x, GLuint y)
1081 {
1082 if (img == 0 && level == 0)
1083 assert(x == 0 && y == 0);
1084
1085 assert(img < mt->level[level].depth);
1086
1087 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1088 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1089
1090 DBG("%s level %d img %d pos %d,%d\n",
1091 __func__, level, img,
1092 mt->level[level].slice[img].x_offset,
1093 mt->level[level].slice[img].y_offset);
1094 }
1095
1096 void
1097 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1098 GLuint level, GLuint slice,
1099 GLuint *x, GLuint *y)
1100 {
1101 assert(slice < mt->level[level].depth);
1102
1103 *x = mt->level[level].slice[slice].x_offset;
1104 *y = mt->level[level].slice[slice].y_offset;
1105 }
1106
1107
1108 /**
1109 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1110 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1111 * and tile_h is set to 1.
1112 */
1113 void
1114 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
1115 uint32_t *tile_w, uint32_t *tile_h)
1116 {
1117 switch (tiling) {
1118 case I915_TILING_X:
1119 *tile_w = 512;
1120 *tile_h = 8;
1121 break;
1122 case I915_TILING_Y:
1123 *tile_w = 128;
1124 *tile_h = 32;
1125 break;
1126 case I915_TILING_NONE:
1127 *tile_w = cpp;
1128 *tile_h = 1;
1129 break;
1130 default:
1131 unreachable("not reached");
1132 }
1133 }
1134
1135
1136 /**
1137 * This function computes masks that may be used to select the bits of the X
1138 * and Y coordinates that indicate the offset within a tile. If the BO is
1139 * untiled, the masks are set to 0.
1140 */
1141 void
1142 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
1143 uint32_t *mask_x, uint32_t *mask_y)
1144 {
1145 uint32_t tile_w_bytes, tile_h;
1146
1147 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1148
1149 *mask_x = tile_w_bytes / cpp - 1;
1150 *mask_y = tile_h - 1;
1151 }
1152
1153 /**
1154 * Compute the offset (in bytes) from the start of the BO to the given x
1155 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1156 * multiples of the tile size.
1157 */
1158 uint32_t
1159 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1160 uint32_t x, uint32_t y)
1161 {
1162 int cpp = mt->cpp;
1163 uint32_t pitch = mt->pitch;
1164 uint32_t tiling = mt->tiling;
1165
1166 switch (tiling) {
1167 default:
1168 unreachable("not reached");
1169 case I915_TILING_NONE:
1170 return y * pitch + x * cpp;
1171 case I915_TILING_X:
1172 assert((x % (512 / cpp)) == 0);
1173 assert((y % 8) == 0);
1174 return y * pitch + x / (512 / cpp) * 4096;
1175 case I915_TILING_Y:
1176 assert((x % (128 / cpp)) == 0);
1177 assert((y % 32) == 0);
1178 return y * pitch + x / (128 / cpp) * 4096;
1179 }
1180 }
1181
1182 /**
1183 * Rendering with tiled buffers requires that the base address of the buffer
1184 * be aligned to a page boundary. For renderbuffers, and sometimes with
1185 * textures, we may want the surface to point at a texture image level that
1186 * isn't at a page boundary.
1187 *
1188 * This function returns an appropriately-aligned base offset
1189 * according to the tiling restrictions, plus any required x/y offset
1190 * from there.
1191 */
1192 uint32_t
1193 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1194 GLuint level, GLuint slice,
1195 uint32_t *tile_x,
1196 uint32_t *tile_y)
1197 {
1198 uint32_t x, y;
1199 uint32_t mask_x, mask_y;
1200
1201 intel_get_tile_masks(mt->tiling, mt->cpp, &mask_x, &mask_y);
1202 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1203
1204 *tile_x = x & mask_x;
1205 *tile_y = y & mask_y;
1206
1207 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1208 }
1209
1210 static void
1211 intel_miptree_copy_slice_sw(struct brw_context *brw,
1212 struct intel_mipmap_tree *dst_mt,
1213 struct intel_mipmap_tree *src_mt,
1214 int level,
1215 int slice,
1216 int width,
1217 int height)
1218 {
1219 void *src, *dst;
1220 ptrdiff_t src_stride, dst_stride;
1221 int cpp = dst_mt->cpp;
1222
1223 intel_miptree_map(brw, src_mt,
1224 level, slice,
1225 0, 0,
1226 width, height,
1227 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1228 &src, &src_stride);
1229
1230 intel_miptree_map(brw, dst_mt,
1231 level, slice,
1232 0, 0,
1233 width, height,
1234 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1235 BRW_MAP_DIRECT_BIT,
1236 &dst, &dst_stride);
1237
1238 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1239 _mesa_get_format_name(src_mt->format),
1240 src_mt, src, src_stride,
1241 _mesa_get_format_name(dst_mt->format),
1242 dst_mt, dst, dst_stride,
1243 width, height);
1244
1245 int row_size = cpp * width;
1246 if (src_stride == row_size &&
1247 dst_stride == row_size) {
1248 memcpy(dst, src, row_size * height);
1249 } else {
1250 for (int i = 0; i < height; i++) {
1251 memcpy(dst, src, row_size);
1252 dst += dst_stride;
1253 src += src_stride;
1254 }
1255 }
1256
1257 intel_miptree_unmap(brw, dst_mt, level, slice);
1258 intel_miptree_unmap(brw, src_mt, level, slice);
1259
1260 /* Don't forget to copy the stencil data over, too. We could have skipped
1261 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1262 * shuffling the two data sources in/out of temporary storage instead of
1263 * the direct mapping we get this way.
1264 */
1265 if (dst_mt->stencil_mt) {
1266 assert(src_mt->stencil_mt);
1267 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1268 level, slice, width, height);
1269 }
1270 }
1271
1272 static void
1273 intel_miptree_copy_slice(struct brw_context *brw,
1274 struct intel_mipmap_tree *dst_mt,
1275 struct intel_mipmap_tree *src_mt,
1276 int level,
1277 int face,
1278 int depth)
1279
1280 {
1281 mesa_format format = src_mt->format;
1282 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1283 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1284 int slice;
1285
1286 if (face > 0)
1287 slice = face;
1288 else
1289 slice = depth;
1290
1291 assert(depth < src_mt->level[level].depth);
1292 assert(src_mt->format == dst_mt->format);
1293
1294 if (dst_mt->compressed) {
1295 unsigned int i, j;
1296 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1297 height = ALIGN_NPOT(height, j) / j;
1298 width = ALIGN_NPOT(width, i) / i;
1299 }
1300
1301 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1302 * below won't apply since we can't do the depth's Y tiling or the
1303 * stencil's W tiling in the blitter.
1304 */
1305 if (src_mt->stencil_mt) {
1306 intel_miptree_copy_slice_sw(brw,
1307 dst_mt, src_mt,
1308 level, slice,
1309 width, height);
1310 return;
1311 }
1312
1313 uint32_t dst_x, dst_y, src_x, src_y;
1314 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1315 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1316
1317 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1318 _mesa_get_format_name(src_mt->format),
1319 src_mt, src_x, src_y, src_mt->pitch,
1320 _mesa_get_format_name(dst_mt->format),
1321 dst_mt, dst_x, dst_y, dst_mt->pitch,
1322 width, height);
1323
1324 if (!intel_miptree_blit(brw,
1325 src_mt, level, slice, 0, 0, false,
1326 dst_mt, level, slice, 0, 0, false,
1327 width, height, GL_COPY)) {
1328 perf_debug("miptree validate blit for %s failed\n",
1329 _mesa_get_format_name(format));
1330
1331 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1332 width, height);
1333 }
1334 }
1335
1336 /**
1337 * Copies the image's current data to the given miptree, and associates that
1338 * miptree with the image.
1339 *
1340 * If \c invalidate is true, then the actual image data does not need to be
1341 * copied, but the image still needs to be associated to the new miptree (this
1342 * is set to true if we're about to clear the image).
1343 */
1344 void
1345 intel_miptree_copy_teximage(struct brw_context *brw,
1346 struct intel_texture_image *intelImage,
1347 struct intel_mipmap_tree *dst_mt,
1348 bool invalidate)
1349 {
1350 struct intel_mipmap_tree *src_mt = intelImage->mt;
1351 struct intel_texture_object *intel_obj =
1352 intel_texture_object(intelImage->base.Base.TexObject);
1353 int level = intelImage->base.Base.Level;
1354 int face = intelImage->base.Base.Face;
1355
1356 GLuint depth;
1357 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1358 depth = intelImage->base.Base.Height;
1359 else
1360 depth = intelImage->base.Base.Depth;
1361
1362 if (!invalidate) {
1363 for (int slice = 0; slice < depth; slice++) {
1364 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1365 }
1366 }
1367
1368 intel_miptree_reference(&intelImage->mt, dst_mt);
1369 intel_obj->needs_validate = true;
1370 }
1371
1372 static void
1373 intel_miptree_init_mcs(struct brw_context *brw,
1374 struct intel_mipmap_tree *mt,
1375 int init_value)
1376 {
1377 assert(mt->mcs_buf != NULL);
1378
1379 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1380 *
1381 * When MCS buffer is enabled and bound to MSRT, it is required that it
1382 * is cleared prior to any rendering.
1383 *
1384 * Since we don't use the MCS buffer for any purpose other than rendering,
1385 * it makes sense to just clear it immediately upon allocation.
1386 *
1387 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1388 */
1389 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1390 if (unlikely(map == NULL)) {
1391 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1392 brw_bo_unreference(mt->mcs_buf->bo);
1393 free(mt->mcs_buf);
1394 return;
1395 }
1396 void *data = map;
1397 memset(data, init_value, mt->mcs_buf->size);
1398 brw_bo_unmap(mt->mcs_buf->bo);
1399 }
1400
1401 static struct intel_miptree_aux_buffer *
1402 intel_mcs_miptree_buf_create(struct brw_context *brw,
1403 struct intel_mipmap_tree *mt,
1404 mesa_format format,
1405 unsigned mcs_width,
1406 unsigned mcs_height,
1407 uint32_t layout_flags)
1408 {
1409 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1410 struct intel_mipmap_tree *temp_mt;
1411
1412 if (!buf)
1413 return NULL;
1414
1415 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1416 *
1417 * "The MCS surface must be stored as Tile Y."
1418 */
1419 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1420 temp_mt = miptree_create(brw,
1421 mt->target,
1422 format,
1423 mt->first_level,
1424 mt->last_level,
1425 mcs_width,
1426 mcs_height,
1427 mt->logical_depth0,
1428 0 /* num_samples */,
1429 layout_flags);
1430 if (!temp_mt) {
1431 free(buf);
1432 return NULL;
1433 }
1434
1435 buf->bo = temp_mt->bo;
1436 buf->offset = temp_mt->offset;
1437 buf->size = temp_mt->total_height * temp_mt->pitch;
1438 buf->pitch = temp_mt->pitch;
1439 buf->qpitch = temp_mt->qpitch;
1440
1441 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1442 * structure should go away. We use miptree create simply as a means to make
1443 * sure all the constraints for the buffer are satisfied.
1444 */
1445 brw_bo_reference(temp_mt->bo);
1446 intel_miptree_release(&temp_mt);
1447
1448 return buf;
1449 }
1450
1451 static bool
1452 intel_miptree_alloc_mcs(struct brw_context *brw,
1453 struct intel_mipmap_tree *mt,
1454 GLuint num_samples)
1455 {
1456 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1457 assert(mt->mcs_buf == NULL);
1458 assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1459
1460 /* Choose the correct format for the MCS buffer. All that really matters
1461 * is that we allocate the right buffer size, since we'll always be
1462 * accessing this miptree using MCS-specific hardware mechanisms, which
1463 * infer the correct format based on num_samples.
1464 */
1465 mesa_format format;
1466 switch (num_samples) {
1467 case 2:
1468 case 4:
1469 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1470 * each sample).
1471 */
1472 format = MESA_FORMAT_R_UNORM8;
1473 break;
1474 case 8:
1475 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1476 * for each sample, plus 8 padding bits).
1477 */
1478 format = MESA_FORMAT_R_UINT32;
1479 break;
1480 case 16:
1481 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1482 * for each sample).
1483 */
1484 format = MESA_FORMAT_RG_UINT32;
1485 break;
1486 default:
1487 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1488 };
1489
1490 mt->mcs_buf =
1491 intel_mcs_miptree_buf_create(brw, mt,
1492 format,
1493 mt->logical_width0,
1494 mt->logical_height0,
1495 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1496 if (!mt->mcs_buf)
1497 return false;
1498
1499 intel_miptree_init_mcs(brw, mt, 0xFF);
1500
1501 /* Multisampled miptrees are only supported for single level. */
1502 assert(mt->first_level == 0);
1503 intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
1504 mt->logical_depth0,
1505 INTEL_FAST_CLEAR_STATE_CLEAR);
1506
1507 return true;
1508 }
1509
1510
1511 bool
1512 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1513 struct intel_mipmap_tree *mt,
1514 bool is_lossless_compressed)
1515 {
1516 assert(mt->mcs_buf == NULL);
1517 assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1518
1519 struct isl_surf temp_main_surf;
1520 struct isl_surf temp_ccs_surf;
1521
1522 /* Create first an ISL presentation for the main color surface and let ISL
1523 * calculate equivalent CCS surface against it.
1524 */
1525 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1526 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1527 return false;
1528
1529 assert(temp_ccs_surf.size &&
1530 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1531
1532 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1533 if (!buf)
1534 return false;
1535
1536 buf->size = temp_ccs_surf.size;
1537 buf->pitch = temp_ccs_surf.row_pitch;
1538 buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1539
1540 /* In case of compression mcs buffer needs to be initialised requiring the
1541 * buffer to be immediately mapped to cpu space for writing. Therefore do
1542 * not use the gpu access flag which can cause an unnecessary delay if the
1543 * backing pages happened to be just used by the GPU.
1544 */
1545 const uint32_t alloc_flags =
1546 is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1547
1548 /* ISL has stricter set of alignment rules then the drm allocator.
1549 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1550 * trying to recalculate based on different format block sizes.
1551 */
1552 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1553 buf->pitch, buf->size / buf->pitch,
1554 1, I915_TILING_Y, &buf->pitch, alloc_flags);
1555 if (!buf->bo) {
1556 free(buf);
1557 return false;
1558 }
1559
1560 mt->mcs_buf = buf;
1561
1562 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1563 * used for lossless compression which requires similar initialisation
1564 * as multi-sample compression.
1565 */
1566 if (is_lossless_compressed) {
1567 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1568 * resolve. Initialize it accordingly in case the first renderer is
1569 * cpu (or other none compression aware party).
1570 *
1571 * This is also explicitly stated in the spec (MCS Buffer for Render
1572 * Target(s)):
1573 * "If Software wants to enable Color Compression without Fast clear,
1574 * Software needs to initialize MCS with zeros."
1575 */
1576 intel_miptree_init_mcs(brw, mt, 0);
1577 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1578 }
1579
1580 return true;
1581 }
1582
1583 /**
1584 * Helper for intel_miptree_alloc_hiz() that sets
1585 * \c mt->level[level].has_hiz. Return true if and only if
1586 * \c has_hiz was set.
1587 */
1588 static bool
1589 intel_miptree_level_enable_hiz(struct brw_context *brw,
1590 struct intel_mipmap_tree *mt,
1591 uint32_t level)
1592 {
1593 assert(mt->hiz_buf);
1594
1595 if (brw->gen >= 8 || brw->is_haswell) {
1596 uint32_t width = minify(mt->physical_width0, level);
1597 uint32_t height = minify(mt->physical_height0, level);
1598
1599 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1600 * and the height is 4 aligned. This allows our HiZ support
1601 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1602 * we can grow the width & height to allow the HiZ op to
1603 * force the proper size alignments.
1604 */
1605 if (level > 0 && ((width & 7) || (height & 3))) {
1606 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1607 return false;
1608 }
1609 }
1610
1611 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1612 mt->level[level].has_hiz = true;
1613 return true;
1614 }
1615
1616
1617 /**
1618 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1619 * buffer dimensions and allocates a bo for the hiz buffer.
1620 */
1621 static struct intel_miptree_hiz_buffer *
1622 intel_gen7_hiz_buf_create(struct brw_context *brw,
1623 struct intel_mipmap_tree *mt)
1624 {
1625 unsigned z_width = mt->logical_width0;
1626 unsigned z_height = mt->logical_height0;
1627 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1628 unsigned hz_width, hz_height;
1629 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1630
1631 if (!buf)
1632 return NULL;
1633
1634 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1635 * adjustments required for Z_Height and Z_Width based on multisampling.
1636 */
1637 switch (mt->num_samples) {
1638 case 0:
1639 case 1:
1640 break;
1641 case 2:
1642 case 4:
1643 z_width *= 2;
1644 z_height *= 2;
1645 break;
1646 case 8:
1647 z_width *= 4;
1648 z_height *= 2;
1649 break;
1650 default:
1651 unreachable("unsupported sample count");
1652 }
1653
1654 const unsigned vertical_align = 8; /* 'j' in the docs */
1655 const unsigned H0 = z_height;
1656 const unsigned h0 = ALIGN(H0, vertical_align);
1657 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1658 const unsigned Z0 = z_depth;
1659
1660 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1661 hz_width = ALIGN(z_width, 16);
1662
1663 if (mt->target == GL_TEXTURE_3D) {
1664 unsigned H_i = H0;
1665 unsigned Z_i = Z0;
1666 hz_height = 0;
1667 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1668 unsigned h_i = ALIGN(H_i, vertical_align);
1669 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1670 hz_height += h_i * Z_i;
1671 H_i = minify(H_i, 1);
1672 Z_i = minify(Z_i, 1);
1673 }
1674 /* HZ_Height =
1675 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1676 */
1677 hz_height = DIV_ROUND_UP(hz_height, 2);
1678 } else {
1679 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1680 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1681 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1682 }
1683
1684 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1685 hz_width, hz_height, 1,
1686 I915_TILING_Y, &buf->aux_base.pitch,
1687 BO_ALLOC_FOR_RENDER);
1688 if (!buf->aux_base.bo) {
1689 free(buf);
1690 return NULL;
1691 }
1692
1693 buf->aux_base.size = hz_width * hz_height;
1694
1695 return buf;
1696 }
1697
1698
1699 /**
1700 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1701 * buffer dimensions and allocates a bo for the hiz buffer.
1702 */
1703 static struct intel_miptree_hiz_buffer *
1704 intel_gen8_hiz_buf_create(struct brw_context *brw,
1705 struct intel_mipmap_tree *mt)
1706 {
1707 unsigned z_width = mt->logical_width0;
1708 unsigned z_height = mt->logical_height0;
1709 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1710 unsigned hz_width, hz_height;
1711 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1712
1713 if (!buf)
1714 return NULL;
1715
1716 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1717 * adjustments required for Z_Height and Z_Width based on multisampling.
1718 */
1719 if (brw->gen < 9) {
1720 switch (mt->num_samples) {
1721 case 0:
1722 case 1:
1723 break;
1724 case 2:
1725 case 4:
1726 z_width *= 2;
1727 z_height *= 2;
1728 break;
1729 case 8:
1730 z_width *= 4;
1731 z_height *= 2;
1732 break;
1733 default:
1734 unreachable("unsupported sample count");
1735 }
1736 }
1737
1738 const unsigned vertical_align = 8; /* 'j' in the docs */
1739 const unsigned H0 = z_height;
1740 const unsigned h0 = ALIGN(H0, vertical_align);
1741 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1742 const unsigned Z0 = z_depth;
1743
1744 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1745 hz_width = ALIGN(z_width, 16);
1746
1747 unsigned H_i = H0;
1748 unsigned Z_i = Z0;
1749 unsigned sum_h_i = 0;
1750 unsigned hz_height_3d_sum = 0;
1751 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1752 unsigned i = level - mt->first_level;
1753 unsigned h_i = ALIGN(H_i, vertical_align);
1754 /* sum(i=2 to m; h_i) */
1755 if (i >= 2) {
1756 sum_h_i += h_i;
1757 }
1758 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1759 hz_height_3d_sum += h_i * Z_i;
1760 H_i = minify(H_i, 1);
1761 Z_i = minify(Z_i, 1);
1762 }
1763 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1764 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1765
1766 if (mt->target == GL_TEXTURE_3D) {
1767 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1768 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1769 } else {
1770 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1771 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1772 }
1773
1774 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1775 hz_width, hz_height, 1,
1776 I915_TILING_Y, &buf->aux_base.pitch,
1777 BO_ALLOC_FOR_RENDER);
1778 if (!buf->aux_base.bo) {
1779 free(buf);
1780 return NULL;
1781 }
1782
1783 buf->aux_base.size = hz_width * hz_height;
1784
1785 return buf;
1786 }
1787
1788
1789 static struct intel_miptree_hiz_buffer *
1790 intel_hiz_miptree_buf_create(struct brw_context *brw,
1791 struct intel_mipmap_tree *mt)
1792 {
1793 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1794 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1795
1796 if (brw->gen == 6)
1797 layout_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL;
1798
1799 if (!buf)
1800 return NULL;
1801
1802 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1803 buf->mt = intel_miptree_create(brw,
1804 mt->target,
1805 mt->format,
1806 mt->first_level,
1807 mt->last_level,
1808 mt->logical_width0,
1809 mt->logical_height0,
1810 mt->logical_depth0,
1811 mt->num_samples,
1812 layout_flags);
1813 if (!buf->mt) {
1814 free(buf);
1815 return NULL;
1816 }
1817
1818 buf->aux_base.bo = buf->mt->bo;
1819 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1820 buf->aux_base.pitch = buf->mt->pitch;
1821 buf->aux_base.qpitch = buf->mt->qpitch * 2;
1822
1823 return buf;
1824 }
1825
1826 bool
1827 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1828 struct intel_mipmap_tree *mt)
1829 {
1830 if (!brw->has_hiz)
1831 return false;
1832
1833 if (mt->hiz_buf != NULL)
1834 return false;
1835
1836 if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1837 return false;
1838
1839 switch (mt->format) {
1840 case MESA_FORMAT_Z_FLOAT32:
1841 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1842 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1843 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1844 case MESA_FORMAT_Z_UNORM16:
1845 return true;
1846 default:
1847 return false;
1848 }
1849 }
1850
1851 bool
1852 intel_miptree_alloc_hiz(struct brw_context *brw,
1853 struct intel_mipmap_tree *mt)
1854 {
1855 assert(mt->hiz_buf == NULL);
1856 assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1857
1858 if (brw->gen == 7) {
1859 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1860 } else if (brw->gen >= 8) {
1861 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1862 } else {
1863 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1864 }
1865
1866 if (!mt->hiz_buf)
1867 return false;
1868
1869 /* Mark that all slices need a HiZ resolve. */
1870 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1871 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1872 continue;
1873
1874 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1875 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1876 exec_node_init(&m->link);
1877 m->level = level;
1878 m->layer = layer;
1879 m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
1880
1881 exec_list_push_tail(&mt->hiz_map, &m->link);
1882 }
1883 }
1884
1885 return true;
1886 }
1887
1888 /**
1889 * Can the miptree sample using the hiz buffer?
1890 */
1891 bool
1892 intel_miptree_sample_with_hiz(struct brw_context *brw,
1893 struct intel_mipmap_tree *mt)
1894 {
1895 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1896 * so keep things conservative for now and never enable it unless we're SKL+.
1897 */
1898 if (brw->gen < 9) {
1899 return false;
1900 }
1901
1902 if (!mt->hiz_buf) {
1903 return false;
1904 }
1905
1906 /* It seems the hardware won't fallback to the depth buffer if some of the
1907 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1908 * of the texture to be HiZ enabled.
1909 */
1910 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1911 if (!intel_miptree_level_has_hiz(mt, level))
1912 return false;
1913 }
1914
1915 /* If compressed multisampling is enabled, then we use it for the auxiliary
1916 * buffer instead.
1917 *
1918 * From the BDW PRM (Volume 2d: Command Reference: Structures
1919 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1920 *
1921 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1922 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1923 *
1924 * There is no such blurb for 1D textures, but there is sufficient evidence
1925 * that this is broken on SKL+.
1926 */
1927 return (mt->num_samples <= 1 &&
1928 mt->target != GL_TEXTURE_3D &&
1929 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1930 }
1931
1932 /**
1933 * Does the miptree slice have hiz enabled?
1934 */
1935 bool
1936 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1937 {
1938 intel_miptree_check_level_layer(mt, level, 0);
1939 return mt->level[level].has_hiz;
1940 }
1941
1942 static bool
1943 intel_miptree_depth_hiz_resolve(struct brw_context *brw,
1944 struct intel_mipmap_tree *mt,
1945 uint32_t start_level, uint32_t num_levels,
1946 uint32_t start_layer, uint32_t num_layers,
1947 enum blorp_hiz_op need)
1948 {
1949 bool did_resolve = false;
1950
1951 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1952 if (map->level < start_level ||
1953 map->level >= (start_level + num_levels) ||
1954 map->layer < start_layer ||
1955 map->layer >= (start_layer + num_layers))
1956 continue;
1957
1958 if (map->need != need)
1959 continue;
1960
1961 intel_hiz_exec(brw, mt, map->level, map->layer, 1, need);
1962 intel_resolve_map_remove(map);
1963 did_resolve = true;
1964 }
1965
1966 return did_resolve;
1967 }
1968
1969 bool
1970 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1971 struct intel_mipmap_tree *mt)
1972 {
1973 return intel_miptree_depth_hiz_resolve(brw, mt,
1974 0, UINT32_MAX, 0, UINT32_MAX,
1975 BLORP_HIZ_OP_DEPTH_RESOLVE);
1976 }
1977
1978 enum intel_fast_clear_state
1979 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
1980 unsigned level, unsigned layer)
1981 {
1982 intel_miptree_check_level_layer(mt, level, layer);
1983
1984 const struct intel_resolve_map *item =
1985 intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
1986
1987 if (!item)
1988 return INTEL_FAST_CLEAR_STATE_RESOLVED;
1989
1990 return item->fast_clear_state;
1991 }
1992
1993 static void
1994 intel_miptree_check_color_resolve(const struct brw_context *brw,
1995 const struct intel_mipmap_tree *mt,
1996 unsigned level, unsigned layer)
1997 {
1998
1999 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2000 return;
2001
2002 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2003 assert(brw->gen >= 8 ||
2004 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2005
2006 /* Compression of arrayed msaa surfaces is supported. */
2007 if (mt->num_samples > 1)
2008 return;
2009
2010 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2011 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2012
2013 (void)level;
2014 (void)layer;
2015 }
2016
2017 void
2018 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
2019 struct intel_mipmap_tree *mt,
2020 unsigned level,
2021 unsigned first_layer,
2022 unsigned num_layers,
2023 enum intel_fast_clear_state new_state)
2024 {
2025 /* Setting the state to resolved means removing the item from the list
2026 * altogether.
2027 */
2028 assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2029
2030 intel_miptree_check_color_resolve(brw, mt, level, first_layer);
2031
2032 assert(first_layer + num_layers <= mt->physical_depth0);
2033
2034 for (unsigned i = 0; i < num_layers; i++)
2035 intel_resolve_map_set(&mt->color_resolve_map, level,
2036 first_layer + i, new_state);
2037 }
2038
2039 bool
2040 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2041 unsigned start_level, unsigned num_levels,
2042 unsigned start_layer, unsigned num_layers)
2043 {
2044 return intel_resolve_map_find_any(&mt->color_resolve_map,
2045 start_level, num_levels,
2046 start_layer, num_layers) != NULL;
2047 }
2048
2049 void
2050 intel_miptree_used_for_rendering(const struct brw_context *brw,
2051 struct intel_mipmap_tree *mt, unsigned level,
2052 unsigned start_layer, unsigned num_layers)
2053 {
2054 const bool is_lossless_compressed =
2055 intel_miptree_is_lossless_compressed(brw, mt);
2056
2057 for (unsigned i = 0; i < num_layers; ++i) {
2058 const enum intel_fast_clear_state fast_clear_state =
2059 intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
2060
2061 /* If the buffer was previously in fast clear state, change it to
2062 * unresolved state, since it won't be guaranteed to be clear after
2063 * rendering occurs.
2064 */
2065 if (is_lossless_compressed ||
2066 fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
2067 intel_miptree_set_fast_clear_state(
2068 brw, mt, level, start_layer + i, 1,
2069 INTEL_FAST_CLEAR_STATE_UNRESOLVED);
2070 }
2071 }
2072 }
2073
2074 static bool
2075 intel_miptree_needs_color_resolve(const struct brw_context *brw,
2076 const struct intel_mipmap_tree *mt,
2077 int flags)
2078 {
2079 if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
2080 return false;
2081
2082 const bool is_lossless_compressed =
2083 intel_miptree_is_lossless_compressed(brw, mt);
2084
2085 /* From gen9 onwards there is new compression scheme for single sampled
2086 * surfaces called "lossless compressed". These don't need to be always
2087 * resolved.
2088 */
2089 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
2090 return false;
2091
2092 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2093 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
2094 return false;
2095
2096 return true;
2097 }
2098
2099 static bool
2100 intel_miptree_resolve_color(struct brw_context *brw,
2101 struct intel_mipmap_tree *mt,
2102 uint32_t start_level, uint32_t num_levels,
2103 uint32_t start_layer, uint32_t num_layers,
2104 int flags)
2105 {
2106 intel_miptree_check_color_resolve(brw, mt, start_level, start_layer);
2107
2108 if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2109 return false;
2110
2111 enum blorp_fast_clear_op resolve_op;
2112 if (brw->gen >= 9) {
2113 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2114 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2115 } else {
2116 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2117 }
2118 } else {
2119 /* Broadwell and earlier do not have a partial resolve */
2120 assert(!intel_miptree_is_lossless_compressed(brw, mt));
2121 resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2122 }
2123
2124 bool resolved = false;
2125 foreach_list_typed_safe(struct intel_resolve_map, map, link,
2126 &mt->color_resolve_map) {
2127 if (map->level < start_level ||
2128 map->level >= (start_level + num_levels) ||
2129 map->layer < start_layer ||
2130 map->layer >= (start_layer + num_layers))
2131 continue;
2132
2133 /* Arrayed and mip-mapped fast clear is only supported for gen8+. */
2134 assert(brw->gen >= 8 || (map->level == 0 && map->layer == 0));
2135
2136 intel_miptree_check_level_layer(mt, map->level, map->layer);
2137
2138 assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2139
2140 brw_blorp_resolve_color(brw, mt, map->level, map->layer, resolve_op);
2141 intel_resolve_map_remove(map);
2142 resolved = true;
2143 }
2144
2145 return resolved;
2146 }
2147
2148 static inline uint32_t
2149 miptree_level_range_length(const struct intel_mipmap_tree *mt,
2150 uint32_t start_level, uint32_t num_levels)
2151 {
2152 assert(start_level >= mt->first_level);
2153 assert(start_level <= mt->last_level);
2154
2155 if (num_levels == INTEL_REMAINING_LAYERS)
2156 num_levels = mt->last_level - start_level + 1;
2157 /* Check for overflow */
2158 assert(start_level + num_levels >= start_level);
2159 assert(start_level + num_levels <= mt->last_level + 1);
2160
2161 return num_levels;
2162 }
2163
2164 static inline uint32_t
2165 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2166 uint32_t start_layer, uint32_t num_layers)
2167 {
2168 assert(level <= mt->last_level);
2169 uint32_t total_num_layers = mt->level[level].depth;
2170
2171 assert(start_layer < total_num_layers);
2172 if (num_layers == INTEL_REMAINING_LAYERS)
2173 num_layers = total_num_layers - start_layer;
2174 /* Check for overflow */
2175 assert(start_layer + num_layers >= start_layer);
2176 assert(start_layer + num_layers <= total_num_layers);
2177
2178 return num_layers;
2179 }
2180
2181 void
2182 intel_miptree_prepare_access(struct brw_context *brw,
2183 struct intel_mipmap_tree *mt,
2184 uint32_t start_level, uint32_t num_levels,
2185 uint32_t start_layer, uint32_t num_layers,
2186 bool aux_supported, bool fast_clear_supported)
2187 {
2188 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2189
2190 if (_mesa_is_format_color_format(mt->format)) {
2191 if (!mt->mcs_buf)
2192 return;
2193
2194 if (mt->num_samples > 1) {
2195 /* Nothing to do for MSAA */
2196 } else {
2197 /* TODO: This is fairly terrible. We can do better. */
2198 if (!aux_supported || !fast_clear_supported) {
2199 intel_miptree_resolve_color(brw, mt, start_level, num_levels,
2200 start_layer, num_layers, 0);
2201 }
2202 }
2203 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2204 /* Nothing to do for stencil */
2205 } else {
2206 if (!mt->hiz_buf)
2207 return;
2208
2209 if (aux_supported) {
2210 assert(fast_clear_supported);
2211 intel_miptree_depth_hiz_resolve(brw, mt, start_level, num_levels,
2212 start_layer, num_layers,
2213 BLORP_HIZ_OP_HIZ_RESOLVE);
2214 } else {
2215 assert(!fast_clear_supported);
2216 intel_miptree_depth_hiz_resolve(brw, mt, start_level, num_levels,
2217 start_layer, num_layers,
2218 BLORP_HIZ_OP_DEPTH_RESOLVE);
2219 }
2220 }
2221 }
2222
2223 void
2224 intel_miptree_finish_write(struct brw_context *brw,
2225 struct intel_mipmap_tree *mt, uint32_t level,
2226 uint32_t start_layer, uint32_t num_layers,
2227 bool written_with_aux)
2228 {
2229 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2230
2231 if (_mesa_is_format_color_format(mt->format)) {
2232 if (mt->num_samples > 1) {
2233 /* Nothing to do for MSAA */
2234 } else {
2235 if (written_with_aux) {
2236 intel_miptree_used_for_rendering(brw, mt, level,
2237 start_layer, num_layers);
2238 }
2239 }
2240 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2241 /* Nothing to do for stencil */
2242 } else {
2243 if (!intel_miptree_level_has_hiz(mt, level))
2244 return;
2245
2246 if (written_with_aux) {
2247 for (unsigned a = 0; a < num_layers; a++) {
2248 intel_miptree_check_level_layer(mt, level, start_layer);
2249 intel_resolve_map_set(&mt->hiz_map, level, start_layer + a,
2250 BLORP_HIZ_OP_DEPTH_RESOLVE);
2251 }
2252 } else {
2253 for (unsigned a = 0; a < num_layers; a++) {
2254 intel_miptree_check_level_layer(mt, level, start_layer);
2255 intel_resolve_map_set(&mt->hiz_map, level, start_layer + a,
2256 BLORP_HIZ_OP_HIZ_RESOLVE);
2257 }
2258 }
2259 }
2260 }
2261
2262 enum isl_aux_state
2263 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2264 uint32_t level, uint32_t layer)
2265 {
2266 if (_mesa_is_format_color_format(mt->format)) {
2267 assert(mt->mcs_buf != NULL);
2268 if (mt->num_samples > 1) {
2269 return ISL_AUX_STATE_COMPRESSED_CLEAR;
2270 } else {
2271 switch (intel_miptree_get_fast_clear_state(mt, level, layer)) {
2272 case INTEL_FAST_CLEAR_STATE_RESOLVED:
2273 return ISL_AUX_STATE_RESOLVED;
2274 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
2275 return ISL_AUX_STATE_COMPRESSED_CLEAR;
2276 case INTEL_FAST_CLEAR_STATE_CLEAR:
2277 return ISL_AUX_STATE_CLEAR;
2278 default:
2279 unreachable("Invalid fast clear state");
2280 }
2281 }
2282 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2283 unreachable("Cannot get aux state for stencil");
2284 } else {
2285 assert(mt->hiz_buf != NULL);
2286 const struct intel_resolve_map *map =
2287 intel_resolve_map_const_get(&mt->hiz_map, level, layer);
2288 if (!map)
2289 return ISL_AUX_STATE_RESOLVED;
2290 switch (map->need) {
2291 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2292 return ISL_AUX_STATE_COMPRESSED_CLEAR;
2293 case BLORP_HIZ_OP_HIZ_RESOLVE:
2294 return ISL_AUX_STATE_AUX_INVALID;
2295 default:
2296 unreachable("Invalid hiz op");
2297 }
2298 }
2299 }
2300
2301 void
2302 intel_miptree_set_aux_state(struct brw_context *brw,
2303 struct intel_mipmap_tree *mt, uint32_t level,
2304 uint32_t start_layer, uint32_t num_layers,
2305 enum isl_aux_state aux_state)
2306 {
2307 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2308
2309 /* Right now, this only applies to clears. */
2310 assert(aux_state == ISL_AUX_STATE_CLEAR);
2311
2312 if (_mesa_is_format_color_format(mt->format)) {
2313 if (mt->num_samples > 1)
2314 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2315
2316 assert(level == 0 && start_layer == 0 && num_layers == 1);
2317 intel_miptree_set_fast_clear_state(brw, mt, 0, 0, 1,
2318 INTEL_FAST_CLEAR_STATE_CLEAR);
2319 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2320 assert(!"Cannot set aux state for stencil");
2321 } else {
2322 for (unsigned a = 0; a < num_layers; a++) {
2323 intel_miptree_check_level_layer(mt, level, start_layer);
2324 intel_resolve_map_set(&mt->hiz_map, level, start_layer + a,
2325 BLORP_HIZ_OP_DEPTH_RESOLVE);
2326 }
2327 }
2328 }
2329
2330 /* On Gen9 color buffers may be compressed by the hardware (lossless
2331 * compression). There are, however, format restrictions and care needs to be
2332 * taken that the sampler engine is capable for re-interpreting a buffer with
2333 * format different the buffer was originally written with.
2334 *
2335 * For example, SRGB formats are not compressible and the sampler engine isn't
2336 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2337 * color buffer needs to be resolved so that the sampling surface can be
2338 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2339 * set).
2340 */
2341 static bool
2342 intel_texture_view_requires_resolve(struct brw_context *brw,
2343 struct intel_mipmap_tree *mt,
2344 mesa_format format)
2345 {
2346 if (brw->gen < 9 ||
2347 !intel_miptree_is_lossless_compressed(brw, mt))
2348 return false;
2349
2350 const enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
2351
2352 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2353 return false;
2354
2355 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2356 _mesa_get_format_name(format),
2357 _mesa_get_format_name(mt->format));
2358
2359 return true;
2360 }
2361
2362 static void
2363 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2364 struct intel_mipmap_tree *mt,
2365 mesa_format view_format,
2366 uint32_t start_level, uint32_t num_levels,
2367 uint32_t start_layer, uint32_t num_layers,
2368 bool *aux_supported_out)
2369 {
2370 bool aux_supported;
2371 if (_mesa_is_format_color_format(mt->format)) {
2372 aux_supported = intel_miptree_is_lossless_compressed(brw, mt) &&
2373 !intel_texture_view_requires_resolve(brw, mt, view_format);
2374 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2375 aux_supported = false;
2376 } else {
2377 aux_supported = intel_miptree_sample_with_hiz(brw, mt);
2378 }
2379
2380 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2381 start_layer, num_layers,
2382 aux_supported, aux_supported);
2383 if (aux_supported_out)
2384 *aux_supported_out = aux_supported;
2385 }
2386
2387 void
2388 intel_miptree_prepare_texture(struct brw_context *brw,
2389 struct intel_mipmap_tree *mt,
2390 mesa_format view_format,
2391 bool *aux_supported_out)
2392 {
2393 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2394 0, INTEL_REMAINING_LEVELS,
2395 0, INTEL_REMAINING_LAYERS,
2396 aux_supported_out);
2397 }
2398
2399 void
2400 intel_miptree_prepare_image(struct brw_context *brw,
2401 struct intel_mipmap_tree *mt)
2402 {
2403 /* The data port doesn't understand any compression */
2404 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2405 0, INTEL_REMAINING_LAYERS, false, false);
2406 }
2407
2408 void
2409 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2410 struct intel_mipmap_tree *mt, uint32_t level,
2411 uint32_t start_layer, uint32_t num_layers)
2412 {
2413 intel_miptree_prepare_texture_slices(brw, mt, mt->format, level, 1,
2414 start_layer, num_layers, NULL);
2415 }
2416
2417 void
2418 intel_miptree_prepare_render(struct brw_context *brw,
2419 struct intel_mipmap_tree *mt, uint32_t level,
2420 uint32_t start_layer, uint32_t layer_count,
2421 bool srgb_enabled)
2422 {
2423 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of
2424 * the single-sampled color renderbuffers because the CCS buffer isn't
2425 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
2426 * enabled because otherwise the surface state will be programmed with
2427 * the linear equivalent format anyway.
2428 */
2429 if (brw->gen >= 9 && srgb_enabled && mt->num_samples <= 1 &&
2430 _mesa_get_srgb_format_linear(mt->format) != mt->format) {
2431
2432 /* Lossless compression is not supported for SRGB formats, it
2433 * should be impossible to get here with such surfaces.
2434 */
2435 assert(!intel_miptree_is_lossless_compressed(brw, mt));
2436 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2437 false, false);
2438 }
2439
2440 /* For layered rendering non-compressed fast cleared buffers need to be
2441 * resolved. Surface state can carry only one fast color clear value
2442 * while each layer may have its own fast clear color value. For
2443 * compressed buffers color value is available in the color buffer.
2444 */
2445 if (layer_count > 1 &&
2446 !(mt->aux_disable & INTEL_AUX_DISABLE_CCS) &&
2447 !intel_miptree_is_lossless_compressed(brw, mt)) {
2448 assert(brw->gen >= 8);
2449
2450 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2451 false, false);
2452 }
2453 }
2454
2455 void
2456 intel_miptree_finish_render(struct brw_context *brw,
2457 struct intel_mipmap_tree *mt, uint32_t level,
2458 uint32_t start_layer, uint32_t layer_count)
2459 {
2460 assert(_mesa_is_format_color_format(mt->format));
2461 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2462 mt->mcs_buf != NULL);
2463 }
2464
2465 void
2466 intel_miptree_prepare_depth(struct brw_context *brw,
2467 struct intel_mipmap_tree *mt, uint32_t level,
2468 uint32_t start_layer, uint32_t layer_count)
2469 {
2470 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2471 mt->hiz_buf != NULL, mt->hiz_buf != NULL);
2472 }
2473
2474 void
2475 intel_miptree_finish_depth(struct brw_context *brw,
2476 struct intel_mipmap_tree *mt, uint32_t level,
2477 uint32_t start_layer, uint32_t layer_count,
2478 bool depth_written)
2479 {
2480 if (depth_written) {
2481 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2482 mt->hiz_buf != NULL);
2483 }
2484 }
2485
2486 /**
2487 * Make it possible to share the BO backing the given miptree with another
2488 * process or another miptree.
2489 *
2490 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2491 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2492 * ensure that no MCS buffer gets allocated in the future.
2493 *
2494 * HiZ is similarly unsafe with shared buffers.
2495 */
2496 void
2497 intel_miptree_make_shareable(struct brw_context *brw,
2498 struct intel_mipmap_tree *mt)
2499 {
2500 /* MCS buffers are also used for multisample buffers, but we can't resolve
2501 * away a multisample MCS buffer because it's an integral part of how the
2502 * pixel data is stored. Fortunately this code path should never be
2503 * reached for multisample buffers.
2504 */
2505 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2506
2507 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2508 0, INTEL_REMAINING_LAYERS, false, false);
2509
2510 if (mt->mcs_buf) {
2511 mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2512 brw_bo_unreference(mt->mcs_buf->bo);
2513 free(mt->mcs_buf);
2514 mt->mcs_buf = NULL;
2515
2516 /* Any pending MCS/CCS operations are no longer needed. Trying to
2517 * execute any will likely crash due to the missing aux buffer. So let's
2518 * delete all pending ops.
2519 */
2520 exec_list_make_empty(&mt->color_resolve_map);
2521 }
2522
2523 if (mt->hiz_buf) {
2524 mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2525 intel_miptree_hiz_buffer_free(mt->hiz_buf);
2526 mt->hiz_buf = NULL;
2527
2528 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2529 mt->level[l].has_hiz = false;
2530 }
2531
2532 /* Any pending HiZ operations are no longer needed. Trying to execute
2533 * any will likely crash due to the missing aux buffer. So let's delete
2534 * all pending ops.
2535 */
2536 exec_list_make_empty(&mt->hiz_map);
2537 }
2538 }
2539
2540
2541 /**
2542 * \brief Get pointer offset into stencil buffer.
2543 *
2544 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2545 * must decode the tile's layout in software.
2546 *
2547 * See
2548 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2549 * Format.
2550 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2551 *
2552 * Even though the returned offset is always positive, the return type is
2553 * signed due to
2554 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2555 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2556 */
2557 static intptr_t
2558 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2559 {
2560 uint32_t tile_size = 4096;
2561 uint32_t tile_width = 64;
2562 uint32_t tile_height = 64;
2563 uint32_t row_size = 64 * stride;
2564
2565 uint32_t tile_x = x / tile_width;
2566 uint32_t tile_y = y / tile_height;
2567
2568 /* The byte's address relative to the tile's base addres. */
2569 uint32_t byte_x = x % tile_width;
2570 uint32_t byte_y = y % tile_height;
2571
2572 uintptr_t u = tile_y * row_size
2573 + tile_x * tile_size
2574 + 512 * (byte_x / 8)
2575 + 64 * (byte_y / 8)
2576 + 32 * ((byte_y / 4) % 2)
2577 + 16 * ((byte_x / 4) % 2)
2578 + 8 * ((byte_y / 2) % 2)
2579 + 4 * ((byte_x / 2) % 2)
2580 + 2 * (byte_y % 2)
2581 + 1 * (byte_x % 2);
2582
2583 if (swizzled) {
2584 /* adjust for bit6 swizzling */
2585 if (((byte_x / 8) % 2) == 1) {
2586 if (((byte_y / 8) % 2) == 0) {
2587 u += 64;
2588 } else {
2589 u -= 64;
2590 }
2591 }
2592 }
2593
2594 return u;
2595 }
2596
2597 void
2598 intel_miptree_updownsample(struct brw_context *brw,
2599 struct intel_mipmap_tree *src,
2600 struct intel_mipmap_tree *dst)
2601 {
2602 brw_blorp_blit_miptrees(brw,
2603 src, 0 /* level */, 0 /* layer */,
2604 src->format, SWIZZLE_XYZW,
2605 dst, 0 /* level */, 0 /* layer */, dst->format,
2606 0, 0,
2607 src->logical_width0, src->logical_height0,
2608 0, 0,
2609 dst->logical_width0, dst->logical_height0,
2610 GL_NEAREST, false, false /*mirror x, y*/,
2611 false, false);
2612
2613 if (src->stencil_mt) {
2614 brw_blorp_blit_miptrees(brw,
2615 src->stencil_mt, 0 /* level */, 0 /* layer */,
2616 src->stencil_mt->format, SWIZZLE_XYZW,
2617 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2618 dst->stencil_mt->format,
2619 0, 0,
2620 src->logical_width0, src->logical_height0,
2621 0, 0,
2622 dst->logical_width0, dst->logical_height0,
2623 GL_NEAREST, false, false /*mirror x, y*/,
2624 false, false /* decode/encode srgb */);
2625 }
2626 }
2627
2628 void
2629 intel_update_r8stencil(struct brw_context *brw,
2630 struct intel_mipmap_tree *mt)
2631 {
2632 assert(brw->gen >= 7);
2633 struct intel_mipmap_tree *src =
2634 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2635 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2636 return;
2637
2638 if (!mt->r8stencil_mt) {
2639 const uint32_t r8stencil_flags =
2640 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2641 MIPTREE_LAYOUT_DISABLE_AUX;
2642 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2643 mt->r8stencil_mt = intel_miptree_create(brw,
2644 src->target,
2645 MESA_FORMAT_R_UINT8,
2646 src->first_level,
2647 src->last_level,
2648 src->logical_width0,
2649 src->logical_height0,
2650 src->logical_depth0,
2651 src->num_samples,
2652 r8stencil_flags);
2653 assert(mt->r8stencil_mt);
2654 }
2655
2656 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2657
2658 for (int level = src->first_level; level <= src->last_level; level++) {
2659 const unsigned depth = src->level[level].depth;
2660
2661 for (unsigned layer = 0; layer < depth; layer++) {
2662 brw_blorp_copy_miptrees(brw,
2663 src, level, layer,
2664 dst, level, layer,
2665 0, 0, 0, 0,
2666 minify(src->logical_width0, level),
2667 minify(src->logical_height0, level));
2668 }
2669 }
2670
2671 brw_render_cache_set_check_flush(brw, dst->bo);
2672 src->r8stencil_needs_update = false;
2673 }
2674
2675 static void *
2676 intel_miptree_map_raw(struct brw_context *brw,
2677 struct intel_mipmap_tree *mt,
2678 GLbitfield mode)
2679 {
2680 struct brw_bo *bo = mt->bo;
2681
2682 if (brw_batch_references(&brw->batch, bo))
2683 intel_batchbuffer_flush(brw);
2684
2685 return brw_bo_map(brw, bo, mode);
2686 }
2687
2688 static void
2689 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2690 {
2691 brw_bo_unmap(mt->bo);
2692 }
2693
2694 static void
2695 intel_miptree_map_gtt(struct brw_context *brw,
2696 struct intel_mipmap_tree *mt,
2697 struct intel_miptree_map *map,
2698 unsigned int level, unsigned int slice)
2699 {
2700 unsigned int bw, bh;
2701 void *base;
2702 unsigned int image_x, image_y;
2703 intptr_t x = map->x;
2704 intptr_t y = map->y;
2705
2706 /* For compressed formats, the stride is the number of bytes per
2707 * row of blocks. intel_miptree_get_image_offset() already does
2708 * the divide.
2709 */
2710 _mesa_get_format_block_size(mt->format, &bw, &bh);
2711 assert(y % bh == 0);
2712 assert(x % bw == 0);
2713 y /= bh;
2714 x /= bw;
2715
2716 base = intel_miptree_map_raw(brw, mt, map->mode) + mt->offset;
2717
2718 if (base == NULL)
2719 map->ptr = NULL;
2720 else {
2721 /* Note that in the case of cube maps, the caller must have passed the
2722 * slice number referencing the face.
2723 */
2724 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2725 x += image_x;
2726 y += image_y;
2727
2728 map->stride = mt->pitch;
2729 map->ptr = base + y * map->stride + x * mt->cpp;
2730 }
2731
2732 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2733 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2734 map->x, map->y, map->w, map->h,
2735 mt, _mesa_get_format_name(mt->format),
2736 x, y, map->ptr, map->stride);
2737 }
2738
2739 static void
2740 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2741 {
2742 intel_miptree_unmap_raw(mt);
2743 }
2744
2745 static void
2746 intel_miptree_map_blit(struct brw_context *brw,
2747 struct intel_mipmap_tree *mt,
2748 struct intel_miptree_map *map,
2749 unsigned int level, unsigned int slice)
2750 {
2751 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2752 /* first_level */ 0,
2753 /* last_level */ 0,
2754 map->w, map->h, 1,
2755 /* samples */ 0,
2756 MIPTREE_LAYOUT_TILING_NONE);
2757
2758 if (!map->linear_mt) {
2759 fprintf(stderr, "Failed to allocate blit temporary\n");
2760 goto fail;
2761 }
2762 map->stride = map->linear_mt->pitch;
2763
2764 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2765 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2766 * invalidate is set, since we'll be writing the whole rectangle from our
2767 * temporary buffer back out.
2768 */
2769 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2770 if (!intel_miptree_copy(brw,
2771 mt, level, slice, map->x, map->y,
2772 map->linear_mt, 0, 0, 0, 0,
2773 map->w, map->h)) {
2774 fprintf(stderr, "Failed to blit\n");
2775 goto fail;
2776 }
2777 }
2778
2779 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2780
2781 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2782 map->x, map->y, map->w, map->h,
2783 mt, _mesa_get_format_name(mt->format),
2784 level, slice, map->ptr, map->stride);
2785
2786 return;
2787
2788 fail:
2789 intel_miptree_release(&map->linear_mt);
2790 map->ptr = NULL;
2791 map->stride = 0;
2792 }
2793
2794 static void
2795 intel_miptree_unmap_blit(struct brw_context *brw,
2796 struct intel_mipmap_tree *mt,
2797 struct intel_miptree_map *map,
2798 unsigned int level,
2799 unsigned int slice)
2800 {
2801 struct gl_context *ctx = &brw->ctx;
2802
2803 intel_miptree_unmap_raw(map->linear_mt);
2804
2805 if (map->mode & GL_MAP_WRITE_BIT) {
2806 bool ok = intel_miptree_copy(brw,
2807 map->linear_mt, 0, 0, 0, 0,
2808 mt, level, slice, map->x, map->y,
2809 map->w, map->h);
2810 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2811 }
2812
2813 intel_miptree_release(&map->linear_mt);
2814 }
2815
2816 /**
2817 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2818 */
2819 #if defined(USE_SSE41)
2820 static void
2821 intel_miptree_map_movntdqa(struct brw_context *brw,
2822 struct intel_mipmap_tree *mt,
2823 struct intel_miptree_map *map,
2824 unsigned int level, unsigned int slice)
2825 {
2826 assert(map->mode & GL_MAP_READ_BIT);
2827 assert(!(map->mode & GL_MAP_WRITE_BIT));
2828
2829 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2830 map->x, map->y, map->w, map->h,
2831 mt, _mesa_get_format_name(mt->format),
2832 level, slice, map->ptr, map->stride);
2833
2834 /* Map the original image */
2835 uint32_t image_x;
2836 uint32_t image_y;
2837 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2838 image_x += map->x;
2839 image_y += map->y;
2840
2841 void *src = intel_miptree_map_raw(brw, mt, map->mode);
2842 if (!src)
2843 return;
2844
2845 src += mt->offset;
2846
2847 src += image_y * mt->pitch;
2848 src += image_x * mt->cpp;
2849
2850 /* Due to the pixel offsets for the particular image being mapped, our
2851 * src pointer may not be 16-byte aligned. However, if the pitch is
2852 * divisible by 16, then the amount by which it's misaligned will remain
2853 * consistent from row to row.
2854 */
2855 assert((mt->pitch % 16) == 0);
2856 const int misalignment = ((uintptr_t) src) & 15;
2857
2858 /* Create an untiled temporary buffer for the mapping. */
2859 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2860
2861 map->stride = ALIGN(misalignment + width_bytes, 16);
2862
2863 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2864 /* Offset the destination so it has the same misalignment as src. */
2865 map->ptr = map->buffer + misalignment;
2866
2867 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2868
2869 for (uint32_t y = 0; y < map->h; y++) {
2870 void *dst_ptr = map->ptr + y * map->stride;
2871 void *src_ptr = src + y * mt->pitch;
2872
2873 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2874 }
2875
2876 intel_miptree_unmap_raw(mt);
2877 }
2878
2879 static void
2880 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2881 struct intel_mipmap_tree *mt,
2882 struct intel_miptree_map *map,
2883 unsigned int level,
2884 unsigned int slice)
2885 {
2886 _mesa_align_free(map->buffer);
2887 map->buffer = NULL;
2888 map->ptr = NULL;
2889 }
2890 #endif
2891
2892 static void
2893 intel_miptree_map_s8(struct brw_context *brw,
2894 struct intel_mipmap_tree *mt,
2895 struct intel_miptree_map *map,
2896 unsigned int level, unsigned int slice)
2897 {
2898 map->stride = map->w;
2899 map->buffer = map->ptr = malloc(map->stride * map->h);
2900 if (!map->buffer)
2901 return;
2902
2903 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2904 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2905 * invalidate is set, since we'll be writing the whole rectangle from our
2906 * temporary buffer back out.
2907 */
2908 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2909 uint8_t *untiled_s8_map = map->ptr;
2910 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
2911 unsigned int image_x, image_y;
2912
2913 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2914
2915 for (uint32_t y = 0; y < map->h; y++) {
2916 for (uint32_t x = 0; x < map->w; x++) {
2917 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2918 x + image_x + map->x,
2919 y + image_y + map->y,
2920 brw->has_swizzling);
2921 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2922 }
2923 }
2924
2925 intel_miptree_unmap_raw(mt);
2926
2927 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2928 map->x, map->y, map->w, map->h,
2929 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2930 } else {
2931 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2932 map->x, map->y, map->w, map->h,
2933 mt, map->ptr, map->stride);
2934 }
2935 }
2936
2937 static void
2938 intel_miptree_unmap_s8(struct brw_context *brw,
2939 struct intel_mipmap_tree *mt,
2940 struct intel_miptree_map *map,
2941 unsigned int level,
2942 unsigned int slice)
2943 {
2944 if (map->mode & GL_MAP_WRITE_BIT) {
2945 unsigned int image_x, image_y;
2946 uint8_t *untiled_s8_map = map->ptr;
2947 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
2948
2949 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2950
2951 for (uint32_t y = 0; y < map->h; y++) {
2952 for (uint32_t x = 0; x < map->w; x++) {
2953 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2954 image_x + x + map->x,
2955 image_y + y + map->y,
2956 brw->has_swizzling);
2957 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2958 }
2959 }
2960
2961 intel_miptree_unmap_raw(mt);
2962 }
2963
2964 free(map->buffer);
2965 }
2966
2967 static void
2968 intel_miptree_map_etc(struct brw_context *brw,
2969 struct intel_mipmap_tree *mt,
2970 struct intel_miptree_map *map,
2971 unsigned int level,
2972 unsigned int slice)
2973 {
2974 assert(mt->etc_format != MESA_FORMAT_NONE);
2975 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2976 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2977 }
2978
2979 assert(map->mode & GL_MAP_WRITE_BIT);
2980 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2981
2982 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2983 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2984 map->w, map->h, 1));
2985 map->ptr = map->buffer;
2986 }
2987
2988 static void
2989 intel_miptree_unmap_etc(struct brw_context *brw,
2990 struct intel_mipmap_tree *mt,
2991 struct intel_miptree_map *map,
2992 unsigned int level,
2993 unsigned int slice)
2994 {
2995 uint32_t image_x;
2996 uint32_t image_y;
2997 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2998
2999 image_x += map->x;
3000 image_y += map->y;
3001
3002 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3003 + image_y * mt->pitch
3004 + image_x * mt->cpp;
3005
3006 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3007 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
3008 map->ptr, map->stride,
3009 map->w, map->h);
3010 else
3011 _mesa_unpack_etc2_format(dst, mt->pitch,
3012 map->ptr, map->stride,
3013 map->w, map->h, mt->etc_format);
3014
3015 intel_miptree_unmap_raw(mt);
3016 free(map->buffer);
3017 }
3018
3019 /**
3020 * Mapping function for packed depth/stencil miptrees backed by real separate
3021 * miptrees for depth and stencil.
3022 *
3023 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3024 * separate from the depth buffer. Yet at the GL API level, we have to expose
3025 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3026 * be able to map that memory for texture storage and glReadPixels-type
3027 * operations. We give Mesa core that access by mallocing a temporary and
3028 * copying the data between the actual backing store and the temporary.
3029 */
3030 static void
3031 intel_miptree_map_depthstencil(struct brw_context *brw,
3032 struct intel_mipmap_tree *mt,
3033 struct intel_miptree_map *map,
3034 unsigned int level, unsigned int slice)
3035 {
3036 struct intel_mipmap_tree *z_mt = mt;
3037 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3038 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3039 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3040
3041 map->stride = map->w * packed_bpp;
3042 map->buffer = map->ptr = malloc(map->stride * map->h);
3043 if (!map->buffer)
3044 return;
3045
3046 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3047 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3048 * invalidate is set, since we'll be writing the whole rectangle from our
3049 * temporary buffer back out.
3050 */
3051 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3052 uint32_t *packed_map = map->ptr;
3053 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3054 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3055 unsigned int s_image_x, s_image_y;
3056 unsigned int z_image_x, z_image_y;
3057
3058 intel_miptree_get_image_offset(s_mt, level, slice,
3059 &s_image_x, &s_image_y);
3060 intel_miptree_get_image_offset(z_mt, level, slice,
3061 &z_image_x, &z_image_y);
3062
3063 for (uint32_t y = 0; y < map->h; y++) {
3064 for (uint32_t x = 0; x < map->w; x++) {
3065 int map_x = map->x + x, map_y = map->y + y;
3066 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
3067 map_x + s_image_x,
3068 map_y + s_image_y,
3069 brw->has_swizzling);
3070 ptrdiff_t z_offset = ((map_y + z_image_y) *
3071 (z_mt->pitch / 4) +
3072 (map_x + z_image_x));
3073 uint8_t s = s_map[s_offset];
3074 uint32_t z = z_map[z_offset];
3075
3076 if (map_z32f_x24s8) {
3077 packed_map[(y * map->w + x) * 2 + 0] = z;
3078 packed_map[(y * map->w + x) * 2 + 1] = s;
3079 } else {
3080 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3081 }
3082 }
3083 }
3084
3085 intel_miptree_unmap_raw(s_mt);
3086 intel_miptree_unmap_raw(z_mt);
3087
3088 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3089 __func__,
3090 map->x, map->y, map->w, map->h,
3091 z_mt, map->x + z_image_x, map->y + z_image_y,
3092 s_mt, map->x + s_image_x, map->y + s_image_y,
3093 map->ptr, map->stride);
3094 } else {
3095 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3096 map->x, map->y, map->w, map->h,
3097 mt, map->ptr, map->stride);
3098 }
3099 }
3100
3101 static void
3102 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3103 struct intel_mipmap_tree *mt,
3104 struct intel_miptree_map *map,
3105 unsigned int level,
3106 unsigned int slice)
3107 {
3108 struct intel_mipmap_tree *z_mt = mt;
3109 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3110 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3111
3112 if (map->mode & GL_MAP_WRITE_BIT) {
3113 uint32_t *packed_map = map->ptr;
3114 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3115 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3116 unsigned int s_image_x, s_image_y;
3117 unsigned int z_image_x, z_image_y;
3118
3119 intel_miptree_get_image_offset(s_mt, level, slice,
3120 &s_image_x, &s_image_y);
3121 intel_miptree_get_image_offset(z_mt, level, slice,
3122 &z_image_x, &z_image_y);
3123
3124 for (uint32_t y = 0; y < map->h; y++) {
3125 for (uint32_t x = 0; x < map->w; x++) {
3126 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
3127 x + s_image_x + map->x,
3128 y + s_image_y + map->y,
3129 brw->has_swizzling);
3130 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3131 (z_mt->pitch / 4) +
3132 (x + z_image_x + map->x));
3133
3134 if (map_z32f_x24s8) {
3135 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3136 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3137 } else {
3138 uint32_t packed = packed_map[y * map->w + x];
3139 s_map[s_offset] = packed >> 24;
3140 z_map[z_offset] = packed;
3141 }
3142 }
3143 }
3144
3145 intel_miptree_unmap_raw(s_mt);
3146 intel_miptree_unmap_raw(z_mt);
3147
3148 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3149 __func__,
3150 map->x, map->y, map->w, map->h,
3151 z_mt, _mesa_get_format_name(z_mt->format),
3152 map->x + z_image_x, map->y + z_image_y,
3153 s_mt, map->x + s_image_x, map->y + s_image_y,
3154 map->ptr, map->stride);
3155 }
3156
3157 free(map->buffer);
3158 }
3159
3160 /**
3161 * Create and attach a map to the miptree at (level, slice). Return the
3162 * attached map.
3163 */
3164 static struct intel_miptree_map*
3165 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3166 unsigned int level,
3167 unsigned int slice,
3168 unsigned int x,
3169 unsigned int y,
3170 unsigned int w,
3171 unsigned int h,
3172 GLbitfield mode)
3173 {
3174 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3175
3176 if (!map)
3177 return NULL;
3178
3179 assert(mt->level[level].slice[slice].map == NULL);
3180 mt->level[level].slice[slice].map = map;
3181
3182 map->mode = mode;
3183 map->x = x;
3184 map->y = y;
3185 map->w = w;
3186 map->h = h;
3187
3188 return map;
3189 }
3190
3191 /**
3192 * Release the map at (level, slice).
3193 */
3194 static void
3195 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3196 unsigned int level,
3197 unsigned int slice)
3198 {
3199 struct intel_miptree_map **map;
3200
3201 map = &mt->level[level].slice[slice].map;
3202 free(*map);
3203 *map = NULL;
3204 }
3205
3206 static bool
3207 can_blit_slice(struct intel_mipmap_tree *mt,
3208 unsigned int level, unsigned int slice)
3209 {
3210 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3211 if (mt->pitch >= 32768)
3212 return false;
3213
3214 return true;
3215 }
3216
3217 static bool
3218 use_intel_mipree_map_blit(struct brw_context *brw,
3219 struct intel_mipmap_tree *mt,
3220 GLbitfield mode,
3221 unsigned int level,
3222 unsigned int slice)
3223 {
3224 if (brw->has_llc &&
3225 /* It's probably not worth swapping to the blit ring because of
3226 * all the overhead involved.
3227 */
3228 !(mode & GL_MAP_WRITE_BIT) &&
3229 !mt->compressed &&
3230 (mt->tiling == I915_TILING_X ||
3231 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3232 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3233 /* Fast copy blit on skl+ supports all tiling formats. */
3234 brw->gen >= 9) &&
3235 can_blit_slice(mt, level, slice))
3236 return true;
3237
3238 if (mt->tiling != I915_TILING_NONE &&
3239 mt->bo->size >= brw->max_gtt_map_object_size) {
3240 assert(can_blit_slice(mt, level, slice));
3241 return true;
3242 }
3243
3244 return false;
3245 }
3246
3247 /**
3248 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3249 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3250 * arithmetic overflow.
3251 *
3252 * If you call this function and use \a out_stride, then you're doing pointer
3253 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3254 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3255 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3256 * which usually have type uint32_t or GLuint.
3257 */
3258 void
3259 intel_miptree_map(struct brw_context *brw,
3260 struct intel_mipmap_tree *mt,
3261 unsigned int level,
3262 unsigned int slice,
3263 unsigned int x,
3264 unsigned int y,
3265 unsigned int w,
3266 unsigned int h,
3267 GLbitfield mode,
3268 void **out_ptr,
3269 ptrdiff_t *out_stride)
3270 {
3271 struct intel_miptree_map *map;
3272
3273 assert(mt->num_samples <= 1);
3274
3275 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3276 if (!map){
3277 *out_ptr = NULL;
3278 *out_stride = 0;
3279 return;
3280 }
3281
3282 intel_miptree_access_raw(brw, mt, level, slice,
3283 map->mode & GL_MAP_WRITE_BIT);
3284
3285 if (mt->format == MESA_FORMAT_S_UINT8) {
3286 intel_miptree_map_s8(brw, mt, map, level, slice);
3287 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3288 !(mode & BRW_MAP_DIRECT_BIT)) {
3289 intel_miptree_map_etc(brw, mt, map, level, slice);
3290 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3291 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3292 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3293 intel_miptree_map_blit(brw, mt, map, level, slice);
3294 #if defined(USE_SSE41)
3295 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3296 !mt->compressed && cpu_has_sse4_1 &&
3297 (mt->pitch % 16 == 0)) {
3298 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3299 #endif
3300 } else {
3301 intel_miptree_map_gtt(brw, mt, map, level, slice);
3302 }
3303
3304 *out_ptr = map->ptr;
3305 *out_stride = map->stride;
3306
3307 if (map->ptr == NULL)
3308 intel_miptree_release_map(mt, level, slice);
3309 }
3310
3311 void
3312 intel_miptree_unmap(struct brw_context *brw,
3313 struct intel_mipmap_tree *mt,
3314 unsigned int level,
3315 unsigned int slice)
3316 {
3317 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3318
3319 assert(mt->num_samples <= 1);
3320
3321 if (!map)
3322 return;
3323
3324 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3325 mt, _mesa_get_format_name(mt->format), level, slice);
3326
3327 if (mt->format == MESA_FORMAT_S_UINT8) {
3328 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3329 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3330 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3331 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3332 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3333 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3334 } else if (map->linear_mt) {
3335 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3336 #if defined(USE_SSE41)
3337 } else if (map->buffer && cpu_has_sse4_1) {
3338 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3339 #endif
3340 } else {
3341 intel_miptree_unmap_gtt(mt);
3342 }
3343
3344 intel_miptree_release_map(mt, level, slice);
3345 }
3346
3347 enum isl_surf_dim
3348 get_isl_surf_dim(GLenum target)
3349 {
3350 switch (target) {
3351 case GL_TEXTURE_1D:
3352 case GL_TEXTURE_1D_ARRAY:
3353 return ISL_SURF_DIM_1D;
3354
3355 case GL_TEXTURE_2D:
3356 case GL_TEXTURE_2D_ARRAY:
3357 case GL_TEXTURE_RECTANGLE:
3358 case GL_TEXTURE_CUBE_MAP:
3359 case GL_TEXTURE_CUBE_MAP_ARRAY:
3360 case GL_TEXTURE_2D_MULTISAMPLE:
3361 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3362 case GL_TEXTURE_EXTERNAL_OES:
3363 return ISL_SURF_DIM_2D;
3364
3365 case GL_TEXTURE_3D:
3366 return ISL_SURF_DIM_3D;
3367 }
3368
3369 unreachable("Invalid texture target");
3370 }
3371
3372 enum isl_dim_layout
3373 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3374 GLenum target, enum miptree_array_layout array_layout)
3375 {
3376 if (array_layout == GEN6_HIZ_STENCIL)
3377 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
3378
3379 switch (target) {
3380 case GL_TEXTURE_1D:
3381 case GL_TEXTURE_1D_ARRAY:
3382 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3383 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3384
3385 case GL_TEXTURE_2D:
3386 case GL_TEXTURE_2D_ARRAY:
3387 case GL_TEXTURE_RECTANGLE:
3388 case GL_TEXTURE_2D_MULTISAMPLE:
3389 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3390 case GL_TEXTURE_EXTERNAL_OES:
3391 return ISL_DIM_LAYOUT_GEN4_2D;
3392
3393 case GL_TEXTURE_CUBE_MAP:
3394 case GL_TEXTURE_CUBE_MAP_ARRAY:
3395 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3396 ISL_DIM_LAYOUT_GEN4_2D);
3397
3398 case GL_TEXTURE_3D:
3399 return (devinfo->gen >= 9 ?
3400 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3401 }
3402
3403 unreachable("Invalid texture target");
3404 }
3405
3406 enum isl_tiling
3407 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3408 {
3409 if (mt->format == MESA_FORMAT_S_UINT8) {
3410 return ISL_TILING_W;
3411 } else {
3412 switch (mt->tiling) {
3413 case I915_TILING_NONE:
3414 return ISL_TILING_LINEAR;
3415 case I915_TILING_X:
3416 return ISL_TILING_X;
3417 case I915_TILING_Y:
3418 return ISL_TILING_Y0;
3419 default:
3420 unreachable("Invalid tiling mode");
3421 }
3422 }
3423 }
3424
3425 void
3426 intel_miptree_get_isl_surf(struct brw_context *brw,
3427 const struct intel_mipmap_tree *mt,
3428 struct isl_surf *surf)
3429 {
3430 surf->dim = get_isl_surf_dim(mt->target);
3431 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3432 mt->tiling, mt->target,
3433 mt->array_layout);
3434
3435 if (mt->num_samples > 1) {
3436 switch (mt->msaa_layout) {
3437 case INTEL_MSAA_LAYOUT_IMS:
3438 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3439 break;
3440 case INTEL_MSAA_LAYOUT_UMS:
3441 case INTEL_MSAA_LAYOUT_CMS:
3442 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3443 break;
3444 default:
3445 unreachable("Invalid MSAA layout");
3446 }
3447 } else {
3448 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3449 }
3450
3451 surf->tiling = intel_miptree_get_isl_tiling(mt);
3452
3453 if (mt->format == MESA_FORMAT_S_UINT8) {
3454 /* The ISL definition of row_pitch matches the surface state pitch field
3455 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3456 * the factor of 2 for W-tiling in row_pitch.
3457 */
3458 surf->row_pitch = 2 * mt->pitch;
3459 } else {
3460 surf->row_pitch = mt->pitch;
3461 }
3462
3463 surf->format = translate_tex_format(brw, mt->format, false);
3464
3465 if (brw->gen >= 9) {
3466 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3467 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3468 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3469 } else {
3470 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3471 * alignment in terms of surface elements like we want.
3472 */
3473 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3474 }
3475 } else {
3476 /* On earlier gens it's stored in pixels. */
3477 unsigned bw, bh;
3478 _mesa_get_format_block_size(mt->format, &bw, &bh);
3479 surf->image_alignment_el =
3480 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3481 }
3482
3483 surf->logical_level0_px.width = mt->logical_width0;
3484 surf->logical_level0_px.height = mt->logical_height0;
3485 if (surf->dim == ISL_SURF_DIM_3D) {
3486 surf->logical_level0_px.depth = mt->logical_depth0;
3487 surf->logical_level0_px.array_len = 1;
3488 } else {
3489 surf->logical_level0_px.depth = 1;
3490 surf->logical_level0_px.array_len = mt->logical_depth0;
3491 }
3492
3493 surf->phys_level0_sa.width = mt->physical_width0;
3494 surf->phys_level0_sa.height = mt->physical_height0;
3495 if (surf->dim == ISL_SURF_DIM_3D) {
3496 surf->phys_level0_sa.depth = mt->physical_depth0;
3497 surf->phys_level0_sa.array_len = 1;
3498 } else {
3499 surf->phys_level0_sa.depth = 1;
3500 surf->phys_level0_sa.array_len = mt->physical_depth0;
3501 }
3502
3503 surf->levels = mt->last_level - mt->first_level + 1;
3504 surf->samples = MAX2(mt->num_samples, 1);
3505
3506 surf->size = 0; /* TODO */
3507 surf->alignment = 0; /* TODO */
3508
3509 switch (surf->dim_layout) {
3510 case ISL_DIM_LAYOUT_GEN4_2D:
3511 case ISL_DIM_LAYOUT_GEN4_3D:
3512 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
3513 if (brw->gen >= 9) {
3514 surf->array_pitch_el_rows = mt->qpitch;
3515 } else {
3516 unsigned bw, bh;
3517 _mesa_get_format_block_size(mt->format, &bw, &bh);
3518 assert(mt->qpitch % bh == 0);
3519 surf->array_pitch_el_rows = mt->qpitch / bh;
3520 }
3521 break;
3522 case ISL_DIM_LAYOUT_GEN9_1D:
3523 surf->array_pitch_el_rows = 1;
3524 break;
3525 }
3526
3527 switch (mt->array_layout) {
3528 case ALL_LOD_IN_EACH_SLICE:
3529 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3530 break;
3531 case ALL_SLICES_AT_EACH_LOD:
3532 case GEN6_HIZ_STENCIL:
3533 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3534 break;
3535 default:
3536 unreachable("Invalid array layout");
3537 }
3538
3539 GLenum base_format = _mesa_get_format_base_format(mt->format);
3540 switch (base_format) {
3541 case GL_DEPTH_COMPONENT:
3542 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3543 break;
3544 case GL_STENCIL_INDEX:
3545 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3546 if (brw->gen >= 8)
3547 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3548 break;
3549 case GL_DEPTH_STENCIL:
3550 /* In this case we only texture from the depth part */
3551 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3552 ISL_SURF_USAGE_TEXTURE_BIT;
3553 break;
3554 default:
3555 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3556 if (brw->format_supported_as_render_target[mt->format])
3557 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3558 break;
3559 }
3560
3561 if (_mesa_is_cube_map_texture(mt->target))
3562 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3563 }
3564
3565 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3566 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3567 * PASS IT INTO isl_surf_fill_state.
3568 */
3569 void
3570 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3571 const struct intel_mipmap_tree *mt,
3572 struct isl_surf *surf,
3573 enum isl_aux_usage *usage)
3574 {
3575 uint32_t aux_pitch, aux_qpitch;
3576 if (mt->mcs_buf) {
3577 aux_pitch = mt->mcs_buf->pitch;
3578 aux_qpitch = mt->mcs_buf->qpitch;
3579
3580 if (mt->num_samples > 1) {
3581 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3582 *usage = ISL_AUX_USAGE_MCS;
3583 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3584 assert(brw->gen >= 9);
3585 *usage = ISL_AUX_USAGE_CCS_E;
3586 } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3587 *usage = ISL_AUX_USAGE_CCS_D;
3588 } else {
3589 unreachable("Invalid MCS miptree");
3590 }
3591 } else if (mt->hiz_buf) {
3592 aux_pitch = mt->hiz_buf->aux_base.pitch;
3593 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3594
3595 *usage = ISL_AUX_USAGE_HIZ;
3596 } else {
3597 *usage = ISL_AUX_USAGE_NONE;
3598 return;
3599 }
3600
3601 /* Start with a copy of the original surface. */
3602 intel_miptree_get_isl_surf(brw, mt, surf);
3603
3604 /* Figure out the format and tiling of the auxiliary surface */
3605 switch (*usage) {
3606 case ISL_AUX_USAGE_NONE:
3607 unreachable("Invalid auxiliary usage");
3608
3609 case ISL_AUX_USAGE_HIZ:
3610 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3611 break;
3612
3613 case ISL_AUX_USAGE_MCS:
3614 /*
3615 * From the SKL PRM:
3616 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3617 * HALIGN 16 must be used."
3618 */
3619 if (brw->gen >= 9)
3620 assert(mt->halign == 16);
3621
3622 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3623 break;
3624
3625 case ISL_AUX_USAGE_CCS_D:
3626 case ISL_AUX_USAGE_CCS_E:
3627 /*
3628 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3629 *
3630 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3631 *
3632 * From the hardware spec for GEN9:
3633 *
3634 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3635 * HALIGN 16 must be used."
3636 */
3637 assert(mt->num_samples <= 1);
3638 if (brw->gen >= 8)
3639 assert(mt->halign == 16);
3640
3641 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3642 break;
3643 }
3644
3645 /* We want the pitch of the actual aux buffer. */
3646 surf->row_pitch = aux_pitch;
3647
3648 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3649 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3650 * in elements of the primary color surface so we have to divide by the
3651 * compression block height.
3652 */
3653 surf->array_pitch_el_rows =
3654 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3655 }