i965/gen8: Don't allocate hiz miptree structure
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_resolve_map.h"
34 #include "intel_tex.h"
35 #include "intel_blit.h"
36 #include "intel_fbo.h"
37
38 #include "brw_blorp.h"
39 #include "brw_context.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 /**
53 * Determine which MSAA layout should be used by the MSAA surface being
54 * created, based on the chip generation and the surface type.
55 */
56 static enum intel_msaa_layout
57 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
58 {
59 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
60 if (brw->gen < 7)
61 return INTEL_MSAA_LAYOUT_IMS;
62
63 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
64 switch (_mesa_get_format_base_format(format)) {
65 case GL_DEPTH_COMPONENT:
66 case GL_STENCIL_INDEX:
67 case GL_DEPTH_STENCIL:
68 return INTEL_MSAA_LAYOUT_IMS;
69 default:
70 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
71 *
72 * This field must be set to 0 for all SINT MSRTs when all RT channels
73 * are not written
74 *
75 * In practice this means that we have to disable MCS for all signed
76 * integer MSAA buffers. The alternative, to disable MCS only when one
77 * of the render target channels is disabled, is impractical because it
78 * would require converting between CMS and UMS MSAA layouts on the fly,
79 * which is expensive.
80 */
81 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
82 return INTEL_MSAA_LAYOUT_UMS;
83 } else {
84 return INTEL_MSAA_LAYOUT_CMS;
85 }
86 }
87 }
88
89
90 /**
91 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
92 * scaled-down bitfield representation of the color buffer which is capable of
93 * recording when blocks of the color buffer are equal to the clear value.
94 * This function returns the block size that will be used by the MCS buffer
95 * corresponding to a certain color miptree.
96 *
97 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
98 * beneath the "Fast Color Clear" bullet (p327):
99 *
100 * The following table describes the RT alignment
101 *
102 * Pixels Lines
103 * TiledY RT CL
104 * bpp
105 * 32 8 4
106 * 64 4 4
107 * 128 2 4
108 * TiledX RT CL
109 * bpp
110 * 32 16 2
111 * 64 8 2
112 * 128 4 2
113 *
114 * This alignment has the following uses:
115 *
116 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
117 * buffer contains 128 blocks horizontally and 256 blocks vertically.
118 *
119 * - For figuring out alignment restrictions for a fast clear operation. Fast
120 * clear operations must always clear aligned multiples of 16 blocks
121 * horizontally and 32 blocks vertically.
122 *
123 * - For scaling down the coordinates sent through the render pipeline during
124 * a fast clear. X coordinates must be scaled down by 8 times the block
125 * width, and Y coordinates by 16 times the block height.
126 *
127 * - For scaling down the coordinates sent through the render pipeline during
128 * a "Render Target Resolve" operation. X coordinates must be scaled down
129 * by half the block width, and Y coordinates by half the block height.
130 */
131 void
132 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
133 struct intel_mipmap_tree *mt,
134 unsigned *width_px, unsigned *height)
135 {
136 switch (mt->tiling) {
137 default:
138 unreachable("Non-MSRT MCS requires X or Y tiling");
139 /* In release builds, fall through */
140 case I915_TILING_Y:
141 *width_px = 32 / mt->cpp;
142 *height = 4;
143 break;
144 case I915_TILING_X:
145 *width_px = 64 / mt->cpp;
146 *height = 2;
147 }
148 }
149
150
151 /**
152 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
153 * can be used.
154 *
155 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
156 * beneath the "Fast Color Clear" bullet (p326):
157 *
158 * - Support is limited to tiled render targets.
159 * - Support is for non-mip-mapped and non-array surface types only.
160 *
161 * And then later, on p327:
162 *
163 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
164 * 64bpp, and 128bpp.
165 */
166 bool
167 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
168 struct intel_mipmap_tree *mt)
169 {
170 /* MCS support does not exist prior to Gen7 */
171 if (brw->gen < 7)
172 return false;
173
174 /* MCS is only supported for color buffers */
175 switch (_mesa_get_format_base_format(mt->format)) {
176 case GL_DEPTH_COMPONENT:
177 case GL_DEPTH_STENCIL:
178 case GL_STENCIL_INDEX:
179 return false;
180 }
181
182 if (mt->tiling != I915_TILING_X &&
183 mt->tiling != I915_TILING_Y)
184 return false;
185 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
186 return false;
187 if (mt->first_level != 0 || mt->last_level != 0)
188 return false;
189 if (mt->physical_depth0 != 1)
190 return false;
191
192 /* There's no point in using an MCS buffer if the surface isn't in a
193 * renderable format.
194 */
195 if (!brw->format_supported_as_render_target[mt->format])
196 return false;
197
198 return true;
199 }
200
201
202 /**
203 * Determine depth format corresponding to a depth+stencil format,
204 * for separate stencil.
205 */
206 mesa_format
207 intel_depth_format_for_depthstencil_format(mesa_format format) {
208 switch (format) {
209 case MESA_FORMAT_Z24_UNORM_S8_UINT:
210 return MESA_FORMAT_Z24_UNORM_X8_UINT;
211 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
212 return MESA_FORMAT_Z_FLOAT32;
213 default:
214 return format;
215 }
216 }
217
218
219 /**
220 * @param for_bo Indicates that the caller is
221 * intel_miptree_create_for_bo(). If true, then do not create
222 * \c stencil_mt.
223 */
224 struct intel_mipmap_tree *
225 intel_miptree_create_layout(struct brw_context *brw,
226 GLenum target,
227 mesa_format format,
228 GLuint first_level,
229 GLuint last_level,
230 GLuint width0,
231 GLuint height0,
232 GLuint depth0,
233 bool for_bo,
234 GLuint num_samples,
235 bool force_all_slices_at_each_lod)
236 {
237 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
238 if (!mt)
239 return NULL;
240
241 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
242 _mesa_lookup_enum_by_nr(target),
243 _mesa_get_format_name(format),
244 first_level, last_level, depth0, mt);
245
246 if (target == GL_TEXTURE_1D_ARRAY) {
247 /* For a 1D Array texture the OpenGL API will treat the height0
248 * parameter as the number of array slices. For Intel hardware, we treat
249 * the 1D array as a 2D Array with a height of 1.
250 *
251 * So, when we first come through this path to create a 1D Array
252 * texture, height0 stores the number of slices, and depth0 is 1. In
253 * this case, we want to swap height0 and depth0.
254 *
255 * Since some miptrees will be created based on the base miptree, we may
256 * come through this path and see height0 as 1 and depth0 being the
257 * number of slices. In this case we don't need to do the swap.
258 */
259 assert(height0 == 1 || depth0 == 1);
260 if (height0 > 1) {
261 depth0 = height0;
262 height0 = 1;
263 }
264 }
265
266 mt->target = target;
267 mt->format = format;
268 mt->first_level = first_level;
269 mt->last_level = last_level;
270 mt->logical_width0 = width0;
271 mt->logical_height0 = height0;
272 mt->logical_depth0 = depth0;
273 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
274 exec_list_make_empty(&mt->hiz_map);
275
276 /* The cpp is bytes per (1, blockheight)-sized block for compressed
277 * textures. This is why you'll see divides by blockheight all over
278 */
279 unsigned bw, bh;
280 _mesa_get_format_block_size(format, &bw, &bh);
281 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
282 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
283
284 mt->num_samples = num_samples;
285 mt->compressed = _mesa_is_format_compressed(format);
286 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
287 mt->refcount = 1;
288
289 if (num_samples > 1) {
290 /* Adjust width/height/depth for MSAA */
291 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
292 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
293 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
294 * "If the surface is multisampled and it is a depth or stencil
295 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
296 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
297 * proceeding:
298 *
299 * +----------------------------------------------------------------+
300 * | Num Multisamples | W_l = | H_l = |
301 * +----------------------------------------------------------------+
302 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
303 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
304 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
305 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
306 * +----------------------------------------------------------------+
307 * "
308 *
309 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
310 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
311 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
312 *
313 * Another more complicated explanation for these adjustments comes
314 * from the Sandybridge PRM, volume 4, part 1, page 31:
315 *
316 * "Any of the other messages (sample*, LOD, load4) used with a
317 * (4x) multisampled surface will in-effect sample a surface with
318 * double the height and width as that indicated in the surface
319 * state. Each pixel position on the original-sized surface is
320 * replaced with a 2x2 of samples with the following arrangement:
321 *
322 * sample 0 sample 2
323 * sample 1 sample 3"
324 *
325 * Thus, when sampling from a multisampled texture, it behaves as
326 * though the layout in memory for (x,y,sample) is:
327 *
328 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
329 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
330 *
331 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
332 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
333 *
334 * However, the actual layout of multisampled data in memory is:
335 *
336 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
337 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
338 *
339 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
340 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
341 *
342 * This pattern repeats for each 2x2 pixel block.
343 *
344 * As a result, when calculating the size of our 4-sample buffer for
345 * an odd width or height, we have to align before scaling up because
346 * sample 3 is in that bottom right 2x2 block.
347 */
348 switch (num_samples) {
349 case 2:
350 assert(brw->gen >= 8);
351 width0 = ALIGN(width0, 2) * 2;
352 height0 = ALIGN(height0, 2);
353 break;
354 case 4:
355 width0 = ALIGN(width0, 2) * 2;
356 height0 = ALIGN(height0, 2) * 2;
357 break;
358 case 8:
359 width0 = ALIGN(width0, 2) * 4;
360 height0 = ALIGN(height0, 2) * 2;
361 break;
362 default:
363 /* num_samples should already have been quantized to 0, 1, 2, 4, or
364 * 8.
365 */
366 unreachable("not reached");
367 }
368 } else {
369 /* Non-interleaved */
370 depth0 *= num_samples;
371 }
372 }
373
374 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when gen7+ array_spacing_lod0
375 * can be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces.
376 * TODO: can we use it elsewhere?
377 */
378 switch (mt->msaa_layout) {
379 case INTEL_MSAA_LAYOUT_NONE:
380 case INTEL_MSAA_LAYOUT_IMS:
381 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
382 break;
383 case INTEL_MSAA_LAYOUT_UMS:
384 case INTEL_MSAA_LAYOUT_CMS:
385 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
386 break;
387 }
388
389 if (target == GL_TEXTURE_CUBE_MAP) {
390 assert(depth0 == 1);
391 depth0 = 6;
392 }
393
394 mt->physical_width0 = width0;
395 mt->physical_height0 = height0;
396 mt->physical_depth0 = depth0;
397
398 if (!for_bo &&
399 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
400 (brw->must_use_separate_stencil ||
401 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
402 const bool force_all_slices_at_each_lod = brw->gen == 6;
403 mt->stencil_mt = intel_miptree_create(brw,
404 mt->target,
405 MESA_FORMAT_S_UINT8,
406 mt->first_level,
407 mt->last_level,
408 mt->logical_width0,
409 mt->logical_height0,
410 mt->logical_depth0,
411 true,
412 num_samples,
413 INTEL_MIPTREE_TILING_ANY,
414 force_all_slices_at_each_lod);
415 if (!mt->stencil_mt) {
416 intel_miptree_release(&mt);
417 return NULL;
418 }
419
420 /* Fix up the Z miptree format for how we're splitting out separate
421 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
422 */
423 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
424 mt->cpp = 4;
425
426 if (format == mt->format) {
427 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
428 _mesa_get_format_name(mt->format));
429 }
430 }
431
432 if (force_all_slices_at_each_lod)
433 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
434
435 brw_miptree_layout(brw, mt);
436
437 return mt;
438 }
439
440 /**
441 * \brief Helper function for intel_miptree_create().
442 */
443 static uint32_t
444 intel_miptree_choose_tiling(struct brw_context *brw,
445 mesa_format format,
446 uint32_t width0,
447 uint32_t num_samples,
448 enum intel_miptree_tiling_mode requested,
449 struct intel_mipmap_tree *mt)
450 {
451 if (format == MESA_FORMAT_S_UINT8) {
452 /* The stencil buffer is W tiled. However, we request from the kernel a
453 * non-tiled buffer because the GTT is incapable of W fencing.
454 */
455 return I915_TILING_NONE;
456 }
457
458 /* Some usages may want only one type of tiling, like depth miptrees (Y
459 * tiled), or temporary BOs for uploading data once (linear).
460 */
461 switch (requested) {
462 case INTEL_MIPTREE_TILING_ANY:
463 break;
464 case INTEL_MIPTREE_TILING_Y:
465 return I915_TILING_Y;
466 case INTEL_MIPTREE_TILING_NONE:
467 return I915_TILING_NONE;
468 }
469
470 if (num_samples > 1) {
471 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
472 * Surface"):
473 *
474 * [DevSNB+]: For multi-sample render targets, this field must be
475 * 1. MSRTs can only be tiled.
476 *
477 * Our usual reason for preferring X tiling (fast blits using the
478 * blitting engine) doesn't apply to MSAA, since we'll generally be
479 * downsampling or upsampling when blitting between the MSAA buffer
480 * and another buffer, and the blitting engine doesn't support that.
481 * So use Y tiling, since it makes better use of the cache.
482 */
483 return I915_TILING_Y;
484 }
485
486 GLenum base_format = _mesa_get_format_base_format(format);
487 if (base_format == GL_DEPTH_COMPONENT ||
488 base_format == GL_DEPTH_STENCIL_EXT)
489 return I915_TILING_Y;
490
491 /* 1D textures (and 1D array textures) don't get any benefit from tiling,
492 * in fact it leads to a less efficient use of memory space and bandwidth
493 * due to tile alignment.
494 */
495 if (mt->logical_height0 == 1)
496 return I915_TILING_NONE;
497
498 int minimum_pitch = mt->total_width * mt->cpp;
499
500 /* If the width is much smaller than a tile, don't bother tiling. */
501 if (minimum_pitch < 64)
502 return I915_TILING_NONE;
503
504 if (ALIGN(minimum_pitch, 512) >= 32768 ||
505 mt->total_width >= 32768 || mt->total_height >= 32768) {
506 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
507 mt->total_width, mt->total_height);
508 return I915_TILING_NONE;
509 }
510
511 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
512 if (brw->gen < 6)
513 return I915_TILING_X;
514
515 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
516 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
517 * or Linear."
518 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
519 * all the way back to 965, but is permitted on Gen7+.
520 */
521 if (brw->gen < 7 && mt->cpp >= 16)
522 return I915_TILING_X;
523
524 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
525 * messages), on p64, under the heading "Surface Vertical Alignment":
526 *
527 * This field must be set to VALIGN_4 for all tiled Y Render Target
528 * surfaces.
529 *
530 * So if the surface is renderable and uses a vertical alignment of 2,
531 * force it to be X tiled. This is somewhat conservative (it's possible
532 * that the client won't ever render to this surface), but it's difficult
533 * to know that ahead of time. And besides, since we use a vertical
534 * alignment of 4 as often as we can, this shouldn't happen very often.
535 */
536 if (brw->gen == 7 && mt->align_h == 2 &&
537 brw->format_supported_as_render_target[format]) {
538 return I915_TILING_X;
539 }
540
541 return I915_TILING_Y | I915_TILING_X;
542 }
543
544
545 /**
546 * Choose an appropriate uncompressed format for a requested
547 * compressed format, if unsupported.
548 */
549 mesa_format
550 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
551 {
552 /* No need to lower ETC formats on these platforms,
553 * they are supported natively.
554 */
555 if (brw->gen >= 8 || brw->is_baytrail)
556 return format;
557
558 switch (format) {
559 case MESA_FORMAT_ETC1_RGB8:
560 return MESA_FORMAT_R8G8B8X8_UNORM;
561 case MESA_FORMAT_ETC2_RGB8:
562 return MESA_FORMAT_R8G8B8X8_UNORM;
563 case MESA_FORMAT_ETC2_SRGB8:
564 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
565 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
566 return MESA_FORMAT_B8G8R8A8_SRGB;
567 case MESA_FORMAT_ETC2_RGBA8_EAC:
568 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
569 return MESA_FORMAT_R8G8B8A8_UNORM;
570 case MESA_FORMAT_ETC2_R11_EAC:
571 return MESA_FORMAT_R_UNORM16;
572 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
573 return MESA_FORMAT_R_SNORM16;
574 case MESA_FORMAT_ETC2_RG11_EAC:
575 return MESA_FORMAT_R16G16_UNORM;
576 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
577 return MESA_FORMAT_R16G16_SNORM;
578 default:
579 /* Non ETC1 / ETC2 format */
580 return format;
581 }
582 }
583
584
585 struct intel_mipmap_tree *
586 intel_miptree_create(struct brw_context *brw,
587 GLenum target,
588 mesa_format format,
589 GLuint first_level,
590 GLuint last_level,
591 GLuint width0,
592 GLuint height0,
593 GLuint depth0,
594 bool expect_accelerated_upload,
595 GLuint num_samples,
596 enum intel_miptree_tiling_mode requested_tiling,
597 bool force_all_slices_at_each_lod)
598 {
599 struct intel_mipmap_tree *mt;
600 mesa_format tex_format = format;
601 mesa_format etc_format = MESA_FORMAT_NONE;
602 GLuint total_width, total_height;
603
604 format = intel_lower_compressed_format(brw, format);
605
606 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
607
608 mt = intel_miptree_create_layout(brw, target, format,
609 first_level, last_level, width0,
610 height0, depth0,
611 false, num_samples,
612 force_all_slices_at_each_lod);
613 /*
614 * pitch == 0 || height == 0 indicates the null texture
615 */
616 if (!mt || !mt->total_width || !mt->total_height) {
617 intel_miptree_release(&mt);
618 return NULL;
619 }
620
621 total_width = mt->total_width;
622 total_height = mt->total_height;
623
624 if (format == MESA_FORMAT_S_UINT8) {
625 /* Align to size of W tile, 64x64. */
626 total_width = ALIGN(total_width, 64);
627 total_height = ALIGN(total_height, 64);
628 }
629
630 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
631 num_samples, requested_tiling,
632 mt);
633 bool y_or_x = false;
634
635 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
636 y_or_x = true;
637 mt->tiling = I915_TILING_Y;
638 } else {
639 mt->tiling = tiling;
640 }
641
642 unsigned long pitch;
643 mt->etc_format = etc_format;
644 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
645 total_width, total_height, mt->cpp,
646 &mt->tiling, &pitch,
647 (expect_accelerated_upload ?
648 BO_ALLOC_FOR_RENDER : 0));
649 mt->pitch = pitch;
650
651 /* If the BO is too large to fit in the aperture, we need to use the
652 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
653 * handle Y-tiling, so we need to fall back to X.
654 */
655 if (brw->gen < 6 && y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
656 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
657 mt->total_width, mt->total_height);
658
659 mt->tiling = I915_TILING_X;
660 drm_intel_bo_unreference(mt->bo);
661 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
662 total_width, total_height, mt->cpp,
663 &mt->tiling, &pitch,
664 (expect_accelerated_upload ?
665 BO_ALLOC_FOR_RENDER : 0));
666 mt->pitch = pitch;
667 }
668
669 mt->offset = 0;
670
671 if (!mt->bo) {
672 intel_miptree_release(&mt);
673 return NULL;
674 }
675
676
677 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
678 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
679 intel_miptree_release(&mt);
680 return NULL;
681 }
682 }
683
684 /* If this miptree is capable of supporting fast color clears, set
685 * fast_clear_state appropriately to ensure that fast clears will occur.
686 * Allocation of the MCS miptree will be deferred until the first fast
687 * clear actually occurs.
688 */
689 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
690 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
691
692 return mt;
693 }
694
695 struct intel_mipmap_tree *
696 intel_miptree_create_for_bo(struct brw_context *brw,
697 drm_intel_bo *bo,
698 mesa_format format,
699 uint32_t offset,
700 uint32_t width,
701 uint32_t height,
702 uint32_t depth,
703 int pitch)
704 {
705 struct intel_mipmap_tree *mt;
706 uint32_t tiling, swizzle;
707 GLenum target;
708
709 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
710
711 /* Nothing will be able to use this miptree with the BO if the offset isn't
712 * aligned.
713 */
714 if (tiling != I915_TILING_NONE)
715 assert(offset % 4096 == 0);
716
717 /* miptrees can't handle negative pitch. If you need flipping of images,
718 * that's outside of the scope of the mt.
719 */
720 assert(pitch >= 0);
721
722 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
723
724 mt = intel_miptree_create_layout(brw, target, format,
725 0, 0,
726 width, height, depth,
727 true, 0, false);
728 if (!mt) {
729 free(mt);
730 return mt;
731 }
732
733 drm_intel_bo_reference(bo);
734 mt->bo = bo;
735 mt->pitch = pitch;
736 mt->offset = offset;
737 mt->tiling = tiling;
738
739 return mt;
740 }
741
742 /**
743 * For a singlesample renderbuffer, this simply wraps the given BO with a
744 * miptree.
745 *
746 * For a multisample renderbuffer, this wraps the window system's
747 * (singlesample) BO with a singlesample miptree attached to the
748 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
749 * that will contain the actual rendering (which is lazily resolved to
750 * irb->singlesample_mt).
751 */
752 void
753 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
754 struct intel_renderbuffer *irb,
755 drm_intel_bo *bo,
756 uint32_t width, uint32_t height,
757 uint32_t pitch)
758 {
759 struct intel_mipmap_tree *singlesample_mt = NULL;
760 struct intel_mipmap_tree *multisample_mt = NULL;
761 struct gl_renderbuffer *rb = &irb->Base.Base;
762 mesa_format format = rb->Format;
763 int num_samples = rb->NumSamples;
764
765 /* Only the front and back buffers, which are color buffers, are allocated
766 * through the image loader.
767 */
768 assert(_mesa_get_format_base_format(format) == GL_RGB ||
769 _mesa_get_format_base_format(format) == GL_RGBA);
770
771 singlesample_mt = intel_miptree_create_for_bo(intel,
772 bo,
773 format,
774 0,
775 width,
776 height,
777 1,
778 pitch);
779 if (!singlesample_mt)
780 goto fail;
781
782 /* If this miptree is capable of supporting fast color clears, set
783 * mcs_state appropriately to ensure that fast clears will occur.
784 * Allocation of the MCS miptree will be deferred until the first fast
785 * clear actually occurs.
786 */
787 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
788 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
789
790 if (num_samples == 0) {
791 intel_miptree_release(&irb->mt);
792 irb->mt = singlesample_mt;
793
794 assert(!irb->singlesample_mt);
795 } else {
796 intel_miptree_release(&irb->singlesample_mt);
797 irb->singlesample_mt = singlesample_mt;
798
799 if (!irb->mt ||
800 irb->mt->logical_width0 != width ||
801 irb->mt->logical_height0 != height) {
802 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
803 format,
804 width,
805 height,
806 num_samples);
807 if (!multisample_mt)
808 goto fail;
809
810 irb->need_downsample = false;
811 intel_miptree_release(&irb->mt);
812 irb->mt = multisample_mt;
813 }
814 }
815 return;
816
817 fail:
818 intel_miptree_release(&irb->singlesample_mt);
819 intel_miptree_release(&irb->mt);
820 return;
821 }
822
823 struct intel_mipmap_tree*
824 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
825 mesa_format format,
826 uint32_t width,
827 uint32_t height,
828 uint32_t num_samples)
829 {
830 struct intel_mipmap_tree *mt;
831 uint32_t depth = 1;
832 bool ok;
833 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
834
835 mt = intel_miptree_create(brw, target, format, 0, 0,
836 width, height, depth, true, num_samples,
837 INTEL_MIPTREE_TILING_ANY, false);
838 if (!mt)
839 goto fail;
840
841 if (brw_is_hiz_depth_format(brw, format)) {
842 ok = intel_miptree_alloc_hiz(brw, mt);
843 if (!ok)
844 goto fail;
845 }
846
847 return mt;
848
849 fail:
850 intel_miptree_release(&mt);
851 return NULL;
852 }
853
854 void
855 intel_miptree_reference(struct intel_mipmap_tree **dst,
856 struct intel_mipmap_tree *src)
857 {
858 if (*dst == src)
859 return;
860
861 intel_miptree_release(dst);
862
863 if (src) {
864 src->refcount++;
865 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
866 }
867
868 *dst = src;
869 }
870
871
872 void
873 intel_miptree_release(struct intel_mipmap_tree **mt)
874 {
875 if (!*mt)
876 return;
877
878 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
879 if (--(*mt)->refcount <= 0) {
880 GLuint i;
881
882 DBG("%s deleting %p\n", __FUNCTION__, *mt);
883
884 drm_intel_bo_unreference((*mt)->bo);
885 intel_miptree_release(&(*mt)->stencil_mt);
886 if ((*mt)->hiz_buf) {
887 if ((*mt)->hiz_buf->mt)
888 intel_miptree_release(&(*mt)->hiz_buf->mt);
889 else
890 drm_intel_bo_unreference((*mt)->hiz_buf->bo);
891 free((*mt)->hiz_buf);
892 }
893 intel_miptree_release(&(*mt)->mcs_mt);
894 intel_resolve_map_clear(&(*mt)->hiz_map);
895
896 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
897 free((*mt)->level[i].slice);
898 }
899
900 free(*mt);
901 }
902 *mt = NULL;
903 }
904
905 void
906 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
907 int *width, int *height, int *depth)
908 {
909 switch (image->TexObject->Target) {
910 case GL_TEXTURE_1D_ARRAY:
911 *width = image->Width;
912 *height = 1;
913 *depth = image->Height;
914 break;
915 default:
916 *width = image->Width;
917 *height = image->Height;
918 *depth = image->Depth;
919 break;
920 }
921 }
922
923 /**
924 * Can the image be pulled into a unified mipmap tree? This mirrors
925 * the completeness test in a lot of ways.
926 *
927 * Not sure whether I want to pass gl_texture_image here.
928 */
929 bool
930 intel_miptree_match_image(struct intel_mipmap_tree *mt,
931 struct gl_texture_image *image)
932 {
933 struct intel_texture_image *intelImage = intel_texture_image(image);
934 GLuint level = intelImage->base.Base.Level;
935 int width, height, depth;
936
937 /* glTexImage* choose the texture object based on the target passed in, and
938 * objects can't change targets over their lifetimes, so this should be
939 * true.
940 */
941 assert(image->TexObject->Target == mt->target);
942
943 mesa_format mt_format = mt->format;
944 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
945 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
946 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
947 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
948 if (mt->etc_format != MESA_FORMAT_NONE)
949 mt_format = mt->etc_format;
950
951 if (image->TexFormat != mt_format)
952 return false;
953
954 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
955
956 if (mt->target == GL_TEXTURE_CUBE_MAP)
957 depth = 6;
958
959 int level_depth = mt->level[level].depth;
960 if (mt->num_samples > 1) {
961 switch (mt->msaa_layout) {
962 case INTEL_MSAA_LAYOUT_NONE:
963 case INTEL_MSAA_LAYOUT_IMS:
964 break;
965 case INTEL_MSAA_LAYOUT_UMS:
966 case INTEL_MSAA_LAYOUT_CMS:
967 level_depth /= mt->num_samples;
968 break;
969 }
970 }
971
972 /* Test image dimensions against the base level image adjusted for
973 * minification. This will also catch images not present in the
974 * tree, changed targets, etc.
975 */
976 if (width != minify(mt->logical_width0, level - mt->first_level) ||
977 height != minify(mt->logical_height0, level - mt->first_level) ||
978 depth != level_depth) {
979 return false;
980 }
981
982 if (image->NumSamples != mt->num_samples)
983 return false;
984
985 return true;
986 }
987
988
989 void
990 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
991 GLuint level,
992 GLuint x, GLuint y, GLuint d)
993 {
994 mt->level[level].depth = d;
995 mt->level[level].level_x = x;
996 mt->level[level].level_y = y;
997
998 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
999 level, d, x, y);
1000
1001 assert(mt->level[level].slice == NULL);
1002
1003 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1004 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1005 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1006 }
1007
1008
1009 void
1010 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1011 GLuint level, GLuint img,
1012 GLuint x, GLuint y)
1013 {
1014 if (img == 0 && level == 0)
1015 assert(x == 0 && y == 0);
1016
1017 assert(img < mt->level[level].depth);
1018
1019 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1020 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1021
1022 DBG("%s level %d img %d pos %d,%d\n",
1023 __FUNCTION__, level, img,
1024 mt->level[level].slice[img].x_offset,
1025 mt->level[level].slice[img].y_offset);
1026 }
1027
1028 void
1029 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1030 GLuint level, GLuint slice,
1031 GLuint *x, GLuint *y)
1032 {
1033 assert(slice < mt->level[level].depth);
1034
1035 *x = mt->level[level].slice[slice].x_offset;
1036 *y = mt->level[level].slice[slice].y_offset;
1037 }
1038
1039 /**
1040 * This function computes masks that may be used to select the bits of the X
1041 * and Y coordinates that indicate the offset within a tile. If the BO is
1042 * untiled, the masks are set to 0.
1043 */
1044 void
1045 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
1046 uint32_t *mask_x, uint32_t *mask_y,
1047 bool map_stencil_as_y_tiled)
1048 {
1049 int cpp = mt->cpp;
1050 uint32_t tiling = mt->tiling;
1051
1052 if (map_stencil_as_y_tiled)
1053 tiling = I915_TILING_Y;
1054
1055 switch (tiling) {
1056 default:
1057 unreachable("not reached");
1058 case I915_TILING_NONE:
1059 *mask_x = *mask_y = 0;
1060 break;
1061 case I915_TILING_X:
1062 *mask_x = 512 / cpp - 1;
1063 *mask_y = 7;
1064 break;
1065 case I915_TILING_Y:
1066 *mask_x = 128 / cpp - 1;
1067 *mask_y = 31;
1068 break;
1069 }
1070 }
1071
1072 /**
1073 * Compute the offset (in bytes) from the start of the BO to the given x
1074 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1075 * multiples of the tile size.
1076 */
1077 uint32_t
1078 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1079 uint32_t x, uint32_t y,
1080 bool map_stencil_as_y_tiled)
1081 {
1082 int cpp = mt->cpp;
1083 uint32_t pitch = mt->pitch;
1084 uint32_t tiling = mt->tiling;
1085
1086 if (map_stencil_as_y_tiled) {
1087 tiling = I915_TILING_Y;
1088
1089 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1090 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1091 * the resulting surface is twice the pitch of the original miptree,
1092 * since each row in the Y-tiled view corresponds to two rows in the
1093 * actual W-tiled surface. So we need to correct the pitch before
1094 * computing the offsets.
1095 */
1096 pitch *= 2;
1097 }
1098
1099 switch (tiling) {
1100 default:
1101 unreachable("not reached");
1102 case I915_TILING_NONE:
1103 return y * pitch + x * cpp;
1104 case I915_TILING_X:
1105 assert((x % (512 / cpp)) == 0);
1106 assert((y % 8) == 0);
1107 return y * pitch + x / (512 / cpp) * 4096;
1108 case I915_TILING_Y:
1109 assert((x % (128 / cpp)) == 0);
1110 assert((y % 32) == 0);
1111 return y * pitch + x / (128 / cpp) * 4096;
1112 }
1113 }
1114
1115 /**
1116 * Rendering with tiled buffers requires that the base address of the buffer
1117 * be aligned to a page boundary. For renderbuffers, and sometimes with
1118 * textures, we may want the surface to point at a texture image level that
1119 * isn't at a page boundary.
1120 *
1121 * This function returns an appropriately-aligned base offset
1122 * according to the tiling restrictions, plus any required x/y offset
1123 * from there.
1124 */
1125 uint32_t
1126 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1127 GLuint level, GLuint slice,
1128 uint32_t *tile_x,
1129 uint32_t *tile_y)
1130 {
1131 uint32_t x, y;
1132 uint32_t mask_x, mask_y;
1133
1134 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1135 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1136
1137 *tile_x = x & mask_x;
1138 *tile_y = y & mask_y;
1139
1140 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1141 }
1142
1143 static void
1144 intel_miptree_copy_slice_sw(struct brw_context *brw,
1145 struct intel_mipmap_tree *dst_mt,
1146 struct intel_mipmap_tree *src_mt,
1147 int level,
1148 int slice,
1149 int width,
1150 int height)
1151 {
1152 void *src, *dst;
1153 ptrdiff_t src_stride, dst_stride;
1154 int cpp = dst_mt->cpp;
1155
1156 intel_miptree_map(brw, src_mt,
1157 level, slice,
1158 0, 0,
1159 width, height,
1160 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1161 &src, &src_stride);
1162
1163 intel_miptree_map(brw, dst_mt,
1164 level, slice,
1165 0, 0,
1166 width, height,
1167 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1168 BRW_MAP_DIRECT_BIT,
1169 &dst, &dst_stride);
1170
1171 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1172 _mesa_get_format_name(src_mt->format),
1173 src_mt, src, src_stride,
1174 _mesa_get_format_name(dst_mt->format),
1175 dst_mt, dst, dst_stride,
1176 width, height);
1177
1178 int row_size = cpp * width;
1179 if (src_stride == row_size &&
1180 dst_stride == row_size) {
1181 memcpy(dst, src, row_size * height);
1182 } else {
1183 for (int i = 0; i < height; i++) {
1184 memcpy(dst, src, row_size);
1185 dst += dst_stride;
1186 src += src_stride;
1187 }
1188 }
1189
1190 intel_miptree_unmap(brw, dst_mt, level, slice);
1191 intel_miptree_unmap(brw, src_mt, level, slice);
1192
1193 /* Don't forget to copy the stencil data over, too. We could have skipped
1194 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1195 * shuffling the two data sources in/out of temporary storage instead of
1196 * the direct mapping we get this way.
1197 */
1198 if (dst_mt->stencil_mt) {
1199 assert(src_mt->stencil_mt);
1200 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1201 level, slice, width, height);
1202 }
1203 }
1204
1205 static void
1206 intel_miptree_copy_slice(struct brw_context *brw,
1207 struct intel_mipmap_tree *dst_mt,
1208 struct intel_mipmap_tree *src_mt,
1209 int level,
1210 int face,
1211 int depth)
1212
1213 {
1214 mesa_format format = src_mt->format;
1215 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1216 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1217 int slice;
1218
1219 if (face > 0)
1220 slice = face;
1221 else
1222 slice = depth;
1223
1224 assert(depth < src_mt->level[level].depth);
1225 assert(src_mt->format == dst_mt->format);
1226
1227 if (dst_mt->compressed) {
1228 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1229 width = ALIGN(width, dst_mt->align_w);
1230 }
1231
1232 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1233 * below won't apply since we can't do the depth's Y tiling or the
1234 * stencil's W tiling in the blitter.
1235 */
1236 if (src_mt->stencil_mt) {
1237 intel_miptree_copy_slice_sw(brw,
1238 dst_mt, src_mt,
1239 level, slice,
1240 width, height);
1241 return;
1242 }
1243
1244 uint32_t dst_x, dst_y, src_x, src_y;
1245 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1246 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1247
1248 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1249 _mesa_get_format_name(src_mt->format),
1250 src_mt, src_x, src_y, src_mt->pitch,
1251 _mesa_get_format_name(dst_mt->format),
1252 dst_mt, dst_x, dst_y, dst_mt->pitch,
1253 width, height);
1254
1255 if (!intel_miptree_blit(brw,
1256 src_mt, level, slice, 0, 0, false,
1257 dst_mt, level, slice, 0, 0, false,
1258 width, height, GL_COPY)) {
1259 perf_debug("miptree validate blit for %s failed\n",
1260 _mesa_get_format_name(format));
1261
1262 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1263 width, height);
1264 }
1265 }
1266
1267 /**
1268 * Copies the image's current data to the given miptree, and associates that
1269 * miptree with the image.
1270 *
1271 * If \c invalidate is true, then the actual image data does not need to be
1272 * copied, but the image still needs to be associated to the new miptree (this
1273 * is set to true if we're about to clear the image).
1274 */
1275 void
1276 intel_miptree_copy_teximage(struct brw_context *brw,
1277 struct intel_texture_image *intelImage,
1278 struct intel_mipmap_tree *dst_mt,
1279 bool invalidate)
1280 {
1281 struct intel_mipmap_tree *src_mt = intelImage->mt;
1282 struct intel_texture_object *intel_obj =
1283 intel_texture_object(intelImage->base.Base.TexObject);
1284 int level = intelImage->base.Base.Level;
1285 int face = intelImage->base.Base.Face;
1286
1287 GLuint depth;
1288 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1289 depth = intelImage->base.Base.Height;
1290 else
1291 depth = intelImage->base.Base.Depth;
1292
1293 if (!invalidate) {
1294 for (int slice = 0; slice < depth; slice++) {
1295 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1296 }
1297 }
1298
1299 intel_miptree_reference(&intelImage->mt, dst_mt);
1300 intel_obj->needs_validate = true;
1301 }
1302
1303 bool
1304 intel_miptree_alloc_mcs(struct brw_context *brw,
1305 struct intel_mipmap_tree *mt,
1306 GLuint num_samples)
1307 {
1308 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1309 assert(mt->mcs_mt == NULL);
1310
1311 /* Choose the correct format for the MCS buffer. All that really matters
1312 * is that we allocate the right buffer size, since we'll always be
1313 * accessing this miptree using MCS-specific hardware mechanisms, which
1314 * infer the correct format based on num_samples.
1315 */
1316 mesa_format format;
1317 switch (num_samples) {
1318 case 2:
1319 case 4:
1320 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1321 * each sample).
1322 */
1323 format = MESA_FORMAT_R_UNORM8;
1324 break;
1325 case 8:
1326 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1327 * for each sample, plus 8 padding bits).
1328 */
1329 format = MESA_FORMAT_R_UINT32;
1330 break;
1331 default:
1332 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1333 };
1334
1335 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1336 *
1337 * "The MCS surface must be stored as Tile Y."
1338 */
1339 mt->mcs_mt = intel_miptree_create(brw,
1340 mt->target,
1341 format,
1342 mt->first_level,
1343 mt->last_level,
1344 mt->logical_width0,
1345 mt->logical_height0,
1346 mt->logical_depth0,
1347 true,
1348 0 /* num_samples */,
1349 INTEL_MIPTREE_TILING_Y,
1350 false);
1351
1352 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1353 *
1354 * When MCS buffer is enabled and bound to MSRT, it is required that it
1355 * is cleared prior to any rendering.
1356 *
1357 * Since we don't use the MCS buffer for any purpose other than rendering,
1358 * it makes sense to just clear it immediately upon allocation.
1359 *
1360 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1361 */
1362 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1363 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1364 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1365 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1366
1367 return mt->mcs_mt;
1368 }
1369
1370
1371 bool
1372 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1373 struct intel_mipmap_tree *mt)
1374 {
1375 assert(mt->mcs_mt == NULL);
1376
1377 /* The format of the MCS buffer is opaque to the driver; all that matters
1378 * is that we get its size and pitch right. We'll pretend that the format
1379 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1380 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1381 * the block width and then a further factor of 4. Since an MCS tile
1382 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1383 * we'll need to scale the height down by the block height and then a
1384 * further factor of 8.
1385 */
1386 const mesa_format format = MESA_FORMAT_R_UINT32;
1387 unsigned block_width_px;
1388 unsigned block_height;
1389 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1390 unsigned width_divisor = block_width_px * 4;
1391 unsigned height_divisor = block_height * 8;
1392 unsigned mcs_width =
1393 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1394 unsigned mcs_height =
1395 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1396 assert(mt->logical_depth0 == 1);
1397 mt->mcs_mt = intel_miptree_create(brw,
1398 mt->target,
1399 format,
1400 mt->first_level,
1401 mt->last_level,
1402 mcs_width,
1403 mcs_height,
1404 mt->logical_depth0,
1405 true,
1406 0 /* num_samples */,
1407 INTEL_MIPTREE_TILING_Y,
1408 false);
1409
1410 return mt->mcs_mt;
1411 }
1412
1413
1414 /**
1415 * Helper for intel_miptree_alloc_hiz() that sets
1416 * \c mt->level[level].has_hiz. Return true if and only if
1417 * \c has_hiz was set.
1418 */
1419 static bool
1420 intel_miptree_level_enable_hiz(struct brw_context *brw,
1421 struct intel_mipmap_tree *mt,
1422 uint32_t level)
1423 {
1424 assert(mt->hiz_buf);
1425
1426 if (brw->gen >= 8 || brw->is_haswell) {
1427 uint32_t width = minify(mt->physical_width0, level);
1428 uint32_t height = minify(mt->physical_height0, level);
1429
1430 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1431 * and the height is 4 aligned. This allows our HiZ support
1432 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1433 * we can grow the width & height to allow the HiZ op to
1434 * force the proper size alignments.
1435 */
1436 if (level > 0 && ((width & 7) || (height & 3))) {
1437 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1438 return false;
1439 }
1440 }
1441
1442 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1443 mt->level[level].has_hiz = true;
1444 return true;
1445 }
1446
1447
1448 /**
1449 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1450 * buffer dimensions and allocates a bo for the hiz buffer.
1451 */
1452 static struct intel_miptree_aux_buffer *
1453 intel_gen7_hiz_buf_create(struct brw_context *brw,
1454 struct intel_mipmap_tree *mt)
1455 {
1456 unsigned z_width = mt->logical_width0;
1457 unsigned z_height = mt->logical_height0;
1458 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1459 unsigned hz_width, hz_height;
1460 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1461
1462 if (!buf)
1463 return NULL;
1464
1465 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1466 * adjustments required for Z_Height and Z_Width based on multisampling.
1467 */
1468 switch (mt->num_samples) {
1469 case 0:
1470 case 1:
1471 break;
1472 case 2:
1473 case 4:
1474 z_width *= 2;
1475 z_height *= 2;
1476 break;
1477 case 8:
1478 z_width *= 4;
1479 z_height *= 2;
1480 break;
1481 default:
1482 unreachable("unsupported sample count");
1483 }
1484
1485 const unsigned vertical_align = 8; /* 'j' in the docs */
1486 const unsigned H0 = z_height;
1487 const unsigned h0 = ALIGN(H0, vertical_align);
1488 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1489 const unsigned Z0 = z_depth;
1490
1491 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1492 hz_width = ALIGN(z_width, 16);
1493
1494 if (mt->target == GL_TEXTURE_3D) {
1495 unsigned H_i = H0;
1496 unsigned Z_i = Z0;
1497 hz_height = 0;
1498 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1499 unsigned h_i = ALIGN(H_i, vertical_align);
1500 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1501 hz_height += h_i * Z_i;
1502 H_i = minify(H_i, 1);
1503 Z_i = minify(Z_i, 1);
1504 }
1505 /* HZ_Height =
1506 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1507 */
1508 hz_height = DIV_ROUND_UP(hz_height, 2);
1509 } else {
1510 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1511 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1512 mt->target == GL_TEXTURE_CUBE_MAP) {
1513 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth * 6/2) /8 ) * 8 */
1514 hz_height = DIV_ROUND_UP(hz_qpitch * Z0 * 6, 2 * 8) * 8;
1515 } else {
1516 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1517 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1518 }
1519 }
1520
1521 unsigned long pitch;
1522 uint32_t tiling = I915_TILING_Y;
1523 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1524 hz_width, hz_height, 1,
1525 &tiling, &pitch,
1526 BO_ALLOC_FOR_RENDER);
1527 if (!buf->bo) {
1528 free(buf);
1529 return NULL;
1530 } else if (tiling != I915_TILING_Y) {
1531 drm_intel_bo_unreference(buf->bo);
1532 free(buf);
1533 return NULL;
1534 }
1535
1536 buf->pitch = pitch;
1537
1538 return buf;
1539 }
1540
1541
1542 /**
1543 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1544 * buffer dimensions and allocates a bo for the hiz buffer.
1545 */
1546 static struct intel_miptree_aux_buffer *
1547 intel_gen8_hiz_buf_create(struct brw_context *brw,
1548 struct intel_mipmap_tree *mt)
1549 {
1550 unsigned z_width = mt->logical_width0;
1551 unsigned z_height = mt->logical_height0;
1552 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1553 unsigned hz_width, hz_height;
1554 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1555
1556 if (!buf)
1557 return NULL;
1558
1559 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1560 * adjustments required for Z_Height and Z_Width based on multisampling.
1561 */
1562 switch (mt->num_samples) {
1563 case 0:
1564 case 1:
1565 break;
1566 case 2:
1567 case 4:
1568 z_width *= 2;
1569 z_height *= 2;
1570 break;
1571 case 8:
1572 z_width *= 4;
1573 z_height *= 2;
1574 break;
1575 default:
1576 unreachable("unsupported sample count");
1577 }
1578
1579 const unsigned vertical_align = 8; /* 'j' in the docs */
1580 const unsigned H0 = z_height;
1581 const unsigned h0 = ALIGN(H0, vertical_align);
1582 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1583 const unsigned Z0 = z_depth;
1584
1585 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1586 hz_width = ALIGN(z_width, 16);
1587
1588 unsigned H_i = H0;
1589 unsigned Z_i = Z0;
1590 unsigned sum_h_i = 0;
1591 unsigned hz_height_3d_sum = 0;
1592 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1593 unsigned i = level - mt->first_level;
1594 unsigned h_i = ALIGN(H_i, vertical_align);
1595 /* sum(i=2 to m; h_i) */
1596 if (i >= 2) {
1597 sum_h_i += h_i;
1598 }
1599 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1600 hz_height_3d_sum += h_i * Z_i;
1601 H_i = minify(H_i, 1);
1602 Z_i = minify(Z_i, 1);
1603 }
1604 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1605 buf->qpitch = h0 + MAX2(h1, sum_h_i);
1606
1607 if (mt->target == GL_TEXTURE_3D) {
1608 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1609 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1610 } else {
1611 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1612 hz_height = DIV_ROUND_UP(buf->qpitch, 2 * 8) * 8 * Z0;
1613 if (mt->target == GL_TEXTURE_CUBE_MAP_ARRAY ||
1614 mt->target == GL_TEXTURE_CUBE_MAP) {
1615 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * 6 * Z_Depth
1616 *
1617 * We can can just take our hz_height calculation from above, and
1618 * multiply by 6 for the cube map and cube map array types.
1619 */
1620 hz_height *= 6;
1621 }
1622 }
1623
1624 unsigned long pitch;
1625 uint32_t tiling = I915_TILING_Y;
1626 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1627 hz_width, hz_height, 1,
1628 &tiling, &pitch,
1629 BO_ALLOC_FOR_RENDER);
1630 if (!buf->bo) {
1631 free(buf);
1632 return NULL;
1633 } else if (tiling != I915_TILING_Y) {
1634 drm_intel_bo_unreference(buf->bo);
1635 free(buf);
1636 return NULL;
1637 }
1638
1639 buf->pitch = pitch;
1640
1641 return buf;
1642 }
1643
1644
1645 static struct intel_miptree_aux_buffer *
1646 intel_hiz_miptree_buf_create(struct brw_context *brw,
1647 struct intel_mipmap_tree *mt)
1648 {
1649 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1650 const bool force_all_slices_at_each_lod = brw->gen == 6;
1651
1652 if (!buf)
1653 return NULL;
1654
1655 buf->mt = intel_miptree_create(brw,
1656 mt->target,
1657 mt->format,
1658 mt->first_level,
1659 mt->last_level,
1660 mt->logical_width0,
1661 mt->logical_height0,
1662 mt->logical_depth0,
1663 true,
1664 mt->num_samples,
1665 INTEL_MIPTREE_TILING_ANY,
1666 force_all_slices_at_each_lod);
1667 if (!buf->mt) {
1668 free(buf);
1669 return NULL;
1670 }
1671
1672 buf->bo = buf->mt->bo;
1673 buf->pitch = buf->mt->pitch;
1674 buf->qpitch = buf->mt->qpitch;
1675
1676 return buf;
1677 }
1678
1679
1680 bool
1681 intel_miptree_alloc_hiz(struct brw_context *brw,
1682 struct intel_mipmap_tree *mt)
1683 {
1684 assert(mt->hiz_buf == NULL);
1685
1686 if (brw->gen == 7) {
1687 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1688 } else if (brw->gen >= 8) {
1689 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1690 } else {
1691 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1692 }
1693
1694 if (!mt->hiz_buf)
1695 return false;
1696
1697 /* Mark that all slices need a HiZ resolve. */
1698 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1699 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1700 continue;
1701
1702 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1703 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1704 exec_node_init(&m->link);
1705 m->level = level;
1706 m->layer = layer;
1707 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1708
1709 exec_list_push_tail(&mt->hiz_map, &m->link);
1710 }
1711 }
1712
1713 return true;
1714 }
1715
1716 /**
1717 * Does the miptree slice have hiz enabled?
1718 */
1719 bool
1720 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1721 {
1722 intel_miptree_check_level_layer(mt, level, 0);
1723 return mt->level[level].has_hiz;
1724 }
1725
1726 void
1727 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1728 uint32_t level,
1729 uint32_t layer)
1730 {
1731 if (!intel_miptree_level_has_hiz(mt, level))
1732 return;
1733
1734 intel_resolve_map_set(&mt->hiz_map,
1735 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1736 }
1737
1738
1739 void
1740 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1741 uint32_t level,
1742 uint32_t layer)
1743 {
1744 if (!intel_miptree_level_has_hiz(mt, level))
1745 return;
1746
1747 intel_resolve_map_set(&mt->hiz_map,
1748 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1749 }
1750
1751 void
1752 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1753 uint32_t level)
1754 {
1755 uint32_t layer;
1756 uint32_t end_layer = mt->level[level].depth;
1757
1758 for (layer = 0; layer < end_layer; layer++) {
1759 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1760 }
1761 }
1762
1763 static bool
1764 intel_miptree_slice_resolve(struct brw_context *brw,
1765 struct intel_mipmap_tree *mt,
1766 uint32_t level,
1767 uint32_t layer,
1768 enum gen6_hiz_op need)
1769 {
1770 intel_miptree_check_level_layer(mt, level, layer);
1771
1772 struct intel_resolve_map *item =
1773 intel_resolve_map_get(&mt->hiz_map, level, layer);
1774
1775 if (!item || item->need != need)
1776 return false;
1777
1778 intel_hiz_exec(brw, mt, level, layer, need);
1779 intel_resolve_map_remove(item);
1780 return true;
1781 }
1782
1783 bool
1784 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1785 struct intel_mipmap_tree *mt,
1786 uint32_t level,
1787 uint32_t layer)
1788 {
1789 return intel_miptree_slice_resolve(brw, mt, level, layer,
1790 GEN6_HIZ_OP_HIZ_RESOLVE);
1791 }
1792
1793 bool
1794 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1795 struct intel_mipmap_tree *mt,
1796 uint32_t level,
1797 uint32_t layer)
1798 {
1799 return intel_miptree_slice_resolve(brw, mt, level, layer,
1800 GEN6_HIZ_OP_DEPTH_RESOLVE);
1801 }
1802
1803 static bool
1804 intel_miptree_all_slices_resolve(struct brw_context *brw,
1805 struct intel_mipmap_tree *mt,
1806 enum gen6_hiz_op need)
1807 {
1808 bool did_resolve = false;
1809
1810 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1811 if (map->need != need)
1812 continue;
1813
1814 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1815 intel_resolve_map_remove(map);
1816 did_resolve = true;
1817 }
1818
1819 return did_resolve;
1820 }
1821
1822 bool
1823 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1824 struct intel_mipmap_tree *mt)
1825 {
1826 return intel_miptree_all_slices_resolve(brw, mt,
1827 GEN6_HIZ_OP_HIZ_RESOLVE);
1828 }
1829
1830 bool
1831 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1832 struct intel_mipmap_tree *mt)
1833 {
1834 return intel_miptree_all_slices_resolve(brw, mt,
1835 GEN6_HIZ_OP_DEPTH_RESOLVE);
1836 }
1837
1838
1839 void
1840 intel_miptree_resolve_color(struct brw_context *brw,
1841 struct intel_mipmap_tree *mt)
1842 {
1843 switch (mt->fast_clear_state) {
1844 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1845 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1846 /* No resolve needed */
1847 break;
1848 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1849 case INTEL_FAST_CLEAR_STATE_CLEAR:
1850 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1851 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1852 brw_meta_resolve_color(brw, mt);
1853 break;
1854 }
1855 }
1856
1857
1858 /**
1859 * Make it possible to share the BO backing the given miptree with another
1860 * process or another miptree.
1861 *
1862 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1863 * then discard the MCS buffer, if present. We also set the fast_clear_state
1864 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1865 * allocated in the future.
1866 */
1867 void
1868 intel_miptree_make_shareable(struct brw_context *brw,
1869 struct intel_mipmap_tree *mt)
1870 {
1871 /* MCS buffers are also used for multisample buffers, but we can't resolve
1872 * away a multisample MCS buffer because it's an integral part of how the
1873 * pixel data is stored. Fortunately this code path should never be
1874 * reached for multisample buffers.
1875 */
1876 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1877
1878 if (mt->mcs_mt) {
1879 intel_miptree_resolve_color(brw, mt);
1880 intel_miptree_release(&mt->mcs_mt);
1881 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1882 }
1883 }
1884
1885
1886 /**
1887 * \brief Get pointer offset into stencil buffer.
1888 *
1889 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1890 * must decode the tile's layout in software.
1891 *
1892 * See
1893 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1894 * Format.
1895 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1896 *
1897 * Even though the returned offset is always positive, the return type is
1898 * signed due to
1899 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1900 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1901 */
1902 static intptr_t
1903 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1904 {
1905 uint32_t tile_size = 4096;
1906 uint32_t tile_width = 64;
1907 uint32_t tile_height = 64;
1908 uint32_t row_size = 64 * stride;
1909
1910 uint32_t tile_x = x / tile_width;
1911 uint32_t tile_y = y / tile_height;
1912
1913 /* The byte's address relative to the tile's base addres. */
1914 uint32_t byte_x = x % tile_width;
1915 uint32_t byte_y = y % tile_height;
1916
1917 uintptr_t u = tile_y * row_size
1918 + tile_x * tile_size
1919 + 512 * (byte_x / 8)
1920 + 64 * (byte_y / 8)
1921 + 32 * ((byte_y / 4) % 2)
1922 + 16 * ((byte_x / 4) % 2)
1923 + 8 * ((byte_y / 2) % 2)
1924 + 4 * ((byte_x / 2) % 2)
1925 + 2 * (byte_y % 2)
1926 + 1 * (byte_x % 2);
1927
1928 if (swizzled) {
1929 /* adjust for bit6 swizzling */
1930 if (((byte_x / 8) % 2) == 1) {
1931 if (((byte_y / 8) % 2) == 0) {
1932 u += 64;
1933 } else {
1934 u -= 64;
1935 }
1936 }
1937 }
1938
1939 return u;
1940 }
1941
1942 void
1943 intel_miptree_updownsample(struct brw_context *brw,
1944 struct intel_mipmap_tree *src,
1945 struct intel_mipmap_tree *dst)
1946 {
1947 if (brw->gen < 8) {
1948 brw_blorp_blit_miptrees(brw,
1949 src, 0 /* level */, 0 /* layer */, src->format,
1950 dst, 0 /* level */, 0 /* layer */, dst->format,
1951 0, 0,
1952 src->logical_width0, src->logical_height0,
1953 0, 0,
1954 dst->logical_width0, dst->logical_height0,
1955 GL_NEAREST, false, false /*mirror x, y*/);
1956 } else if (src->format == MESA_FORMAT_S_UINT8) {
1957 brw_meta_stencil_updownsample(brw, src, dst);
1958 } else {
1959 brw_meta_updownsample(brw, src, dst);
1960 }
1961
1962 if (src->stencil_mt) {
1963 if (brw->gen >= 8) {
1964 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
1965 return;
1966 }
1967
1968 brw_blorp_blit_miptrees(brw,
1969 src->stencil_mt, 0 /* level */, 0 /* layer */,
1970 src->stencil_mt->format,
1971 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1972 dst->stencil_mt->format,
1973 0, 0,
1974 src->logical_width0, src->logical_height0,
1975 0, 0,
1976 dst->logical_width0, dst->logical_height0,
1977 GL_NEAREST, false, false /*mirror x, y*/);
1978 }
1979 }
1980
1981 void *
1982 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1983 {
1984 /* CPU accesses to color buffers don't understand fast color clears, so
1985 * resolve any pending fast color clears before we map.
1986 */
1987 intel_miptree_resolve_color(brw, mt);
1988
1989 drm_intel_bo *bo = mt->bo;
1990
1991 if (drm_intel_bo_references(brw->batch.bo, bo))
1992 intel_batchbuffer_flush(brw);
1993
1994 if (mt->tiling != I915_TILING_NONE)
1995 brw_bo_map_gtt(brw, bo, "miptree");
1996 else
1997 brw_bo_map(brw, bo, true, "miptree");
1998
1999 return bo->virtual;
2000 }
2001
2002 void
2003 intel_miptree_unmap_raw(struct brw_context *brw,
2004 struct intel_mipmap_tree *mt)
2005 {
2006 drm_intel_bo_unmap(mt->bo);
2007 }
2008
2009 static void
2010 intel_miptree_map_gtt(struct brw_context *brw,
2011 struct intel_mipmap_tree *mt,
2012 struct intel_miptree_map *map,
2013 unsigned int level, unsigned int slice)
2014 {
2015 unsigned int bw, bh;
2016 void *base;
2017 unsigned int image_x, image_y;
2018 intptr_t x = map->x;
2019 intptr_t y = map->y;
2020
2021 /* For compressed formats, the stride is the number of bytes per
2022 * row of blocks. intel_miptree_get_image_offset() already does
2023 * the divide.
2024 */
2025 _mesa_get_format_block_size(mt->format, &bw, &bh);
2026 assert(y % bh == 0);
2027 y /= bh;
2028
2029 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2030
2031 if (base == NULL)
2032 map->ptr = NULL;
2033 else {
2034 /* Note that in the case of cube maps, the caller must have passed the
2035 * slice number referencing the face.
2036 */
2037 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2038 x += image_x;
2039 y += image_y;
2040
2041 map->stride = mt->pitch;
2042 map->ptr = base + y * map->stride + x * mt->cpp;
2043 }
2044
2045 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2046 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __FUNCTION__,
2047 map->x, map->y, map->w, map->h,
2048 mt, _mesa_get_format_name(mt->format),
2049 x, y, map->ptr, map->stride);
2050 }
2051
2052 static void
2053 intel_miptree_unmap_gtt(struct brw_context *brw,
2054 struct intel_mipmap_tree *mt,
2055 struct intel_miptree_map *map,
2056 unsigned int level,
2057 unsigned int slice)
2058 {
2059 intel_miptree_unmap_raw(brw, mt);
2060 }
2061
2062 static void
2063 intel_miptree_map_blit(struct brw_context *brw,
2064 struct intel_mipmap_tree *mt,
2065 struct intel_miptree_map *map,
2066 unsigned int level, unsigned int slice)
2067 {
2068 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2069 0, 0,
2070 map->w, map->h, 1,
2071 false, 0,
2072 INTEL_MIPTREE_TILING_NONE,
2073 false);
2074 if (!map->mt) {
2075 fprintf(stderr, "Failed to allocate blit temporary\n");
2076 goto fail;
2077 }
2078 map->stride = map->mt->pitch;
2079
2080 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2081 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2082 * invalidate is set, since we'll be writing the whole rectangle from our
2083 * temporary buffer back out.
2084 */
2085 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2086 if (!intel_miptree_blit(brw,
2087 mt, level, slice,
2088 map->x, map->y, false,
2089 map->mt, 0, 0,
2090 0, 0, false,
2091 map->w, map->h, GL_COPY)) {
2092 fprintf(stderr, "Failed to blit\n");
2093 goto fail;
2094 }
2095 }
2096
2097 map->ptr = intel_miptree_map_raw(brw, map->mt);
2098
2099 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
2100 map->x, map->y, map->w, map->h,
2101 mt, _mesa_get_format_name(mt->format),
2102 level, slice, map->ptr, map->stride);
2103
2104 return;
2105
2106 fail:
2107 intel_miptree_release(&map->mt);
2108 map->ptr = NULL;
2109 map->stride = 0;
2110 }
2111
2112 static void
2113 intel_miptree_unmap_blit(struct brw_context *brw,
2114 struct intel_mipmap_tree *mt,
2115 struct intel_miptree_map *map,
2116 unsigned int level,
2117 unsigned int slice)
2118 {
2119 struct gl_context *ctx = &brw->ctx;
2120
2121 intel_miptree_unmap_raw(brw, map->mt);
2122
2123 if (map->mode & GL_MAP_WRITE_BIT) {
2124 bool ok = intel_miptree_blit(brw,
2125 map->mt, 0, 0,
2126 0, 0, false,
2127 mt, level, slice,
2128 map->x, map->y, false,
2129 map->w, map->h, GL_COPY);
2130 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2131 }
2132
2133 intel_miptree_release(&map->mt);
2134 }
2135
2136 /**
2137 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2138 */
2139 #if defined(USE_SSE41)
2140 static void
2141 intel_miptree_map_movntdqa(struct brw_context *brw,
2142 struct intel_mipmap_tree *mt,
2143 struct intel_miptree_map *map,
2144 unsigned int level, unsigned int slice)
2145 {
2146 assert(map->mode & GL_MAP_READ_BIT);
2147 assert(!(map->mode & GL_MAP_WRITE_BIT));
2148
2149 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
2150 map->x, map->y, map->w, map->h,
2151 mt, _mesa_get_format_name(mt->format),
2152 level, slice, map->ptr, map->stride);
2153
2154 /* Map the original image */
2155 uint32_t image_x;
2156 uint32_t image_y;
2157 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2158 image_x += map->x;
2159 image_y += map->y;
2160
2161 void *src = intel_miptree_map_raw(brw, mt);
2162 if (!src)
2163 return;
2164 src += image_y * mt->pitch;
2165 src += image_x * mt->cpp;
2166
2167 /* Due to the pixel offsets for the particular image being mapped, our
2168 * src pointer may not be 16-byte aligned. However, if the pitch is
2169 * divisible by 16, then the amount by which it's misaligned will remain
2170 * consistent from row to row.
2171 */
2172 assert((mt->pitch % 16) == 0);
2173 const int misalignment = ((uintptr_t) src) & 15;
2174
2175 /* Create an untiled temporary buffer for the mapping. */
2176 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2177
2178 map->stride = ALIGN(misalignment + width_bytes, 16);
2179
2180 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2181 /* Offset the destination so it has the same misalignment as src. */
2182 map->ptr = map->buffer + misalignment;
2183
2184 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2185
2186 for (uint32_t y = 0; y < map->h; y++) {
2187 void *dst_ptr = map->ptr + y * map->stride;
2188 void *src_ptr = src + y * mt->pitch;
2189
2190 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2191 }
2192
2193 intel_miptree_unmap_raw(brw, mt);
2194 }
2195
2196 static void
2197 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2198 struct intel_mipmap_tree *mt,
2199 struct intel_miptree_map *map,
2200 unsigned int level,
2201 unsigned int slice)
2202 {
2203 _mesa_align_free(map->buffer);
2204 map->buffer = NULL;
2205 map->ptr = NULL;
2206 }
2207 #endif
2208
2209 static void
2210 intel_miptree_map_s8(struct brw_context *brw,
2211 struct intel_mipmap_tree *mt,
2212 struct intel_miptree_map *map,
2213 unsigned int level, unsigned int slice)
2214 {
2215 map->stride = map->w;
2216 map->buffer = map->ptr = malloc(map->stride * map->h);
2217 if (!map->buffer)
2218 return;
2219
2220 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2221 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2222 * invalidate is set, since we'll be writing the whole rectangle from our
2223 * temporary buffer back out.
2224 */
2225 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2226 uint8_t *untiled_s8_map = map->ptr;
2227 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2228 unsigned int image_x, image_y;
2229
2230 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2231
2232 for (uint32_t y = 0; y < map->h; y++) {
2233 for (uint32_t x = 0; x < map->w; x++) {
2234 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2235 x + image_x + map->x,
2236 y + image_y + map->y,
2237 brw->has_swizzling);
2238 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2239 }
2240 }
2241
2242 intel_miptree_unmap_raw(brw, mt);
2243
2244 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
2245 map->x, map->y, map->w, map->h,
2246 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2247 } else {
2248 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2249 map->x, map->y, map->w, map->h,
2250 mt, map->ptr, map->stride);
2251 }
2252 }
2253
2254 static void
2255 intel_miptree_unmap_s8(struct brw_context *brw,
2256 struct intel_mipmap_tree *mt,
2257 struct intel_miptree_map *map,
2258 unsigned int level,
2259 unsigned int slice)
2260 {
2261 if (map->mode & GL_MAP_WRITE_BIT) {
2262 unsigned int image_x, image_y;
2263 uint8_t *untiled_s8_map = map->ptr;
2264 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2265
2266 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2267
2268 for (uint32_t y = 0; y < map->h; y++) {
2269 for (uint32_t x = 0; x < map->w; x++) {
2270 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2271 x + map->x,
2272 y + map->y,
2273 brw->has_swizzling);
2274 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2275 }
2276 }
2277
2278 intel_miptree_unmap_raw(brw, mt);
2279 }
2280
2281 free(map->buffer);
2282 }
2283
2284 static void
2285 intel_miptree_map_etc(struct brw_context *brw,
2286 struct intel_mipmap_tree *mt,
2287 struct intel_miptree_map *map,
2288 unsigned int level,
2289 unsigned int slice)
2290 {
2291 assert(mt->etc_format != MESA_FORMAT_NONE);
2292 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2293 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2294 }
2295
2296 assert(map->mode & GL_MAP_WRITE_BIT);
2297 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2298
2299 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2300 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2301 map->w, map->h, 1));
2302 map->ptr = map->buffer;
2303 }
2304
2305 static void
2306 intel_miptree_unmap_etc(struct brw_context *brw,
2307 struct intel_mipmap_tree *mt,
2308 struct intel_miptree_map *map,
2309 unsigned int level,
2310 unsigned int slice)
2311 {
2312 uint32_t image_x;
2313 uint32_t image_y;
2314 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2315
2316 image_x += map->x;
2317 image_y += map->y;
2318
2319 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2320 + image_y * mt->pitch
2321 + image_x * mt->cpp;
2322
2323 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2324 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2325 map->ptr, map->stride,
2326 map->w, map->h);
2327 else
2328 _mesa_unpack_etc2_format(dst, mt->pitch,
2329 map->ptr, map->stride,
2330 map->w, map->h, mt->etc_format);
2331
2332 intel_miptree_unmap_raw(brw, mt);
2333 free(map->buffer);
2334 }
2335
2336 /**
2337 * Mapping function for packed depth/stencil miptrees backed by real separate
2338 * miptrees for depth and stencil.
2339 *
2340 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2341 * separate from the depth buffer. Yet at the GL API level, we have to expose
2342 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2343 * be able to map that memory for texture storage and glReadPixels-type
2344 * operations. We give Mesa core that access by mallocing a temporary and
2345 * copying the data between the actual backing store and the temporary.
2346 */
2347 static void
2348 intel_miptree_map_depthstencil(struct brw_context *brw,
2349 struct intel_mipmap_tree *mt,
2350 struct intel_miptree_map *map,
2351 unsigned int level, unsigned int slice)
2352 {
2353 struct intel_mipmap_tree *z_mt = mt;
2354 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2355 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2356 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2357
2358 map->stride = map->w * packed_bpp;
2359 map->buffer = map->ptr = malloc(map->stride * map->h);
2360 if (!map->buffer)
2361 return;
2362
2363 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2364 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2365 * invalidate is set, since we'll be writing the whole rectangle from our
2366 * temporary buffer back out.
2367 */
2368 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2369 uint32_t *packed_map = map->ptr;
2370 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2371 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2372 unsigned int s_image_x, s_image_y;
2373 unsigned int z_image_x, z_image_y;
2374
2375 intel_miptree_get_image_offset(s_mt, level, slice,
2376 &s_image_x, &s_image_y);
2377 intel_miptree_get_image_offset(z_mt, level, slice,
2378 &z_image_x, &z_image_y);
2379
2380 for (uint32_t y = 0; y < map->h; y++) {
2381 for (uint32_t x = 0; x < map->w; x++) {
2382 int map_x = map->x + x, map_y = map->y + y;
2383 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2384 map_x + s_image_x,
2385 map_y + s_image_y,
2386 brw->has_swizzling);
2387 ptrdiff_t z_offset = ((map_y + z_image_y) *
2388 (z_mt->pitch / 4) +
2389 (map_x + z_image_x));
2390 uint8_t s = s_map[s_offset];
2391 uint32_t z = z_map[z_offset];
2392
2393 if (map_z32f_x24s8) {
2394 packed_map[(y * map->w + x) * 2 + 0] = z;
2395 packed_map[(y * map->w + x) * 2 + 1] = s;
2396 } else {
2397 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2398 }
2399 }
2400 }
2401
2402 intel_miptree_unmap_raw(brw, s_mt);
2403 intel_miptree_unmap_raw(brw, z_mt);
2404
2405 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2406 __FUNCTION__,
2407 map->x, map->y, map->w, map->h,
2408 z_mt, map->x + z_image_x, map->y + z_image_y,
2409 s_mt, map->x + s_image_x, map->y + s_image_y,
2410 map->ptr, map->stride);
2411 } else {
2412 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2413 map->x, map->y, map->w, map->h,
2414 mt, map->ptr, map->stride);
2415 }
2416 }
2417
2418 static void
2419 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2420 struct intel_mipmap_tree *mt,
2421 struct intel_miptree_map *map,
2422 unsigned int level,
2423 unsigned int slice)
2424 {
2425 struct intel_mipmap_tree *z_mt = mt;
2426 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2427 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2428
2429 if (map->mode & GL_MAP_WRITE_BIT) {
2430 uint32_t *packed_map = map->ptr;
2431 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2432 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2433 unsigned int s_image_x, s_image_y;
2434 unsigned int z_image_x, z_image_y;
2435
2436 intel_miptree_get_image_offset(s_mt, level, slice,
2437 &s_image_x, &s_image_y);
2438 intel_miptree_get_image_offset(z_mt, level, slice,
2439 &z_image_x, &z_image_y);
2440
2441 for (uint32_t y = 0; y < map->h; y++) {
2442 for (uint32_t x = 0; x < map->w; x++) {
2443 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2444 x + s_image_x + map->x,
2445 y + s_image_y + map->y,
2446 brw->has_swizzling);
2447 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2448 (z_mt->pitch / 4) +
2449 (x + z_image_x + map->x));
2450
2451 if (map_z32f_x24s8) {
2452 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2453 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2454 } else {
2455 uint32_t packed = packed_map[y * map->w + x];
2456 s_map[s_offset] = packed >> 24;
2457 z_map[z_offset] = packed;
2458 }
2459 }
2460 }
2461
2462 intel_miptree_unmap_raw(brw, s_mt);
2463 intel_miptree_unmap_raw(brw, z_mt);
2464
2465 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2466 __FUNCTION__,
2467 map->x, map->y, map->w, map->h,
2468 z_mt, _mesa_get_format_name(z_mt->format),
2469 map->x + z_image_x, map->y + z_image_y,
2470 s_mt, map->x + s_image_x, map->y + s_image_y,
2471 map->ptr, map->stride);
2472 }
2473
2474 free(map->buffer);
2475 }
2476
2477 /**
2478 * Create and attach a map to the miptree at (level, slice). Return the
2479 * attached map.
2480 */
2481 static struct intel_miptree_map*
2482 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2483 unsigned int level,
2484 unsigned int slice,
2485 unsigned int x,
2486 unsigned int y,
2487 unsigned int w,
2488 unsigned int h,
2489 GLbitfield mode)
2490 {
2491 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2492
2493 if (!map)
2494 return NULL;
2495
2496 assert(mt->level[level].slice[slice].map == NULL);
2497 mt->level[level].slice[slice].map = map;
2498
2499 map->mode = mode;
2500 map->x = x;
2501 map->y = y;
2502 map->w = w;
2503 map->h = h;
2504
2505 return map;
2506 }
2507
2508 /**
2509 * Release the map at (level, slice).
2510 */
2511 static void
2512 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2513 unsigned int level,
2514 unsigned int slice)
2515 {
2516 struct intel_miptree_map **map;
2517
2518 map = &mt->level[level].slice[slice].map;
2519 free(*map);
2520 *map = NULL;
2521 }
2522
2523 static bool
2524 can_blit_slice(struct intel_mipmap_tree *mt,
2525 unsigned int level, unsigned int slice)
2526 {
2527 uint32_t image_x;
2528 uint32_t image_y;
2529 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2530 if (image_x >= 32768 || image_y >= 32768)
2531 return false;
2532
2533 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2534 if (mt->pitch >= 32768)
2535 return false;
2536
2537 return true;
2538 }
2539
2540 static bool
2541 use_intel_mipree_map_blit(struct brw_context *brw,
2542 struct intel_mipmap_tree *mt,
2543 GLbitfield mode,
2544 unsigned int level,
2545 unsigned int slice)
2546 {
2547 if (brw->has_llc &&
2548 /* It's probably not worth swapping to the blit ring because of
2549 * all the overhead involved.
2550 */
2551 !(mode & GL_MAP_WRITE_BIT) &&
2552 !mt->compressed &&
2553 (mt->tiling == I915_TILING_X ||
2554 /* Prior to Sandybridge, the blitter can't handle Y tiling */
2555 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2556 can_blit_slice(mt, level, slice))
2557 return true;
2558
2559 if (mt->tiling != I915_TILING_NONE &&
2560 mt->bo->size >= brw->max_gtt_map_object_size) {
2561 assert(can_blit_slice(mt, level, slice));
2562 return true;
2563 }
2564
2565 return false;
2566 }
2567
2568 /**
2569 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
2570 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
2571 * arithmetic overflow.
2572 *
2573 * If you call this function and use \a out_stride, then you're doing pointer
2574 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
2575 * bugs. The caller must still take care to avoid 32-bit overflow errors in
2576 * all arithmetic expressions that contain buffer offsets and pixel sizes,
2577 * which usually have type uint32_t or GLuint.
2578 */
2579 void
2580 intel_miptree_map(struct brw_context *brw,
2581 struct intel_mipmap_tree *mt,
2582 unsigned int level,
2583 unsigned int slice,
2584 unsigned int x,
2585 unsigned int y,
2586 unsigned int w,
2587 unsigned int h,
2588 GLbitfield mode,
2589 void **out_ptr,
2590 ptrdiff_t *out_stride)
2591 {
2592 struct intel_miptree_map *map;
2593
2594 assert(mt->num_samples <= 1);
2595
2596 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2597 if (!map){
2598 *out_ptr = NULL;
2599 *out_stride = 0;
2600 return;
2601 }
2602
2603 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2604 if (map->mode & GL_MAP_WRITE_BIT) {
2605 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2606 }
2607
2608 if (mt->format == MESA_FORMAT_S_UINT8) {
2609 intel_miptree_map_s8(brw, mt, map, level, slice);
2610 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2611 !(mode & BRW_MAP_DIRECT_BIT)) {
2612 intel_miptree_map_etc(brw, mt, map, level, slice);
2613 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2614 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2615 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
2616 intel_miptree_map_blit(brw, mt, map, level, slice);
2617 #if defined(USE_SSE41)
2618 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2619 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2620 #endif
2621 } else {
2622 intel_miptree_map_gtt(brw, mt, map, level, slice);
2623 }
2624
2625 *out_ptr = map->ptr;
2626 *out_stride = map->stride;
2627
2628 if (map->ptr == NULL)
2629 intel_miptree_release_map(mt, level, slice);
2630 }
2631
2632 void
2633 intel_miptree_unmap(struct brw_context *brw,
2634 struct intel_mipmap_tree *mt,
2635 unsigned int level,
2636 unsigned int slice)
2637 {
2638 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2639
2640 assert(mt->num_samples <= 1);
2641
2642 if (!map)
2643 return;
2644
2645 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2646 mt, _mesa_get_format_name(mt->format), level, slice);
2647
2648 if (mt->format == MESA_FORMAT_S_UINT8) {
2649 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2650 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2651 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2652 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2653 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2654 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2655 } else if (map->mt) {
2656 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2657 #if defined(USE_SSE41)
2658 } else if (map->buffer && cpu_has_sse4_1) {
2659 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2660 #endif
2661 } else {
2662 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2663 }
2664
2665 intel_miptree_release_map(mt, level, slice);
2666 }