i965: Record mipmap resolver for unmapping
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_meta_util.h"
40 #include "brw_state.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49
50 #include "util/format_srgb.h"
51
52 #include "x86/common_x86_asm.h"
53
54 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
55
56 static void *intel_miptree_map_raw(struct brw_context *brw,
57 struct intel_mipmap_tree *mt,
58 GLbitfield mode);
59
60 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_alloc_aux(struct brw_context *brw,
64 struct intel_mipmap_tree *mt);
65
66 static bool
67 intel_miptree_supports_mcs(struct brw_context *brw,
68 const struct intel_mipmap_tree *mt)
69 {
70 const struct gen_device_info *devinfo = &brw->screen->devinfo;
71
72 /* MCS compression only applies to multisampled miptrees */
73 if (mt->surf.samples <= 1)
74 return false;
75
76 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
77 if (devinfo->gen < 7)
78 return false;
79
80 /* See isl_surf_get_mcs_surf for details. */
81 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
82 return false;
83
84 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
85 switch (_mesa_get_format_base_format(mt->format)) {
86 case GL_DEPTH_COMPONENT:
87 case GL_STENCIL_INDEX:
88 case GL_DEPTH_STENCIL:
89 return false;
90 default:
91 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
92 *
93 * This field must be set to 0 for all SINT MSRTs when all RT channels
94 * are not written
95 *
96 * In practice this means that we have to disable MCS for all signed
97 * integer MSAA buffers. The alternative, to disable MCS only when one
98 * of the render target channels is disabled, is impractical because it
99 * would require converting between CMS and UMS MSAA layouts on the fly,
100 * which is expensive.
101 */
102 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
103 return false;
104 } else {
105 return true;
106 }
107 }
108 }
109
110 static bool
111 intel_tiling_supports_ccs(const struct brw_context *brw,
112 enum isl_tiling tiling)
113 {
114 const struct gen_device_info *devinfo = &brw->screen->devinfo;
115
116 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
117 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
118 *
119 * - Support is limited to tiled render targets.
120 *
121 * Gen9 changes the restriction to Y-tile only.
122 */
123 if (devinfo->gen >= 9)
124 return tiling == ISL_TILING_Y0;
125 else if (devinfo->gen >= 7)
126 return tiling != ISL_TILING_LINEAR;
127 else
128 return false;
129 }
130
131 /**
132 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
133 * can be used. This doesn't (and should not) inspect any of the properties of
134 * the miptree's BO.
135 *
136 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
137 * beneath the "Fast Color Clear" bullet (p326):
138 *
139 * - Support is for non-mip-mapped and non-array surface types only.
140 *
141 * And then later, on p327:
142 *
143 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
144 * 64bpp, and 128bpp.
145 *
146 * From the Skylake documentation, it is made clear that X-tiling is no longer
147 * supported:
148 *
149 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
150 * non-MSRTs only.
151 */
152 static bool
153 intel_miptree_supports_ccs(struct brw_context *brw,
154 const struct intel_mipmap_tree *mt)
155 {
156 const struct gen_device_info *devinfo = &brw->screen->devinfo;
157
158 /* MCS support does not exist prior to Gen7 */
159 if (devinfo->gen < 7)
160 return false;
161
162 /* This function applies only to non-multisampled render targets. */
163 if (mt->surf.samples > 1)
164 return false;
165
166 /* MCS is only supported for color buffers */
167 switch (_mesa_get_format_base_format(mt->format)) {
168 case GL_DEPTH_COMPONENT:
169 case GL_DEPTH_STENCIL:
170 case GL_STENCIL_INDEX:
171 return false;
172 }
173
174 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
175 return false;
176
177 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
178 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
179 mt->surf.logical_level0_px.depth > 1;
180
181 if (arrayed) {
182 /* Multisample surfaces with the CMS layout are not layered surfaces,
183 * yet still have physical_depth0 > 1. Assert that we don't
184 * accidentally reject a multisampled surface here. We should have
185 * rejected it earlier by explicitly checking the sample count.
186 */
187 assert(mt->surf.samples == 1);
188 }
189
190 /* Handle the hardware restrictions...
191 *
192 * All GENs have the following restriction: "MCS buffer for non-MSRT is
193 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
194 *
195 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
196 * Non-MultiSampler Render Target Restrictions) Support is for
197 * non-mip-mapped and non-array surface types only.
198 *
199 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
200 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
201 * surfaces are supported with MCS buffer layout with these alignments in
202 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
203 *
204 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
205 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
206 * surfaces are supported with MCS buffer layout with these alignments in
207 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
208 */
209 if (devinfo->gen < 8 && (mip_mapped || arrayed))
210 return false;
211
212 /* There's no point in using an MCS buffer if the surface isn't in a
213 * renderable format.
214 */
215 if (!brw->mesa_format_supports_render[mt->format])
216 return false;
217
218 return true;
219 }
220
221 static bool
222 intel_tiling_supports_hiz(const struct brw_context *brw,
223 enum isl_tiling tiling)
224 {
225 const struct gen_device_info *devinfo = &brw->screen->devinfo;
226
227 if (devinfo->gen < 6)
228 return false;
229
230 return tiling == ISL_TILING_Y0;
231 }
232
233 static bool
234 intel_miptree_supports_hiz(const struct brw_context *brw,
235 const struct intel_mipmap_tree *mt)
236 {
237 if (!brw->has_hiz)
238 return false;
239
240 switch (mt->format) {
241 case MESA_FORMAT_Z_FLOAT32:
242 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
243 case MESA_FORMAT_Z24_UNORM_X8_UINT:
244 case MESA_FORMAT_Z24_UNORM_S8_UINT:
245 case MESA_FORMAT_Z_UNORM16:
246 return true;
247 default:
248 return false;
249 }
250 }
251
252 /**
253 * Return true if the format that will be used to access the miptree is
254 * CCS_E-compatible with the miptree's linear/non-sRGB format.
255 *
256 * Why use the linear format? Well, although the miptree may be specified with
257 * an sRGB format, the usage of that color space/format can be toggled. Since
258 * our HW tends to support more linear formats than sRGB ones, we use this
259 * format variant for check for CCS_E compatibility.
260 */
261 static bool
262 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
263 const struct intel_mipmap_tree *mt,
264 enum isl_format access_format)
265 {
266 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
267
268 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
269 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
270 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
271 }
272
273 static bool
274 intel_miptree_supports_ccs_e(struct brw_context *brw,
275 const struct intel_mipmap_tree *mt)
276 {
277 const struct gen_device_info *devinfo = &brw->screen->devinfo;
278
279 if (devinfo->gen < 9)
280 return false;
281
282 /* For now compression is only enabled for integer formats even though
283 * there exist supported floating point formats also. This is a heuristic
284 * decision based on current public benchmarks. In none of the cases these
285 * formats provided any improvement but a few cases were seen to regress.
286 * Hence these are left to to be enabled in the future when they are known
287 * to improve things.
288 */
289 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
290 return false;
291
292 if (!intel_miptree_supports_ccs(brw, mt))
293 return false;
294
295 /* Many window system buffers are sRGB even if they are never rendered as
296 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
297 * surface is used as sRGB, we fall back to CCS_D.
298 */
299 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
300 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
301 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
302 }
303
304 /**
305 * Determine depth format corresponding to a depth+stencil format,
306 * for separate stencil.
307 */
308 mesa_format
309 intel_depth_format_for_depthstencil_format(mesa_format format) {
310 switch (format) {
311 case MESA_FORMAT_Z24_UNORM_S8_UINT:
312 return MESA_FORMAT_Z24_UNORM_X8_UINT;
313 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
314 return MESA_FORMAT_Z_FLOAT32;
315 default:
316 return format;
317 }
318 }
319
320 static bool
321 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
322 unsigned depth0, struct intel_mipmap_level *table)
323 {
324 for (unsigned level = first_level; level <= last_level; level++) {
325 const unsigned d =
326 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
327
328 table[level].slice = calloc(d, sizeof(*table[0].slice));
329 if (!table[level].slice)
330 goto unwind;
331 }
332
333 return true;
334
335 unwind:
336 for (unsigned level = first_level; level <= last_level; level++)
337 free(table[level].slice);
338
339 return false;
340 }
341
342 static bool
343 needs_separate_stencil(const struct brw_context *brw,
344 struct intel_mipmap_tree *mt,
345 mesa_format format)
346 {
347 const struct gen_device_info *devinfo = &brw->screen->devinfo;
348
349 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
350 return false;
351
352 if (devinfo->must_use_separate_stencil)
353 return true;
354
355 return brw->has_separate_stencil &&
356 intel_miptree_supports_hiz(brw, mt);
357 }
358
359 /**
360 * Choose the aux usage for this miptree. This function must be called fairly
361 * late in the miptree create process after we have a tiling.
362 */
363 static void
364 intel_miptree_choose_aux_usage(struct brw_context *brw,
365 struct intel_mipmap_tree *mt)
366 {
367 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
368
369 if (intel_miptree_supports_mcs(brw, mt)) {
370 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
371 mt->aux_usage = ISL_AUX_USAGE_MCS;
372 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
373 intel_miptree_supports_ccs(brw, mt)) {
374 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
375 intel_miptree_supports_ccs_e(brw, mt)) {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
377 } else {
378 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
379 }
380 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
381 intel_miptree_supports_hiz(brw, mt)) {
382 mt->aux_usage = ISL_AUX_USAGE_HIZ;
383 }
384
385 /* We can do fast-clear on all auxiliary surface types that are
386 * allocated through the normal texture creation paths.
387 */
388 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
389 mt->supports_fast_clear = true;
390 }
391
392
393 /**
394 * Choose an appropriate uncompressed format for a requested
395 * compressed format, if unsupported.
396 */
397 mesa_format
398 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
399 {
400 const struct gen_device_info *devinfo = &brw->screen->devinfo;
401
402 /* No need to lower ETC formats on these platforms,
403 * they are supported natively.
404 */
405 if (devinfo->gen >= 8 || devinfo->is_baytrail)
406 return format;
407
408 switch (format) {
409 case MESA_FORMAT_ETC1_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_RGB8:
412 return MESA_FORMAT_R8G8B8X8_UNORM;
413 case MESA_FORMAT_ETC2_SRGB8:
414 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
415 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
416 return MESA_FORMAT_B8G8R8A8_SRGB;
417 case MESA_FORMAT_ETC2_RGBA8_EAC:
418 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
419 return MESA_FORMAT_R8G8B8A8_UNORM;
420 case MESA_FORMAT_ETC2_R11_EAC:
421 return MESA_FORMAT_R_UNORM16;
422 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
423 return MESA_FORMAT_R_SNORM16;
424 case MESA_FORMAT_ETC2_RG11_EAC:
425 return MESA_FORMAT_R16G16_UNORM;
426 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
427 return MESA_FORMAT_R16G16_SNORM;
428 default:
429 /* Non ETC1 / ETC2 format */
430 return format;
431 }
432 }
433
434 unsigned
435 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
436 {
437 if (mt->surf.dim == ISL_SURF_DIM_3D)
438 return minify(mt->surf.logical_level0_px.depth, level);
439 else
440 return mt->surf.logical_level0_px.array_len;
441 }
442
443 UNUSED static unsigned
444 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
445 {
446 /* In case of physical dimensions one needs to consider also the layout.
447 * See isl_calc_phys_level0_extent_sa().
448 */
449 if (surf->dim != ISL_SURF_DIM_3D)
450 return surf->phys_level0_sa.array_len;
451
452 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
453 return minify(surf->phys_level0_sa.array_len, level);
454
455 return minify(surf->phys_level0_sa.depth, level);
456 }
457
458 /** \brief Assert that the level and layer are valid for the miptree. */
459 void
460 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
461 uint32_t level,
462 uint32_t layer)
463 {
464 (void) mt;
465 (void) level;
466 (void) layer;
467
468 assert(level >= mt->first_level);
469 assert(level <= mt->last_level);
470 assert(layer < get_num_phys_layers(&mt->surf, level));
471 }
472
473 static enum isl_aux_state **
474 create_aux_state_map(struct intel_mipmap_tree *mt,
475 enum isl_aux_state initial)
476 {
477 const uint32_t levels = mt->last_level + 1;
478
479 uint32_t total_slices = 0;
480 for (uint32_t level = 0; level < levels; level++)
481 total_slices += brw_get_num_logical_layers(mt, level);
482
483 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
484
485 /* We're going to allocate a single chunk of data for both the per-level
486 * reference array and the arrays of aux_state. This makes cleanup
487 * significantly easier.
488 */
489 const size_t total_size = per_level_array_size +
490 total_slices * sizeof(enum isl_aux_state);
491 void *data = malloc(total_size);
492 if (data == NULL)
493 return NULL;
494
495 enum isl_aux_state **per_level_arr = data;
496 enum isl_aux_state *s = data + per_level_array_size;
497 for (uint32_t level = 0; level < levels; level++) {
498 per_level_arr[level] = s;
499 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
500 for (uint32_t a = 0; a < level_layers; a++)
501 *(s++) = initial;
502 }
503 assert((void *)s == data + total_size);
504
505 return per_level_arr;
506 }
507
508 static void
509 free_aux_state_map(enum isl_aux_state **state)
510 {
511 free(state);
512 }
513
514 static bool
515 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
516 enum isl_tiling tiling, unsigned samples)
517 {
518 if (samples > 1)
519 return false;
520
521 if (tiling == ISL_TILING_LINEAR)
522 return false;
523
524 /* If the width is much smaller than a tile, don't bother tiling. */
525 if (row_pitch < 64)
526 return true;
527
528 if (ALIGN(row_pitch, 512) >= 32768) {
529 perf_debug("row pitch %u too large to blit, falling back to untiled",
530 row_pitch);
531 return true;
532 }
533
534 return false;
535 }
536
537 static bool
538 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
539 enum isl_tiling tiling)
540 {
541 const struct gen_device_info *devinfo = &brw->screen->devinfo;
542
543 /* If the BO is too large to fit in the aperture, we need to use the
544 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
545 * handle Y-tiling, so we need to fall back to X.
546 */
547 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
548 tiling == ISL_TILING_Y0)
549 return true;
550
551 return false;
552 }
553
554 static struct intel_mipmap_tree *
555 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
556 unsigned first_level, unsigned last_level,
557 unsigned width0, unsigned height0, unsigned depth0,
558 unsigned num_samples, isl_tiling_flags_t tiling_flags,
559 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
560 unsigned row_pitch, struct brw_bo *bo)
561 {
562 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
563 if (!mt)
564 return NULL;
565
566 if (!create_mapping_table(target, first_level, last_level, depth0,
567 mt->level)) {
568 free(mt);
569 return NULL;
570 }
571
572 mt->refcount = 1;
573
574 if (target == GL_TEXTURE_CUBE_MAP ||
575 target == GL_TEXTURE_CUBE_MAP_ARRAY)
576 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
577
578 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
579 __func__,
580 _mesa_enum_to_string(target),
581 _mesa_get_format_name(format),
582 num_samples, width0, height0, depth0,
583 first_level, last_level, mt);
584
585 struct isl_surf_init_info init_info = {
586 .dim = get_isl_surf_dim(target),
587 .format = translate_tex_format(brw, format, false),
588 .width = width0,
589 .height = height0,
590 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
591 .levels = last_level - first_level + 1,
592 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
593 .samples = num_samples,
594 .row_pitch = row_pitch,
595 .usage = isl_usage_flags,
596 .tiling_flags = tiling_flags,
597 };
598
599 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
600 goto fail;
601
602 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
603 * on gen7 platforms we also need to create Y-tiled copies of stencil for
604 * texturing since the hardware can't sample from W-tiled surfaces. For
605 * everything else, check for corner cases needing special treatment.
606 */
607 bool is_depth_stencil =
608 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
609 if (!is_depth_stencil) {
610 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
611 mt->surf.tiling, mt->surf.samples)) {
612 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
616 init_info.tiling_flags = 1u << ISL_TILING_X;
617 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
618 goto fail;
619 }
620 }
621
622 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
623 * the size may not be multiple of row_pitch.
624 * See isl_apply_surface_padding().
625 */
626 if (mt->surf.tiling != ISL_TILING_LINEAR)
627 assert(mt->surf.size % mt->surf.row_pitch == 0);
628
629 if (!bo) {
630 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
631 mt->surf.size,
632 isl_tiling_to_i915_tiling(
633 mt->surf.tiling),
634 mt->surf.row_pitch, alloc_flags);
635 if (!mt->bo)
636 goto fail;
637 } else {
638 mt->bo = bo;
639 }
640
641 mt->first_level = first_level;
642 mt->last_level = last_level;
643 mt->target = target;
644 mt->format = format;
645 mt->aux_state = NULL;
646 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
647 mt->compressed = _mesa_is_format_compressed(format);
648 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
649
650 return mt;
651
652 fail:
653 intel_miptree_release(&mt);
654 return NULL;
655 }
656
657 static bool
658 make_separate_stencil_surface(struct brw_context *brw,
659 struct intel_mipmap_tree *mt)
660 {
661 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
662 0, mt->surf.levels - 1,
663 mt->surf.logical_level0_px.width,
664 mt->surf.logical_level0_px.height,
665 mt->surf.dim == ISL_SURF_DIM_3D ?
666 mt->surf.logical_level0_px.depth :
667 mt->surf.logical_level0_px.array_len,
668 mt->surf.samples, ISL_TILING_W_BIT,
669 ISL_SURF_USAGE_STENCIL_BIT |
670 ISL_SURF_USAGE_TEXTURE_BIT,
671 BO_ALLOC_BUSY, 0, NULL);
672
673 if (!mt->stencil_mt)
674 return false;
675
676 mt->stencil_mt->r8stencil_needs_update = true;
677
678 return true;
679 }
680
681 static struct intel_mipmap_tree *
682 miptree_create(struct brw_context *brw,
683 GLenum target,
684 mesa_format format,
685 GLuint first_level,
686 GLuint last_level,
687 GLuint width0,
688 GLuint height0,
689 GLuint depth0,
690 GLuint num_samples,
691 enum intel_miptree_create_flags flags)
692 {
693 const struct gen_device_info *devinfo = &brw->screen->devinfo;
694
695 if (format == MESA_FORMAT_S_UINT8)
696 return make_surface(brw, target, format, first_level, last_level,
697 width0, height0, depth0, num_samples,
698 ISL_TILING_W_BIT,
699 ISL_SURF_USAGE_STENCIL_BIT |
700 ISL_SURF_USAGE_TEXTURE_BIT,
701 BO_ALLOC_BUSY,
702 0,
703 NULL);
704
705 const GLenum base_format = _mesa_get_format_base_format(format);
706 if ((base_format == GL_DEPTH_COMPONENT ||
707 base_format == GL_DEPTH_STENCIL) &&
708 !(flags & MIPTREE_CREATE_LINEAR)) {
709 /* Fix up the Z miptree format for how we're splitting out separate
710 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
711 */
712 const mesa_format depth_only_format =
713 intel_depth_format_for_depthstencil_format(format);
714 struct intel_mipmap_tree *mt = make_surface(
715 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
716 first_level, last_level,
717 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
718 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
719 BO_ALLOC_BUSY, 0, NULL);
720
721 if (needs_separate_stencil(brw, mt, format) &&
722 !make_separate_stencil_surface(brw, mt)) {
723 intel_miptree_release(&mt);
724 return NULL;
725 }
726
727 if (!(flags & MIPTREE_CREATE_NO_AUX))
728 intel_miptree_choose_aux_usage(brw, mt);
729
730 return mt;
731 }
732
733 mesa_format tex_format = format;
734 mesa_format etc_format = MESA_FORMAT_NONE;
735 uint32_t alloc_flags = 0;
736
737 format = intel_lower_compressed_format(brw, format);
738
739 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
740
741 if (flags & MIPTREE_CREATE_BUSY)
742 alloc_flags |= BO_ALLOC_BUSY;
743
744 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
745 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
746
747 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
748 if (devinfo->gen < 6)
749 tiling_flags &= ~ISL_TILING_Y0_BIT;
750
751 struct intel_mipmap_tree *mt = make_surface(
752 brw, target, format,
753 first_level, last_level,
754 width0, height0, depth0,
755 num_samples, tiling_flags,
756 ISL_SURF_USAGE_RENDER_TARGET_BIT |
757 ISL_SURF_USAGE_TEXTURE_BIT,
758 alloc_flags, 0, NULL);
759 if (!mt)
760 return NULL;
761
762 mt->etc_format = etc_format;
763
764 if (!(flags & MIPTREE_CREATE_NO_AUX))
765 intel_miptree_choose_aux_usage(brw, mt);
766
767 return mt;
768 }
769
770 struct intel_mipmap_tree *
771 intel_miptree_create(struct brw_context *brw,
772 GLenum target,
773 mesa_format format,
774 GLuint first_level,
775 GLuint last_level,
776 GLuint width0,
777 GLuint height0,
778 GLuint depth0,
779 GLuint num_samples,
780 enum intel_miptree_create_flags flags)
781 {
782 assert(num_samples > 0);
783
784 struct intel_mipmap_tree *mt = miptree_create(
785 brw, target, format,
786 first_level, last_level,
787 width0, height0, depth0, num_samples,
788 flags);
789 if (!mt)
790 return NULL;
791
792 mt->offset = 0;
793
794 if (!intel_miptree_alloc_aux(brw, mt)) {
795 intel_miptree_release(&mt);
796 return NULL;
797 }
798
799 return mt;
800 }
801
802 struct intel_mipmap_tree *
803 intel_miptree_create_for_bo(struct brw_context *brw,
804 struct brw_bo *bo,
805 mesa_format format,
806 uint32_t offset,
807 uint32_t width,
808 uint32_t height,
809 uint32_t depth,
810 int pitch,
811 enum isl_tiling tiling,
812 enum intel_miptree_create_flags flags)
813 {
814 const struct gen_device_info *devinfo = &brw->screen->devinfo;
815 struct intel_mipmap_tree *mt;
816 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
817 const GLenum base_format = _mesa_get_format_base_format(format);
818
819 if ((base_format == GL_DEPTH_COMPONENT ||
820 base_format == GL_DEPTH_STENCIL)) {
821 const mesa_format depth_only_format =
822 intel_depth_format_for_depthstencil_format(format);
823 mt = make_surface(brw, target,
824 devinfo->gen >= 6 ? depth_only_format : format,
825 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
826 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
827 0, pitch, bo);
828 if (!mt)
829 return NULL;
830
831 brw_bo_reference(bo);
832
833 if (!(flags & MIPTREE_CREATE_NO_AUX))
834 intel_miptree_choose_aux_usage(brw, mt);
835
836 return mt;
837 } else if (format == MESA_FORMAT_S_UINT8) {
838 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
839 0, 0, width, height, depth, 1,
840 ISL_TILING_W_BIT,
841 ISL_SURF_USAGE_STENCIL_BIT |
842 ISL_SURF_USAGE_TEXTURE_BIT,
843 0, pitch, bo);
844 if (!mt)
845 return NULL;
846
847 assert(bo->size >= mt->surf.size);
848
849 brw_bo_reference(bo);
850 return mt;
851 }
852
853 /* Nothing will be able to use this miptree with the BO if the offset isn't
854 * aligned.
855 */
856 if (tiling != ISL_TILING_LINEAR)
857 assert(offset % 4096 == 0);
858
859 /* miptrees can't handle negative pitch. If you need flipping of images,
860 * that's outside of the scope of the mt.
861 */
862 assert(pitch >= 0);
863
864 /* The BO already has a tiling format and we shouldn't confuse the lower
865 * layers by making it try to find a tiling format again.
866 */
867 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
868
869 mt = make_surface(brw, target, format,
870 0, 0, width, height, depth, 1,
871 1lu << tiling,
872 ISL_SURF_USAGE_RENDER_TARGET_BIT |
873 ISL_SURF_USAGE_TEXTURE_BIT,
874 0, pitch, bo);
875 if (!mt)
876 return NULL;
877
878 brw_bo_reference(bo);
879 mt->bo = bo;
880 mt->offset = offset;
881
882 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
883 intel_miptree_choose_aux_usage(brw, mt);
884
885 if (!intel_miptree_alloc_aux(brw, mt)) {
886 intel_miptree_release(&mt);
887 return NULL;
888 }
889 }
890
891 return mt;
892 }
893
894 static struct intel_mipmap_tree *
895 miptree_create_for_planar_image(struct brw_context *brw,
896 __DRIimage *image, GLenum target,
897 enum isl_tiling tiling)
898 {
899 const struct intel_image_format *f = image->planar_format;
900 struct intel_mipmap_tree *planar_mt = NULL;
901
902 for (int i = 0; i < f->nplanes; i++) {
903 const int index = f->planes[i].buffer_index;
904 const uint32_t dri_format = f->planes[i].dri_format;
905 const mesa_format format = driImageFormatToGLFormat(dri_format);
906 const uint32_t width = image->width >> f->planes[i].width_shift;
907 const uint32_t height = image->height >> f->planes[i].height_shift;
908
909 /* Disable creation of the texture's aux buffers because the driver
910 * exposes no EGL API to manage them. That is, there is no API for
911 * resolving the aux buffer's content to the main buffer nor for
912 * invalidating the aux buffer's content.
913 */
914 struct intel_mipmap_tree *mt =
915 intel_miptree_create_for_bo(brw, image->bo, format,
916 image->offsets[index],
917 width, height, 1,
918 image->strides[index],
919 tiling,
920 MIPTREE_CREATE_NO_AUX);
921 if (mt == NULL)
922 return NULL;
923
924 mt->target = target;
925
926 if (i == 0)
927 planar_mt = mt;
928 else
929 planar_mt->plane[i - 1] = mt;
930 }
931
932 planar_mt->drm_modifier = image->modifier;
933
934 return planar_mt;
935 }
936
937 static bool
938 create_ccs_buf_for_image(struct brw_context *brw,
939 __DRIimage *image,
940 struct intel_mipmap_tree *mt,
941 enum isl_aux_state initial_state)
942 {
943 struct isl_surf temp_ccs_surf;
944
945 /* CCS is only supported for very simple miptrees */
946 assert(image->aux_offset != 0 && image->aux_pitch != 0);
947 assert(image->tile_x == 0 && image->tile_y == 0);
948 assert(mt->surf.samples == 1);
949 assert(mt->surf.levels == 1);
950 assert(mt->surf.logical_level0_px.depth == 1);
951 assert(mt->surf.logical_level0_px.array_len == 1);
952 assert(mt->first_level == 0);
953 assert(mt->last_level == 0);
954
955 /* We shouldn't already have a CCS */
956 assert(!mt->aux_buf);
957
958 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
959 image->aux_pitch))
960 return false;
961
962 assert(image->aux_offset < image->bo->size);
963 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
964
965 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
966 if (mt->aux_buf == NULL)
967 return false;
968
969 mt->aux_state = create_aux_state_map(mt, initial_state);
970 if (!mt->aux_state) {
971 free(mt->aux_buf);
972 mt->aux_buf = NULL;
973 return false;
974 }
975
976 /* On gen10+ we start using an extra space in the aux buffer to store the
977 * indirect clear color. However, if we imported an image from the window
978 * system with CCS, we don't have the extra space at the end of the aux
979 * buffer. So create a new bo here that will store that clear color.
980 */
981 const struct gen_device_info *devinfo = &brw->screen->devinfo;
982 if (devinfo->gen >= 10) {
983 mt->aux_buf->clear_color_bo =
984 brw_bo_alloc(brw->bufmgr, "clear_color_bo",
985 brw->isl_dev.ss.clear_color_state_size);
986 if (!mt->aux_buf->clear_color_bo) {
987 free(mt->aux_buf);
988 mt->aux_buf = NULL;
989 return false;
990 }
991 }
992
993 mt->aux_buf->bo = image->bo;
994 brw_bo_reference(image->bo);
995
996 mt->aux_buf->offset = image->aux_offset;
997 mt->aux_buf->size = image->bo->size - image->aux_offset;
998 mt->aux_buf->pitch = image->aux_pitch;
999 mt->aux_buf->qpitch = 0;
1000 mt->aux_buf->surf = temp_ccs_surf;
1001
1002 return true;
1003 }
1004
1005 struct intel_mipmap_tree *
1006 intel_miptree_create_for_dri_image(struct brw_context *brw,
1007 __DRIimage *image, GLenum target,
1008 mesa_format format,
1009 bool is_winsys_image)
1010 {
1011 uint32_t bo_tiling, bo_swizzle;
1012 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1013
1014 const struct isl_drm_modifier_info *mod_info =
1015 isl_drm_modifier_get_info(image->modifier);
1016
1017 const enum isl_tiling tiling =
1018 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1019
1020 if (image->planar_format && image->planar_format->nplanes > 1)
1021 return miptree_create_for_planar_image(brw, image, target, tiling);
1022
1023 if (image->planar_format)
1024 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1025
1026 if (!brw->ctx.TextureFormatSupported[format]) {
1027 /* The texture storage paths in core Mesa detect if the driver does not
1028 * support the user-requested format, and then searches for a
1029 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1030 * do the fallbacks here for important formats.
1031 *
1032 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1033 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1034 * the Chrome OS compositor consumes as dma_buf EGLImages.
1035 */
1036 format = _mesa_format_fallback_rgbx_to_rgba(format);
1037 }
1038
1039 if (!brw->ctx.TextureFormatSupported[format])
1040 return NULL;
1041
1042 enum intel_miptree_create_flags mt_create_flags = 0;
1043
1044 /* If this image comes in from a window system, we have different
1045 * requirements than if it comes in via an EGL import operation. Window
1046 * system images can use any form of auxiliary compression we wish because
1047 * they get "flushed" before being handed off to the window system and we
1048 * have the opportunity to do resolves. Non window-system images, on the
1049 * other hand, have no resolve point so we can't have aux without a
1050 * modifier.
1051 */
1052 if (!is_winsys_image)
1053 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1054
1055 /* If we have a modifier which specifies aux, don't create one yet */
1056 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1057 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1058
1059 /* Disable creation of the texture's aux buffers because the driver exposes
1060 * no EGL API to manage them. That is, there is no API for resolving the aux
1061 * buffer's content to the main buffer nor for invalidating the aux buffer's
1062 * content.
1063 */
1064 struct intel_mipmap_tree *mt =
1065 intel_miptree_create_for_bo(brw, image->bo, format,
1066 image->offset, image->width, image->height, 1,
1067 image->pitch, tiling, mt_create_flags);
1068 if (mt == NULL)
1069 return NULL;
1070
1071 mt->target = target;
1072 mt->level[0].level_x = image->tile_x;
1073 mt->level[0].level_y = image->tile_y;
1074 mt->drm_modifier = image->modifier;
1075
1076 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1077 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1078 * trouble resolving back to destination image due to alignment issues.
1079 */
1080 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1081 if (!devinfo->has_surface_tile_offset) {
1082 uint32_t draw_x, draw_y;
1083 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1084
1085 if (draw_x != 0 || draw_y != 0) {
1086 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1087 intel_miptree_release(&mt);
1088 return NULL;
1089 }
1090 }
1091
1092 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1093 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1094
1095 mt->aux_usage = mod_info->aux_usage;
1096 /* If we are a window system buffer, then we can support fast-clears
1097 * even if the modifier doesn't support them by doing a partial resolve
1098 * as part of the flush operation.
1099 */
1100 mt->supports_fast_clear =
1101 is_winsys_image || mod_info->supports_clear_color;
1102
1103 /* We don't know the actual state of the surface when we get it but we
1104 * can make a pretty good guess based on the modifier. What we do know
1105 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1106 * a worst case of compression.
1107 */
1108 enum isl_aux_state initial_state =
1109 isl_drm_modifier_get_default_aux_state(image->modifier);
1110
1111 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1112 intel_miptree_release(&mt);
1113 return NULL;
1114 }
1115 }
1116
1117 /* Don't assume coherency for imported EGLimages. We don't know what
1118 * external clients are going to do with it. They may scan it out.
1119 */
1120 image->bo->cache_coherent = false;
1121
1122 return mt;
1123 }
1124
1125 /**
1126 * For a singlesample renderbuffer, this simply wraps the given BO with a
1127 * miptree.
1128 *
1129 * For a multisample renderbuffer, this wraps the window system's
1130 * (singlesample) BO with a singlesample miptree attached to the
1131 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1132 * that will contain the actual rendering (which is lazily resolved to
1133 * irb->singlesample_mt).
1134 */
1135 bool
1136 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1137 struct intel_renderbuffer *irb,
1138 struct intel_mipmap_tree *singlesample_mt,
1139 uint32_t width, uint32_t height,
1140 uint32_t pitch)
1141 {
1142 struct intel_mipmap_tree *multisample_mt = NULL;
1143 struct gl_renderbuffer *rb = &irb->Base.Base;
1144 mesa_format format = rb->Format;
1145 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1146
1147 /* Only the front and back buffers, which are color buffers, are allocated
1148 * through the image loader.
1149 */
1150 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1151 _mesa_get_format_base_format(format) == GL_RGBA);
1152
1153 assert(singlesample_mt);
1154
1155 if (num_samples == 1) {
1156 intel_miptree_release(&irb->mt);
1157 irb->mt = singlesample_mt;
1158
1159 assert(!irb->singlesample_mt);
1160 } else {
1161 intel_miptree_release(&irb->singlesample_mt);
1162 irb->singlesample_mt = singlesample_mt;
1163
1164 if (!irb->mt ||
1165 irb->mt->surf.logical_level0_px.width != width ||
1166 irb->mt->surf.logical_level0_px.height != height) {
1167 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1168 format,
1169 width,
1170 height,
1171 num_samples);
1172 if (!multisample_mt)
1173 goto fail;
1174
1175 irb->need_downsample = false;
1176 intel_miptree_release(&irb->mt);
1177 irb->mt = multisample_mt;
1178 }
1179 }
1180 return true;
1181
1182 fail:
1183 intel_miptree_release(&irb->mt);
1184 return false;
1185 }
1186
1187 struct intel_mipmap_tree*
1188 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1189 mesa_format format,
1190 uint32_t width,
1191 uint32_t height,
1192 uint32_t num_samples)
1193 {
1194 struct intel_mipmap_tree *mt;
1195 uint32_t depth = 1;
1196 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1197
1198 mt = intel_miptree_create(brw, target, format, 0, 0,
1199 width, height, depth, num_samples,
1200 MIPTREE_CREATE_BUSY);
1201 if (!mt)
1202 goto fail;
1203
1204 return mt;
1205
1206 fail:
1207 intel_miptree_release(&mt);
1208 return NULL;
1209 }
1210
1211 void
1212 intel_miptree_reference(struct intel_mipmap_tree **dst,
1213 struct intel_mipmap_tree *src)
1214 {
1215 if (*dst == src)
1216 return;
1217
1218 intel_miptree_release(dst);
1219
1220 if (src) {
1221 src->refcount++;
1222 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1223 }
1224
1225 *dst = src;
1226 }
1227
1228 static void
1229 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1230 {
1231 if (aux_buf == NULL)
1232 return;
1233
1234 brw_bo_unreference(aux_buf->bo);
1235 brw_bo_unreference(aux_buf->clear_color_bo);
1236
1237 free(aux_buf);
1238 }
1239
1240 void
1241 intel_miptree_release(struct intel_mipmap_tree **mt)
1242 {
1243 if (!*mt)
1244 return;
1245
1246 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1247 if (--(*mt)->refcount <= 0) {
1248 GLuint i;
1249
1250 DBG("%s deleting %p\n", __func__, *mt);
1251
1252 brw_bo_unreference((*mt)->bo);
1253 intel_miptree_release(&(*mt)->stencil_mt);
1254 intel_miptree_release(&(*mt)->r8stencil_mt);
1255 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1256 free_aux_state_map((*mt)->aux_state);
1257
1258 intel_miptree_release(&(*mt)->plane[0]);
1259 intel_miptree_release(&(*mt)->plane[1]);
1260
1261 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1262 free((*mt)->level[i].slice);
1263 }
1264
1265 free(*mt);
1266 }
1267 *mt = NULL;
1268 }
1269
1270
1271 void
1272 intel_get_image_dims(struct gl_texture_image *image,
1273 int *width, int *height, int *depth)
1274 {
1275 switch (image->TexObject->Target) {
1276 case GL_TEXTURE_1D_ARRAY:
1277 /* For a 1D Array texture the OpenGL API will treat the image height as
1278 * the number of array slices. For Intel hardware, we treat the 1D array
1279 * as a 2D Array with a height of 1. So, here we want to swap image
1280 * height and depth.
1281 */
1282 assert(image->Depth == 1);
1283 *width = image->Width;
1284 *height = 1;
1285 *depth = image->Height;
1286 break;
1287 case GL_TEXTURE_CUBE_MAP:
1288 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1289 * though we really have 6 slices.
1290 */
1291 assert(image->Depth == 1);
1292 *width = image->Width;
1293 *height = image->Height;
1294 *depth = 6;
1295 break;
1296 default:
1297 *width = image->Width;
1298 *height = image->Height;
1299 *depth = image->Depth;
1300 break;
1301 }
1302 }
1303
1304 /**
1305 * Can the image be pulled into a unified mipmap tree? This mirrors
1306 * the completeness test in a lot of ways.
1307 *
1308 * Not sure whether I want to pass gl_texture_image here.
1309 */
1310 bool
1311 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1312 struct gl_texture_image *image)
1313 {
1314 struct intel_texture_image *intelImage = intel_texture_image(image);
1315 GLuint level = intelImage->base.Base.Level;
1316 int width, height, depth;
1317
1318 /* glTexImage* choose the texture object based on the target passed in, and
1319 * objects can't change targets over their lifetimes, so this should be
1320 * true.
1321 */
1322 assert(image->TexObject->Target == mt->target);
1323
1324 mesa_format mt_format = mt->format;
1325 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1326 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1327 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1328 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1329 if (mt->etc_format != MESA_FORMAT_NONE)
1330 mt_format = mt->etc_format;
1331
1332 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1333 _mesa_get_srgb_format_linear(mt_format))
1334 return false;
1335
1336 intel_get_image_dims(image, &width, &height, &depth);
1337
1338 if (mt->target == GL_TEXTURE_CUBE_MAP)
1339 depth = 6;
1340
1341 if (level >= mt->surf.levels)
1342 return false;
1343
1344 const unsigned level_depth =
1345 mt->surf.dim == ISL_SURF_DIM_3D ?
1346 minify(mt->surf.logical_level0_px.depth, level) :
1347 mt->surf.logical_level0_px.array_len;
1348
1349 return width == minify(mt->surf.logical_level0_px.width, level) &&
1350 height == minify(mt->surf.logical_level0_px.height, level) &&
1351 depth == level_depth &&
1352 MAX2(image->NumSamples, 1) == mt->surf.samples;
1353 }
1354
1355 void
1356 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1357 GLuint level, GLuint slice,
1358 GLuint *x, GLuint *y)
1359 {
1360 if (level == 0 && slice == 0) {
1361 *x = mt->level[0].level_x;
1362 *y = mt->level[0].level_y;
1363 return;
1364 }
1365
1366 uint32_t x_offset_sa, y_offset_sa;
1367
1368 /* Miptree itself can have an offset only if it represents a single
1369 * slice in an imported buffer object.
1370 * See intel_miptree_create_for_dri_image().
1371 */
1372 assert(mt->level[0].level_x == 0);
1373 assert(mt->level[0].level_y == 0);
1374
1375 /* Given level is relative to level zero while the miptree may be
1376 * represent just a subset of all levels starting from 'first_level'.
1377 */
1378 assert(level >= mt->first_level);
1379 level -= mt->first_level;
1380
1381 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1382 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1383 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1384 &x_offset_sa, &y_offset_sa);
1385
1386 *x = x_offset_sa;
1387 *y = y_offset_sa;
1388 }
1389
1390
1391 /**
1392 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1393 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1394 * and tile_h is set to 1.
1395 */
1396 void
1397 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1398 uint32_t *tile_w, uint32_t *tile_h)
1399 {
1400 switch (tiling) {
1401 case ISL_TILING_X:
1402 *tile_w = 512;
1403 *tile_h = 8;
1404 break;
1405 case ISL_TILING_Y0:
1406 *tile_w = 128;
1407 *tile_h = 32;
1408 break;
1409 case ISL_TILING_LINEAR:
1410 *tile_w = cpp;
1411 *tile_h = 1;
1412 break;
1413 default:
1414 unreachable("not reached");
1415 }
1416 }
1417
1418
1419 /**
1420 * This function computes masks that may be used to select the bits of the X
1421 * and Y coordinates that indicate the offset within a tile. If the BO is
1422 * untiled, the masks are set to 0.
1423 */
1424 void
1425 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1426 uint32_t *mask_x, uint32_t *mask_y)
1427 {
1428 uint32_t tile_w_bytes, tile_h;
1429
1430 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1431
1432 *mask_x = tile_w_bytes / cpp - 1;
1433 *mask_y = tile_h - 1;
1434 }
1435
1436 /**
1437 * Compute the offset (in bytes) from the start of the BO to the given x
1438 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1439 * multiples of the tile size.
1440 */
1441 uint32_t
1442 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1443 uint32_t x, uint32_t y)
1444 {
1445 int cpp = mt->cpp;
1446 uint32_t pitch = mt->surf.row_pitch;
1447
1448 switch (mt->surf.tiling) {
1449 default:
1450 unreachable("not reached");
1451 case ISL_TILING_LINEAR:
1452 return y * pitch + x * cpp;
1453 case ISL_TILING_X:
1454 assert((x % (512 / cpp)) == 0);
1455 assert((y % 8) == 0);
1456 return y * pitch + x / (512 / cpp) * 4096;
1457 case ISL_TILING_Y0:
1458 assert((x % (128 / cpp)) == 0);
1459 assert((y % 32) == 0);
1460 return y * pitch + x / (128 / cpp) * 4096;
1461 }
1462 }
1463
1464 /**
1465 * Rendering with tiled buffers requires that the base address of the buffer
1466 * be aligned to a page boundary. For renderbuffers, and sometimes with
1467 * textures, we may want the surface to point at a texture image level that
1468 * isn't at a page boundary.
1469 *
1470 * This function returns an appropriately-aligned base offset
1471 * according to the tiling restrictions, plus any required x/y offset
1472 * from there.
1473 */
1474 uint32_t
1475 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1476 GLuint level, GLuint slice,
1477 uint32_t *tile_x,
1478 uint32_t *tile_y)
1479 {
1480 uint32_t x, y;
1481 uint32_t mask_x, mask_y;
1482
1483 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1484 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1485
1486 *tile_x = x & mask_x;
1487 *tile_y = y & mask_y;
1488
1489 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1490 }
1491
1492 static void
1493 intel_miptree_copy_slice_sw(struct brw_context *brw,
1494 struct intel_mipmap_tree *src_mt,
1495 unsigned src_level, unsigned src_layer,
1496 struct intel_mipmap_tree *dst_mt,
1497 unsigned dst_level, unsigned dst_layer,
1498 unsigned width, unsigned height)
1499 {
1500 void *src, *dst;
1501 ptrdiff_t src_stride, dst_stride;
1502 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1503
1504 intel_miptree_map(brw, src_mt,
1505 src_level, src_layer,
1506 0, 0,
1507 width, height,
1508 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1509 &src, &src_stride);
1510
1511 intel_miptree_map(brw, dst_mt,
1512 dst_level, dst_layer,
1513 0, 0,
1514 width, height,
1515 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1516 BRW_MAP_DIRECT_BIT,
1517 &dst, &dst_stride);
1518
1519 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1520 _mesa_get_format_name(src_mt->format),
1521 src_mt, src, src_stride,
1522 _mesa_get_format_name(dst_mt->format),
1523 dst_mt, dst, dst_stride,
1524 width, height);
1525
1526 int row_size = cpp * width;
1527 if (src_stride == row_size &&
1528 dst_stride == row_size) {
1529 memcpy(dst, src, row_size * height);
1530 } else {
1531 for (int i = 0; i < height; i++) {
1532 memcpy(dst, src, row_size);
1533 dst += dst_stride;
1534 src += src_stride;
1535 }
1536 }
1537
1538 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1539 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1540
1541 /* Don't forget to copy the stencil data over, too. We could have skipped
1542 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1543 * shuffling the two data sources in/out of temporary storage instead of
1544 * the direct mapping we get this way.
1545 */
1546 if (dst_mt->stencil_mt) {
1547 assert(src_mt->stencil_mt);
1548 intel_miptree_copy_slice_sw(brw,
1549 src_mt->stencil_mt, src_level, src_layer,
1550 dst_mt->stencil_mt, dst_level, dst_layer,
1551 width, height);
1552 }
1553 }
1554
1555 void
1556 intel_miptree_copy_slice(struct brw_context *brw,
1557 struct intel_mipmap_tree *src_mt,
1558 unsigned src_level, unsigned src_layer,
1559 struct intel_mipmap_tree *dst_mt,
1560 unsigned dst_level, unsigned dst_layer)
1561
1562 {
1563 mesa_format format = src_mt->format;
1564 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1565 src_level - src_mt->first_level);
1566 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1567 src_level - src_mt->first_level);
1568
1569 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1570 src_level - src_mt->first_level));
1571
1572 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1573 _mesa_get_srgb_format_linear(dst_mt->format));
1574
1575 if (dst_mt->compressed) {
1576 unsigned int i, j;
1577 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1578 height = ALIGN_NPOT(height, j) / j;
1579 width = ALIGN_NPOT(width, i) / i;
1580 }
1581
1582 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1583 * below won't apply since we can't do the depth's Y tiling or the
1584 * stencil's W tiling in the blitter.
1585 */
1586 if (src_mt->stencil_mt) {
1587 intel_miptree_copy_slice_sw(brw,
1588 src_mt, src_level, src_layer,
1589 dst_mt, dst_level, dst_layer,
1590 width, height);
1591 return;
1592 }
1593
1594 uint32_t dst_x, dst_y, src_x, src_y;
1595 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1596 &dst_x, &dst_y);
1597 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1598 &src_x, &src_y);
1599
1600 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1601 _mesa_get_format_name(src_mt->format),
1602 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1603 _mesa_get_format_name(dst_mt->format),
1604 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1605 width, height);
1606
1607 if (!intel_miptree_blit(brw,
1608 src_mt, src_level, src_layer, 0, 0, false,
1609 dst_mt, dst_level, dst_layer, 0, 0, false,
1610 width, height, COLOR_LOGICOP_COPY)) {
1611 perf_debug("miptree validate blit for %s failed\n",
1612 _mesa_get_format_name(format));
1613
1614 intel_miptree_copy_slice_sw(brw,
1615 src_mt, src_level, src_layer,
1616 dst_mt, dst_level, dst_layer,
1617 width, height);
1618 }
1619 }
1620
1621 /**
1622 * Copies the image's current data to the given miptree, and associates that
1623 * miptree with the image.
1624 */
1625 void
1626 intel_miptree_copy_teximage(struct brw_context *brw,
1627 struct intel_texture_image *intelImage,
1628 struct intel_mipmap_tree *dst_mt)
1629 {
1630 struct intel_mipmap_tree *src_mt = intelImage->mt;
1631 struct intel_texture_object *intel_obj =
1632 intel_texture_object(intelImage->base.Base.TexObject);
1633 int level = intelImage->base.Base.Level;
1634 const unsigned face = intelImage->base.Base.Face;
1635 unsigned start_layer, end_layer;
1636
1637 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1638 assert(face == 0);
1639 assert(intelImage->base.Base.Height);
1640 start_layer = 0;
1641 end_layer = intelImage->base.Base.Height - 1;
1642 } else if (face > 0) {
1643 start_layer = face;
1644 end_layer = face;
1645 } else {
1646 assert(intelImage->base.Base.Depth);
1647 start_layer = 0;
1648 end_layer = intelImage->base.Base.Depth - 1;
1649 }
1650
1651 for (unsigned i = start_layer; i <= end_layer; i++) {
1652 intel_miptree_copy_slice(brw,
1653 src_mt, level, i,
1654 dst_mt, level, i);
1655 }
1656
1657 intel_miptree_reference(&intelImage->mt, dst_mt);
1658 intel_obj->needs_validate = true;
1659 }
1660
1661 static void
1662 intel_miptree_init_mcs(struct brw_context *brw,
1663 struct intel_mipmap_tree *mt,
1664 int init_value)
1665 {
1666 assert(mt->aux_buf != NULL);
1667
1668 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1669 *
1670 * When MCS buffer is enabled and bound to MSRT, it is required that it
1671 * is cleared prior to any rendering.
1672 *
1673 * Since we don't use the MCS buffer for any purpose other than rendering,
1674 * it makes sense to just clear it immediately upon allocation.
1675 *
1676 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1677 */
1678 void *map = brw_bo_map(brw, mt->aux_buf->bo, MAP_WRITE | MAP_RAW);
1679 if (unlikely(map == NULL)) {
1680 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1681 brw_bo_unreference(mt->aux_buf->bo);
1682 free(mt->aux_buf);
1683 return;
1684 }
1685 void *data = map;
1686 memset(data, init_value, mt->aux_buf->size);
1687 brw_bo_unmap(mt->aux_buf->bo);
1688 }
1689
1690 static struct intel_miptree_aux_buffer *
1691 intel_alloc_aux_buffer(struct brw_context *brw,
1692 const char *name,
1693 const struct isl_surf *aux_surf,
1694 uint32_t alloc_flags,
1695 struct intel_mipmap_tree *mt)
1696 {
1697 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1698 if (!buf)
1699 return false;
1700
1701 buf->size = aux_surf->size;
1702
1703 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1704 if (devinfo->gen >= 10) {
1705 /* On CNL, instead of setting the clear color in the SURFACE_STATE, we
1706 * will set a pointer to a dword somewhere that contains the color. So,
1707 * allocate the space for the clear color value here on the aux buffer.
1708 */
1709 buf->clear_color_offset = buf->size;
1710 buf->size += brw->isl_dev.ss.clear_color_state_size;
1711 }
1712
1713 buf->pitch = aux_surf->row_pitch;
1714 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1715
1716 /* ISL has stricter set of alignment rules then the drm allocator.
1717 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1718 * trying to recalculate based on different format block sizes.
1719 */
1720 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1721 I915_TILING_Y, buf->pitch, alloc_flags);
1722 if (!buf->bo) {
1723 free(buf);
1724 return NULL;
1725 }
1726
1727 if (devinfo->gen >= 10) {
1728 buf->clear_color_bo = buf->bo;
1729 brw_bo_reference(buf->clear_color_bo);
1730 }
1731
1732 buf->surf = *aux_surf;
1733
1734 return buf;
1735 }
1736
1737 static bool
1738 intel_miptree_alloc_mcs(struct brw_context *brw,
1739 struct intel_mipmap_tree *mt,
1740 GLuint num_samples)
1741 {
1742 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1743 assert(mt->aux_buf == NULL);
1744 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1745
1746 /* Multisampled miptrees are only supported for single level. */
1747 assert(mt->first_level == 0);
1748 enum isl_aux_state **aux_state =
1749 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1750 if (!aux_state)
1751 return false;
1752
1753 struct isl_surf temp_mcs_surf;
1754
1755 MAYBE_UNUSED bool ok =
1756 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1757 assert(ok);
1758
1759 /* Buffer needs to be initialised requiring the buffer to be immediately
1760 * mapped to cpu space for writing. Therefore do not use the gpu access
1761 * flag which can cause an unnecessary delay if the backing pages happened
1762 * to be just used by the GPU.
1763 */
1764 const uint32_t alloc_flags = 0;
1765 mt->aux_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1766 &temp_mcs_surf, alloc_flags, mt);
1767 if (!mt->aux_buf) {
1768 free(aux_state);
1769 return false;
1770 }
1771
1772 mt->aux_state = aux_state;
1773
1774 intel_miptree_init_mcs(brw, mt, 0xFF);
1775
1776 return true;
1777 }
1778
1779 bool
1780 intel_miptree_alloc_ccs(struct brw_context *brw,
1781 struct intel_mipmap_tree *mt)
1782 {
1783 assert(mt->aux_buf == NULL);
1784 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1785 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1786
1787 struct isl_surf temp_ccs_surf;
1788
1789 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1790 return false;
1791
1792 assert(temp_ccs_surf.size &&
1793 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1794
1795 enum isl_aux_state **aux_state =
1796 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1797 if (!aux_state)
1798 return false;
1799
1800 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1801 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1802 *
1803 * "If Software wants to enable Color Compression without Fast clear,
1804 * Software needs to initialize MCS with zeros."
1805 *
1806 * A CCS value of 0 indicates that the corresponding block is in the
1807 * pass-through state which is what we want.
1808 *
1809 * For CCS_D, on the other hand, we don't care as we're about to perform a
1810 * fast-clear operation. In that case, being hot in caches more useful.
1811 */
1812 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1813 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1814 mt->aux_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1815 &temp_ccs_surf, alloc_flags, mt);
1816 if (!mt->aux_buf) {
1817 free(aux_state);
1818 return false;
1819 }
1820
1821 mt->aux_state = aux_state;
1822
1823 return true;
1824 }
1825
1826 /**
1827 * Helper for intel_miptree_alloc_hiz() that sets
1828 * \c mt->level[level].has_hiz. Return true if and only if
1829 * \c has_hiz was set.
1830 */
1831 static bool
1832 intel_miptree_level_enable_hiz(struct brw_context *brw,
1833 struct intel_mipmap_tree *mt,
1834 uint32_t level)
1835 {
1836 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1837
1838 assert(mt->aux_buf);
1839 assert(mt->surf.size > 0);
1840
1841 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1842 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1843 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1844
1845 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1846 * and the height is 4 aligned. This allows our HiZ support
1847 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1848 * we can grow the width & height to allow the HiZ op to
1849 * force the proper size alignments.
1850 */
1851 if (level > 0 && ((width & 7) || (height & 3))) {
1852 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1853 return false;
1854 }
1855 }
1856
1857 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1858 mt->level[level].has_hiz = true;
1859 return true;
1860 }
1861
1862 bool
1863 intel_miptree_alloc_hiz(struct brw_context *brw,
1864 struct intel_mipmap_tree *mt)
1865 {
1866 assert(mt->aux_buf == NULL);
1867 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1868
1869 enum isl_aux_state **aux_state =
1870 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1871 if (!aux_state)
1872 return false;
1873
1874 struct isl_surf temp_hiz_surf;
1875
1876 MAYBE_UNUSED bool ok =
1877 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1878 assert(ok);
1879
1880 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1881 mt->aux_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1882 &temp_hiz_surf, alloc_flags, mt);
1883
1884 if (!mt->aux_buf) {
1885 free(aux_state);
1886 return false;
1887 }
1888
1889 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1890 intel_miptree_level_enable_hiz(brw, mt, level);
1891
1892 mt->aux_state = aux_state;
1893
1894 return true;
1895 }
1896
1897
1898 /**
1899 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1900 *
1901 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1902 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1903 * compress clear color so we wait until an actual fast-clear to allocate it.
1904 */
1905 static bool
1906 intel_miptree_alloc_aux(struct brw_context *brw,
1907 struct intel_mipmap_tree *mt)
1908 {
1909 switch (mt->aux_usage) {
1910 case ISL_AUX_USAGE_NONE:
1911 return true;
1912
1913 case ISL_AUX_USAGE_HIZ:
1914 assert(!_mesa_is_format_color_format(mt->format));
1915 if (!intel_miptree_alloc_hiz(brw, mt))
1916 return false;
1917 return true;
1918
1919 case ISL_AUX_USAGE_MCS:
1920 assert(_mesa_is_format_color_format(mt->format));
1921 assert(mt->surf.samples > 1);
1922 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1923 return false;
1924 return true;
1925
1926 case ISL_AUX_USAGE_CCS_D:
1927 /* Since CCS_D can only compress clear color so we wait until an actual
1928 * fast-clear to allocate it.
1929 */
1930 return true;
1931
1932 case ISL_AUX_USAGE_CCS_E:
1933 assert(_mesa_is_format_color_format(mt->format));
1934 assert(mt->surf.samples == 1);
1935 if (!intel_miptree_alloc_ccs(brw, mt))
1936 return false;
1937 return true;
1938 }
1939
1940 unreachable("Invalid aux usage");
1941 }
1942
1943
1944 /**
1945 * Can the miptree sample using the hiz buffer?
1946 */
1947 bool
1948 intel_miptree_sample_with_hiz(struct brw_context *brw,
1949 struct intel_mipmap_tree *mt)
1950 {
1951 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1952
1953 if (!devinfo->has_sample_with_hiz) {
1954 return false;
1955 }
1956
1957 if (!mt->aux_buf) {
1958 return false;
1959 }
1960
1961 /* It seems the hardware won't fallback to the depth buffer if some of the
1962 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1963 * of the texture to be HiZ enabled.
1964 */
1965 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1966 if (!intel_miptree_level_has_hiz(mt, level))
1967 return false;
1968 }
1969
1970 /* If compressed multisampling is enabled, then we use it for the auxiliary
1971 * buffer instead.
1972 *
1973 * From the BDW PRM (Volume 2d: Command Reference: Structures
1974 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1975 *
1976 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1977 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1978 *
1979 * There is no such blurb for 1D textures, but there is sufficient evidence
1980 * that this is broken on SKL+.
1981 */
1982 return (mt->surf.samples == 1 &&
1983 mt->target != GL_TEXTURE_3D &&
1984 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1985 }
1986
1987 /**
1988 * Does the miptree slice have hiz enabled?
1989 */
1990 bool
1991 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1992 {
1993 intel_miptree_check_level_layer(mt, level, 0);
1994 return mt->level[level].has_hiz;
1995 }
1996
1997 static inline uint32_t
1998 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1999 uint32_t start_level, uint32_t num_levels)
2000 {
2001 assert(start_level >= mt->first_level);
2002 assert(start_level <= mt->last_level);
2003
2004 if (num_levels == INTEL_REMAINING_LAYERS)
2005 num_levels = mt->last_level - start_level + 1;
2006 /* Check for overflow */
2007 assert(start_level + num_levels >= start_level);
2008 assert(start_level + num_levels <= mt->last_level + 1);
2009
2010 return num_levels;
2011 }
2012
2013 static inline uint32_t
2014 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2015 uint32_t start_layer, uint32_t num_layers)
2016 {
2017 assert(level <= mt->last_level);
2018
2019 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2020 assert(start_layer < total_num_layers);
2021 if (num_layers == INTEL_REMAINING_LAYERS)
2022 num_layers = total_num_layers - start_layer;
2023 /* Check for overflow */
2024 assert(start_layer + num_layers >= start_layer);
2025 assert(start_layer + num_layers <= total_num_layers);
2026
2027 return num_layers;
2028 }
2029
2030 bool
2031 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2032 unsigned start_level, unsigned num_levels,
2033 unsigned start_layer, unsigned num_layers)
2034 {
2035 assert(_mesa_is_format_color_format(mt->format));
2036
2037 if (!mt->aux_buf)
2038 return false;
2039
2040 /* Clamp the level range to fit the miptree */
2041 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2042
2043 for (uint32_t l = 0; l < num_levels; l++) {
2044 const uint32_t level = start_level + l;
2045 const uint32_t level_layers =
2046 miptree_layer_range_length(mt, level, start_layer, num_layers);
2047 for (unsigned a = 0; a < level_layers; a++) {
2048 enum isl_aux_state aux_state =
2049 intel_miptree_get_aux_state(mt, level, start_layer + a);
2050 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2051 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2052 return true;
2053 }
2054 }
2055
2056 return false;
2057 }
2058
2059 static void
2060 intel_miptree_check_color_resolve(const struct brw_context *brw,
2061 const struct intel_mipmap_tree *mt,
2062 unsigned level, unsigned layer)
2063 {
2064 if (!mt->aux_buf)
2065 return;
2066
2067 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2068 assert(brw->screen->devinfo.gen >= 8 ||
2069 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2070
2071 /* Compression of arrayed msaa surfaces is supported. */
2072 if (mt->surf.samples > 1)
2073 return;
2074
2075 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2076 assert(brw->screen->devinfo.gen >= 8 ||
2077 (layer == 0 &&
2078 mt->surf.logical_level0_px.depth == 1 &&
2079 mt->surf.logical_level0_px.array_len == 1));
2080
2081 (void)level;
2082 (void)layer;
2083 }
2084
2085 static enum isl_aux_op
2086 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2087 enum isl_aux_usage aux_usage,
2088 bool fast_clear_supported)
2089 {
2090 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2091
2092 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2093
2094 assert(ccs_supported == fast_clear_supported);
2095
2096 switch (aux_state) {
2097 case ISL_AUX_STATE_CLEAR:
2098 case ISL_AUX_STATE_PARTIAL_CLEAR:
2099 if (!ccs_supported)
2100 return ISL_AUX_OP_FULL_RESOLVE;
2101 else
2102 return ISL_AUX_OP_NONE;
2103
2104 case ISL_AUX_STATE_PASS_THROUGH:
2105 return ISL_AUX_OP_NONE;
2106
2107 case ISL_AUX_STATE_RESOLVED:
2108 case ISL_AUX_STATE_AUX_INVALID:
2109 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2110 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2111 break;
2112 }
2113
2114 unreachable("Invalid aux state for CCS_D");
2115 }
2116
2117 static enum isl_aux_op
2118 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2119 enum isl_aux_usage aux_usage,
2120 bool fast_clear_supported)
2121 {
2122 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2123 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2124 aux_usage == ISL_AUX_USAGE_CCS_D ||
2125 aux_usage == ISL_AUX_USAGE_CCS_E);
2126
2127 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2128 assert(fast_clear_supported);
2129
2130 switch (aux_state) {
2131 case ISL_AUX_STATE_CLEAR:
2132 case ISL_AUX_STATE_PARTIAL_CLEAR:
2133 if (fast_clear_supported)
2134 return ISL_AUX_OP_NONE;
2135 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2136 return ISL_AUX_OP_PARTIAL_RESOLVE;
2137 else
2138 return ISL_AUX_OP_FULL_RESOLVE;
2139
2140 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2141 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2142 return ISL_AUX_OP_FULL_RESOLVE;
2143 else if (!fast_clear_supported)
2144 return ISL_AUX_OP_PARTIAL_RESOLVE;
2145 else
2146 return ISL_AUX_OP_NONE;
2147
2148 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2149 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2150 return ISL_AUX_OP_FULL_RESOLVE;
2151 else
2152 return ISL_AUX_OP_NONE;
2153
2154 case ISL_AUX_STATE_PASS_THROUGH:
2155 return ISL_AUX_OP_NONE;
2156
2157 case ISL_AUX_STATE_RESOLVED:
2158 case ISL_AUX_STATE_AUX_INVALID:
2159 break;
2160 }
2161
2162 unreachable("Invalid aux state for CCS_E");
2163 }
2164
2165 static void
2166 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2167 struct intel_mipmap_tree *mt,
2168 uint32_t level, uint32_t layer,
2169 enum isl_aux_usage aux_usage,
2170 bool fast_clear_supported)
2171 {
2172 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2173
2174 enum isl_aux_op resolve_op;
2175 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2176 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2177 fast_clear_supported);
2178 } else {
2179 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2180 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2181 fast_clear_supported);
2182 }
2183
2184 if (resolve_op != ISL_AUX_OP_NONE) {
2185 intel_miptree_check_color_resolve(brw, mt, level, layer);
2186 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2187
2188 switch (resolve_op) {
2189 case ISL_AUX_OP_FULL_RESOLVE:
2190 /* The CCS full resolve operation destroys the CCS and sets it to the
2191 * pass-through state. (You can also think of this as being both a
2192 * resolve and an ambiguate in one operation.)
2193 */
2194 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2195 ISL_AUX_STATE_PASS_THROUGH);
2196 break;
2197
2198 case ISL_AUX_OP_PARTIAL_RESOLVE:
2199 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2200 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2201 break;
2202
2203 default:
2204 unreachable("Invalid resolve op");
2205 }
2206 }
2207 }
2208
2209 static void
2210 intel_miptree_finish_ccs_write(struct brw_context *brw,
2211 struct intel_mipmap_tree *mt,
2212 uint32_t level, uint32_t layer,
2213 enum isl_aux_usage aux_usage)
2214 {
2215 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2216 aux_usage == ISL_AUX_USAGE_CCS_D ||
2217 aux_usage == ISL_AUX_USAGE_CCS_E);
2218
2219 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2220
2221 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2222 switch (aux_state) {
2223 case ISL_AUX_STATE_CLEAR:
2224 case ISL_AUX_STATE_PARTIAL_CLEAR:
2225 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2226 aux_usage == ISL_AUX_USAGE_CCS_D);
2227
2228 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2229 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2230 ISL_AUX_STATE_COMPRESSED_CLEAR);
2231 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2232 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2233 ISL_AUX_STATE_PARTIAL_CLEAR);
2234 }
2235 break;
2236
2237 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2238 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2239 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2240 break; /* Nothing to do */
2241
2242 case ISL_AUX_STATE_PASS_THROUGH:
2243 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2244 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2245 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2246 } else {
2247 /* Nothing to do */
2248 }
2249 break;
2250
2251 case ISL_AUX_STATE_RESOLVED:
2252 case ISL_AUX_STATE_AUX_INVALID:
2253 unreachable("Invalid aux state for CCS_E");
2254 }
2255 } else {
2256 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2257 /* CCS_D is a bit simpler */
2258 switch (aux_state) {
2259 case ISL_AUX_STATE_CLEAR:
2260 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2261 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2262 ISL_AUX_STATE_PARTIAL_CLEAR);
2263 break;
2264
2265 case ISL_AUX_STATE_PARTIAL_CLEAR:
2266 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2267 break; /* Nothing to do */
2268
2269 case ISL_AUX_STATE_PASS_THROUGH:
2270 /* Nothing to do */
2271 break;
2272
2273 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2274 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2275 case ISL_AUX_STATE_RESOLVED:
2276 case ISL_AUX_STATE_AUX_INVALID:
2277 unreachable("Invalid aux state for CCS_D");
2278 }
2279 }
2280 }
2281
2282 static void
2283 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2284 struct intel_mipmap_tree *mt,
2285 uint32_t layer,
2286 enum isl_aux_usage aux_usage,
2287 bool fast_clear_supported)
2288 {
2289 assert(aux_usage == ISL_AUX_USAGE_MCS);
2290
2291 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2292 case ISL_AUX_STATE_CLEAR:
2293 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2294 if (!fast_clear_supported) {
2295 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2296 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2297 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2298 }
2299 break;
2300
2301 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2302 break; /* Nothing to do */
2303
2304 case ISL_AUX_STATE_RESOLVED:
2305 case ISL_AUX_STATE_PASS_THROUGH:
2306 case ISL_AUX_STATE_AUX_INVALID:
2307 case ISL_AUX_STATE_PARTIAL_CLEAR:
2308 unreachable("Invalid aux state for MCS");
2309 }
2310 }
2311
2312 static void
2313 intel_miptree_finish_mcs_write(struct brw_context *brw,
2314 struct intel_mipmap_tree *mt,
2315 uint32_t layer,
2316 enum isl_aux_usage aux_usage)
2317 {
2318 assert(aux_usage == ISL_AUX_USAGE_MCS);
2319
2320 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2321 case ISL_AUX_STATE_CLEAR:
2322 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2323 ISL_AUX_STATE_COMPRESSED_CLEAR);
2324 break;
2325
2326 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2327 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2328 break; /* Nothing to do */
2329
2330 case ISL_AUX_STATE_RESOLVED:
2331 case ISL_AUX_STATE_PASS_THROUGH:
2332 case ISL_AUX_STATE_AUX_INVALID:
2333 case ISL_AUX_STATE_PARTIAL_CLEAR:
2334 unreachable("Invalid aux state for MCS");
2335 }
2336 }
2337
2338 static void
2339 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2340 struct intel_mipmap_tree *mt,
2341 uint32_t level, uint32_t layer,
2342 enum isl_aux_usage aux_usage,
2343 bool fast_clear_supported)
2344 {
2345 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2346
2347 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2348 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2349 case ISL_AUX_STATE_CLEAR:
2350 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2351 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2352 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2353 break;
2354
2355 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2356 if (aux_usage != ISL_AUX_USAGE_HIZ)
2357 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2358 break;
2359
2360 case ISL_AUX_STATE_PASS_THROUGH:
2361 case ISL_AUX_STATE_RESOLVED:
2362 break;
2363
2364 case ISL_AUX_STATE_AUX_INVALID:
2365 if (aux_usage == ISL_AUX_USAGE_HIZ)
2366 hiz_op = ISL_AUX_OP_AMBIGUATE;
2367 break;
2368
2369 case ISL_AUX_STATE_PARTIAL_CLEAR:
2370 unreachable("Invalid HiZ state");
2371 }
2372
2373 if (hiz_op != ISL_AUX_OP_NONE) {
2374 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2375
2376 switch (hiz_op) {
2377 case ISL_AUX_OP_FULL_RESOLVE:
2378 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2379 ISL_AUX_STATE_RESOLVED);
2380 break;
2381
2382 case ISL_AUX_OP_AMBIGUATE:
2383 /* The HiZ resolve operation is actually an ambiguate */
2384 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2385 ISL_AUX_STATE_PASS_THROUGH);
2386 break;
2387
2388 default:
2389 unreachable("Invalid HiZ op");
2390 }
2391 }
2392 }
2393
2394 static void
2395 intel_miptree_finish_hiz_write(struct brw_context *brw,
2396 struct intel_mipmap_tree *mt,
2397 uint32_t level, uint32_t layer,
2398 enum isl_aux_usage aux_usage)
2399 {
2400 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2401
2402 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2403 case ISL_AUX_STATE_CLEAR:
2404 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2405 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2406 ISL_AUX_STATE_COMPRESSED_CLEAR);
2407 break;
2408
2409 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2410 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2411 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2412 break; /* Nothing to do */
2413
2414 case ISL_AUX_STATE_RESOLVED:
2415 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2416 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2417 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2418 } else {
2419 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2420 ISL_AUX_STATE_AUX_INVALID);
2421 }
2422 break;
2423
2424 case ISL_AUX_STATE_PASS_THROUGH:
2425 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2426 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2427 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2428 }
2429 break;
2430
2431 case ISL_AUX_STATE_AUX_INVALID:
2432 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2433 break;
2434
2435 case ISL_AUX_STATE_PARTIAL_CLEAR:
2436 unreachable("Invalid HiZ state");
2437 }
2438 }
2439
2440 void
2441 intel_miptree_prepare_access(struct brw_context *brw,
2442 struct intel_mipmap_tree *mt,
2443 uint32_t start_level, uint32_t num_levels,
2444 uint32_t start_layer, uint32_t num_layers,
2445 enum isl_aux_usage aux_usage,
2446 bool fast_clear_supported)
2447 {
2448 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2449
2450 switch (mt->aux_usage) {
2451 case ISL_AUX_USAGE_NONE:
2452 /* Nothing to do */
2453 break;
2454
2455 case ISL_AUX_USAGE_MCS:
2456 assert(mt->aux_buf);
2457 assert(start_level == 0 && num_levels == 1);
2458 const uint32_t level_layers =
2459 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2460 for (uint32_t a = 0; a < level_layers; a++) {
2461 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2462 aux_usage, fast_clear_supported);
2463 }
2464 break;
2465
2466 case ISL_AUX_USAGE_CCS_D:
2467 case ISL_AUX_USAGE_CCS_E:
2468 if (!mt->aux_buf)
2469 return;
2470
2471 for (uint32_t l = 0; l < num_levels; l++) {
2472 const uint32_t level = start_level + l;
2473 const uint32_t level_layers =
2474 miptree_layer_range_length(mt, level, start_layer, num_layers);
2475 for (uint32_t a = 0; a < level_layers; a++) {
2476 intel_miptree_prepare_ccs_access(brw, mt, level,
2477 start_layer + a,
2478 aux_usage, fast_clear_supported);
2479 }
2480 }
2481 break;
2482
2483 case ISL_AUX_USAGE_HIZ:
2484 assert(mt->aux_buf);
2485 for (uint32_t l = 0; l < num_levels; l++) {
2486 const uint32_t level = start_level + l;
2487 if (!intel_miptree_level_has_hiz(mt, level))
2488 continue;
2489
2490 const uint32_t level_layers =
2491 miptree_layer_range_length(mt, level, start_layer, num_layers);
2492 for (uint32_t a = 0; a < level_layers; a++) {
2493 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2494 aux_usage, fast_clear_supported);
2495 }
2496 }
2497 break;
2498
2499 default:
2500 unreachable("Invalid aux usage");
2501 }
2502 }
2503
2504 void
2505 intel_miptree_finish_write(struct brw_context *brw,
2506 struct intel_mipmap_tree *mt, uint32_t level,
2507 uint32_t start_layer, uint32_t num_layers,
2508 enum isl_aux_usage aux_usage)
2509 {
2510 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2511
2512 switch (mt->aux_usage) {
2513 case ISL_AUX_USAGE_NONE:
2514 /* Nothing to do */
2515 break;
2516
2517 case ISL_AUX_USAGE_MCS:
2518 assert(mt->aux_buf);
2519 for (uint32_t a = 0; a < num_layers; a++) {
2520 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2521 aux_usage);
2522 }
2523 break;
2524
2525 case ISL_AUX_USAGE_CCS_D:
2526 case ISL_AUX_USAGE_CCS_E:
2527 if (!mt->aux_buf)
2528 return;
2529
2530 for (uint32_t a = 0; a < num_layers; a++) {
2531 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2532 aux_usage);
2533 }
2534 break;
2535
2536 case ISL_AUX_USAGE_HIZ:
2537 if (!intel_miptree_level_has_hiz(mt, level))
2538 return;
2539
2540 for (uint32_t a = 0; a < num_layers; a++) {
2541 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2542 aux_usage);
2543 }
2544 break;
2545
2546 default:
2547 unreachable("Invavlid aux usage");
2548 }
2549 }
2550
2551 enum isl_aux_state
2552 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2553 uint32_t level, uint32_t layer)
2554 {
2555 intel_miptree_check_level_layer(mt, level, layer);
2556
2557 if (_mesa_is_format_color_format(mt->format)) {
2558 assert(mt->aux_buf != NULL);
2559 assert(mt->surf.samples == 1 ||
2560 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2561 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2562 unreachable("Cannot get aux state for stencil");
2563 } else {
2564 assert(intel_miptree_level_has_hiz(mt, level));
2565 }
2566
2567 return mt->aux_state[level][layer];
2568 }
2569
2570 void
2571 intel_miptree_set_aux_state(struct brw_context *brw,
2572 struct intel_mipmap_tree *mt, uint32_t level,
2573 uint32_t start_layer, uint32_t num_layers,
2574 enum isl_aux_state aux_state)
2575 {
2576 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2577
2578 if (_mesa_is_format_color_format(mt->format)) {
2579 assert(mt->aux_buf != NULL);
2580 assert(mt->surf.samples == 1 ||
2581 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2582 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2583 unreachable("Cannot get aux state for stencil");
2584 } else {
2585 assert(intel_miptree_level_has_hiz(mt, level));
2586 }
2587
2588 for (unsigned a = 0; a < num_layers; a++) {
2589 if (mt->aux_state[level][start_layer + a] != aux_state) {
2590 mt->aux_state[level][start_layer + a] = aux_state;
2591 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2592 }
2593 }
2594 }
2595
2596 /* On Gen9 color buffers may be compressed by the hardware (lossless
2597 * compression). There are, however, format restrictions and care needs to be
2598 * taken that the sampler engine is capable for re-interpreting a buffer with
2599 * format different the buffer was originally written with.
2600 *
2601 * For example, SRGB formats are not compressible and the sampler engine isn't
2602 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2603 * color buffer needs to be resolved so that the sampling surface can be
2604 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2605 * set).
2606 */
2607 static bool
2608 can_texture_with_ccs(struct brw_context *brw,
2609 struct intel_mipmap_tree *mt,
2610 enum isl_format view_format)
2611 {
2612 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2613 return false;
2614
2615 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2616 mt, view_format)) {
2617 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2618 isl_format_get_layout(view_format)->name,
2619 _mesa_get_format_name(mt->format));
2620 return false;
2621 }
2622
2623 return true;
2624 }
2625
2626 enum isl_aux_usage
2627 intel_miptree_texture_aux_usage(struct brw_context *brw,
2628 struct intel_mipmap_tree *mt,
2629 enum isl_format view_format)
2630 {
2631 switch (mt->aux_usage) {
2632 case ISL_AUX_USAGE_HIZ:
2633 if (intel_miptree_sample_with_hiz(brw, mt))
2634 return ISL_AUX_USAGE_HIZ;
2635 break;
2636
2637 case ISL_AUX_USAGE_MCS:
2638 return ISL_AUX_USAGE_MCS;
2639
2640 case ISL_AUX_USAGE_CCS_D:
2641 case ISL_AUX_USAGE_CCS_E:
2642 if (!mt->aux_buf) {
2643 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2644 return ISL_AUX_USAGE_NONE;
2645 }
2646
2647 /* If we don't have any unresolved color, report an aux usage of
2648 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2649 * aux surface and we can save some bandwidth.
2650 */
2651 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2652 0, INTEL_REMAINING_LAYERS))
2653 return ISL_AUX_USAGE_NONE;
2654
2655 if (can_texture_with_ccs(brw, mt, view_format))
2656 return ISL_AUX_USAGE_CCS_E;
2657 break;
2658
2659 default:
2660 break;
2661 }
2662
2663 return ISL_AUX_USAGE_NONE;
2664 }
2665
2666 static bool
2667 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2668 {
2669 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2670 * values so sRGB curve application was a no-op for all fast-clearable
2671 * formats.
2672 *
2673 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2674 * values, the hardware interprets the floats, not as what would be
2675 * returned from the sampler (or written by the shader), but as being
2676 * between format conversion and sRGB curve application. This means that
2677 * we can switch between sRGB and UNORM without having to whack the clear
2678 * color.
2679 */
2680 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2681 }
2682
2683 void
2684 intel_miptree_prepare_texture(struct brw_context *brw,
2685 struct intel_mipmap_tree *mt,
2686 enum isl_format view_format,
2687 uint32_t start_level, uint32_t num_levels,
2688 uint32_t start_layer, uint32_t num_layers)
2689 {
2690 enum isl_aux_usage aux_usage =
2691 intel_miptree_texture_aux_usage(brw, mt, view_format);
2692 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2693
2694 /* Clear color is specified as ints or floats and the conversion is done by
2695 * the sampler. If we have a texture view, we would have to perform the
2696 * clear color conversion manually. Just disable clear color.
2697 */
2698 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2699 clear_supported = false;
2700
2701 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2702 start_layer, num_layers,
2703 aux_usage, clear_supported);
2704 }
2705
2706 void
2707 intel_miptree_prepare_image(struct brw_context *brw,
2708 struct intel_mipmap_tree *mt)
2709 {
2710 /* The data port doesn't understand any compression */
2711 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2712 0, INTEL_REMAINING_LAYERS,
2713 ISL_AUX_USAGE_NONE, false);
2714 }
2715
2716 enum isl_aux_usage
2717 intel_miptree_render_aux_usage(struct brw_context *brw,
2718 struct intel_mipmap_tree *mt,
2719 enum isl_format render_format,
2720 bool blend_enabled,
2721 bool draw_aux_disabled)
2722 {
2723 struct gen_device_info *devinfo = &brw->screen->devinfo;
2724
2725 if (draw_aux_disabled)
2726 return ISL_AUX_USAGE_NONE;
2727
2728 switch (mt->aux_usage) {
2729 case ISL_AUX_USAGE_MCS:
2730 assert(mt->aux_buf);
2731 return ISL_AUX_USAGE_MCS;
2732
2733 case ISL_AUX_USAGE_CCS_D:
2734 case ISL_AUX_USAGE_CCS_E:
2735 if (!mt->aux_buf) {
2736 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2737 return ISL_AUX_USAGE_NONE;
2738 }
2739
2740 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2741 * formats. However, there are issues with blending where it doesn't
2742 * properly apply the sRGB curve to the clear color when blending.
2743 */
2744 if (devinfo->gen >= 9 && blend_enabled &&
2745 isl_format_is_srgb(render_format) &&
2746 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2747 return ISL_AUX_USAGE_NONE;
2748
2749 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2750 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2751 mt, render_format))
2752 return ISL_AUX_USAGE_CCS_E;
2753
2754 /* Otherwise, we have to fall back to CCS_D */
2755 return ISL_AUX_USAGE_CCS_D;
2756
2757 default:
2758 return ISL_AUX_USAGE_NONE;
2759 }
2760 }
2761
2762 void
2763 intel_miptree_prepare_render(struct brw_context *brw,
2764 struct intel_mipmap_tree *mt, uint32_t level,
2765 uint32_t start_layer, uint32_t layer_count,
2766 enum isl_aux_usage aux_usage)
2767 {
2768 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2769 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2770 }
2771
2772 void
2773 intel_miptree_finish_render(struct brw_context *brw,
2774 struct intel_mipmap_tree *mt, uint32_t level,
2775 uint32_t start_layer, uint32_t layer_count,
2776 enum isl_aux_usage aux_usage)
2777 {
2778 assert(_mesa_is_format_color_format(mt->format));
2779
2780 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2781 aux_usage);
2782 }
2783
2784 void
2785 intel_miptree_prepare_depth(struct brw_context *brw,
2786 struct intel_mipmap_tree *mt, uint32_t level,
2787 uint32_t start_layer, uint32_t layer_count)
2788 {
2789 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2790 mt->aux_usage, mt->aux_buf != NULL);
2791 }
2792
2793 void
2794 intel_miptree_finish_depth(struct brw_context *brw,
2795 struct intel_mipmap_tree *mt, uint32_t level,
2796 uint32_t start_layer, uint32_t layer_count,
2797 bool depth_written)
2798 {
2799 if (depth_written) {
2800 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2801 mt->aux_buf != NULL);
2802 }
2803 }
2804
2805 void
2806 intel_miptree_prepare_external(struct brw_context *brw,
2807 struct intel_mipmap_tree *mt)
2808 {
2809 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2810 bool supports_fast_clear = false;
2811
2812 const struct isl_drm_modifier_info *mod_info =
2813 isl_drm_modifier_get_info(mt->drm_modifier);
2814
2815 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2816 /* CCS_E is the only supported aux for external images and it's only
2817 * supported on very simple images.
2818 */
2819 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2820 assert(_mesa_is_format_color_format(mt->format));
2821 assert(mt->first_level == 0 && mt->last_level == 0);
2822 assert(mt->surf.logical_level0_px.depth == 1);
2823 assert(mt->surf.logical_level0_px.array_len == 1);
2824 assert(mt->surf.samples == 1);
2825 assert(mt->aux_buf != NULL);
2826
2827 aux_usage = mod_info->aux_usage;
2828 supports_fast_clear = mod_info->supports_clear_color;
2829 }
2830
2831 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2832 0, INTEL_REMAINING_LAYERS,
2833 aux_usage, supports_fast_clear);
2834 }
2835
2836 void
2837 intel_miptree_finish_external(struct brw_context *brw,
2838 struct intel_mipmap_tree *mt)
2839 {
2840 if (!mt->aux_buf)
2841 return;
2842
2843 /* We don't know the actual aux state of the aux surface. The previous
2844 * owner could have given it to us in a number of different states.
2845 * Because we don't know the aux state, we reset the aux state to the
2846 * least common denominator of possible valid states.
2847 */
2848 enum isl_aux_state default_aux_state =
2849 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2850 assert(mt->last_level == mt->first_level);
2851 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2852 default_aux_state);
2853 }
2854
2855 /**
2856 * Make it possible to share the BO backing the given miptree with another
2857 * process or another miptree.
2858 *
2859 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2860 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2861 * ensure that no MCS buffer gets allocated in the future.
2862 *
2863 * HiZ is similarly unsafe with shared buffers.
2864 */
2865 void
2866 intel_miptree_make_shareable(struct brw_context *brw,
2867 struct intel_mipmap_tree *mt)
2868 {
2869 /* MCS buffers are also used for multisample buffers, but we can't resolve
2870 * away a multisample MCS buffer because it's an integral part of how the
2871 * pixel data is stored. Fortunately this code path should never be
2872 * reached for multisample buffers.
2873 */
2874 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2875 mt->surf.samples == 1);
2876
2877 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2878 0, INTEL_REMAINING_LAYERS,
2879 ISL_AUX_USAGE_NONE, false);
2880
2881 if (mt->aux_buf) {
2882 intel_miptree_aux_buffer_free(mt->aux_buf);
2883 mt->aux_buf = NULL;
2884
2885 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2886 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2887 mt->level[l].has_hiz = false;
2888 }
2889
2890 free(mt->aux_state);
2891 mt->aux_state = NULL;
2892 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2893 }
2894
2895 mt->aux_usage = ISL_AUX_USAGE_NONE;
2896 mt->supports_fast_clear = false;
2897 }
2898
2899
2900 /**
2901 * \brief Get pointer offset into stencil buffer.
2902 *
2903 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2904 * must decode the tile's layout in software.
2905 *
2906 * See
2907 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2908 * Format.
2909 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2910 *
2911 * Even though the returned offset is always positive, the return type is
2912 * signed due to
2913 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2914 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2915 */
2916 static intptr_t
2917 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2918 {
2919 uint32_t tile_size = 4096;
2920 uint32_t tile_width = 64;
2921 uint32_t tile_height = 64;
2922 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2923
2924 uint32_t tile_x = x / tile_width;
2925 uint32_t tile_y = y / tile_height;
2926
2927 /* The byte's address relative to the tile's base addres. */
2928 uint32_t byte_x = x % tile_width;
2929 uint32_t byte_y = y % tile_height;
2930
2931 uintptr_t u = tile_y * row_size
2932 + tile_x * tile_size
2933 + 512 * (byte_x / 8)
2934 + 64 * (byte_y / 8)
2935 + 32 * ((byte_y / 4) % 2)
2936 + 16 * ((byte_x / 4) % 2)
2937 + 8 * ((byte_y / 2) % 2)
2938 + 4 * ((byte_x / 2) % 2)
2939 + 2 * (byte_y % 2)
2940 + 1 * (byte_x % 2);
2941
2942 if (swizzled) {
2943 /* adjust for bit6 swizzling */
2944 if (((byte_x / 8) % 2) == 1) {
2945 if (((byte_y / 8) % 2) == 0) {
2946 u += 64;
2947 } else {
2948 u -= 64;
2949 }
2950 }
2951 }
2952
2953 return u;
2954 }
2955
2956 void
2957 intel_miptree_updownsample(struct brw_context *brw,
2958 struct intel_mipmap_tree *src,
2959 struct intel_mipmap_tree *dst)
2960 {
2961 unsigned src_w = src->surf.logical_level0_px.width;
2962 unsigned src_h = src->surf.logical_level0_px.height;
2963 unsigned dst_w = dst->surf.logical_level0_px.width;
2964 unsigned dst_h = dst->surf.logical_level0_px.height;
2965
2966 brw_blorp_blit_miptrees(brw,
2967 src, 0 /* level */, 0 /* layer */,
2968 src->format, SWIZZLE_XYZW,
2969 dst, 0 /* level */, 0 /* layer */, dst->format,
2970 0, 0, src_w, src_h,
2971 0, 0, dst_w, dst_h,
2972 GL_NEAREST, false, false /*mirror x, y*/,
2973 false, false);
2974
2975 if (src->stencil_mt) {
2976 src_w = src->stencil_mt->surf.logical_level0_px.width;
2977 src_h = src->stencil_mt->surf.logical_level0_px.height;
2978 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2979 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2980
2981 brw_blorp_blit_miptrees(brw,
2982 src->stencil_mt, 0 /* level */, 0 /* layer */,
2983 src->stencil_mt->format, SWIZZLE_XYZW,
2984 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2985 dst->stencil_mt->format,
2986 0, 0, src_w, src_h,
2987 0, 0, dst_w, dst_h,
2988 GL_NEAREST, false, false /*mirror x, y*/,
2989 false, false /* decode/encode srgb */);
2990 }
2991 }
2992
2993 void
2994 intel_update_r8stencil(struct brw_context *brw,
2995 struct intel_mipmap_tree *mt)
2996 {
2997 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2998
2999 assert(devinfo->gen >= 7);
3000 struct intel_mipmap_tree *src =
3001 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
3002 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3003 return;
3004
3005 assert(src->surf.size > 0);
3006
3007 if (!mt->r8stencil_mt) {
3008 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3009 mt->r8stencil_mt = make_surface(
3010 brw,
3011 src->target,
3012 MESA_FORMAT_R_UINT8,
3013 src->first_level, src->last_level,
3014 src->surf.logical_level0_px.width,
3015 src->surf.logical_level0_px.height,
3016 src->surf.dim == ISL_SURF_DIM_3D ?
3017 src->surf.logical_level0_px.depth :
3018 src->surf.logical_level0_px.array_len,
3019 src->surf.samples,
3020 ISL_TILING_Y0_BIT,
3021 ISL_SURF_USAGE_TEXTURE_BIT,
3022 BO_ALLOC_BUSY, 0, NULL);
3023 assert(mt->r8stencil_mt);
3024 }
3025
3026 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3027
3028 for (int level = src->first_level; level <= src->last_level; level++) {
3029 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3030 minify(src->surf.phys_level0_sa.depth, level) :
3031 src->surf.phys_level0_sa.array_len;
3032
3033 for (unsigned layer = 0; layer < depth; layer++) {
3034 brw_blorp_copy_miptrees(brw,
3035 src, level, layer,
3036 dst, level, layer,
3037 0, 0, 0, 0,
3038 minify(src->surf.logical_level0_px.width,
3039 level),
3040 minify(src->surf.logical_level0_px.height,
3041 level));
3042 }
3043 }
3044
3045 brw_cache_flush_for_read(brw, dst->bo);
3046 src->r8stencil_needs_update = false;
3047 }
3048
3049 static void *
3050 intel_miptree_map_raw(struct brw_context *brw,
3051 struct intel_mipmap_tree *mt,
3052 GLbitfield mode)
3053 {
3054 struct brw_bo *bo = mt->bo;
3055
3056 if (brw_batch_references(&brw->batch, bo))
3057 intel_batchbuffer_flush(brw);
3058
3059 return brw_bo_map(brw, bo, mode);
3060 }
3061
3062 static void
3063 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3064 {
3065 brw_bo_unmap(mt->bo);
3066 }
3067
3068 static void
3069 intel_miptree_unmap_gtt(struct brw_context *brw,
3070 struct intel_mipmap_tree *mt,
3071 struct intel_miptree_map *map,
3072 unsigned int level, unsigned int slice)
3073 {
3074 intel_miptree_unmap_raw(mt);
3075 }
3076
3077 static void
3078 intel_miptree_map_gtt(struct brw_context *brw,
3079 struct intel_mipmap_tree *mt,
3080 struct intel_miptree_map *map,
3081 unsigned int level, unsigned int slice)
3082 {
3083 unsigned int bw, bh;
3084 void *base;
3085 unsigned int image_x, image_y;
3086 intptr_t x = map->x;
3087 intptr_t y = map->y;
3088
3089 /* For compressed formats, the stride is the number of bytes per
3090 * row of blocks. intel_miptree_get_image_offset() already does
3091 * the divide.
3092 */
3093 _mesa_get_format_block_size(mt->format, &bw, &bh);
3094 assert(y % bh == 0);
3095 assert(x % bw == 0);
3096 y /= bh;
3097 x /= bw;
3098
3099 base = intel_miptree_map_raw(brw, mt, map->mode);
3100
3101 if (base == NULL)
3102 map->ptr = NULL;
3103 else {
3104 base += mt->offset;
3105
3106 /* Note that in the case of cube maps, the caller must have passed the
3107 * slice number referencing the face.
3108 */
3109 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3110 x += image_x;
3111 y += image_y;
3112
3113 map->stride = mt->surf.row_pitch;
3114 map->ptr = base + y * map->stride + x * mt->cpp;
3115 }
3116
3117 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3118 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3119 map->x, map->y, map->w, map->h,
3120 mt, _mesa_get_format_name(mt->format),
3121 x, y, map->ptr, map->stride);
3122
3123 map->unmap = intel_miptree_unmap_gtt;
3124 }
3125
3126 static void
3127 intel_miptree_unmap_blit(struct brw_context *brw,
3128 struct intel_mipmap_tree *mt,
3129 struct intel_miptree_map *map,
3130 unsigned int level,
3131 unsigned int slice)
3132 {
3133 struct gl_context *ctx = &brw->ctx;
3134
3135 intel_miptree_unmap_raw(map->linear_mt);
3136
3137 if (map->mode & GL_MAP_WRITE_BIT) {
3138 bool ok = intel_miptree_copy(brw,
3139 map->linear_mt, 0, 0, 0, 0,
3140 mt, level, slice, map->x, map->y,
3141 map->w, map->h);
3142 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3143 }
3144
3145 intel_miptree_release(&map->linear_mt);
3146 }
3147
3148 static void
3149 intel_miptree_map_blit(struct brw_context *brw,
3150 struct intel_mipmap_tree *mt,
3151 struct intel_miptree_map *map,
3152 unsigned int level, unsigned int slice)
3153 {
3154 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3155 /* first_level */ 0,
3156 /* last_level */ 0,
3157 map->w, map->h, 1,
3158 /* samples */ 1,
3159 MIPTREE_CREATE_LINEAR);
3160
3161 if (!map->linear_mt) {
3162 fprintf(stderr, "Failed to allocate blit temporary\n");
3163 goto fail;
3164 }
3165 map->stride = map->linear_mt->surf.row_pitch;
3166
3167 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3168 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3169 * invalidate is set, since we'll be writing the whole rectangle from our
3170 * temporary buffer back out.
3171 */
3172 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3173 if (!intel_miptree_copy(brw,
3174 mt, level, slice, map->x, map->y,
3175 map->linear_mt, 0, 0, 0, 0,
3176 map->w, map->h)) {
3177 fprintf(stderr, "Failed to blit\n");
3178 goto fail;
3179 }
3180 }
3181
3182 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3183
3184 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3185 map->x, map->y, map->w, map->h,
3186 mt, _mesa_get_format_name(mt->format),
3187 level, slice, map->ptr, map->stride);
3188
3189 map->unmap = intel_miptree_unmap_blit;
3190 return;
3191
3192 fail:
3193 intel_miptree_release(&map->linear_mt);
3194 map->ptr = NULL;
3195 map->stride = 0;
3196 }
3197
3198 /**
3199 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3200 */
3201 #if defined(USE_SSE41)
3202 static void
3203 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3204 struct intel_mipmap_tree *mt,
3205 struct intel_miptree_map *map,
3206 unsigned int level,
3207 unsigned int slice)
3208 {
3209 _mesa_align_free(map->buffer);
3210 map->buffer = NULL;
3211 map->ptr = NULL;
3212 }
3213
3214 static void
3215 intel_miptree_map_movntdqa(struct brw_context *brw,
3216 struct intel_mipmap_tree *mt,
3217 struct intel_miptree_map *map,
3218 unsigned int level, unsigned int slice)
3219 {
3220 assert(map->mode & GL_MAP_READ_BIT);
3221 assert(!(map->mode & GL_MAP_WRITE_BIT));
3222
3223 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3224 map->x, map->y, map->w, map->h,
3225 mt, _mesa_get_format_name(mt->format),
3226 level, slice, map->ptr, map->stride);
3227
3228 /* Map the original image */
3229 uint32_t image_x;
3230 uint32_t image_y;
3231 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3232 image_x += map->x;
3233 image_y += map->y;
3234
3235 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3236 if (!src)
3237 return;
3238
3239 src += mt->offset;
3240
3241 src += image_y * mt->surf.row_pitch;
3242 src += image_x * mt->cpp;
3243
3244 /* Due to the pixel offsets for the particular image being mapped, our
3245 * src pointer may not be 16-byte aligned. However, if the pitch is
3246 * divisible by 16, then the amount by which it's misaligned will remain
3247 * consistent from row to row.
3248 */
3249 assert((mt->surf.row_pitch % 16) == 0);
3250 const int misalignment = ((uintptr_t) src) & 15;
3251
3252 /* Create an untiled temporary buffer for the mapping. */
3253 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3254
3255 map->stride = ALIGN(misalignment + width_bytes, 16);
3256
3257 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3258 /* Offset the destination so it has the same misalignment as src. */
3259 map->ptr = map->buffer + misalignment;
3260
3261 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3262
3263 for (uint32_t y = 0; y < map->h; y++) {
3264 void *dst_ptr = map->ptr + y * map->stride;
3265 void *src_ptr = src + y * mt->surf.row_pitch;
3266
3267 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3268 }
3269
3270 intel_miptree_unmap_raw(mt);
3271
3272 map->unmap = intel_miptree_unmap_movntdqa;
3273 }
3274 #endif
3275
3276 static void
3277 intel_miptree_unmap_s8(struct brw_context *brw,
3278 struct intel_mipmap_tree *mt,
3279 struct intel_miptree_map *map,
3280 unsigned int level,
3281 unsigned int slice)
3282 {
3283 if (map->mode & GL_MAP_WRITE_BIT) {
3284 unsigned int image_x, image_y;
3285 uint8_t *untiled_s8_map = map->ptr;
3286 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3287
3288 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3289
3290 for (uint32_t y = 0; y < map->h; y++) {
3291 for (uint32_t x = 0; x < map->w; x++) {
3292 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3293 image_x + x + map->x,
3294 image_y + y + map->y,
3295 brw->has_swizzling);
3296 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3297 }
3298 }
3299
3300 intel_miptree_unmap_raw(mt);
3301 }
3302
3303 free(map->buffer);
3304 }
3305
3306 static void
3307 intel_miptree_map_s8(struct brw_context *brw,
3308 struct intel_mipmap_tree *mt,
3309 struct intel_miptree_map *map,
3310 unsigned int level, unsigned int slice)
3311 {
3312 map->stride = map->w;
3313 map->buffer = map->ptr = malloc(map->stride * map->h);
3314 if (!map->buffer)
3315 return;
3316
3317 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3318 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3319 * invalidate is set, since we'll be writing the whole rectangle from our
3320 * temporary buffer back out.
3321 */
3322 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3323 uint8_t *untiled_s8_map = map->ptr;
3324 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3325 unsigned int image_x, image_y;
3326
3327 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3328
3329 for (uint32_t y = 0; y < map->h; y++) {
3330 for (uint32_t x = 0; x < map->w; x++) {
3331 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3332 x + image_x + map->x,
3333 y + image_y + map->y,
3334 brw->has_swizzling);
3335 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3336 }
3337 }
3338
3339 intel_miptree_unmap_raw(mt);
3340
3341 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3342 map->x, map->y, map->w, map->h,
3343 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3344 } else {
3345 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3346 map->x, map->y, map->w, map->h,
3347 mt, map->ptr, map->stride);
3348 }
3349
3350 map->unmap = intel_miptree_unmap_s8;
3351 }
3352
3353 static void
3354 intel_miptree_unmap_etc(struct brw_context *brw,
3355 struct intel_mipmap_tree *mt,
3356 struct intel_miptree_map *map,
3357 unsigned int level,
3358 unsigned int slice)
3359 {
3360 uint32_t image_x;
3361 uint32_t image_y;
3362 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3363
3364 image_x += map->x;
3365 image_y += map->y;
3366
3367 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3368 + image_y * mt->surf.row_pitch
3369 + image_x * mt->cpp;
3370
3371 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3372 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3373 map->ptr, map->stride,
3374 map->w, map->h);
3375 else
3376 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3377 map->ptr, map->stride,
3378 map->w, map->h, mt->etc_format);
3379
3380 intel_miptree_unmap_raw(mt);
3381 free(map->buffer);
3382 }
3383
3384 static void
3385 intel_miptree_map_etc(struct brw_context *brw,
3386 struct intel_mipmap_tree *mt,
3387 struct intel_miptree_map *map,
3388 unsigned int level,
3389 unsigned int slice)
3390 {
3391 assert(mt->etc_format != MESA_FORMAT_NONE);
3392 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3393 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3394 }
3395
3396 assert(map->mode & GL_MAP_WRITE_BIT);
3397 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3398
3399 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3400 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3401 map->w, map->h, 1));
3402 map->ptr = map->buffer;
3403 map->unmap = intel_miptree_unmap_etc;
3404 }
3405
3406 /**
3407 * Mapping functions for packed depth/stencil miptrees backed by real separate
3408 * miptrees for depth and stencil.
3409 *
3410 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3411 * separate from the depth buffer. Yet at the GL API level, we have to expose
3412 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3413 * be able to map that memory for texture storage and glReadPixels-type
3414 * operations. We give Mesa core that access by mallocing a temporary and
3415 * copying the data between the actual backing store and the temporary.
3416 */
3417 static void
3418 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3419 struct intel_mipmap_tree *mt,
3420 struct intel_miptree_map *map,
3421 unsigned int level,
3422 unsigned int slice)
3423 {
3424 struct intel_mipmap_tree *z_mt = mt;
3425 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3426 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3427
3428 if (map->mode & GL_MAP_WRITE_BIT) {
3429 uint32_t *packed_map = map->ptr;
3430 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3431 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3432 unsigned int s_image_x, s_image_y;
3433 unsigned int z_image_x, z_image_y;
3434
3435 intel_miptree_get_image_offset(s_mt, level, slice,
3436 &s_image_x, &s_image_y);
3437 intel_miptree_get_image_offset(z_mt, level, slice,
3438 &z_image_x, &z_image_y);
3439
3440 for (uint32_t y = 0; y < map->h; y++) {
3441 for (uint32_t x = 0; x < map->w; x++) {
3442 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3443 x + s_image_x + map->x,
3444 y + s_image_y + map->y,
3445 brw->has_swizzling);
3446 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3447 (z_mt->surf.row_pitch / 4) +
3448 (x + z_image_x + map->x));
3449
3450 if (map_z32f_x24s8) {
3451 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3452 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3453 } else {
3454 uint32_t packed = packed_map[y * map->w + x];
3455 s_map[s_offset] = packed >> 24;
3456 z_map[z_offset] = packed;
3457 }
3458 }
3459 }
3460
3461 intel_miptree_unmap_raw(s_mt);
3462 intel_miptree_unmap_raw(z_mt);
3463
3464 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3465 __func__,
3466 map->x, map->y, map->w, map->h,
3467 z_mt, _mesa_get_format_name(z_mt->format),
3468 map->x + z_image_x, map->y + z_image_y,
3469 s_mt, map->x + s_image_x, map->y + s_image_y,
3470 map->ptr, map->stride);
3471 }
3472
3473 free(map->buffer);
3474 }
3475
3476 static void
3477 intel_miptree_map_depthstencil(struct brw_context *brw,
3478 struct intel_mipmap_tree *mt,
3479 struct intel_miptree_map *map,
3480 unsigned int level, unsigned int slice)
3481 {
3482 struct intel_mipmap_tree *z_mt = mt;
3483 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3484 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3485 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3486
3487 map->stride = map->w * packed_bpp;
3488 map->buffer = map->ptr = malloc(map->stride * map->h);
3489 if (!map->buffer)
3490 return;
3491
3492 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3493 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3494 * invalidate is set, since we'll be writing the whole rectangle from our
3495 * temporary buffer back out.
3496 */
3497 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3498 uint32_t *packed_map = map->ptr;
3499 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3500 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3501 unsigned int s_image_x, s_image_y;
3502 unsigned int z_image_x, z_image_y;
3503
3504 intel_miptree_get_image_offset(s_mt, level, slice,
3505 &s_image_x, &s_image_y);
3506 intel_miptree_get_image_offset(z_mt, level, slice,
3507 &z_image_x, &z_image_y);
3508
3509 for (uint32_t y = 0; y < map->h; y++) {
3510 for (uint32_t x = 0; x < map->w; x++) {
3511 int map_x = map->x + x, map_y = map->y + y;
3512 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3513 map_x + s_image_x,
3514 map_y + s_image_y,
3515 brw->has_swizzling);
3516 ptrdiff_t z_offset = ((map_y + z_image_y) *
3517 (z_mt->surf.row_pitch / 4) +
3518 (map_x + z_image_x));
3519 uint8_t s = s_map[s_offset];
3520 uint32_t z = z_map[z_offset];
3521
3522 if (map_z32f_x24s8) {
3523 packed_map[(y * map->w + x) * 2 + 0] = z;
3524 packed_map[(y * map->w + x) * 2 + 1] = s;
3525 } else {
3526 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3527 }
3528 }
3529 }
3530
3531 intel_miptree_unmap_raw(s_mt);
3532 intel_miptree_unmap_raw(z_mt);
3533
3534 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3535 __func__,
3536 map->x, map->y, map->w, map->h,
3537 z_mt, map->x + z_image_x, map->y + z_image_y,
3538 s_mt, map->x + s_image_x, map->y + s_image_y,
3539 map->ptr, map->stride);
3540 } else {
3541 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3542 map->x, map->y, map->w, map->h,
3543 mt, map->ptr, map->stride);
3544 }
3545
3546 map->unmap = intel_miptree_unmap_depthstencil;
3547 }
3548
3549 /**
3550 * Create and attach a map to the miptree at (level, slice). Return the
3551 * attached map.
3552 */
3553 static struct intel_miptree_map*
3554 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3555 unsigned int level,
3556 unsigned int slice,
3557 unsigned int x,
3558 unsigned int y,
3559 unsigned int w,
3560 unsigned int h,
3561 GLbitfield mode)
3562 {
3563 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3564
3565 if (!map)
3566 return NULL;
3567
3568 assert(mt->level[level].slice[slice].map == NULL);
3569 mt->level[level].slice[slice].map = map;
3570
3571 map->mode = mode;
3572 map->x = x;
3573 map->y = y;
3574 map->w = w;
3575 map->h = h;
3576
3577 return map;
3578 }
3579
3580 /**
3581 * Release the map at (level, slice).
3582 */
3583 static void
3584 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3585 unsigned int level,
3586 unsigned int slice)
3587 {
3588 struct intel_miptree_map **map;
3589
3590 map = &mt->level[level].slice[slice].map;
3591 free(*map);
3592 *map = NULL;
3593 }
3594
3595 static bool
3596 can_blit_slice(struct intel_mipmap_tree *mt,
3597 unsigned int level, unsigned int slice)
3598 {
3599 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3600 if (mt->surf.row_pitch >= 32768)
3601 return false;
3602
3603 return true;
3604 }
3605
3606 static bool
3607 use_intel_mipree_map_blit(struct brw_context *brw,
3608 struct intel_mipmap_tree *mt,
3609 GLbitfield mode,
3610 unsigned int level,
3611 unsigned int slice)
3612 {
3613 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3614
3615 if (devinfo->has_llc &&
3616 /* It's probably not worth swapping to the blit ring because of
3617 * all the overhead involved.
3618 */
3619 !(mode & GL_MAP_WRITE_BIT) &&
3620 !mt->compressed &&
3621 (mt->surf.tiling == ISL_TILING_X ||
3622 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3623 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3624 /* Fast copy blit on skl+ supports all tiling formats. */
3625 devinfo->gen >= 9) &&
3626 can_blit_slice(mt, level, slice))
3627 return true;
3628
3629 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3630 mt->bo->size >= brw->max_gtt_map_object_size) {
3631 assert(can_blit_slice(mt, level, slice));
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637
3638 /**
3639 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3640 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3641 * arithmetic overflow.
3642 *
3643 * If you call this function and use \a out_stride, then you're doing pointer
3644 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3645 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3646 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3647 * which usually have type uint32_t or GLuint.
3648 */
3649 void
3650 intel_miptree_map(struct brw_context *brw,
3651 struct intel_mipmap_tree *mt,
3652 unsigned int level,
3653 unsigned int slice,
3654 unsigned int x,
3655 unsigned int y,
3656 unsigned int w,
3657 unsigned int h,
3658 GLbitfield mode,
3659 void **out_ptr,
3660 ptrdiff_t *out_stride)
3661 {
3662 struct intel_miptree_map *map;
3663
3664 assert(mt->surf.samples == 1);
3665
3666 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3667 if (!map){
3668 *out_ptr = NULL;
3669 *out_stride = 0;
3670 return;
3671 }
3672
3673 intel_miptree_access_raw(brw, mt, level, slice,
3674 map->mode & GL_MAP_WRITE_BIT);
3675
3676 if (mt->format == MESA_FORMAT_S_UINT8) {
3677 intel_miptree_map_s8(brw, mt, map, level, slice);
3678 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3679 !(mode & BRW_MAP_DIRECT_BIT)) {
3680 intel_miptree_map_etc(brw, mt, map, level, slice);
3681 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3682 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3683 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3684 intel_miptree_map_blit(brw, mt, map, level, slice);
3685 #if defined(USE_SSE41)
3686 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3687 !mt->compressed && cpu_has_sse4_1 &&
3688 (mt->surf.row_pitch % 16 == 0)) {
3689 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3690 #endif
3691 } else {
3692 intel_miptree_map_gtt(brw, mt, map, level, slice);
3693 }
3694
3695 *out_ptr = map->ptr;
3696 *out_stride = map->stride;
3697
3698 if (map->ptr == NULL)
3699 intel_miptree_release_map(mt, level, slice);
3700 }
3701
3702 void
3703 intel_miptree_unmap(struct brw_context *brw,
3704 struct intel_mipmap_tree *mt,
3705 unsigned int level,
3706 unsigned int slice)
3707 {
3708 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3709
3710 assert(mt->surf.samples == 1);
3711
3712 if (!map)
3713 return;
3714
3715 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3716 mt, _mesa_get_format_name(mt->format), level, slice);
3717
3718 if (map->unmap)
3719 map->unmap(brw, mt, map, level, slice);
3720
3721 intel_miptree_release_map(mt, level, slice);
3722 }
3723
3724 enum isl_surf_dim
3725 get_isl_surf_dim(GLenum target)
3726 {
3727 switch (target) {
3728 case GL_TEXTURE_1D:
3729 case GL_TEXTURE_1D_ARRAY:
3730 return ISL_SURF_DIM_1D;
3731
3732 case GL_TEXTURE_2D:
3733 case GL_TEXTURE_2D_ARRAY:
3734 case GL_TEXTURE_RECTANGLE:
3735 case GL_TEXTURE_CUBE_MAP:
3736 case GL_TEXTURE_CUBE_MAP_ARRAY:
3737 case GL_TEXTURE_2D_MULTISAMPLE:
3738 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3739 case GL_TEXTURE_EXTERNAL_OES:
3740 return ISL_SURF_DIM_2D;
3741
3742 case GL_TEXTURE_3D:
3743 return ISL_SURF_DIM_3D;
3744 }
3745
3746 unreachable("Invalid texture target");
3747 }
3748
3749 enum isl_dim_layout
3750 get_isl_dim_layout(const struct gen_device_info *devinfo,
3751 enum isl_tiling tiling, GLenum target)
3752 {
3753 switch (target) {
3754 case GL_TEXTURE_1D:
3755 case GL_TEXTURE_1D_ARRAY:
3756 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3757 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3758
3759 case GL_TEXTURE_2D:
3760 case GL_TEXTURE_2D_ARRAY:
3761 case GL_TEXTURE_RECTANGLE:
3762 case GL_TEXTURE_2D_MULTISAMPLE:
3763 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3764 case GL_TEXTURE_EXTERNAL_OES:
3765 return ISL_DIM_LAYOUT_GEN4_2D;
3766
3767 case GL_TEXTURE_CUBE_MAP:
3768 case GL_TEXTURE_CUBE_MAP_ARRAY:
3769 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3770 ISL_DIM_LAYOUT_GEN4_2D);
3771
3772 case GL_TEXTURE_3D:
3773 return (devinfo->gen >= 9 ?
3774 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3775 }
3776
3777 unreachable("Invalid texture target");
3778 }
3779
3780 bool
3781 intel_miptree_set_clear_color(struct brw_context *brw,
3782 struct intel_mipmap_tree *mt,
3783 const union gl_color_union *color)
3784 {
3785 const union isl_color_value clear_color =
3786 brw_meta_convert_fast_clear_color(brw, mt, color);
3787
3788 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3789 mt->fast_clear_color = clear_color;
3790 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3791 return true;
3792 }
3793 return false;
3794 }
3795
3796 bool
3797 intel_miptree_set_depth_clear_value(struct brw_context *brw,
3798 struct intel_mipmap_tree *mt,
3799 float clear_value)
3800 {
3801 if (mt->fast_clear_color.f32[0] != clear_value) {
3802 mt->fast_clear_color.f32[0] = clear_value;
3803 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3804 return true;
3805 }
3806 return false;
3807 }
3808
3809 union isl_color_value
3810 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3811 const struct intel_mipmap_tree *mt,
3812 enum isl_format view_format, bool sampling,
3813 struct brw_bo **clear_color_bo,
3814 uint32_t *clear_color_offset)
3815 {
3816 assert(mt->aux_buf);
3817
3818 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3819 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3820 * we switch to using the inline clear color and do the sRGB color
3821 * conversion process defined in the OpenGL spec. The red, green, and
3822 * blue channels take part in gamma correction, while the alpha channel
3823 * is unchanged.
3824 */
3825 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3826 for (unsigned i = 0; i < 3; i++) {
3827 srgb_decoded_value.f32[i] =
3828 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3829 }
3830 *clear_color_bo = 0;
3831 *clear_color_offset = 0;
3832 return srgb_decoded_value;
3833 } else {
3834 *clear_color_bo = mt->aux_buf->clear_color_bo;
3835 *clear_color_offset = mt->aux_buf->clear_color_offset;
3836 return mt->fast_clear_color;
3837 }
3838 }