i965: Move the comment to the right place
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_resolve_map.h"
34 #include "intel_tex.h"
35 #include "intel_blit.h"
36 #include "intel_fbo.h"
37
38 #include "brw_blorp.h"
39 #include "brw_context.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 /**
53 * Determine which MSAA layout should be used by the MSAA surface being
54 * created, based on the chip generation and the surface type.
55 */
56 static enum intel_msaa_layout
57 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
58 {
59 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
60 if (brw->gen < 7)
61 return INTEL_MSAA_LAYOUT_IMS;
62
63 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
64 switch (_mesa_get_format_base_format(format)) {
65 case GL_DEPTH_COMPONENT:
66 case GL_STENCIL_INDEX:
67 case GL_DEPTH_STENCIL:
68 return INTEL_MSAA_LAYOUT_IMS;
69 default:
70 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
71 *
72 * This field must be set to 0 for all SINT MSRTs when all RT channels
73 * are not written
74 *
75 * In practice this means that we have to disable MCS for all signed
76 * integer MSAA buffers. The alternative, to disable MCS only when one
77 * of the render target channels is disabled, is impractical because it
78 * would require converting between CMS and UMS MSAA layouts on the fly,
79 * which is expensive.
80 */
81 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
82 return INTEL_MSAA_LAYOUT_UMS;
83 } else {
84 return INTEL_MSAA_LAYOUT_CMS;
85 }
86 }
87 }
88
89
90 /**
91 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
92 * scaled-down bitfield representation of the color buffer which is capable of
93 * recording when blocks of the color buffer are equal to the clear value.
94 * This function returns the block size that will be used by the MCS buffer
95 * corresponding to a certain color miptree.
96 *
97 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
98 * beneath the "Fast Color Clear" bullet (p327):
99 *
100 * The following table describes the RT alignment
101 *
102 * Pixels Lines
103 * TiledY RT CL
104 * bpp
105 * 32 8 4
106 * 64 4 4
107 * 128 2 4
108 * TiledX RT CL
109 * bpp
110 * 32 16 2
111 * 64 8 2
112 * 128 4 2
113 *
114 * This alignment has the following uses:
115 *
116 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
117 * buffer contains 128 blocks horizontally and 256 blocks vertically.
118 *
119 * - For figuring out alignment restrictions for a fast clear operation. Fast
120 * clear operations must always clear aligned multiples of 16 blocks
121 * horizontally and 32 blocks vertically.
122 *
123 * - For scaling down the coordinates sent through the render pipeline during
124 * a fast clear. X coordinates must be scaled down by 8 times the block
125 * width, and Y coordinates by 16 times the block height.
126 *
127 * - For scaling down the coordinates sent through the render pipeline during
128 * a "Render Target Resolve" operation. X coordinates must be scaled down
129 * by half the block width, and Y coordinates by half the block height.
130 */
131 void
132 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
133 struct intel_mipmap_tree *mt,
134 unsigned *width_px, unsigned *height)
135 {
136 switch (mt->tiling) {
137 default:
138 unreachable("Non-MSRT MCS requires X or Y tiling");
139 /* In release builds, fall through */
140 case I915_TILING_Y:
141 *width_px = 32 / mt->cpp;
142 *height = 4;
143 break;
144 case I915_TILING_X:
145 *width_px = 64 / mt->cpp;
146 *height = 2;
147 }
148 }
149
150
151 /**
152 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
153 * can be used.
154 *
155 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
156 * beneath the "Fast Color Clear" bullet (p326):
157 *
158 * - Support is limited to tiled render targets.
159 * - Support is for non-mip-mapped and non-array surface types only.
160 *
161 * And then later, on p327:
162 *
163 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
164 * 64bpp, and 128bpp.
165 */
166 bool
167 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
168 struct intel_mipmap_tree *mt)
169 {
170 /* MCS support does not exist prior to Gen7 */
171 if (brw->gen < 7)
172 return false;
173
174 /* MCS is only supported for color buffers */
175 switch (_mesa_get_format_base_format(mt->format)) {
176 case GL_DEPTH_COMPONENT:
177 case GL_DEPTH_STENCIL:
178 case GL_STENCIL_INDEX:
179 return false;
180 }
181
182 if (mt->tiling != I915_TILING_X &&
183 mt->tiling != I915_TILING_Y)
184 return false;
185 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
186 return false;
187 if (mt->first_level != 0 || mt->last_level != 0)
188 return false;
189 if (mt->physical_depth0 != 1)
190 return false;
191
192 /* There's no point in using an MCS buffer if the surface isn't in a
193 * renderable format.
194 */
195 if (!brw->format_supported_as_render_target[mt->format])
196 return false;
197
198 return true;
199 }
200
201
202 /**
203 * Determine depth format corresponding to a depth+stencil format,
204 * for separate stencil.
205 */
206 mesa_format
207 intel_depth_format_for_depthstencil_format(mesa_format format) {
208 switch (format) {
209 case MESA_FORMAT_Z24_UNORM_S8_UINT:
210 return MESA_FORMAT_Z24_UNORM_X8_UINT;
211 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
212 return MESA_FORMAT_Z_FLOAT32;
213 default:
214 return format;
215 }
216 }
217
218
219 /**
220 * @param for_bo Indicates that the caller is
221 * intel_miptree_create_for_bo(). If true, then do not create
222 * \c stencil_mt.
223 */
224 struct intel_mipmap_tree *
225 intel_miptree_create_layout(struct brw_context *brw,
226 GLenum target,
227 mesa_format format,
228 GLuint first_level,
229 GLuint last_level,
230 GLuint width0,
231 GLuint height0,
232 GLuint depth0,
233 bool for_bo,
234 GLuint num_samples,
235 bool force_all_slices_at_each_lod)
236 {
237 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
238 if (!mt)
239 return NULL;
240
241 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
242 _mesa_lookup_enum_by_nr(target),
243 _mesa_get_format_name(format),
244 first_level, last_level, depth0, mt);
245
246 if (target == GL_TEXTURE_1D_ARRAY) {
247 /* For a 1D Array texture the OpenGL API will treat the height0
248 * parameter as the number of array slices. For Intel hardware, we treat
249 * the 1D array as a 2D Array with a height of 1.
250 *
251 * So, when we first come through this path to create a 1D Array
252 * texture, height0 stores the number of slices, and depth0 is 1. In
253 * this case, we want to swap height0 and depth0.
254 *
255 * Since some miptrees will be created based on the base miptree, we may
256 * come through this path and see height0 as 1 and depth0 being the
257 * number of slices. In this case we don't need to do the swap.
258 */
259 assert(height0 == 1 || depth0 == 1);
260 if (height0 > 1) {
261 depth0 = height0;
262 height0 = 1;
263 }
264 }
265
266 mt->target = target;
267 mt->format = format;
268 mt->first_level = first_level;
269 mt->last_level = last_level;
270 mt->logical_width0 = width0;
271 mt->logical_height0 = height0;
272 mt->logical_depth0 = depth0;
273 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
274 exec_list_make_empty(&mt->hiz_map);
275
276 /* The cpp is bytes per (1, blockheight)-sized block for compressed
277 * textures. This is why you'll see divides by blockheight all over
278 */
279 unsigned bw, bh;
280 _mesa_get_format_block_size(format, &bw, &bh);
281 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
282 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
283
284 mt->num_samples = num_samples;
285 mt->compressed = _mesa_is_format_compressed(format);
286 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
287 mt->refcount = 1;
288
289 if (num_samples > 1) {
290 /* Adjust width/height/depth for MSAA */
291 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
292 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
293 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
294 * "If the surface is multisampled and it is a depth or stencil
295 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
296 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
297 * proceeding:
298 *
299 * +----------------------------------------------------------------+
300 * | Num Multisamples | W_l = | H_l = |
301 * +----------------------------------------------------------------+
302 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
303 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
304 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
305 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
306 * +----------------------------------------------------------------+
307 * "
308 *
309 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
310 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
311 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
312 *
313 * Another more complicated explanation for these adjustments comes
314 * from the Sandybridge PRM, volume 4, part 1, page 31:
315 *
316 * "Any of the other messages (sample*, LOD, load4) used with a
317 * (4x) multisampled surface will in-effect sample a surface with
318 * double the height and width as that indicated in the surface
319 * state. Each pixel position on the original-sized surface is
320 * replaced with a 2x2 of samples with the following arrangement:
321 *
322 * sample 0 sample 2
323 * sample 1 sample 3"
324 *
325 * Thus, when sampling from a multisampled texture, it behaves as
326 * though the layout in memory for (x,y,sample) is:
327 *
328 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
329 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
330 *
331 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
332 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
333 *
334 * However, the actual layout of multisampled data in memory is:
335 *
336 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
337 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
338 *
339 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
340 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
341 *
342 * This pattern repeats for each 2x2 pixel block.
343 *
344 * As a result, when calculating the size of our 4-sample buffer for
345 * an odd width or height, we have to align before scaling up because
346 * sample 3 is in that bottom right 2x2 block.
347 */
348 switch (num_samples) {
349 case 2:
350 assert(brw->gen >= 8);
351 width0 = ALIGN(width0, 2) * 2;
352 height0 = ALIGN(height0, 2);
353 break;
354 case 4:
355 width0 = ALIGN(width0, 2) * 2;
356 height0 = ALIGN(height0, 2) * 2;
357 break;
358 case 8:
359 width0 = ALIGN(width0, 2) * 4;
360 height0 = ALIGN(height0, 2) * 2;
361 break;
362 default:
363 /* num_samples should already have been quantized to 0, 1, 2, 4, or
364 * 8.
365 */
366 unreachable("not reached");
367 }
368 } else {
369 /* Non-interleaved */
370 depth0 *= num_samples;
371 }
372 }
373
374 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when gen7+ array_spacing_lod0
375 * can be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces.
376 * TODO: can we use it elsewhere?
377 */
378 switch (mt->msaa_layout) {
379 case INTEL_MSAA_LAYOUT_NONE:
380 case INTEL_MSAA_LAYOUT_IMS:
381 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
382 break;
383 case INTEL_MSAA_LAYOUT_UMS:
384 case INTEL_MSAA_LAYOUT_CMS:
385 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
386 break;
387 }
388
389 if (target == GL_TEXTURE_CUBE_MAP) {
390 assert(depth0 == 1);
391 depth0 = 6;
392 }
393
394 mt->physical_width0 = width0;
395 mt->physical_height0 = height0;
396 mt->physical_depth0 = depth0;
397
398 if (!for_bo &&
399 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
400 (brw->must_use_separate_stencil ||
401 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
402 const bool force_all_slices_at_each_lod = brw->gen == 6;
403 mt->stencil_mt = intel_miptree_create(brw,
404 mt->target,
405 MESA_FORMAT_S_UINT8,
406 mt->first_level,
407 mt->last_level,
408 mt->logical_width0,
409 mt->logical_height0,
410 mt->logical_depth0,
411 true,
412 num_samples,
413 INTEL_MIPTREE_TILING_ANY,
414 force_all_slices_at_each_lod);
415 if (!mt->stencil_mt) {
416 intel_miptree_release(&mt);
417 return NULL;
418 }
419
420 /* Fix up the Z miptree format for how we're splitting out separate
421 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
422 */
423 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
424 mt->cpp = 4;
425
426 if (format == mt->format) {
427 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
428 _mesa_get_format_name(mt->format));
429 }
430 }
431
432 if (force_all_slices_at_each_lod)
433 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
434
435 brw_miptree_layout(brw, mt);
436
437 return mt;
438 }
439
440 /**
441 * \brief Helper function for intel_miptree_create().
442 */
443 static uint32_t
444 intel_miptree_choose_tiling(struct brw_context *brw,
445 mesa_format format,
446 uint32_t width0,
447 uint32_t num_samples,
448 enum intel_miptree_tiling_mode requested,
449 struct intel_mipmap_tree *mt)
450 {
451 if (format == MESA_FORMAT_S_UINT8) {
452 /* The stencil buffer is W tiled. However, we request from the kernel a
453 * non-tiled buffer because the GTT is incapable of W fencing.
454 */
455 return I915_TILING_NONE;
456 }
457
458 /* Some usages may want only one type of tiling, like depth miptrees (Y
459 * tiled), or temporary BOs for uploading data once (linear).
460 */
461 switch (requested) {
462 case INTEL_MIPTREE_TILING_ANY:
463 break;
464 case INTEL_MIPTREE_TILING_Y:
465 return I915_TILING_Y;
466 case INTEL_MIPTREE_TILING_NONE:
467 return I915_TILING_NONE;
468 }
469
470 if (num_samples > 1) {
471 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
472 * Surface"):
473 *
474 * [DevSNB+]: For multi-sample render targets, this field must be
475 * 1. MSRTs can only be tiled.
476 *
477 * Our usual reason for preferring X tiling (fast blits using the
478 * blitting engine) doesn't apply to MSAA, since we'll generally be
479 * downsampling or upsampling when blitting between the MSAA buffer
480 * and another buffer, and the blitting engine doesn't support that.
481 * So use Y tiling, since it makes better use of the cache.
482 */
483 return I915_TILING_Y;
484 }
485
486 GLenum base_format = _mesa_get_format_base_format(format);
487 if (base_format == GL_DEPTH_COMPONENT ||
488 base_format == GL_DEPTH_STENCIL_EXT)
489 return I915_TILING_Y;
490
491 /* 1D textures (and 1D array textures) don't get any benefit from tiling,
492 * in fact it leads to a less efficient use of memory space and bandwidth
493 * due to tile alignment.
494 */
495 if (mt->logical_height0 == 1)
496 return I915_TILING_NONE;
497
498 int minimum_pitch = mt->total_width * mt->cpp;
499
500 /* If the width is much smaller than a tile, don't bother tiling. */
501 if (minimum_pitch < 64)
502 return I915_TILING_NONE;
503
504 if (ALIGN(minimum_pitch, 512) >= 32768 ||
505 mt->total_width >= 32768 || mt->total_height >= 32768) {
506 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
507 mt->total_width, mt->total_height);
508 return I915_TILING_NONE;
509 }
510
511 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
512 if (brw->gen < 6)
513 return I915_TILING_X;
514
515 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
516 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
517 * or Linear."
518 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
519 * all the way back to 965, but is permitted on Gen7+.
520 */
521 if (brw->gen < 7 && mt->cpp >= 16)
522 return I915_TILING_X;
523
524 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
525 * messages), on p64, under the heading "Surface Vertical Alignment":
526 *
527 * This field must be set to VALIGN_4 for all tiled Y Render Target
528 * surfaces.
529 *
530 * So if the surface is renderable and uses a vertical alignment of 2,
531 * force it to be X tiled. This is somewhat conservative (it's possible
532 * that the client won't ever render to this surface), but it's difficult
533 * to know that ahead of time. And besides, since we use a vertical
534 * alignment of 4 as often as we can, this shouldn't happen very often.
535 */
536 if (brw->gen == 7 && mt->align_h == 2 &&
537 brw->format_supported_as_render_target[format]) {
538 return I915_TILING_X;
539 }
540
541 return I915_TILING_Y | I915_TILING_X;
542 }
543
544
545 /**
546 * Choose an appropriate uncompressed format for a requested
547 * compressed format, if unsupported.
548 */
549 mesa_format
550 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
551 {
552 /* No need to lower ETC formats on these platforms,
553 * they are supported natively.
554 */
555 if (brw->gen >= 8 || brw->is_baytrail)
556 return format;
557
558 switch (format) {
559 case MESA_FORMAT_ETC1_RGB8:
560 return MESA_FORMAT_R8G8B8X8_UNORM;
561 case MESA_FORMAT_ETC2_RGB8:
562 return MESA_FORMAT_R8G8B8X8_UNORM;
563 case MESA_FORMAT_ETC2_SRGB8:
564 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
565 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
566 return MESA_FORMAT_B8G8R8A8_SRGB;
567 case MESA_FORMAT_ETC2_RGBA8_EAC:
568 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
569 return MESA_FORMAT_R8G8B8A8_UNORM;
570 case MESA_FORMAT_ETC2_R11_EAC:
571 return MESA_FORMAT_R_UNORM16;
572 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
573 return MESA_FORMAT_R_SNORM16;
574 case MESA_FORMAT_ETC2_RG11_EAC:
575 return MESA_FORMAT_R16G16_UNORM;
576 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
577 return MESA_FORMAT_R16G16_SNORM;
578 default:
579 /* Non ETC1 / ETC2 format */
580 return format;
581 }
582 }
583
584
585 struct intel_mipmap_tree *
586 intel_miptree_create(struct brw_context *brw,
587 GLenum target,
588 mesa_format format,
589 GLuint first_level,
590 GLuint last_level,
591 GLuint width0,
592 GLuint height0,
593 GLuint depth0,
594 bool expect_accelerated_upload,
595 GLuint num_samples,
596 enum intel_miptree_tiling_mode requested_tiling,
597 bool force_all_slices_at_each_lod)
598 {
599 struct intel_mipmap_tree *mt;
600 mesa_format tex_format = format;
601 mesa_format etc_format = MESA_FORMAT_NONE;
602 GLuint total_width, total_height;
603
604 format = intel_lower_compressed_format(brw, format);
605
606 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
607
608 mt = intel_miptree_create_layout(brw, target, format,
609 first_level, last_level, width0,
610 height0, depth0,
611 false, num_samples,
612 force_all_slices_at_each_lod);
613 /*
614 * pitch == 0 || height == 0 indicates the null texture
615 */
616 if (!mt || !mt->total_width || !mt->total_height) {
617 intel_miptree_release(&mt);
618 return NULL;
619 }
620
621 total_width = mt->total_width;
622 total_height = mt->total_height;
623
624 if (format == MESA_FORMAT_S_UINT8) {
625 /* Align to size of W tile, 64x64. */
626 total_width = ALIGN(total_width, 64);
627 total_height = ALIGN(total_height, 64);
628 }
629
630 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
631 num_samples, requested_tiling,
632 mt);
633 bool y_or_x = false;
634
635 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
636 y_or_x = true;
637 mt->tiling = I915_TILING_Y;
638 } else {
639 mt->tiling = tiling;
640 }
641
642 unsigned long pitch;
643 mt->etc_format = etc_format;
644 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
645 total_width, total_height, mt->cpp,
646 &mt->tiling, &pitch,
647 (expect_accelerated_upload ?
648 BO_ALLOC_FOR_RENDER : 0));
649 mt->pitch = pitch;
650
651 /* If the BO is too large to fit in the aperture, we need to use the
652 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
653 * handle Y-tiling, so we need to fall back to X.
654 */
655 if (brw->gen < 6 && y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
656 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
657 mt->total_width, mt->total_height);
658
659 mt->tiling = I915_TILING_X;
660 drm_intel_bo_unreference(mt->bo);
661 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
662 total_width, total_height, mt->cpp,
663 &mt->tiling, &pitch,
664 (expect_accelerated_upload ?
665 BO_ALLOC_FOR_RENDER : 0));
666 mt->pitch = pitch;
667 }
668
669 mt->offset = 0;
670
671 if (!mt->bo) {
672 intel_miptree_release(&mt);
673 return NULL;
674 }
675
676
677 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
678 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
679 intel_miptree_release(&mt);
680 return NULL;
681 }
682 }
683
684 /* If this miptree is capable of supporting fast color clears, set
685 * fast_clear_state appropriately to ensure that fast clears will occur.
686 * Allocation of the MCS miptree will be deferred until the first fast
687 * clear actually occurs.
688 */
689 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
690 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
691
692 return mt;
693 }
694
695 struct intel_mipmap_tree *
696 intel_miptree_create_for_bo(struct brw_context *brw,
697 drm_intel_bo *bo,
698 mesa_format format,
699 uint32_t offset,
700 uint32_t width,
701 uint32_t height,
702 uint32_t depth,
703 int pitch)
704 {
705 struct intel_mipmap_tree *mt;
706 uint32_t tiling, swizzle;
707 GLenum target;
708
709 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
710
711 /* Nothing will be able to use this miptree with the BO if the offset isn't
712 * aligned.
713 */
714 if (tiling != I915_TILING_NONE)
715 assert(offset % 4096 == 0);
716
717 /* miptrees can't handle negative pitch. If you need flipping of images,
718 * that's outside of the scope of the mt.
719 */
720 assert(pitch >= 0);
721
722 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
723
724 mt = intel_miptree_create_layout(brw, target, format,
725 0, 0,
726 width, height, depth,
727 true, 0, false);
728 if (!mt) {
729 free(mt);
730 return mt;
731 }
732
733 drm_intel_bo_reference(bo);
734 mt->bo = bo;
735 mt->pitch = pitch;
736 mt->offset = offset;
737 mt->tiling = tiling;
738
739 return mt;
740 }
741
742 /**
743 * For a singlesample renderbuffer, this simply wraps the given BO with a
744 * miptree.
745 *
746 * For a multisample renderbuffer, this wraps the window system's
747 * (singlesample) BO with a singlesample miptree attached to the
748 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
749 * that will contain the actual rendering (which is lazily resolved to
750 * irb->singlesample_mt).
751 */
752 void
753 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
754 struct intel_renderbuffer *irb,
755 drm_intel_bo *bo,
756 uint32_t width, uint32_t height,
757 uint32_t pitch)
758 {
759 struct intel_mipmap_tree *singlesample_mt = NULL;
760 struct intel_mipmap_tree *multisample_mt = NULL;
761 struct gl_renderbuffer *rb = &irb->Base.Base;
762 mesa_format format = rb->Format;
763 int num_samples = rb->NumSamples;
764
765 /* Only the front and back buffers, which are color buffers, are allocated
766 * through the image loader.
767 */
768 assert(_mesa_get_format_base_format(format) == GL_RGB ||
769 _mesa_get_format_base_format(format) == GL_RGBA);
770
771 singlesample_mt = intel_miptree_create_for_bo(intel,
772 bo,
773 format,
774 0,
775 width,
776 height,
777 1,
778 pitch);
779 if (!singlesample_mt)
780 goto fail;
781
782 /* If this miptree is capable of supporting fast color clears, set
783 * mcs_state appropriately to ensure that fast clears will occur.
784 * Allocation of the MCS miptree will be deferred until the first fast
785 * clear actually occurs.
786 */
787 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
788 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
789
790 if (num_samples == 0) {
791 intel_miptree_release(&irb->mt);
792 irb->mt = singlesample_mt;
793
794 assert(!irb->singlesample_mt);
795 } else {
796 intel_miptree_release(&irb->singlesample_mt);
797 irb->singlesample_mt = singlesample_mt;
798
799 if (!irb->mt ||
800 irb->mt->logical_width0 != width ||
801 irb->mt->logical_height0 != height) {
802 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
803 format,
804 width,
805 height,
806 num_samples);
807 if (!multisample_mt)
808 goto fail;
809
810 irb->need_downsample = false;
811 intel_miptree_release(&irb->mt);
812 irb->mt = multisample_mt;
813 }
814 }
815 return;
816
817 fail:
818 intel_miptree_release(&irb->singlesample_mt);
819 intel_miptree_release(&irb->mt);
820 return;
821 }
822
823 struct intel_mipmap_tree*
824 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
825 mesa_format format,
826 uint32_t width,
827 uint32_t height,
828 uint32_t num_samples)
829 {
830 struct intel_mipmap_tree *mt;
831 uint32_t depth = 1;
832 bool ok;
833 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
834
835 mt = intel_miptree_create(brw, target, format, 0, 0,
836 width, height, depth, true, num_samples,
837 INTEL_MIPTREE_TILING_ANY, false);
838 if (!mt)
839 goto fail;
840
841 if (brw_is_hiz_depth_format(brw, format)) {
842 ok = intel_miptree_alloc_hiz(brw, mt);
843 if (!ok)
844 goto fail;
845 }
846
847 return mt;
848
849 fail:
850 intel_miptree_release(&mt);
851 return NULL;
852 }
853
854 void
855 intel_miptree_reference(struct intel_mipmap_tree **dst,
856 struct intel_mipmap_tree *src)
857 {
858 if (*dst == src)
859 return;
860
861 intel_miptree_release(dst);
862
863 if (src) {
864 src->refcount++;
865 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
866 }
867
868 *dst = src;
869 }
870
871
872 void
873 intel_miptree_release(struct intel_mipmap_tree **mt)
874 {
875 if (!*mt)
876 return;
877
878 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
879 if (--(*mt)->refcount <= 0) {
880 GLuint i;
881
882 DBG("%s deleting %p\n", __FUNCTION__, *mt);
883
884 drm_intel_bo_unreference((*mt)->bo);
885 intel_miptree_release(&(*mt)->stencil_mt);
886 intel_miptree_release(&(*mt)->hiz_mt);
887 intel_miptree_release(&(*mt)->mcs_mt);
888 intel_resolve_map_clear(&(*mt)->hiz_map);
889
890 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
891 free((*mt)->level[i].slice);
892 }
893
894 free(*mt);
895 }
896 *mt = NULL;
897 }
898
899 void
900 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
901 int *width, int *height, int *depth)
902 {
903 switch (image->TexObject->Target) {
904 case GL_TEXTURE_1D_ARRAY:
905 *width = image->Width;
906 *height = 1;
907 *depth = image->Height;
908 break;
909 default:
910 *width = image->Width;
911 *height = image->Height;
912 *depth = image->Depth;
913 break;
914 }
915 }
916
917 /**
918 * Can the image be pulled into a unified mipmap tree? This mirrors
919 * the completeness test in a lot of ways.
920 *
921 * Not sure whether I want to pass gl_texture_image here.
922 */
923 bool
924 intel_miptree_match_image(struct intel_mipmap_tree *mt,
925 struct gl_texture_image *image)
926 {
927 struct intel_texture_image *intelImage = intel_texture_image(image);
928 GLuint level = intelImage->base.Base.Level;
929 int width, height, depth;
930
931 /* glTexImage* choose the texture object based on the target passed in, and
932 * objects can't change targets over their lifetimes, so this should be
933 * true.
934 */
935 assert(image->TexObject->Target == mt->target);
936
937 mesa_format mt_format = mt->format;
938 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
939 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
940 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
941 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
942 if (mt->etc_format != MESA_FORMAT_NONE)
943 mt_format = mt->etc_format;
944
945 if (image->TexFormat != mt_format)
946 return false;
947
948 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
949
950 if (mt->target == GL_TEXTURE_CUBE_MAP)
951 depth = 6;
952
953 int level_depth = mt->level[level].depth;
954 if (mt->num_samples > 1) {
955 switch (mt->msaa_layout) {
956 case INTEL_MSAA_LAYOUT_NONE:
957 case INTEL_MSAA_LAYOUT_IMS:
958 break;
959 case INTEL_MSAA_LAYOUT_UMS:
960 case INTEL_MSAA_LAYOUT_CMS:
961 level_depth /= mt->num_samples;
962 break;
963 }
964 }
965
966 /* Test image dimensions against the base level image adjusted for
967 * minification. This will also catch images not present in the
968 * tree, changed targets, etc.
969 */
970 if (width != minify(mt->logical_width0, level - mt->first_level) ||
971 height != minify(mt->logical_height0, level - mt->first_level) ||
972 depth != level_depth) {
973 return false;
974 }
975
976 if (image->NumSamples != mt->num_samples)
977 return false;
978
979 return true;
980 }
981
982
983 void
984 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
985 GLuint level,
986 GLuint x, GLuint y, GLuint d)
987 {
988 mt->level[level].depth = d;
989 mt->level[level].level_x = x;
990 mt->level[level].level_y = y;
991
992 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
993 level, d, x, y);
994
995 assert(mt->level[level].slice == NULL);
996
997 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
998 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
999 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1000 }
1001
1002
1003 void
1004 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1005 GLuint level, GLuint img,
1006 GLuint x, GLuint y)
1007 {
1008 if (img == 0 && level == 0)
1009 assert(x == 0 && y == 0);
1010
1011 assert(img < mt->level[level].depth);
1012
1013 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1014 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1015
1016 DBG("%s level %d img %d pos %d,%d\n",
1017 __FUNCTION__, level, img,
1018 mt->level[level].slice[img].x_offset,
1019 mt->level[level].slice[img].y_offset);
1020 }
1021
1022 void
1023 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1024 GLuint level, GLuint slice,
1025 GLuint *x, GLuint *y)
1026 {
1027 assert(slice < mt->level[level].depth);
1028
1029 *x = mt->level[level].slice[slice].x_offset;
1030 *y = mt->level[level].slice[slice].y_offset;
1031 }
1032
1033 /**
1034 * This function computes masks that may be used to select the bits of the X
1035 * and Y coordinates that indicate the offset within a tile. If the BO is
1036 * untiled, the masks are set to 0.
1037 */
1038 void
1039 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
1040 uint32_t *mask_x, uint32_t *mask_y,
1041 bool map_stencil_as_y_tiled)
1042 {
1043 int cpp = mt->cpp;
1044 uint32_t tiling = mt->tiling;
1045
1046 if (map_stencil_as_y_tiled)
1047 tiling = I915_TILING_Y;
1048
1049 switch (tiling) {
1050 default:
1051 unreachable("not reached");
1052 case I915_TILING_NONE:
1053 *mask_x = *mask_y = 0;
1054 break;
1055 case I915_TILING_X:
1056 *mask_x = 512 / cpp - 1;
1057 *mask_y = 7;
1058 break;
1059 case I915_TILING_Y:
1060 *mask_x = 128 / cpp - 1;
1061 *mask_y = 31;
1062 break;
1063 }
1064 }
1065
1066 /**
1067 * Compute the offset (in bytes) from the start of the BO to the given x
1068 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1069 * multiples of the tile size.
1070 */
1071 uint32_t
1072 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1073 uint32_t x, uint32_t y,
1074 bool map_stencil_as_y_tiled)
1075 {
1076 int cpp = mt->cpp;
1077 uint32_t pitch = mt->pitch;
1078 uint32_t tiling = mt->tiling;
1079
1080 if (map_stencil_as_y_tiled) {
1081 tiling = I915_TILING_Y;
1082
1083 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1084 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1085 * the resulting surface is twice the pitch of the original miptree,
1086 * since each row in the Y-tiled view corresponds to two rows in the
1087 * actual W-tiled surface. So we need to correct the pitch before
1088 * computing the offsets.
1089 */
1090 pitch *= 2;
1091 }
1092
1093 switch (tiling) {
1094 default:
1095 unreachable("not reached");
1096 case I915_TILING_NONE:
1097 return y * pitch + x * cpp;
1098 case I915_TILING_X:
1099 assert((x % (512 / cpp)) == 0);
1100 assert((y % 8) == 0);
1101 return y * pitch + x / (512 / cpp) * 4096;
1102 case I915_TILING_Y:
1103 assert((x % (128 / cpp)) == 0);
1104 assert((y % 32) == 0);
1105 return y * pitch + x / (128 / cpp) * 4096;
1106 }
1107 }
1108
1109 /**
1110 * Rendering with tiled buffers requires that the base address of the buffer
1111 * be aligned to a page boundary. For renderbuffers, and sometimes with
1112 * textures, we may want the surface to point at a texture image level that
1113 * isn't at a page boundary.
1114 *
1115 * This function returns an appropriately-aligned base offset
1116 * according to the tiling restrictions, plus any required x/y offset
1117 * from there.
1118 */
1119 uint32_t
1120 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1121 GLuint level, GLuint slice,
1122 uint32_t *tile_x,
1123 uint32_t *tile_y)
1124 {
1125 uint32_t x, y;
1126 uint32_t mask_x, mask_y;
1127
1128 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1129 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1130
1131 *tile_x = x & mask_x;
1132 *tile_y = y & mask_y;
1133
1134 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1135 }
1136
1137 static void
1138 intel_miptree_copy_slice_sw(struct brw_context *brw,
1139 struct intel_mipmap_tree *dst_mt,
1140 struct intel_mipmap_tree *src_mt,
1141 int level,
1142 int slice,
1143 int width,
1144 int height)
1145 {
1146 void *src, *dst;
1147 ptrdiff_t src_stride, dst_stride;
1148 int cpp = dst_mt->cpp;
1149
1150 intel_miptree_map(brw, src_mt,
1151 level, slice,
1152 0, 0,
1153 width, height,
1154 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1155 &src, &src_stride);
1156
1157 intel_miptree_map(brw, dst_mt,
1158 level, slice,
1159 0, 0,
1160 width, height,
1161 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1162 BRW_MAP_DIRECT_BIT,
1163 &dst, &dst_stride);
1164
1165 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1166 _mesa_get_format_name(src_mt->format),
1167 src_mt, src, src_stride,
1168 _mesa_get_format_name(dst_mt->format),
1169 dst_mt, dst, dst_stride,
1170 width, height);
1171
1172 int row_size = cpp * width;
1173 if (src_stride == row_size &&
1174 dst_stride == row_size) {
1175 memcpy(dst, src, row_size * height);
1176 } else {
1177 for (int i = 0; i < height; i++) {
1178 memcpy(dst, src, row_size);
1179 dst += dst_stride;
1180 src += src_stride;
1181 }
1182 }
1183
1184 intel_miptree_unmap(brw, dst_mt, level, slice);
1185 intel_miptree_unmap(brw, src_mt, level, slice);
1186
1187 /* Don't forget to copy the stencil data over, too. We could have skipped
1188 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1189 * shuffling the two data sources in/out of temporary storage instead of
1190 * the direct mapping we get this way.
1191 */
1192 if (dst_mt->stencil_mt) {
1193 assert(src_mt->stencil_mt);
1194 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1195 level, slice, width, height);
1196 }
1197 }
1198
1199 static void
1200 intel_miptree_copy_slice(struct brw_context *brw,
1201 struct intel_mipmap_tree *dst_mt,
1202 struct intel_mipmap_tree *src_mt,
1203 int level,
1204 int face,
1205 int depth)
1206
1207 {
1208 mesa_format format = src_mt->format;
1209 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1210 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1211 int slice;
1212
1213 if (face > 0)
1214 slice = face;
1215 else
1216 slice = depth;
1217
1218 assert(depth < src_mt->level[level].depth);
1219 assert(src_mt->format == dst_mt->format);
1220
1221 if (dst_mt->compressed) {
1222 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1223 width = ALIGN(width, dst_mt->align_w);
1224 }
1225
1226 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1227 * below won't apply since we can't do the depth's Y tiling or the
1228 * stencil's W tiling in the blitter.
1229 */
1230 if (src_mt->stencil_mt) {
1231 intel_miptree_copy_slice_sw(brw,
1232 dst_mt, src_mt,
1233 level, slice,
1234 width, height);
1235 return;
1236 }
1237
1238 uint32_t dst_x, dst_y, src_x, src_y;
1239 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1240 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1241
1242 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1243 _mesa_get_format_name(src_mt->format),
1244 src_mt, src_x, src_y, src_mt->pitch,
1245 _mesa_get_format_name(dst_mt->format),
1246 dst_mt, dst_x, dst_y, dst_mt->pitch,
1247 width, height);
1248
1249 if (!intel_miptree_blit(brw,
1250 src_mt, level, slice, 0, 0, false,
1251 dst_mt, level, slice, 0, 0, false,
1252 width, height, GL_COPY)) {
1253 perf_debug("miptree validate blit for %s failed\n",
1254 _mesa_get_format_name(format));
1255
1256 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1257 width, height);
1258 }
1259 }
1260
1261 /**
1262 * Copies the image's current data to the given miptree, and associates that
1263 * miptree with the image.
1264 *
1265 * If \c invalidate is true, then the actual image data does not need to be
1266 * copied, but the image still needs to be associated to the new miptree (this
1267 * is set to true if we're about to clear the image).
1268 */
1269 void
1270 intel_miptree_copy_teximage(struct brw_context *brw,
1271 struct intel_texture_image *intelImage,
1272 struct intel_mipmap_tree *dst_mt,
1273 bool invalidate)
1274 {
1275 struct intel_mipmap_tree *src_mt = intelImage->mt;
1276 struct intel_texture_object *intel_obj =
1277 intel_texture_object(intelImage->base.Base.TexObject);
1278 int level = intelImage->base.Base.Level;
1279 int face = intelImage->base.Base.Face;
1280
1281 GLuint depth;
1282 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1283 depth = intelImage->base.Base.Height;
1284 else
1285 depth = intelImage->base.Base.Depth;
1286
1287 if (!invalidate) {
1288 for (int slice = 0; slice < depth; slice++) {
1289 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1290 }
1291 }
1292
1293 intel_miptree_reference(&intelImage->mt, dst_mt);
1294 intel_obj->needs_validate = true;
1295 }
1296
1297 bool
1298 intel_miptree_alloc_mcs(struct brw_context *brw,
1299 struct intel_mipmap_tree *mt,
1300 GLuint num_samples)
1301 {
1302 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1303 assert(mt->mcs_mt == NULL);
1304
1305 /* Choose the correct format for the MCS buffer. All that really matters
1306 * is that we allocate the right buffer size, since we'll always be
1307 * accessing this miptree using MCS-specific hardware mechanisms, which
1308 * infer the correct format based on num_samples.
1309 */
1310 mesa_format format;
1311 switch (num_samples) {
1312 case 2:
1313 case 4:
1314 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1315 * each sample).
1316 */
1317 format = MESA_FORMAT_R_UNORM8;
1318 break;
1319 case 8:
1320 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1321 * for each sample, plus 8 padding bits).
1322 */
1323 format = MESA_FORMAT_R_UINT32;
1324 break;
1325 default:
1326 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1327 };
1328
1329 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1330 *
1331 * "The MCS surface must be stored as Tile Y."
1332 */
1333 mt->mcs_mt = intel_miptree_create(brw,
1334 mt->target,
1335 format,
1336 mt->first_level,
1337 mt->last_level,
1338 mt->logical_width0,
1339 mt->logical_height0,
1340 mt->logical_depth0,
1341 true,
1342 0 /* num_samples */,
1343 INTEL_MIPTREE_TILING_Y,
1344 false);
1345
1346 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1347 *
1348 * When MCS buffer is enabled and bound to MSRT, it is required that it
1349 * is cleared prior to any rendering.
1350 *
1351 * Since we don't use the MCS buffer for any purpose other than rendering,
1352 * it makes sense to just clear it immediately upon allocation.
1353 *
1354 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1355 */
1356 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1357 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1358 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1359 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1360
1361 return mt->mcs_mt;
1362 }
1363
1364
1365 bool
1366 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1367 struct intel_mipmap_tree *mt)
1368 {
1369 assert(mt->mcs_mt == NULL);
1370
1371 /* The format of the MCS buffer is opaque to the driver; all that matters
1372 * is that we get its size and pitch right. We'll pretend that the format
1373 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1374 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1375 * the block width and then a further factor of 4. Since an MCS tile
1376 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1377 * we'll need to scale the height down by the block height and then a
1378 * further factor of 8.
1379 */
1380 const mesa_format format = MESA_FORMAT_R_UINT32;
1381 unsigned block_width_px;
1382 unsigned block_height;
1383 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1384 unsigned width_divisor = block_width_px * 4;
1385 unsigned height_divisor = block_height * 8;
1386 unsigned mcs_width =
1387 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1388 unsigned mcs_height =
1389 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1390 assert(mt->logical_depth0 == 1);
1391 mt->mcs_mt = intel_miptree_create(brw,
1392 mt->target,
1393 format,
1394 mt->first_level,
1395 mt->last_level,
1396 mcs_width,
1397 mcs_height,
1398 mt->logical_depth0,
1399 true,
1400 0 /* num_samples */,
1401 INTEL_MIPTREE_TILING_Y,
1402 false);
1403
1404 return mt->mcs_mt;
1405 }
1406
1407
1408 /**
1409 * Helper for intel_miptree_alloc_hiz() that sets
1410 * \c mt->level[level].has_hiz. Return true if and only if
1411 * \c has_hiz was set.
1412 */
1413 static bool
1414 intel_miptree_level_enable_hiz(struct brw_context *brw,
1415 struct intel_mipmap_tree *mt,
1416 uint32_t level)
1417 {
1418 assert(mt->hiz_mt);
1419
1420 if (brw->gen >= 8 || brw->is_haswell) {
1421 uint32_t width = minify(mt->physical_width0, level);
1422 uint32_t height = minify(mt->physical_height0, level);
1423
1424 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1425 * and the height is 4 aligned. This allows our HiZ support
1426 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1427 * we can grow the width & height to allow the HiZ op to
1428 * force the proper size alignments.
1429 */
1430 if (level > 0 && ((width & 7) || (height & 3))) {
1431 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1432 return false;
1433 }
1434 }
1435
1436 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1437 mt->level[level].has_hiz = true;
1438 return true;
1439 }
1440
1441
1442
1443 bool
1444 intel_miptree_alloc_hiz(struct brw_context *brw,
1445 struct intel_mipmap_tree *mt)
1446 {
1447 assert(mt->hiz_mt == NULL);
1448 const bool force_all_slices_at_each_lod = brw->gen == 6;
1449 mt->hiz_mt = intel_miptree_create(brw,
1450 mt->target,
1451 mt->format,
1452 mt->first_level,
1453 mt->last_level,
1454 mt->logical_width0,
1455 mt->logical_height0,
1456 mt->logical_depth0,
1457 true,
1458 mt->num_samples,
1459 INTEL_MIPTREE_TILING_ANY,
1460 force_all_slices_at_each_lod);
1461
1462 if (!mt->hiz_mt)
1463 return false;
1464
1465 /* Mark that all slices need a HiZ resolve. */
1466 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1467 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1468 continue;
1469
1470 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1471 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1472 exec_node_init(&m->link);
1473 m->level = level;
1474 m->layer = layer;
1475 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1476
1477 exec_list_push_tail(&mt->hiz_map, &m->link);
1478 }
1479 }
1480
1481 return true;
1482 }
1483
1484 /**
1485 * Does the miptree slice have hiz enabled?
1486 */
1487 bool
1488 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1489 {
1490 intel_miptree_check_level_layer(mt, level, 0);
1491 return mt->level[level].has_hiz;
1492 }
1493
1494 void
1495 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1496 uint32_t level,
1497 uint32_t layer)
1498 {
1499 if (!intel_miptree_level_has_hiz(mt, level))
1500 return;
1501
1502 intel_resolve_map_set(&mt->hiz_map,
1503 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1504 }
1505
1506
1507 void
1508 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1509 uint32_t level,
1510 uint32_t layer)
1511 {
1512 if (!intel_miptree_level_has_hiz(mt, level))
1513 return;
1514
1515 intel_resolve_map_set(&mt->hiz_map,
1516 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1517 }
1518
1519 void
1520 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1521 uint32_t level)
1522 {
1523 uint32_t layer;
1524 uint32_t end_layer = mt->level[level].depth;
1525
1526 for (layer = 0; layer < end_layer; layer++) {
1527 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1528 }
1529 }
1530
1531 static bool
1532 intel_miptree_slice_resolve(struct brw_context *brw,
1533 struct intel_mipmap_tree *mt,
1534 uint32_t level,
1535 uint32_t layer,
1536 enum gen6_hiz_op need)
1537 {
1538 intel_miptree_check_level_layer(mt, level, layer);
1539
1540 struct intel_resolve_map *item =
1541 intel_resolve_map_get(&mt->hiz_map, level, layer);
1542
1543 if (!item || item->need != need)
1544 return false;
1545
1546 intel_hiz_exec(brw, mt, level, layer, need);
1547 intel_resolve_map_remove(item);
1548 return true;
1549 }
1550
1551 bool
1552 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1553 struct intel_mipmap_tree *mt,
1554 uint32_t level,
1555 uint32_t layer)
1556 {
1557 return intel_miptree_slice_resolve(brw, mt, level, layer,
1558 GEN6_HIZ_OP_HIZ_RESOLVE);
1559 }
1560
1561 bool
1562 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1563 struct intel_mipmap_tree *mt,
1564 uint32_t level,
1565 uint32_t layer)
1566 {
1567 return intel_miptree_slice_resolve(brw, mt, level, layer,
1568 GEN6_HIZ_OP_DEPTH_RESOLVE);
1569 }
1570
1571 static bool
1572 intel_miptree_all_slices_resolve(struct brw_context *brw,
1573 struct intel_mipmap_tree *mt,
1574 enum gen6_hiz_op need)
1575 {
1576 bool did_resolve = false;
1577
1578 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1579 if (map->need != need)
1580 continue;
1581
1582 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1583 intel_resolve_map_remove(map);
1584 did_resolve = true;
1585 }
1586
1587 return did_resolve;
1588 }
1589
1590 bool
1591 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1592 struct intel_mipmap_tree *mt)
1593 {
1594 return intel_miptree_all_slices_resolve(brw, mt,
1595 GEN6_HIZ_OP_HIZ_RESOLVE);
1596 }
1597
1598 bool
1599 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1600 struct intel_mipmap_tree *mt)
1601 {
1602 return intel_miptree_all_slices_resolve(brw, mt,
1603 GEN6_HIZ_OP_DEPTH_RESOLVE);
1604 }
1605
1606
1607 void
1608 intel_miptree_resolve_color(struct brw_context *brw,
1609 struct intel_mipmap_tree *mt)
1610 {
1611 switch (mt->fast_clear_state) {
1612 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1613 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1614 /* No resolve needed */
1615 break;
1616 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1617 case INTEL_FAST_CLEAR_STATE_CLEAR:
1618 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1619 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1620 brw_meta_resolve_color(brw, mt);
1621 break;
1622 }
1623 }
1624
1625
1626 /**
1627 * Make it possible to share the BO backing the given miptree with another
1628 * process or another miptree.
1629 *
1630 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1631 * then discard the MCS buffer, if present. We also set the fast_clear_state
1632 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1633 * allocated in the future.
1634 */
1635 void
1636 intel_miptree_make_shareable(struct brw_context *brw,
1637 struct intel_mipmap_tree *mt)
1638 {
1639 /* MCS buffers are also used for multisample buffers, but we can't resolve
1640 * away a multisample MCS buffer because it's an integral part of how the
1641 * pixel data is stored. Fortunately this code path should never be
1642 * reached for multisample buffers.
1643 */
1644 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1645
1646 if (mt->mcs_mt) {
1647 intel_miptree_resolve_color(brw, mt);
1648 intel_miptree_release(&mt->mcs_mt);
1649 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1650 }
1651 }
1652
1653
1654 /**
1655 * \brief Get pointer offset into stencil buffer.
1656 *
1657 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1658 * must decode the tile's layout in software.
1659 *
1660 * See
1661 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1662 * Format.
1663 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1664 *
1665 * Even though the returned offset is always positive, the return type is
1666 * signed due to
1667 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1668 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1669 */
1670 static intptr_t
1671 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1672 {
1673 uint32_t tile_size = 4096;
1674 uint32_t tile_width = 64;
1675 uint32_t tile_height = 64;
1676 uint32_t row_size = 64 * stride;
1677
1678 uint32_t tile_x = x / tile_width;
1679 uint32_t tile_y = y / tile_height;
1680
1681 /* The byte's address relative to the tile's base addres. */
1682 uint32_t byte_x = x % tile_width;
1683 uint32_t byte_y = y % tile_height;
1684
1685 uintptr_t u = tile_y * row_size
1686 + tile_x * tile_size
1687 + 512 * (byte_x / 8)
1688 + 64 * (byte_y / 8)
1689 + 32 * ((byte_y / 4) % 2)
1690 + 16 * ((byte_x / 4) % 2)
1691 + 8 * ((byte_y / 2) % 2)
1692 + 4 * ((byte_x / 2) % 2)
1693 + 2 * (byte_y % 2)
1694 + 1 * (byte_x % 2);
1695
1696 if (swizzled) {
1697 /* adjust for bit6 swizzling */
1698 if (((byte_x / 8) % 2) == 1) {
1699 if (((byte_y / 8) % 2) == 0) {
1700 u += 64;
1701 } else {
1702 u -= 64;
1703 }
1704 }
1705 }
1706
1707 return u;
1708 }
1709
1710 void
1711 intel_miptree_updownsample(struct brw_context *brw,
1712 struct intel_mipmap_tree *src,
1713 struct intel_mipmap_tree *dst)
1714 {
1715 if (brw->gen < 8) {
1716 brw_blorp_blit_miptrees(brw,
1717 src, 0 /* level */, 0 /* layer */, src->format,
1718 dst, 0 /* level */, 0 /* layer */, dst->format,
1719 0, 0,
1720 src->logical_width0, src->logical_height0,
1721 0, 0,
1722 dst->logical_width0, dst->logical_height0,
1723 GL_NEAREST, false, false /*mirror x, y*/);
1724 } else if (src->format == MESA_FORMAT_S_UINT8) {
1725 brw_meta_stencil_updownsample(brw, src, dst);
1726 } else {
1727 brw_meta_updownsample(brw, src, dst);
1728 }
1729
1730 if (src->stencil_mt) {
1731 if (brw->gen >= 8) {
1732 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
1733 return;
1734 }
1735
1736 brw_blorp_blit_miptrees(brw,
1737 src->stencil_mt, 0 /* level */, 0 /* layer */,
1738 src->stencil_mt->format,
1739 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1740 dst->stencil_mt->format,
1741 0, 0,
1742 src->logical_width0, src->logical_height0,
1743 0, 0,
1744 dst->logical_width0, dst->logical_height0,
1745 GL_NEAREST, false, false /*mirror x, y*/);
1746 }
1747 }
1748
1749 void *
1750 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1751 {
1752 /* CPU accesses to color buffers don't understand fast color clears, so
1753 * resolve any pending fast color clears before we map.
1754 */
1755 intel_miptree_resolve_color(brw, mt);
1756
1757 drm_intel_bo *bo = mt->bo;
1758
1759 if (drm_intel_bo_references(brw->batch.bo, bo))
1760 intel_batchbuffer_flush(brw);
1761
1762 if (mt->tiling != I915_TILING_NONE)
1763 brw_bo_map_gtt(brw, bo, "miptree");
1764 else
1765 brw_bo_map(brw, bo, true, "miptree");
1766
1767 return bo->virtual;
1768 }
1769
1770 void
1771 intel_miptree_unmap_raw(struct brw_context *brw,
1772 struct intel_mipmap_tree *mt)
1773 {
1774 drm_intel_bo_unmap(mt->bo);
1775 }
1776
1777 static void
1778 intel_miptree_map_gtt(struct brw_context *brw,
1779 struct intel_mipmap_tree *mt,
1780 struct intel_miptree_map *map,
1781 unsigned int level, unsigned int slice)
1782 {
1783 unsigned int bw, bh;
1784 void *base;
1785 unsigned int image_x, image_y;
1786 intptr_t x = map->x;
1787 intptr_t y = map->y;
1788
1789 /* For compressed formats, the stride is the number of bytes per
1790 * row of blocks. intel_miptree_get_image_offset() already does
1791 * the divide.
1792 */
1793 _mesa_get_format_block_size(mt->format, &bw, &bh);
1794 assert(y % bh == 0);
1795 y /= bh;
1796
1797 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1798
1799 if (base == NULL)
1800 map->ptr = NULL;
1801 else {
1802 /* Note that in the case of cube maps, the caller must have passed the
1803 * slice number referencing the face.
1804 */
1805 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1806 x += image_x;
1807 y += image_y;
1808
1809 map->stride = mt->pitch;
1810 map->ptr = base + y * map->stride + x * mt->cpp;
1811 }
1812
1813 DBG("%s: %d,%d %dx%d from mt %p (%s) "
1814 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __FUNCTION__,
1815 map->x, map->y, map->w, map->h,
1816 mt, _mesa_get_format_name(mt->format),
1817 x, y, map->ptr, map->stride);
1818 }
1819
1820 static void
1821 intel_miptree_unmap_gtt(struct brw_context *brw,
1822 struct intel_mipmap_tree *mt,
1823 struct intel_miptree_map *map,
1824 unsigned int level,
1825 unsigned int slice)
1826 {
1827 intel_miptree_unmap_raw(brw, mt);
1828 }
1829
1830 static void
1831 intel_miptree_map_blit(struct brw_context *brw,
1832 struct intel_mipmap_tree *mt,
1833 struct intel_miptree_map *map,
1834 unsigned int level, unsigned int slice)
1835 {
1836 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1837 0, 0,
1838 map->w, map->h, 1,
1839 false, 0,
1840 INTEL_MIPTREE_TILING_NONE,
1841 false);
1842 if (!map->mt) {
1843 fprintf(stderr, "Failed to allocate blit temporary\n");
1844 goto fail;
1845 }
1846 map->stride = map->mt->pitch;
1847
1848 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1849 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1850 * invalidate is set, since we'll be writing the whole rectangle from our
1851 * temporary buffer back out.
1852 */
1853 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1854 if (!intel_miptree_blit(brw,
1855 mt, level, slice,
1856 map->x, map->y, false,
1857 map->mt, 0, 0,
1858 0, 0, false,
1859 map->w, map->h, GL_COPY)) {
1860 fprintf(stderr, "Failed to blit\n");
1861 goto fail;
1862 }
1863 }
1864
1865 map->ptr = intel_miptree_map_raw(brw, map->mt);
1866
1867 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1868 map->x, map->y, map->w, map->h,
1869 mt, _mesa_get_format_name(mt->format),
1870 level, slice, map->ptr, map->stride);
1871
1872 return;
1873
1874 fail:
1875 intel_miptree_release(&map->mt);
1876 map->ptr = NULL;
1877 map->stride = 0;
1878 }
1879
1880 static void
1881 intel_miptree_unmap_blit(struct brw_context *brw,
1882 struct intel_mipmap_tree *mt,
1883 struct intel_miptree_map *map,
1884 unsigned int level,
1885 unsigned int slice)
1886 {
1887 struct gl_context *ctx = &brw->ctx;
1888
1889 intel_miptree_unmap_raw(brw, map->mt);
1890
1891 if (map->mode & GL_MAP_WRITE_BIT) {
1892 bool ok = intel_miptree_blit(brw,
1893 map->mt, 0, 0,
1894 0, 0, false,
1895 mt, level, slice,
1896 map->x, map->y, false,
1897 map->w, map->h, GL_COPY);
1898 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1899 }
1900
1901 intel_miptree_release(&map->mt);
1902 }
1903
1904 /**
1905 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1906 */
1907 #if defined(USE_SSE41)
1908 static void
1909 intel_miptree_map_movntdqa(struct brw_context *brw,
1910 struct intel_mipmap_tree *mt,
1911 struct intel_miptree_map *map,
1912 unsigned int level, unsigned int slice)
1913 {
1914 assert(map->mode & GL_MAP_READ_BIT);
1915 assert(!(map->mode & GL_MAP_WRITE_BIT));
1916
1917 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1918 map->x, map->y, map->w, map->h,
1919 mt, _mesa_get_format_name(mt->format),
1920 level, slice, map->ptr, map->stride);
1921
1922 /* Map the original image */
1923 uint32_t image_x;
1924 uint32_t image_y;
1925 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1926 image_x += map->x;
1927 image_y += map->y;
1928
1929 void *src = intel_miptree_map_raw(brw, mt);
1930 if (!src)
1931 return;
1932 src += image_y * mt->pitch;
1933 src += image_x * mt->cpp;
1934
1935 /* Due to the pixel offsets for the particular image being mapped, our
1936 * src pointer may not be 16-byte aligned. However, if the pitch is
1937 * divisible by 16, then the amount by which it's misaligned will remain
1938 * consistent from row to row.
1939 */
1940 assert((mt->pitch % 16) == 0);
1941 const int misalignment = ((uintptr_t) src) & 15;
1942
1943 /* Create an untiled temporary buffer for the mapping. */
1944 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1945
1946 map->stride = ALIGN(misalignment + width_bytes, 16);
1947
1948 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
1949 /* Offset the destination so it has the same misalignment as src. */
1950 map->ptr = map->buffer + misalignment;
1951
1952 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1953
1954 for (uint32_t y = 0; y < map->h; y++) {
1955 void *dst_ptr = map->ptr + y * map->stride;
1956 void *src_ptr = src + y * mt->pitch;
1957
1958 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1959 }
1960
1961 intel_miptree_unmap_raw(brw, mt);
1962 }
1963
1964 static void
1965 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1966 struct intel_mipmap_tree *mt,
1967 struct intel_miptree_map *map,
1968 unsigned int level,
1969 unsigned int slice)
1970 {
1971 _mesa_align_free(map->buffer);
1972 map->buffer = NULL;
1973 map->ptr = NULL;
1974 }
1975 #endif
1976
1977 static void
1978 intel_miptree_map_s8(struct brw_context *brw,
1979 struct intel_mipmap_tree *mt,
1980 struct intel_miptree_map *map,
1981 unsigned int level, unsigned int slice)
1982 {
1983 map->stride = map->w;
1984 map->buffer = map->ptr = malloc(map->stride * map->h);
1985 if (!map->buffer)
1986 return;
1987
1988 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1989 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1990 * invalidate is set, since we'll be writing the whole rectangle from our
1991 * temporary buffer back out.
1992 */
1993 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1994 uint8_t *untiled_s8_map = map->ptr;
1995 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1996 unsigned int image_x, image_y;
1997
1998 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1999
2000 for (uint32_t y = 0; y < map->h; y++) {
2001 for (uint32_t x = 0; x < map->w; x++) {
2002 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2003 x + image_x + map->x,
2004 y + image_y + map->y,
2005 brw->has_swizzling);
2006 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2007 }
2008 }
2009
2010 intel_miptree_unmap_raw(brw, mt);
2011
2012 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
2013 map->x, map->y, map->w, map->h,
2014 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2015 } else {
2016 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2017 map->x, map->y, map->w, map->h,
2018 mt, map->ptr, map->stride);
2019 }
2020 }
2021
2022 static void
2023 intel_miptree_unmap_s8(struct brw_context *brw,
2024 struct intel_mipmap_tree *mt,
2025 struct intel_miptree_map *map,
2026 unsigned int level,
2027 unsigned int slice)
2028 {
2029 if (map->mode & GL_MAP_WRITE_BIT) {
2030 unsigned int image_x, image_y;
2031 uint8_t *untiled_s8_map = map->ptr;
2032 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2033
2034 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2035
2036 for (uint32_t y = 0; y < map->h; y++) {
2037 for (uint32_t x = 0; x < map->w; x++) {
2038 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2039 x + map->x,
2040 y + map->y,
2041 brw->has_swizzling);
2042 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2043 }
2044 }
2045
2046 intel_miptree_unmap_raw(brw, mt);
2047 }
2048
2049 free(map->buffer);
2050 }
2051
2052 static void
2053 intel_miptree_map_etc(struct brw_context *brw,
2054 struct intel_mipmap_tree *mt,
2055 struct intel_miptree_map *map,
2056 unsigned int level,
2057 unsigned int slice)
2058 {
2059 assert(mt->etc_format != MESA_FORMAT_NONE);
2060 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2061 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2062 }
2063
2064 assert(map->mode & GL_MAP_WRITE_BIT);
2065 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2066
2067 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2068 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2069 map->w, map->h, 1));
2070 map->ptr = map->buffer;
2071 }
2072
2073 static void
2074 intel_miptree_unmap_etc(struct brw_context *brw,
2075 struct intel_mipmap_tree *mt,
2076 struct intel_miptree_map *map,
2077 unsigned int level,
2078 unsigned int slice)
2079 {
2080 uint32_t image_x;
2081 uint32_t image_y;
2082 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2083
2084 image_x += map->x;
2085 image_y += map->y;
2086
2087 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2088 + image_y * mt->pitch
2089 + image_x * mt->cpp;
2090
2091 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2092 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2093 map->ptr, map->stride,
2094 map->w, map->h);
2095 else
2096 _mesa_unpack_etc2_format(dst, mt->pitch,
2097 map->ptr, map->stride,
2098 map->w, map->h, mt->etc_format);
2099
2100 intel_miptree_unmap_raw(brw, mt);
2101 free(map->buffer);
2102 }
2103
2104 /**
2105 * Mapping function for packed depth/stencil miptrees backed by real separate
2106 * miptrees for depth and stencil.
2107 *
2108 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2109 * separate from the depth buffer. Yet at the GL API level, we have to expose
2110 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2111 * be able to map that memory for texture storage and glReadPixels-type
2112 * operations. We give Mesa core that access by mallocing a temporary and
2113 * copying the data between the actual backing store and the temporary.
2114 */
2115 static void
2116 intel_miptree_map_depthstencil(struct brw_context *brw,
2117 struct intel_mipmap_tree *mt,
2118 struct intel_miptree_map *map,
2119 unsigned int level, unsigned int slice)
2120 {
2121 struct intel_mipmap_tree *z_mt = mt;
2122 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2123 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2124 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2125
2126 map->stride = map->w * packed_bpp;
2127 map->buffer = map->ptr = malloc(map->stride * map->h);
2128 if (!map->buffer)
2129 return;
2130
2131 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2132 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2133 * invalidate is set, since we'll be writing the whole rectangle from our
2134 * temporary buffer back out.
2135 */
2136 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2137 uint32_t *packed_map = map->ptr;
2138 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2139 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2140 unsigned int s_image_x, s_image_y;
2141 unsigned int z_image_x, z_image_y;
2142
2143 intel_miptree_get_image_offset(s_mt, level, slice,
2144 &s_image_x, &s_image_y);
2145 intel_miptree_get_image_offset(z_mt, level, slice,
2146 &z_image_x, &z_image_y);
2147
2148 for (uint32_t y = 0; y < map->h; y++) {
2149 for (uint32_t x = 0; x < map->w; x++) {
2150 int map_x = map->x + x, map_y = map->y + y;
2151 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2152 map_x + s_image_x,
2153 map_y + s_image_y,
2154 brw->has_swizzling);
2155 ptrdiff_t z_offset = ((map_y + z_image_y) *
2156 (z_mt->pitch / 4) +
2157 (map_x + z_image_x));
2158 uint8_t s = s_map[s_offset];
2159 uint32_t z = z_map[z_offset];
2160
2161 if (map_z32f_x24s8) {
2162 packed_map[(y * map->w + x) * 2 + 0] = z;
2163 packed_map[(y * map->w + x) * 2 + 1] = s;
2164 } else {
2165 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2166 }
2167 }
2168 }
2169
2170 intel_miptree_unmap_raw(brw, s_mt);
2171 intel_miptree_unmap_raw(brw, z_mt);
2172
2173 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2174 __FUNCTION__,
2175 map->x, map->y, map->w, map->h,
2176 z_mt, map->x + z_image_x, map->y + z_image_y,
2177 s_mt, map->x + s_image_x, map->y + s_image_y,
2178 map->ptr, map->stride);
2179 } else {
2180 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2181 map->x, map->y, map->w, map->h,
2182 mt, map->ptr, map->stride);
2183 }
2184 }
2185
2186 static void
2187 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2188 struct intel_mipmap_tree *mt,
2189 struct intel_miptree_map *map,
2190 unsigned int level,
2191 unsigned int slice)
2192 {
2193 struct intel_mipmap_tree *z_mt = mt;
2194 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2195 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2196
2197 if (map->mode & GL_MAP_WRITE_BIT) {
2198 uint32_t *packed_map = map->ptr;
2199 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2200 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2201 unsigned int s_image_x, s_image_y;
2202 unsigned int z_image_x, z_image_y;
2203
2204 intel_miptree_get_image_offset(s_mt, level, slice,
2205 &s_image_x, &s_image_y);
2206 intel_miptree_get_image_offset(z_mt, level, slice,
2207 &z_image_x, &z_image_y);
2208
2209 for (uint32_t y = 0; y < map->h; y++) {
2210 for (uint32_t x = 0; x < map->w; x++) {
2211 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2212 x + s_image_x + map->x,
2213 y + s_image_y + map->y,
2214 brw->has_swizzling);
2215 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2216 (z_mt->pitch / 4) +
2217 (x + z_image_x + map->x));
2218
2219 if (map_z32f_x24s8) {
2220 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2221 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2222 } else {
2223 uint32_t packed = packed_map[y * map->w + x];
2224 s_map[s_offset] = packed >> 24;
2225 z_map[z_offset] = packed;
2226 }
2227 }
2228 }
2229
2230 intel_miptree_unmap_raw(brw, s_mt);
2231 intel_miptree_unmap_raw(brw, z_mt);
2232
2233 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2234 __FUNCTION__,
2235 map->x, map->y, map->w, map->h,
2236 z_mt, _mesa_get_format_name(z_mt->format),
2237 map->x + z_image_x, map->y + z_image_y,
2238 s_mt, map->x + s_image_x, map->y + s_image_y,
2239 map->ptr, map->stride);
2240 }
2241
2242 free(map->buffer);
2243 }
2244
2245 /**
2246 * Create and attach a map to the miptree at (level, slice). Return the
2247 * attached map.
2248 */
2249 static struct intel_miptree_map*
2250 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2251 unsigned int level,
2252 unsigned int slice,
2253 unsigned int x,
2254 unsigned int y,
2255 unsigned int w,
2256 unsigned int h,
2257 GLbitfield mode)
2258 {
2259 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2260
2261 if (!map)
2262 return NULL;
2263
2264 assert(mt->level[level].slice[slice].map == NULL);
2265 mt->level[level].slice[slice].map = map;
2266
2267 map->mode = mode;
2268 map->x = x;
2269 map->y = y;
2270 map->w = w;
2271 map->h = h;
2272
2273 return map;
2274 }
2275
2276 /**
2277 * Release the map at (level, slice).
2278 */
2279 static void
2280 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2281 unsigned int level,
2282 unsigned int slice)
2283 {
2284 struct intel_miptree_map **map;
2285
2286 map = &mt->level[level].slice[slice].map;
2287 free(*map);
2288 *map = NULL;
2289 }
2290
2291 static bool
2292 can_blit_slice(struct intel_mipmap_tree *mt,
2293 unsigned int level, unsigned int slice)
2294 {
2295 uint32_t image_x;
2296 uint32_t image_y;
2297 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2298 if (image_x >= 32768 || image_y >= 32768)
2299 return false;
2300
2301 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2302 if (mt->pitch >= 32768)
2303 return false;
2304
2305 return true;
2306 }
2307
2308 /**
2309 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
2310 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
2311 * arithmetic overflow.
2312 *
2313 * If you call this function and use \a out_stride, then you're doing pointer
2314 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
2315 * bugs. The caller must still take care to avoid 32-bit overflow errors in
2316 * all arithmetic expressions that contain buffer offsets and pixel sizes,
2317 * which usually have type uint32_t or GLuint.
2318 */
2319 void
2320 intel_miptree_map(struct brw_context *brw,
2321 struct intel_mipmap_tree *mt,
2322 unsigned int level,
2323 unsigned int slice,
2324 unsigned int x,
2325 unsigned int y,
2326 unsigned int w,
2327 unsigned int h,
2328 GLbitfield mode,
2329 void **out_ptr,
2330 ptrdiff_t *out_stride)
2331 {
2332 struct intel_miptree_map *map;
2333
2334 assert(mt->num_samples <= 1);
2335
2336 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2337 if (!map){
2338 *out_ptr = NULL;
2339 *out_stride = 0;
2340 return;
2341 }
2342
2343 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2344 if (map->mode & GL_MAP_WRITE_BIT) {
2345 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2346 }
2347
2348 if (mt->format == MESA_FORMAT_S_UINT8) {
2349 intel_miptree_map_s8(brw, mt, map, level, slice);
2350 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2351 !(mode & BRW_MAP_DIRECT_BIT)) {
2352 intel_miptree_map_etc(brw, mt, map, level, slice);
2353 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2354 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2355 }
2356 else if (brw->has_llc &&
2357 !(mode & GL_MAP_WRITE_BIT) &&
2358 !mt->compressed &&
2359 (mt->tiling == I915_TILING_X ||
2360 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2361 can_blit_slice(mt, level, slice)) {
2362 intel_miptree_map_blit(brw, mt, map, level, slice);
2363 } else if (mt->tiling != I915_TILING_NONE &&
2364 mt->bo->size >= brw->max_gtt_map_object_size) {
2365 assert(can_blit_slice(mt, level, slice));
2366 intel_miptree_map_blit(brw, mt, map, level, slice);
2367 #if defined(USE_SSE41)
2368 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2369 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2370 #endif
2371 } else {
2372 intel_miptree_map_gtt(brw, mt, map, level, slice);
2373 }
2374
2375 *out_ptr = map->ptr;
2376 *out_stride = map->stride;
2377
2378 if (map->ptr == NULL)
2379 intel_miptree_release_map(mt, level, slice);
2380 }
2381
2382 void
2383 intel_miptree_unmap(struct brw_context *brw,
2384 struct intel_mipmap_tree *mt,
2385 unsigned int level,
2386 unsigned int slice)
2387 {
2388 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2389
2390 assert(mt->num_samples <= 1);
2391
2392 if (!map)
2393 return;
2394
2395 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2396 mt, _mesa_get_format_name(mt->format), level, slice);
2397
2398 if (mt->format == MESA_FORMAT_S_UINT8) {
2399 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2400 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2401 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2402 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2403 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2404 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2405 } else if (map->mt) {
2406 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2407 #if defined(USE_SSE41)
2408 } else if (map->buffer && cpu_has_sse4_1) {
2409 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2410 #endif
2411 } else {
2412 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2413 }
2414
2415 intel_miptree_release_map(mt, level, slice);
2416 }