i965: Prepare to delete intel_miptree_alloc_ccs()
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_meta_util.h"
40 #include "brw_state.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49
50 #include "util/format_srgb.h"
51
52 #include "x86/common_x86_asm.h"
53
54 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
55
56 static void *intel_miptree_map_raw(struct brw_context *brw,
57 struct intel_mipmap_tree *mt,
58 GLbitfield mode);
59
60 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* See isl_surf_get_mcs_surf for details. */
77 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
78 return false;
79
80 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
81 switch (_mesa_get_format_base_format(mt->format)) {
82 case GL_DEPTH_COMPONENT:
83 case GL_STENCIL_INDEX:
84 case GL_DEPTH_STENCIL:
85 return false;
86 default:
87 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
88 *
89 * This field must be set to 0 for all SINT MSRTs when all RT channels
90 * are not written
91 *
92 * In practice this means that we have to disable MCS for all signed
93 * integer MSAA buffers. The alternative, to disable MCS only when one
94 * of the render target channels is disabled, is impractical because it
95 * would require converting between CMS and UMS MSAA layouts on the fly,
96 * which is expensive.
97 */
98 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
99 return false;
100 } else {
101 return true;
102 }
103 }
104 }
105
106 static bool
107 intel_tiling_supports_ccs(const struct brw_context *brw,
108 enum isl_tiling tiling)
109 {
110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
111
112 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
113 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
114 *
115 * - Support is limited to tiled render targets.
116 *
117 * Gen9 changes the restriction to Y-tile only.
118 */
119 if (devinfo->gen >= 9)
120 return tiling == ISL_TILING_Y0;
121 else if (devinfo->gen >= 7)
122 return tiling != ISL_TILING_LINEAR;
123 else
124 return false;
125 }
126
127 /**
128 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
129 * can be used. This doesn't (and should not) inspect any of the properties of
130 * the miptree's BO.
131 *
132 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
133 * beneath the "Fast Color Clear" bullet (p326):
134 *
135 * - Support is for non-mip-mapped and non-array surface types only.
136 *
137 * And then later, on p327:
138 *
139 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
140 * 64bpp, and 128bpp.
141 *
142 * From the Skylake documentation, it is made clear that X-tiling is no longer
143 * supported:
144 *
145 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
146 * non-MSRTs only.
147 */
148 static bool
149 intel_miptree_supports_ccs(struct brw_context *brw,
150 const struct intel_mipmap_tree *mt)
151 {
152 const struct gen_device_info *devinfo = &brw->screen->devinfo;
153
154 /* MCS support does not exist prior to Gen7 */
155 if (devinfo->gen < 7)
156 return false;
157
158 /* This function applies only to non-multisampled render targets. */
159 if (mt->surf.samples > 1)
160 return false;
161
162 /* MCS is only supported for color buffers */
163 switch (_mesa_get_format_base_format(mt->format)) {
164 case GL_DEPTH_COMPONENT:
165 case GL_DEPTH_STENCIL:
166 case GL_STENCIL_INDEX:
167 return false;
168 }
169
170 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
171 return false;
172
173 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
174 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
175 mt->surf.logical_level0_px.depth > 1;
176
177 if (arrayed) {
178 /* Multisample surfaces with the CMS layout are not layered surfaces,
179 * yet still have physical_depth0 > 1. Assert that we don't
180 * accidentally reject a multisampled surface here. We should have
181 * rejected it earlier by explicitly checking the sample count.
182 */
183 assert(mt->surf.samples == 1);
184 }
185
186 /* Handle the hardware restrictions...
187 *
188 * All GENs have the following restriction: "MCS buffer for non-MSRT is
189 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
190 *
191 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
192 * Non-MultiSampler Render Target Restrictions) Support is for
193 * non-mip-mapped and non-array surface types only.
194 *
195 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
199 *
200 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
201 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
202 * surfaces are supported with MCS buffer layout with these alignments in
203 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
204 */
205 if (devinfo->gen < 8 && (mip_mapped || arrayed))
206 return false;
207
208 /* There's no point in using an MCS buffer if the surface isn't in a
209 * renderable format.
210 */
211 if (!brw->mesa_format_supports_render[mt->format])
212 return false;
213
214 return true;
215 }
216
217 static bool
218 intel_tiling_supports_hiz(const struct brw_context *brw,
219 enum isl_tiling tiling)
220 {
221 const struct gen_device_info *devinfo = &brw->screen->devinfo;
222
223 if (devinfo->gen < 6)
224 return false;
225
226 return tiling == ISL_TILING_Y0;
227 }
228
229 static bool
230 intel_miptree_supports_hiz(const struct brw_context *brw,
231 const struct intel_mipmap_tree *mt)
232 {
233 if (!brw->has_hiz)
234 return false;
235
236 switch (mt->format) {
237 case MESA_FORMAT_Z_FLOAT32:
238 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
239 case MESA_FORMAT_Z24_UNORM_X8_UINT:
240 case MESA_FORMAT_Z24_UNORM_S8_UINT:
241 case MESA_FORMAT_Z_UNORM16:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /**
249 * Return true if the format that will be used to access the miptree is
250 * CCS_E-compatible with the miptree's linear/non-sRGB format.
251 *
252 * Why use the linear format? Well, although the miptree may be specified with
253 * an sRGB format, the usage of that color space/format can be toggled. Since
254 * our HW tends to support more linear formats than sRGB ones, we use this
255 * format variant for check for CCS_E compatibility.
256 */
257 static bool
258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
259 const struct intel_mipmap_tree *mt,
260 enum isl_format access_format)
261 {
262 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
263
264 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
265 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
266 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
267 }
268
269 static bool
270 intel_miptree_supports_ccs_e(struct brw_context *brw,
271 const struct intel_mipmap_tree *mt)
272 {
273 const struct gen_device_info *devinfo = &brw->screen->devinfo;
274
275 if (devinfo->gen < 9)
276 return false;
277
278 /* For now compression is only enabled for integer formats even though
279 * there exist supported floating point formats also. This is a heuristic
280 * decision based on current public benchmarks. In none of the cases these
281 * formats provided any improvement but a few cases were seen to regress.
282 * Hence these are left to to be enabled in the future when they are known
283 * to improve things.
284 */
285 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
286 return false;
287
288 if (!intel_miptree_supports_ccs(brw, mt))
289 return false;
290
291 /* Many window system buffers are sRGB even if they are never rendered as
292 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
293 * surface is used as sRGB, we fall back to CCS_D.
294 */
295 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
296 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
297 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
298 }
299
300 /**
301 * Determine depth format corresponding to a depth+stencil format,
302 * for separate stencil.
303 */
304 mesa_format
305 intel_depth_format_for_depthstencil_format(mesa_format format) {
306 switch (format) {
307 case MESA_FORMAT_Z24_UNORM_S8_UINT:
308 return MESA_FORMAT_Z24_UNORM_X8_UINT;
309 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
310 return MESA_FORMAT_Z_FLOAT32;
311 default:
312 return format;
313 }
314 }
315
316 static bool
317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
318 unsigned depth0, struct intel_mipmap_level *table)
319 {
320 for (unsigned level = first_level; level <= last_level; level++) {
321 const unsigned d =
322 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
323
324 table[level].slice = calloc(d, sizeof(*table[0].slice));
325 if (!table[level].slice)
326 goto unwind;
327 }
328
329 return true;
330
331 unwind:
332 for (unsigned level = first_level; level <= last_level; level++)
333 free(table[level].slice);
334
335 return false;
336 }
337
338 static bool
339 needs_separate_stencil(const struct brw_context *brw,
340 struct intel_mipmap_tree *mt,
341 mesa_format format)
342 {
343 const struct gen_device_info *devinfo = &brw->screen->devinfo;
344
345 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
346 return false;
347
348 if (devinfo->must_use_separate_stencil)
349 return true;
350
351 return brw->has_separate_stencil &&
352 intel_miptree_supports_hiz(brw, mt);
353 }
354
355 /**
356 * Choose the aux usage for this miptree. This function must be called fairly
357 * late in the miptree create process after we have a tiling.
358 */
359 static void
360 intel_miptree_choose_aux_usage(struct brw_context *brw,
361 struct intel_mipmap_tree *mt)
362 {
363 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
364
365 if (intel_miptree_supports_mcs(brw, mt)) {
366 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
367 mt->aux_usage = ISL_AUX_USAGE_MCS;
368 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
369 intel_miptree_supports_ccs(brw, mt)) {
370 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
371 intel_miptree_supports_ccs_e(brw, mt)) {
372 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
373 } else {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
375 }
376 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
377 intel_miptree_supports_hiz(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_HIZ;
379 }
380
381 /* We can do fast-clear on all auxiliary surface types that are
382 * allocated through the normal texture creation paths.
383 */
384 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
385 mt->supports_fast_clear = true;
386 }
387
388
389 /**
390 * Choose an appropriate uncompressed format for a requested
391 * compressed format, if unsupported.
392 */
393 mesa_format
394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
395 {
396 const struct gen_device_info *devinfo = &brw->screen->devinfo;
397
398 /* No need to lower ETC formats on these platforms,
399 * they are supported natively.
400 */
401 if (devinfo->gen >= 8 || devinfo->is_baytrail)
402 return format;
403
404 switch (format) {
405 case MESA_FORMAT_ETC1_RGB8:
406 return MESA_FORMAT_R8G8B8X8_UNORM;
407 case MESA_FORMAT_ETC2_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_SRGB8:
410 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
411 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
412 return MESA_FORMAT_B8G8R8A8_SRGB;
413 case MESA_FORMAT_ETC2_RGBA8_EAC:
414 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
415 return MESA_FORMAT_R8G8B8A8_UNORM;
416 case MESA_FORMAT_ETC2_R11_EAC:
417 return MESA_FORMAT_R_UNORM16;
418 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
419 return MESA_FORMAT_R_SNORM16;
420 case MESA_FORMAT_ETC2_RG11_EAC:
421 return MESA_FORMAT_R16G16_UNORM;
422 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
423 return MESA_FORMAT_R16G16_SNORM;
424 default:
425 /* Non ETC1 / ETC2 format */
426 return format;
427 }
428 }
429
430 unsigned
431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
432 {
433 if (mt->surf.dim == ISL_SURF_DIM_3D)
434 return minify(mt->surf.logical_level0_px.depth, level);
435 else
436 return mt->surf.logical_level0_px.array_len;
437 }
438
439 UNUSED static unsigned
440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
441 {
442 /* In case of physical dimensions one needs to consider also the layout.
443 * See isl_calc_phys_level0_extent_sa().
444 */
445 if (surf->dim != ISL_SURF_DIM_3D)
446 return surf->phys_level0_sa.array_len;
447
448 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
449 return minify(surf->phys_level0_sa.array_len, level);
450
451 return minify(surf->phys_level0_sa.depth, level);
452 }
453
454 /** \brief Assert that the level and layer are valid for the miptree. */
455 void
456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
457 uint32_t level,
458 uint32_t layer)
459 {
460 (void) mt;
461 (void) level;
462 (void) layer;
463
464 assert(level >= mt->first_level);
465 assert(level <= mt->last_level);
466 assert(layer < get_num_phys_layers(&mt->surf, level));
467 }
468
469 static enum isl_aux_state **
470 create_aux_state_map(struct intel_mipmap_tree *mt,
471 enum isl_aux_state initial)
472 {
473 const uint32_t levels = mt->last_level + 1;
474
475 uint32_t total_slices = 0;
476 for (uint32_t level = 0; level < levels; level++)
477 total_slices += brw_get_num_logical_layers(mt, level);
478
479 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
480
481 /* We're going to allocate a single chunk of data for both the per-level
482 * reference array and the arrays of aux_state. This makes cleanup
483 * significantly easier.
484 */
485 const size_t total_size = per_level_array_size +
486 total_slices * sizeof(enum isl_aux_state);
487 void *data = malloc(total_size);
488 if (data == NULL)
489 return NULL;
490
491 enum isl_aux_state **per_level_arr = data;
492 enum isl_aux_state *s = data + per_level_array_size;
493 for (uint32_t level = 0; level < levels; level++) {
494 per_level_arr[level] = s;
495 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
496 for (uint32_t a = 0; a < level_layers; a++)
497 *(s++) = initial;
498 }
499 assert((void *)s == data + total_size);
500
501 return per_level_arr;
502 }
503
504 static void
505 free_aux_state_map(enum isl_aux_state **state)
506 {
507 free(state);
508 }
509
510 static bool
511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
512 enum isl_tiling tiling, unsigned samples)
513 {
514 if (samples > 1)
515 return false;
516
517 if (tiling == ISL_TILING_LINEAR)
518 return false;
519
520 /* If the width is much smaller than a tile, don't bother tiling. */
521 if (row_pitch < 64)
522 return true;
523
524 if (ALIGN(row_pitch, 512) >= 32768) {
525 perf_debug("row pitch %u too large to blit, falling back to untiled",
526 row_pitch);
527 return true;
528 }
529
530 return false;
531 }
532
533 static bool
534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
535 enum isl_tiling tiling)
536 {
537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
538
539 /* If the BO is too large to fit in the aperture, we need to use the
540 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
541 * handle Y-tiling, so we need to fall back to X.
542 */
543 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
544 tiling == ISL_TILING_Y0)
545 return true;
546
547 return false;
548 }
549
550 static struct intel_mipmap_tree *
551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
552 unsigned first_level, unsigned last_level,
553 unsigned width0, unsigned height0, unsigned depth0,
554 unsigned num_samples, isl_tiling_flags_t tiling_flags,
555 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
556 unsigned row_pitch, struct brw_bo *bo)
557 {
558 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
559 if (!mt)
560 return NULL;
561
562 if (!create_mapping_table(target, first_level, last_level, depth0,
563 mt->level)) {
564 free(mt);
565 return NULL;
566 }
567
568 mt->refcount = 1;
569
570 if (target == GL_TEXTURE_CUBE_MAP ||
571 target == GL_TEXTURE_CUBE_MAP_ARRAY)
572 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
573
574 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
575 __func__,
576 _mesa_enum_to_string(target),
577 _mesa_get_format_name(format),
578 num_samples, width0, height0, depth0,
579 first_level, last_level, mt);
580
581 struct isl_surf_init_info init_info = {
582 .dim = get_isl_surf_dim(target),
583 .format = translate_tex_format(brw, format, false),
584 .width = width0,
585 .height = height0,
586 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
587 .levels = last_level - first_level + 1,
588 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
589 .samples = num_samples,
590 .row_pitch = row_pitch,
591 .usage = isl_usage_flags,
592 .tiling_flags = tiling_flags,
593 };
594
595 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
596 goto fail;
597
598 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
599 * on gen7 platforms we also need to create Y-tiled copies of stencil for
600 * texturing since the hardware can't sample from W-tiled surfaces. For
601 * everything else, check for corner cases needing special treatment.
602 */
603 bool is_depth_stencil =
604 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
605 if (!is_depth_stencil) {
606 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
607 mt->surf.tiling, mt->surf.samples)) {
608 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
612 init_info.tiling_flags = 1u << ISL_TILING_X;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 }
616 }
617
618 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
619 * the size may not be multiple of row_pitch.
620 * See isl_apply_surface_padding().
621 */
622 if (mt->surf.tiling != ISL_TILING_LINEAR)
623 assert(mt->surf.size % mt->surf.row_pitch == 0);
624
625 if (!bo) {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
627 mt->surf.size,
628 isl_tiling_to_i915_tiling(
629 mt->surf.tiling),
630 mt->surf.row_pitch, alloc_flags);
631 if (!mt->bo)
632 goto fail;
633 } else {
634 mt->bo = bo;
635 }
636
637 mt->first_level = first_level;
638 mt->last_level = last_level;
639 mt->target = target;
640 mt->format = format;
641 mt->aux_state = NULL;
642 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
643 mt->compressed = _mesa_is_format_compressed(format);
644 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
645
646 return mt;
647
648 fail:
649 intel_miptree_release(&mt);
650 return NULL;
651 }
652
653 static bool
654 make_separate_stencil_surface(struct brw_context *brw,
655 struct intel_mipmap_tree *mt)
656 {
657 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
658 0, mt->surf.levels - 1,
659 mt->surf.logical_level0_px.width,
660 mt->surf.logical_level0_px.height,
661 mt->surf.dim == ISL_SURF_DIM_3D ?
662 mt->surf.logical_level0_px.depth :
663 mt->surf.logical_level0_px.array_len,
664 mt->surf.samples, ISL_TILING_W_BIT,
665 ISL_SURF_USAGE_STENCIL_BIT |
666 ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_BUSY, 0, NULL);
668
669 if (!mt->stencil_mt)
670 return false;
671
672 mt->stencil_mt->r8stencil_needs_update = true;
673
674 return true;
675 }
676
677 static struct intel_mipmap_tree *
678 miptree_create(struct brw_context *brw,
679 GLenum target,
680 mesa_format format,
681 GLuint first_level,
682 GLuint last_level,
683 GLuint width0,
684 GLuint height0,
685 GLuint depth0,
686 GLuint num_samples,
687 enum intel_miptree_create_flags flags)
688 {
689 const struct gen_device_info *devinfo = &brw->screen->devinfo;
690
691 if (format == MESA_FORMAT_S_UINT8)
692 return make_surface(brw, target, format, first_level, last_level,
693 width0, height0, depth0, num_samples,
694 ISL_TILING_W_BIT,
695 ISL_SURF_USAGE_STENCIL_BIT |
696 ISL_SURF_USAGE_TEXTURE_BIT,
697 BO_ALLOC_BUSY,
698 0,
699 NULL);
700
701 const GLenum base_format = _mesa_get_format_base_format(format);
702 if ((base_format == GL_DEPTH_COMPONENT ||
703 base_format == GL_DEPTH_STENCIL) &&
704 !(flags & MIPTREE_CREATE_LINEAR)) {
705 /* Fix up the Z miptree format for how we're splitting out separate
706 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
707 */
708 const mesa_format depth_only_format =
709 intel_depth_format_for_depthstencil_format(format);
710 struct intel_mipmap_tree *mt = make_surface(
711 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
712 first_level, last_level,
713 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
714 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
715 BO_ALLOC_BUSY, 0, NULL);
716
717 if (needs_separate_stencil(brw, mt, format) &&
718 !make_separate_stencil_surface(brw, mt)) {
719 intel_miptree_release(&mt);
720 return NULL;
721 }
722
723 if (!(flags & MIPTREE_CREATE_NO_AUX))
724 intel_miptree_choose_aux_usage(brw, mt);
725
726 return mt;
727 }
728
729 mesa_format tex_format = format;
730 mesa_format etc_format = MESA_FORMAT_NONE;
731 uint32_t alloc_flags = 0;
732
733 format = intel_lower_compressed_format(brw, format);
734
735 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
736
737 if (flags & MIPTREE_CREATE_BUSY)
738 alloc_flags |= BO_ALLOC_BUSY;
739
740 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
741 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
742
743 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
744 if (devinfo->gen < 6)
745 tiling_flags &= ~ISL_TILING_Y0_BIT;
746
747 struct intel_mipmap_tree *mt = make_surface(
748 brw, target, format,
749 first_level, last_level,
750 width0, height0, depth0,
751 num_samples, tiling_flags,
752 ISL_SURF_USAGE_RENDER_TARGET_BIT |
753 ISL_SURF_USAGE_TEXTURE_BIT,
754 alloc_flags, 0, NULL);
755 if (!mt)
756 return NULL;
757
758 mt->etc_format = etc_format;
759
760 if (!(flags & MIPTREE_CREATE_NO_AUX))
761 intel_miptree_choose_aux_usage(brw, mt);
762
763 return mt;
764 }
765
766 struct intel_mipmap_tree *
767 intel_miptree_create(struct brw_context *brw,
768 GLenum target,
769 mesa_format format,
770 GLuint first_level,
771 GLuint last_level,
772 GLuint width0,
773 GLuint height0,
774 GLuint depth0,
775 GLuint num_samples,
776 enum intel_miptree_create_flags flags)
777 {
778 assert(num_samples > 0);
779
780 struct intel_mipmap_tree *mt = miptree_create(
781 brw, target, format,
782 first_level, last_level,
783 width0, height0, depth0, num_samples,
784 flags);
785 if (!mt)
786 return NULL;
787
788 mt->offset = 0;
789
790 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
791 * compress clear color so we wait until an actual fast-clear to allocate
792 * it.
793 */
794 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
795 !intel_miptree_alloc_aux(brw, mt)) {
796 intel_miptree_release(&mt);
797 return NULL;
798 }
799
800 return mt;
801 }
802
803 struct intel_mipmap_tree *
804 intel_miptree_create_for_bo(struct brw_context *brw,
805 struct brw_bo *bo,
806 mesa_format format,
807 uint32_t offset,
808 uint32_t width,
809 uint32_t height,
810 uint32_t depth,
811 int pitch,
812 enum isl_tiling tiling,
813 enum intel_miptree_create_flags flags)
814 {
815 const struct gen_device_info *devinfo = &brw->screen->devinfo;
816 struct intel_mipmap_tree *mt;
817 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
818 const GLenum base_format = _mesa_get_format_base_format(format);
819
820 if ((base_format == GL_DEPTH_COMPONENT ||
821 base_format == GL_DEPTH_STENCIL)) {
822 const mesa_format depth_only_format =
823 intel_depth_format_for_depthstencil_format(format);
824 mt = make_surface(brw, target,
825 devinfo->gen >= 6 ? depth_only_format : format,
826 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
827 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
828 0, pitch, bo);
829 if (!mt)
830 return NULL;
831
832 brw_bo_reference(bo);
833
834 if (!(flags & MIPTREE_CREATE_NO_AUX))
835 intel_miptree_choose_aux_usage(brw, mt);
836
837 return mt;
838 } else if (format == MESA_FORMAT_S_UINT8) {
839 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
840 0, 0, width, height, depth, 1,
841 ISL_TILING_W_BIT,
842 ISL_SURF_USAGE_STENCIL_BIT |
843 ISL_SURF_USAGE_TEXTURE_BIT,
844 0, pitch, bo);
845 if (!mt)
846 return NULL;
847
848 assert(bo->size >= mt->surf.size);
849
850 brw_bo_reference(bo);
851 return mt;
852 }
853
854 /* Nothing will be able to use this miptree with the BO if the offset isn't
855 * aligned.
856 */
857 if (tiling != ISL_TILING_LINEAR)
858 assert(offset % 4096 == 0);
859
860 /* miptrees can't handle negative pitch. If you need flipping of images,
861 * that's outside of the scope of the mt.
862 */
863 assert(pitch >= 0);
864
865 /* The BO already has a tiling format and we shouldn't confuse the lower
866 * layers by making it try to find a tiling format again.
867 */
868 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
869
870 mt = make_surface(brw, target, format,
871 0, 0, width, height, depth, 1,
872 1lu << tiling,
873 ISL_SURF_USAGE_RENDER_TARGET_BIT |
874 ISL_SURF_USAGE_TEXTURE_BIT,
875 0, pitch, bo);
876 if (!mt)
877 return NULL;
878
879 brw_bo_reference(bo);
880 mt->bo = bo;
881 mt->offset = offset;
882
883 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
884 intel_miptree_choose_aux_usage(brw, mt);
885
886 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
887 * only compress clear color so we wait until an actual fast-clear to
888 * allocate it.
889 */
890 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
891 !intel_miptree_alloc_aux(brw, mt)) {
892 intel_miptree_release(&mt);
893 return NULL;
894 }
895 }
896
897 return mt;
898 }
899
900 static struct intel_mipmap_tree *
901 miptree_create_for_planar_image(struct brw_context *brw,
902 __DRIimage *image, GLenum target,
903 enum isl_tiling tiling)
904 {
905 const struct intel_image_format *f = image->planar_format;
906 struct intel_mipmap_tree *planar_mt = NULL;
907
908 for (int i = 0; i < f->nplanes; i++) {
909 const int index = f->planes[i].buffer_index;
910 const uint32_t dri_format = f->planes[i].dri_format;
911 const mesa_format format = driImageFormatToGLFormat(dri_format);
912 const uint32_t width = image->width >> f->planes[i].width_shift;
913 const uint32_t height = image->height >> f->planes[i].height_shift;
914
915 /* Disable creation of the texture's aux buffers because the driver
916 * exposes no EGL API to manage them. That is, there is no API for
917 * resolving the aux buffer's content to the main buffer nor for
918 * invalidating the aux buffer's content.
919 */
920 struct intel_mipmap_tree *mt =
921 intel_miptree_create_for_bo(brw, image->bo, format,
922 image->offsets[index],
923 width, height, 1,
924 image->strides[index],
925 tiling,
926 MIPTREE_CREATE_NO_AUX);
927 if (mt == NULL)
928 return NULL;
929
930 mt->target = target;
931
932 if (i == 0)
933 planar_mt = mt;
934 else
935 planar_mt->plane[i - 1] = mt;
936 }
937
938 planar_mt->drm_modifier = image->modifier;
939
940 return planar_mt;
941 }
942
943 static bool
944 create_ccs_buf_for_image(struct brw_context *brw,
945 __DRIimage *image,
946 struct intel_mipmap_tree *mt,
947 enum isl_aux_state initial_state)
948 {
949 struct isl_surf temp_ccs_surf;
950
951 /* CCS is only supported for very simple miptrees */
952 assert(image->aux_offset != 0 && image->aux_pitch != 0);
953 assert(image->tile_x == 0 && image->tile_y == 0);
954 assert(mt->surf.samples == 1);
955 assert(mt->surf.levels == 1);
956 assert(mt->surf.logical_level0_px.depth == 1);
957 assert(mt->surf.logical_level0_px.array_len == 1);
958 assert(mt->first_level == 0);
959 assert(mt->last_level == 0);
960
961 /* We shouldn't already have a CCS */
962 assert(!mt->aux_buf);
963
964 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
965 image->aux_pitch))
966 return false;
967
968 assert(image->aux_offset < image->bo->size);
969 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
970
971 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
972 if (mt->aux_buf == NULL)
973 return false;
974
975 mt->aux_state = create_aux_state_map(mt, initial_state);
976 if (!mt->aux_state) {
977 free(mt->aux_buf);
978 mt->aux_buf = NULL;
979 return false;
980 }
981
982 /* On gen10+ we start using an extra space in the aux buffer to store the
983 * indirect clear color. However, if we imported an image from the window
984 * system with CCS, we don't have the extra space at the end of the aux
985 * buffer. So create a new bo here that will store that clear color.
986 */
987 if (brw->isl_dev.ss.clear_color_state_size > 0) {
988 mt->aux_buf->clear_color_bo =
989 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
990 brw->isl_dev.ss.clear_color_state_size,
991 I915_TILING_NONE, 0, BO_ALLOC_ZEROED);
992 if (!mt->aux_buf->clear_color_bo) {
993 free(mt->aux_buf);
994 mt->aux_buf = NULL;
995 return false;
996 }
997 }
998
999 mt->aux_buf->bo = image->bo;
1000 brw_bo_reference(image->bo);
1001
1002 mt->aux_buf->offset = image->aux_offset;
1003 mt->aux_buf->surf = temp_ccs_surf;
1004
1005 return true;
1006 }
1007
1008 struct intel_mipmap_tree *
1009 intel_miptree_create_for_dri_image(struct brw_context *brw,
1010 __DRIimage *image, GLenum target,
1011 mesa_format format,
1012 bool is_winsys_image)
1013 {
1014 uint32_t bo_tiling, bo_swizzle;
1015 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1016
1017 const struct isl_drm_modifier_info *mod_info =
1018 isl_drm_modifier_get_info(image->modifier);
1019
1020 const enum isl_tiling tiling =
1021 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1022
1023 if (image->planar_format && image->planar_format->nplanes > 1)
1024 return miptree_create_for_planar_image(brw, image, target, tiling);
1025
1026 if (image->planar_format)
1027 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1028
1029 if (!brw->ctx.TextureFormatSupported[format]) {
1030 /* The texture storage paths in core Mesa detect if the driver does not
1031 * support the user-requested format, and then searches for a
1032 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1033 * do the fallbacks here for important formats.
1034 *
1035 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1036 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1037 * the Chrome OS compositor consumes as dma_buf EGLImages.
1038 */
1039 format = _mesa_format_fallback_rgbx_to_rgba(format);
1040 }
1041
1042 if (!brw->ctx.TextureFormatSupported[format])
1043 return NULL;
1044
1045 enum intel_miptree_create_flags mt_create_flags = 0;
1046
1047 /* If this image comes in from a window system, we have different
1048 * requirements than if it comes in via an EGL import operation. Window
1049 * system images can use any form of auxiliary compression we wish because
1050 * they get "flushed" before being handed off to the window system and we
1051 * have the opportunity to do resolves. Non window-system images, on the
1052 * other hand, have no resolve point so we can't have aux without a
1053 * modifier.
1054 */
1055 if (!is_winsys_image)
1056 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1057
1058 /* If we have a modifier which specifies aux, don't create one yet */
1059 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1060 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1061
1062 /* Disable creation of the texture's aux buffers because the driver exposes
1063 * no EGL API to manage them. That is, there is no API for resolving the aux
1064 * buffer's content to the main buffer nor for invalidating the aux buffer's
1065 * content.
1066 */
1067 struct intel_mipmap_tree *mt =
1068 intel_miptree_create_for_bo(brw, image->bo, format,
1069 image->offset, image->width, image->height, 1,
1070 image->pitch, tiling, mt_create_flags);
1071 if (mt == NULL)
1072 return NULL;
1073
1074 mt->target = target;
1075 mt->level[0].level_x = image->tile_x;
1076 mt->level[0].level_y = image->tile_y;
1077 mt->drm_modifier = image->modifier;
1078
1079 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1080 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1081 * trouble resolving back to destination image due to alignment issues.
1082 */
1083 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1084 if (!devinfo->has_surface_tile_offset) {
1085 uint32_t draw_x, draw_y;
1086 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1087
1088 if (draw_x != 0 || draw_y != 0) {
1089 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1090 intel_miptree_release(&mt);
1091 return NULL;
1092 }
1093 }
1094
1095 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1096 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1097
1098 mt->aux_usage = mod_info->aux_usage;
1099 /* If we are a window system buffer, then we can support fast-clears
1100 * even if the modifier doesn't support them by doing a partial resolve
1101 * as part of the flush operation.
1102 */
1103 mt->supports_fast_clear =
1104 is_winsys_image || mod_info->supports_clear_color;
1105
1106 /* We don't know the actual state of the surface when we get it but we
1107 * can make a pretty good guess based on the modifier. What we do know
1108 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1109 * a worst case of compression.
1110 */
1111 enum isl_aux_state initial_state =
1112 isl_drm_modifier_get_default_aux_state(image->modifier);
1113
1114 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1115 intel_miptree_release(&mt);
1116 return NULL;
1117 }
1118 }
1119
1120 /* Don't assume coherency for imported EGLimages. We don't know what
1121 * external clients are going to do with it. They may scan it out.
1122 */
1123 image->bo->cache_coherent = false;
1124
1125 return mt;
1126 }
1127
1128 /**
1129 * For a singlesample renderbuffer, this simply wraps the given BO with a
1130 * miptree.
1131 *
1132 * For a multisample renderbuffer, this wraps the window system's
1133 * (singlesample) BO with a singlesample miptree attached to the
1134 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1135 * that will contain the actual rendering (which is lazily resolved to
1136 * irb->singlesample_mt).
1137 */
1138 bool
1139 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1140 struct intel_renderbuffer *irb,
1141 struct intel_mipmap_tree *singlesample_mt,
1142 uint32_t width, uint32_t height,
1143 uint32_t pitch)
1144 {
1145 struct intel_mipmap_tree *multisample_mt = NULL;
1146 struct gl_renderbuffer *rb = &irb->Base.Base;
1147 mesa_format format = rb->Format;
1148 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1149
1150 /* Only the front and back buffers, which are color buffers, are allocated
1151 * through the image loader.
1152 */
1153 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1154 _mesa_get_format_base_format(format) == GL_RGBA);
1155
1156 assert(singlesample_mt);
1157
1158 if (num_samples == 1) {
1159 intel_miptree_release(&irb->mt);
1160 irb->mt = singlesample_mt;
1161
1162 assert(!irb->singlesample_mt);
1163 } else {
1164 intel_miptree_release(&irb->singlesample_mt);
1165 irb->singlesample_mt = singlesample_mt;
1166
1167 if (!irb->mt ||
1168 irb->mt->surf.logical_level0_px.width != width ||
1169 irb->mt->surf.logical_level0_px.height != height) {
1170 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1171 format,
1172 width,
1173 height,
1174 num_samples);
1175 if (!multisample_mt)
1176 goto fail;
1177
1178 irb->need_downsample = false;
1179 intel_miptree_release(&irb->mt);
1180 irb->mt = multisample_mt;
1181 }
1182 }
1183 return true;
1184
1185 fail:
1186 intel_miptree_release(&irb->mt);
1187 return false;
1188 }
1189
1190 struct intel_mipmap_tree*
1191 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1192 mesa_format format,
1193 uint32_t width,
1194 uint32_t height,
1195 uint32_t num_samples)
1196 {
1197 struct intel_mipmap_tree *mt;
1198 uint32_t depth = 1;
1199 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1200
1201 mt = intel_miptree_create(brw, target, format, 0, 0,
1202 width, height, depth, num_samples,
1203 MIPTREE_CREATE_BUSY);
1204 if (!mt)
1205 goto fail;
1206
1207 return mt;
1208
1209 fail:
1210 intel_miptree_release(&mt);
1211 return NULL;
1212 }
1213
1214 void
1215 intel_miptree_reference(struct intel_mipmap_tree **dst,
1216 struct intel_mipmap_tree *src)
1217 {
1218 if (*dst == src)
1219 return;
1220
1221 intel_miptree_release(dst);
1222
1223 if (src) {
1224 src->refcount++;
1225 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1226 }
1227
1228 *dst = src;
1229 }
1230
1231 static void
1232 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1233 {
1234 if (aux_buf == NULL)
1235 return;
1236
1237 brw_bo_unreference(aux_buf->bo);
1238 brw_bo_unreference(aux_buf->clear_color_bo);
1239
1240 free(aux_buf);
1241 }
1242
1243 void
1244 intel_miptree_release(struct intel_mipmap_tree **mt)
1245 {
1246 if (!*mt)
1247 return;
1248
1249 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1250 if (--(*mt)->refcount <= 0) {
1251 GLuint i;
1252
1253 DBG("%s deleting %p\n", __func__, *mt);
1254
1255 brw_bo_unreference((*mt)->bo);
1256 intel_miptree_release(&(*mt)->stencil_mt);
1257 intel_miptree_release(&(*mt)->r8stencil_mt);
1258 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1259 free_aux_state_map((*mt)->aux_state);
1260
1261 intel_miptree_release(&(*mt)->plane[0]);
1262 intel_miptree_release(&(*mt)->plane[1]);
1263
1264 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1265 free((*mt)->level[i].slice);
1266 }
1267
1268 free(*mt);
1269 }
1270 *mt = NULL;
1271 }
1272
1273
1274 void
1275 intel_get_image_dims(struct gl_texture_image *image,
1276 int *width, int *height, int *depth)
1277 {
1278 switch (image->TexObject->Target) {
1279 case GL_TEXTURE_1D_ARRAY:
1280 /* For a 1D Array texture the OpenGL API will treat the image height as
1281 * the number of array slices. For Intel hardware, we treat the 1D array
1282 * as a 2D Array with a height of 1. So, here we want to swap image
1283 * height and depth.
1284 */
1285 assert(image->Depth == 1);
1286 *width = image->Width;
1287 *height = 1;
1288 *depth = image->Height;
1289 break;
1290 case GL_TEXTURE_CUBE_MAP:
1291 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1292 * though we really have 6 slices.
1293 */
1294 assert(image->Depth == 1);
1295 *width = image->Width;
1296 *height = image->Height;
1297 *depth = 6;
1298 break;
1299 default:
1300 *width = image->Width;
1301 *height = image->Height;
1302 *depth = image->Depth;
1303 break;
1304 }
1305 }
1306
1307 /**
1308 * Can the image be pulled into a unified mipmap tree? This mirrors
1309 * the completeness test in a lot of ways.
1310 *
1311 * Not sure whether I want to pass gl_texture_image here.
1312 */
1313 bool
1314 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1315 struct gl_texture_image *image)
1316 {
1317 struct intel_texture_image *intelImage = intel_texture_image(image);
1318 GLuint level = intelImage->base.Base.Level;
1319 int width, height, depth;
1320
1321 /* glTexImage* choose the texture object based on the target passed in, and
1322 * objects can't change targets over their lifetimes, so this should be
1323 * true.
1324 */
1325 assert(image->TexObject->Target == mt->target);
1326
1327 mesa_format mt_format = mt->format;
1328 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1329 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1330 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1331 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1332 if (mt->etc_format != MESA_FORMAT_NONE)
1333 mt_format = mt->etc_format;
1334
1335 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1336 _mesa_get_srgb_format_linear(mt_format))
1337 return false;
1338
1339 intel_get_image_dims(image, &width, &height, &depth);
1340
1341 if (mt->target == GL_TEXTURE_CUBE_MAP)
1342 depth = 6;
1343
1344 if (level >= mt->surf.levels)
1345 return false;
1346
1347 const unsigned level_depth =
1348 mt->surf.dim == ISL_SURF_DIM_3D ?
1349 minify(mt->surf.logical_level0_px.depth, level) :
1350 mt->surf.logical_level0_px.array_len;
1351
1352 return width == minify(mt->surf.logical_level0_px.width, level) &&
1353 height == minify(mt->surf.logical_level0_px.height, level) &&
1354 depth == level_depth &&
1355 MAX2(image->NumSamples, 1) == mt->surf.samples;
1356 }
1357
1358 void
1359 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1360 GLuint level, GLuint slice,
1361 GLuint *x, GLuint *y)
1362 {
1363 if (level == 0 && slice == 0) {
1364 *x = mt->level[0].level_x;
1365 *y = mt->level[0].level_y;
1366 return;
1367 }
1368
1369 uint32_t x_offset_sa, y_offset_sa;
1370
1371 /* Miptree itself can have an offset only if it represents a single
1372 * slice in an imported buffer object.
1373 * See intel_miptree_create_for_dri_image().
1374 */
1375 assert(mt->level[0].level_x == 0);
1376 assert(mt->level[0].level_y == 0);
1377
1378 /* Given level is relative to level zero while the miptree may be
1379 * represent just a subset of all levels starting from 'first_level'.
1380 */
1381 assert(level >= mt->first_level);
1382 level -= mt->first_level;
1383
1384 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1385 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1386 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1387 &x_offset_sa, &y_offset_sa);
1388
1389 *x = x_offset_sa;
1390 *y = y_offset_sa;
1391 }
1392
1393
1394 /**
1395 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1396 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1397 * and tile_h is set to 1.
1398 */
1399 void
1400 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1401 uint32_t *tile_w, uint32_t *tile_h)
1402 {
1403 switch (tiling) {
1404 case ISL_TILING_X:
1405 *tile_w = 512;
1406 *tile_h = 8;
1407 break;
1408 case ISL_TILING_Y0:
1409 *tile_w = 128;
1410 *tile_h = 32;
1411 break;
1412 case ISL_TILING_LINEAR:
1413 *tile_w = cpp;
1414 *tile_h = 1;
1415 break;
1416 default:
1417 unreachable("not reached");
1418 }
1419 }
1420
1421
1422 /**
1423 * This function computes masks that may be used to select the bits of the X
1424 * and Y coordinates that indicate the offset within a tile. If the BO is
1425 * untiled, the masks are set to 0.
1426 */
1427 void
1428 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1429 uint32_t *mask_x, uint32_t *mask_y)
1430 {
1431 uint32_t tile_w_bytes, tile_h;
1432
1433 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1434
1435 *mask_x = tile_w_bytes / cpp - 1;
1436 *mask_y = tile_h - 1;
1437 }
1438
1439 /**
1440 * Compute the offset (in bytes) from the start of the BO to the given x
1441 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1442 * multiples of the tile size.
1443 */
1444 uint32_t
1445 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1446 uint32_t x, uint32_t y)
1447 {
1448 int cpp = mt->cpp;
1449 uint32_t pitch = mt->surf.row_pitch;
1450
1451 switch (mt->surf.tiling) {
1452 default:
1453 unreachable("not reached");
1454 case ISL_TILING_LINEAR:
1455 return y * pitch + x * cpp;
1456 case ISL_TILING_X:
1457 assert((x % (512 / cpp)) == 0);
1458 assert((y % 8) == 0);
1459 return y * pitch + x / (512 / cpp) * 4096;
1460 case ISL_TILING_Y0:
1461 assert((x % (128 / cpp)) == 0);
1462 assert((y % 32) == 0);
1463 return y * pitch + x / (128 / cpp) * 4096;
1464 }
1465 }
1466
1467 /**
1468 * Rendering with tiled buffers requires that the base address of the buffer
1469 * be aligned to a page boundary. For renderbuffers, and sometimes with
1470 * textures, we may want the surface to point at a texture image level that
1471 * isn't at a page boundary.
1472 *
1473 * This function returns an appropriately-aligned base offset
1474 * according to the tiling restrictions, plus any required x/y offset
1475 * from there.
1476 */
1477 uint32_t
1478 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1479 GLuint level, GLuint slice,
1480 uint32_t *tile_x,
1481 uint32_t *tile_y)
1482 {
1483 uint32_t x, y;
1484 uint32_t mask_x, mask_y;
1485
1486 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1487 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1488
1489 *tile_x = x & mask_x;
1490 *tile_y = y & mask_y;
1491
1492 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1493 }
1494
1495 static void
1496 intel_miptree_copy_slice_sw(struct brw_context *brw,
1497 struct intel_mipmap_tree *src_mt,
1498 unsigned src_level, unsigned src_layer,
1499 struct intel_mipmap_tree *dst_mt,
1500 unsigned dst_level, unsigned dst_layer,
1501 unsigned width, unsigned height)
1502 {
1503 void *src, *dst;
1504 ptrdiff_t src_stride, dst_stride;
1505 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1506
1507 intel_miptree_map(brw, src_mt,
1508 src_level, src_layer,
1509 0, 0,
1510 width, height,
1511 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1512 &src, &src_stride);
1513
1514 intel_miptree_map(brw, dst_mt,
1515 dst_level, dst_layer,
1516 0, 0,
1517 width, height,
1518 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1519 BRW_MAP_DIRECT_BIT,
1520 &dst, &dst_stride);
1521
1522 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1523 _mesa_get_format_name(src_mt->format),
1524 src_mt, src, src_stride,
1525 _mesa_get_format_name(dst_mt->format),
1526 dst_mt, dst, dst_stride,
1527 width, height);
1528
1529 int row_size = cpp * width;
1530 if (src_stride == row_size &&
1531 dst_stride == row_size) {
1532 memcpy(dst, src, row_size * height);
1533 } else {
1534 for (int i = 0; i < height; i++) {
1535 memcpy(dst, src, row_size);
1536 dst += dst_stride;
1537 src += src_stride;
1538 }
1539 }
1540
1541 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1542 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1543
1544 /* Don't forget to copy the stencil data over, too. We could have skipped
1545 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1546 * shuffling the two data sources in/out of temporary storage instead of
1547 * the direct mapping we get this way.
1548 */
1549 if (dst_mt->stencil_mt) {
1550 assert(src_mt->stencil_mt);
1551 intel_miptree_copy_slice_sw(brw,
1552 src_mt->stencil_mt, src_level, src_layer,
1553 dst_mt->stencil_mt, dst_level, dst_layer,
1554 width, height);
1555 }
1556 }
1557
1558 void
1559 intel_miptree_copy_slice(struct brw_context *brw,
1560 struct intel_mipmap_tree *src_mt,
1561 unsigned src_level, unsigned src_layer,
1562 struct intel_mipmap_tree *dst_mt,
1563 unsigned dst_level, unsigned dst_layer)
1564
1565 {
1566 mesa_format format = src_mt->format;
1567 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1568 src_level - src_mt->first_level);
1569 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1570 src_level - src_mt->first_level);
1571
1572 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1573 src_level - src_mt->first_level));
1574
1575 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1576 _mesa_get_srgb_format_linear(dst_mt->format));
1577
1578 if (dst_mt->compressed) {
1579 unsigned int i, j;
1580 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1581 height = ALIGN_NPOT(height, j) / j;
1582 width = ALIGN_NPOT(width, i) / i;
1583 }
1584
1585 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1586 * below won't apply since we can't do the depth's Y tiling or the
1587 * stencil's W tiling in the blitter.
1588 */
1589 if (src_mt->stencil_mt) {
1590 intel_miptree_copy_slice_sw(brw,
1591 src_mt, src_level, src_layer,
1592 dst_mt, dst_level, dst_layer,
1593 width, height);
1594 return;
1595 }
1596
1597 uint32_t dst_x, dst_y, src_x, src_y;
1598 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1599 &dst_x, &dst_y);
1600 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1601 &src_x, &src_y);
1602
1603 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1604 _mesa_get_format_name(src_mt->format),
1605 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1606 _mesa_get_format_name(dst_mt->format),
1607 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1608 width, height);
1609
1610 if (!intel_miptree_blit(brw,
1611 src_mt, src_level, src_layer, 0, 0, false,
1612 dst_mt, dst_level, dst_layer, 0, 0, false,
1613 width, height, COLOR_LOGICOP_COPY)) {
1614 perf_debug("miptree validate blit for %s failed\n",
1615 _mesa_get_format_name(format));
1616
1617 intel_miptree_copy_slice_sw(brw,
1618 src_mt, src_level, src_layer,
1619 dst_mt, dst_level, dst_layer,
1620 width, height);
1621 }
1622 }
1623
1624 /**
1625 * Copies the image's current data to the given miptree, and associates that
1626 * miptree with the image.
1627 */
1628 void
1629 intel_miptree_copy_teximage(struct brw_context *brw,
1630 struct intel_texture_image *intelImage,
1631 struct intel_mipmap_tree *dst_mt)
1632 {
1633 struct intel_mipmap_tree *src_mt = intelImage->mt;
1634 struct intel_texture_object *intel_obj =
1635 intel_texture_object(intelImage->base.Base.TexObject);
1636 int level = intelImage->base.Base.Level;
1637 const unsigned face = intelImage->base.Base.Face;
1638 unsigned start_layer, end_layer;
1639
1640 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1641 assert(face == 0);
1642 assert(intelImage->base.Base.Height);
1643 start_layer = 0;
1644 end_layer = intelImage->base.Base.Height - 1;
1645 } else if (face > 0) {
1646 start_layer = face;
1647 end_layer = face;
1648 } else {
1649 assert(intelImage->base.Base.Depth);
1650 start_layer = 0;
1651 end_layer = intelImage->base.Base.Depth - 1;
1652 }
1653
1654 for (unsigned i = start_layer; i <= end_layer; i++) {
1655 intel_miptree_copy_slice(brw,
1656 src_mt, level, i,
1657 dst_mt, level, i);
1658 }
1659
1660 intel_miptree_reference(&intelImage->mt, dst_mt);
1661 intel_obj->needs_validate = true;
1662 }
1663
1664 static struct intel_miptree_aux_buffer *
1665 intel_alloc_aux_buffer(struct brw_context *brw,
1666 const struct isl_surf *aux_surf,
1667 bool wants_memset,
1668 uint8_t memset_value)
1669 {
1670 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1671 if (!buf)
1672 return false;
1673
1674 uint64_t size = aux_surf->size;
1675
1676 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1677 if (has_indirect_clear) {
1678 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1679 * will set a pointer to a dword somewhere that contains the color. So,
1680 * allocate the space for the clear color value here on the aux buffer.
1681 */
1682 buf->clear_color_offset = size;
1683 size += brw->isl_dev.ss.clear_color_state_size;
1684 }
1685
1686 /* If the buffer needs to be initialised (requiring the buffer to be
1687 * immediately mapped to cpu space for writing), do not use the gpu access
1688 * flag which can cause an unnecessary delay if the backing pages happened
1689 * to be just used by the GPU.
1690 */
1691 const bool alloc_zeroed = wants_memset && memset_value == 0;
1692 const bool needs_memset =
1693 !alloc_zeroed && (wants_memset || has_indirect_clear);
1694 const uint32_t alloc_flags =
1695 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1696
1697 /* ISL has stricter set of alignment rules then the drm allocator.
1698 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1699 * trying to recalculate based on different format block sizes.
1700 */
1701 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1702 I915_TILING_Y, aux_surf->row_pitch,
1703 alloc_flags);
1704 if (!buf->bo) {
1705 free(buf);
1706 return NULL;
1707 }
1708
1709 /* Initialize the bo to the desired value */
1710 if (needs_memset) {
1711 assert(!(alloc_flags & BO_ALLOC_BUSY));
1712
1713 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1714 if (map == NULL) {
1715 intel_miptree_aux_buffer_free(buf);
1716 return NULL;
1717 }
1718
1719 /* Memset the aux_surf portion of the BO. */
1720 if (wants_memset)
1721 memset(map, memset_value, aux_surf->size);
1722
1723 /* Zero the indirect clear color to match ::fast_clear_color. */
1724 if (has_indirect_clear) {
1725 memset((char *)map + buf->clear_color_offset, 0,
1726 brw->isl_dev.ss.clear_color_state_size);
1727 }
1728
1729 brw_bo_unmap(buf->bo);
1730 }
1731
1732 if (has_indirect_clear) {
1733 buf->clear_color_bo = buf->bo;
1734 brw_bo_reference(buf->clear_color_bo);
1735 }
1736
1737 buf->surf = *aux_surf;
1738
1739 return buf;
1740 }
1741
1742 static bool
1743 intel_miptree_alloc_mcs(struct brw_context *brw,
1744 struct intel_mipmap_tree *mt,
1745 GLuint num_samples)
1746 {
1747 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1748 assert(mt->aux_buf == NULL);
1749 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1750
1751 /* Multisampled miptrees are only supported for single level. */
1752 assert(mt->first_level == 0);
1753 enum isl_aux_state **aux_state =
1754 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1755 if (!aux_state)
1756 return false;
1757
1758 struct isl_surf temp_mcs_surf;
1759
1760 MAYBE_UNUSED bool ok =
1761 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1762 assert(ok);
1763
1764 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1765 *
1766 * When MCS buffer is enabled and bound to MSRT, it is required that it
1767 * is cleared prior to any rendering.
1768 *
1769 * Since we don't use the MCS buffer for any purpose other than rendering,
1770 * it makes sense to just clear it immediately upon allocation.
1771 *
1772 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1773 */
1774 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_mcs_surf, true, 0xFF);
1775 if (!mt->aux_buf) {
1776 free(aux_state);
1777 return false;
1778 }
1779
1780 mt->aux_state = aux_state;
1781
1782 return true;
1783 }
1784
1785 static bool
1786 intel_miptree_alloc_ccs(struct brw_context *brw,
1787 struct intel_mipmap_tree *mt)
1788 {
1789 assert(mt->aux_buf == NULL);
1790 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1791 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1792
1793 struct isl_surf temp_ccs_surf;
1794
1795 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1796 return false;
1797
1798 assert(temp_ccs_surf.size &&
1799 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1800
1801 enum isl_aux_state **aux_state =
1802 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1803 if (!aux_state)
1804 return false;
1805
1806 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1807 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1808 *
1809 * "If Software wants to enable Color Compression without Fast clear,
1810 * Software needs to initialize MCS with zeros."
1811 *
1812 * A CCS value of 0 indicates that the corresponding block is in the
1813 * pass-through state which is what we want.
1814 *
1815 * For CCS_D, do the same thing. On gen9+, this avoids having any undefined
1816 * bits in the aux buffer.
1817 */
1818 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_ccs_surf, true, 0);
1819 if (!mt->aux_buf) {
1820 free(aux_state);
1821 return false;
1822 }
1823
1824 mt->aux_state = aux_state;
1825
1826 return true;
1827 }
1828
1829 /**
1830 * Helper for intel_miptree_alloc_hiz() that sets
1831 * \c mt->level[level].has_hiz. Return true if and only if
1832 * \c has_hiz was set.
1833 */
1834 static bool
1835 intel_miptree_level_enable_hiz(struct brw_context *brw,
1836 struct intel_mipmap_tree *mt,
1837 uint32_t level)
1838 {
1839 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1840
1841 assert(mt->aux_buf);
1842 assert(mt->surf.size > 0);
1843
1844 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1845 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1846 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1847
1848 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1849 * and the height is 4 aligned. This allows our HiZ support
1850 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1851 * we can grow the width & height to allow the HiZ op to
1852 * force the proper size alignments.
1853 */
1854 if (level > 0 && ((width & 7) || (height & 3))) {
1855 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1856 return false;
1857 }
1858 }
1859
1860 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1861 mt->level[level].has_hiz = true;
1862 return true;
1863 }
1864
1865 bool
1866 intel_miptree_alloc_hiz(struct brw_context *brw,
1867 struct intel_mipmap_tree *mt)
1868 {
1869 assert(mt->aux_buf == NULL);
1870 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1871
1872 enum isl_aux_state **aux_state =
1873 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1874 if (!aux_state)
1875 return false;
1876
1877 struct isl_surf temp_hiz_surf;
1878
1879 MAYBE_UNUSED bool ok =
1880 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1881 assert(ok);
1882
1883 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_hiz_surf, false, 0);
1884
1885 if (!mt->aux_buf) {
1886 free(aux_state);
1887 return false;
1888 }
1889
1890 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1891 intel_miptree_level_enable_hiz(brw, mt, level);
1892
1893 mt->aux_state = aux_state;
1894
1895 return true;
1896 }
1897
1898
1899 /**
1900 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1901 *
1902 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1903 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1904 * compress clear color so we wait until an actual fast-clear to allocate it.
1905 */
1906 bool
1907 intel_miptree_alloc_aux(struct brw_context *brw,
1908 struct intel_mipmap_tree *mt)
1909 {
1910 switch (mt->aux_usage) {
1911 case ISL_AUX_USAGE_NONE:
1912 return true;
1913
1914 case ISL_AUX_USAGE_HIZ:
1915 assert(!_mesa_is_format_color_format(mt->format));
1916 if (!intel_miptree_alloc_hiz(brw, mt))
1917 return false;
1918 return true;
1919
1920 case ISL_AUX_USAGE_MCS:
1921 assert(_mesa_is_format_color_format(mt->format));
1922 assert(mt->surf.samples > 1);
1923 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1924 return false;
1925 return true;
1926
1927 case ISL_AUX_USAGE_CCS_D:
1928 case ISL_AUX_USAGE_CCS_E:
1929 assert(_mesa_is_format_color_format(mt->format));
1930 assert(mt->surf.samples == 1);
1931 if (!intel_miptree_alloc_ccs(brw, mt))
1932 return false;
1933 return true;
1934 }
1935
1936 unreachable("Invalid aux usage");
1937 }
1938
1939
1940 /**
1941 * Can the miptree sample using the hiz buffer?
1942 */
1943 bool
1944 intel_miptree_sample_with_hiz(struct brw_context *brw,
1945 struct intel_mipmap_tree *mt)
1946 {
1947 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1948
1949 if (!devinfo->has_sample_with_hiz) {
1950 return false;
1951 }
1952
1953 if (!mt->aux_buf) {
1954 return false;
1955 }
1956
1957 /* It seems the hardware won't fallback to the depth buffer if some of the
1958 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1959 * of the texture to be HiZ enabled.
1960 */
1961 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1962 if (!intel_miptree_level_has_hiz(mt, level))
1963 return false;
1964 }
1965
1966 /* If compressed multisampling is enabled, then we use it for the auxiliary
1967 * buffer instead.
1968 *
1969 * From the BDW PRM (Volume 2d: Command Reference: Structures
1970 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1971 *
1972 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1973 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1974 *
1975 * There is no such blurb for 1D textures, but there is sufficient evidence
1976 * that this is broken on SKL+.
1977 */
1978 return (mt->surf.samples == 1 &&
1979 mt->target != GL_TEXTURE_3D &&
1980 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1981 }
1982
1983 /**
1984 * Does the miptree slice have hiz enabled?
1985 */
1986 bool
1987 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1988 {
1989 intel_miptree_check_level_layer(mt, level, 0);
1990 return mt->level[level].has_hiz;
1991 }
1992
1993 static inline uint32_t
1994 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1995 uint32_t start_level, uint32_t num_levels)
1996 {
1997 assert(start_level >= mt->first_level);
1998 assert(start_level <= mt->last_level);
1999
2000 if (num_levels == INTEL_REMAINING_LAYERS)
2001 num_levels = mt->last_level - start_level + 1;
2002 /* Check for overflow */
2003 assert(start_level + num_levels >= start_level);
2004 assert(start_level + num_levels <= mt->last_level + 1);
2005
2006 return num_levels;
2007 }
2008
2009 static inline uint32_t
2010 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2011 uint32_t start_layer, uint32_t num_layers)
2012 {
2013 assert(level <= mt->last_level);
2014
2015 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2016 assert(start_layer < total_num_layers);
2017 if (num_layers == INTEL_REMAINING_LAYERS)
2018 num_layers = total_num_layers - start_layer;
2019 /* Check for overflow */
2020 assert(start_layer + num_layers >= start_layer);
2021 assert(start_layer + num_layers <= total_num_layers);
2022
2023 return num_layers;
2024 }
2025
2026 bool
2027 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2028 unsigned start_level, unsigned num_levels,
2029 unsigned start_layer, unsigned num_layers)
2030 {
2031 assert(_mesa_is_format_color_format(mt->format));
2032
2033 if (!mt->aux_buf)
2034 return false;
2035
2036 /* Clamp the level range to fit the miptree */
2037 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2038
2039 for (uint32_t l = 0; l < num_levels; l++) {
2040 const uint32_t level = start_level + l;
2041 const uint32_t level_layers =
2042 miptree_layer_range_length(mt, level, start_layer, num_layers);
2043 for (unsigned a = 0; a < level_layers; a++) {
2044 enum isl_aux_state aux_state =
2045 intel_miptree_get_aux_state(mt, level, start_layer + a);
2046 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2047 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2048 return true;
2049 }
2050 }
2051
2052 return false;
2053 }
2054
2055 static void
2056 intel_miptree_check_color_resolve(const struct brw_context *brw,
2057 const struct intel_mipmap_tree *mt,
2058 unsigned level, unsigned layer)
2059 {
2060 if (!mt->aux_buf)
2061 return;
2062
2063 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2064 assert(brw->screen->devinfo.gen >= 8 ||
2065 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2066
2067 /* Compression of arrayed msaa surfaces is supported. */
2068 if (mt->surf.samples > 1)
2069 return;
2070
2071 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2072 assert(brw->screen->devinfo.gen >= 8 ||
2073 (layer == 0 &&
2074 mt->surf.logical_level0_px.depth == 1 &&
2075 mt->surf.logical_level0_px.array_len == 1));
2076
2077 (void)level;
2078 (void)layer;
2079 }
2080
2081 static enum isl_aux_op
2082 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2083 enum isl_aux_usage aux_usage,
2084 bool fast_clear_supported)
2085 {
2086 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2087
2088 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2089
2090 assert(ccs_supported == fast_clear_supported);
2091
2092 switch (aux_state) {
2093 case ISL_AUX_STATE_CLEAR:
2094 case ISL_AUX_STATE_PARTIAL_CLEAR:
2095 if (!ccs_supported)
2096 return ISL_AUX_OP_FULL_RESOLVE;
2097 else
2098 return ISL_AUX_OP_NONE;
2099
2100 case ISL_AUX_STATE_PASS_THROUGH:
2101 return ISL_AUX_OP_NONE;
2102
2103 case ISL_AUX_STATE_RESOLVED:
2104 case ISL_AUX_STATE_AUX_INVALID:
2105 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2106 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2107 break;
2108 }
2109
2110 unreachable("Invalid aux state for CCS_D");
2111 }
2112
2113 static enum isl_aux_op
2114 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2115 enum isl_aux_usage aux_usage,
2116 bool fast_clear_supported)
2117 {
2118 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2119 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2120 aux_usage == ISL_AUX_USAGE_CCS_D ||
2121 aux_usage == ISL_AUX_USAGE_CCS_E);
2122
2123 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2124 assert(fast_clear_supported);
2125
2126 switch (aux_state) {
2127 case ISL_AUX_STATE_CLEAR:
2128 case ISL_AUX_STATE_PARTIAL_CLEAR:
2129 if (fast_clear_supported)
2130 return ISL_AUX_OP_NONE;
2131 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2132 return ISL_AUX_OP_PARTIAL_RESOLVE;
2133 else
2134 return ISL_AUX_OP_FULL_RESOLVE;
2135
2136 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2137 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2138 return ISL_AUX_OP_FULL_RESOLVE;
2139 else if (!fast_clear_supported)
2140 return ISL_AUX_OP_PARTIAL_RESOLVE;
2141 else
2142 return ISL_AUX_OP_NONE;
2143
2144 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2145 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2146 return ISL_AUX_OP_FULL_RESOLVE;
2147 else
2148 return ISL_AUX_OP_NONE;
2149
2150 case ISL_AUX_STATE_PASS_THROUGH:
2151 return ISL_AUX_OP_NONE;
2152
2153 case ISL_AUX_STATE_RESOLVED:
2154 case ISL_AUX_STATE_AUX_INVALID:
2155 break;
2156 }
2157
2158 unreachable("Invalid aux state for CCS_E");
2159 }
2160
2161 static void
2162 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2163 struct intel_mipmap_tree *mt,
2164 uint32_t level, uint32_t layer,
2165 enum isl_aux_usage aux_usage,
2166 bool fast_clear_supported)
2167 {
2168 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2169
2170 enum isl_aux_op resolve_op;
2171 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2172 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2173 fast_clear_supported);
2174 } else {
2175 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2176 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2177 fast_clear_supported);
2178 }
2179
2180 if (resolve_op != ISL_AUX_OP_NONE) {
2181 intel_miptree_check_color_resolve(brw, mt, level, layer);
2182 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2183
2184 switch (resolve_op) {
2185 case ISL_AUX_OP_FULL_RESOLVE:
2186 /* The CCS full resolve operation destroys the CCS and sets it to the
2187 * pass-through state. (You can also think of this as being both a
2188 * resolve and an ambiguate in one operation.)
2189 */
2190 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2191 ISL_AUX_STATE_PASS_THROUGH);
2192 break;
2193
2194 case ISL_AUX_OP_PARTIAL_RESOLVE:
2195 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2196 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2197 break;
2198
2199 default:
2200 unreachable("Invalid resolve op");
2201 }
2202 }
2203 }
2204
2205 static void
2206 intel_miptree_finish_ccs_write(struct brw_context *brw,
2207 struct intel_mipmap_tree *mt,
2208 uint32_t level, uint32_t layer,
2209 enum isl_aux_usage aux_usage)
2210 {
2211 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2212 aux_usage == ISL_AUX_USAGE_CCS_D ||
2213 aux_usage == ISL_AUX_USAGE_CCS_E);
2214
2215 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2216
2217 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2218 switch (aux_state) {
2219 case ISL_AUX_STATE_CLEAR:
2220 case ISL_AUX_STATE_PARTIAL_CLEAR:
2221 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2222 aux_usage == ISL_AUX_USAGE_CCS_D);
2223
2224 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2225 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2226 ISL_AUX_STATE_COMPRESSED_CLEAR);
2227 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2228 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2229 ISL_AUX_STATE_PARTIAL_CLEAR);
2230 }
2231 break;
2232
2233 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2234 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2235 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2236 break; /* Nothing to do */
2237
2238 case ISL_AUX_STATE_PASS_THROUGH:
2239 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2240 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2241 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2242 } else {
2243 /* Nothing to do */
2244 }
2245 break;
2246
2247 case ISL_AUX_STATE_RESOLVED:
2248 case ISL_AUX_STATE_AUX_INVALID:
2249 unreachable("Invalid aux state for CCS_E");
2250 }
2251 } else {
2252 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2253 /* CCS_D is a bit simpler */
2254 switch (aux_state) {
2255 case ISL_AUX_STATE_CLEAR:
2256 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2257 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2258 ISL_AUX_STATE_PARTIAL_CLEAR);
2259 break;
2260
2261 case ISL_AUX_STATE_PARTIAL_CLEAR:
2262 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2263 break; /* Nothing to do */
2264
2265 case ISL_AUX_STATE_PASS_THROUGH:
2266 /* Nothing to do */
2267 break;
2268
2269 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2270 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2271 case ISL_AUX_STATE_RESOLVED:
2272 case ISL_AUX_STATE_AUX_INVALID:
2273 unreachable("Invalid aux state for CCS_D");
2274 }
2275 }
2276 }
2277
2278 static void
2279 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2280 struct intel_mipmap_tree *mt,
2281 uint32_t layer,
2282 enum isl_aux_usage aux_usage,
2283 bool fast_clear_supported)
2284 {
2285 assert(aux_usage == ISL_AUX_USAGE_MCS);
2286
2287 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2288 case ISL_AUX_STATE_CLEAR:
2289 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2290 if (!fast_clear_supported) {
2291 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2292 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2293 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2294 }
2295 break;
2296
2297 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2298 break; /* Nothing to do */
2299
2300 case ISL_AUX_STATE_RESOLVED:
2301 case ISL_AUX_STATE_PASS_THROUGH:
2302 case ISL_AUX_STATE_AUX_INVALID:
2303 case ISL_AUX_STATE_PARTIAL_CLEAR:
2304 unreachable("Invalid aux state for MCS");
2305 }
2306 }
2307
2308 static void
2309 intel_miptree_finish_mcs_write(struct brw_context *brw,
2310 struct intel_mipmap_tree *mt,
2311 uint32_t layer,
2312 enum isl_aux_usage aux_usage)
2313 {
2314 assert(aux_usage == ISL_AUX_USAGE_MCS);
2315
2316 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2317 case ISL_AUX_STATE_CLEAR:
2318 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2319 ISL_AUX_STATE_COMPRESSED_CLEAR);
2320 break;
2321
2322 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2323 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2324 break; /* Nothing to do */
2325
2326 case ISL_AUX_STATE_RESOLVED:
2327 case ISL_AUX_STATE_PASS_THROUGH:
2328 case ISL_AUX_STATE_AUX_INVALID:
2329 case ISL_AUX_STATE_PARTIAL_CLEAR:
2330 unreachable("Invalid aux state for MCS");
2331 }
2332 }
2333
2334 static void
2335 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2336 struct intel_mipmap_tree *mt,
2337 uint32_t level, uint32_t layer,
2338 enum isl_aux_usage aux_usage,
2339 bool fast_clear_supported)
2340 {
2341 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2342
2343 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2344 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2345 case ISL_AUX_STATE_CLEAR:
2346 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2347 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2348 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2349 break;
2350
2351 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2352 if (aux_usage != ISL_AUX_USAGE_HIZ)
2353 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2354 break;
2355
2356 case ISL_AUX_STATE_PASS_THROUGH:
2357 case ISL_AUX_STATE_RESOLVED:
2358 break;
2359
2360 case ISL_AUX_STATE_AUX_INVALID:
2361 if (aux_usage == ISL_AUX_USAGE_HIZ)
2362 hiz_op = ISL_AUX_OP_AMBIGUATE;
2363 break;
2364
2365 case ISL_AUX_STATE_PARTIAL_CLEAR:
2366 unreachable("Invalid HiZ state");
2367 }
2368
2369 if (hiz_op != ISL_AUX_OP_NONE) {
2370 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2371
2372 switch (hiz_op) {
2373 case ISL_AUX_OP_FULL_RESOLVE:
2374 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2375 ISL_AUX_STATE_RESOLVED);
2376 break;
2377
2378 case ISL_AUX_OP_AMBIGUATE:
2379 /* The HiZ resolve operation is actually an ambiguate */
2380 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2381 ISL_AUX_STATE_PASS_THROUGH);
2382 break;
2383
2384 default:
2385 unreachable("Invalid HiZ op");
2386 }
2387 }
2388 }
2389
2390 static void
2391 intel_miptree_finish_hiz_write(struct brw_context *brw,
2392 struct intel_mipmap_tree *mt,
2393 uint32_t level, uint32_t layer,
2394 enum isl_aux_usage aux_usage)
2395 {
2396 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2397
2398 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2399 case ISL_AUX_STATE_CLEAR:
2400 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2401 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2402 ISL_AUX_STATE_COMPRESSED_CLEAR);
2403 break;
2404
2405 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2406 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2407 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2408 break; /* Nothing to do */
2409
2410 case ISL_AUX_STATE_RESOLVED:
2411 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2412 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2413 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2414 } else {
2415 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2416 ISL_AUX_STATE_AUX_INVALID);
2417 }
2418 break;
2419
2420 case ISL_AUX_STATE_PASS_THROUGH:
2421 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2422 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2423 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2424 }
2425 break;
2426
2427 case ISL_AUX_STATE_AUX_INVALID:
2428 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2429 break;
2430
2431 case ISL_AUX_STATE_PARTIAL_CLEAR:
2432 unreachable("Invalid HiZ state");
2433 }
2434 }
2435
2436 void
2437 intel_miptree_prepare_access(struct brw_context *brw,
2438 struct intel_mipmap_tree *mt,
2439 uint32_t start_level, uint32_t num_levels,
2440 uint32_t start_layer, uint32_t num_layers,
2441 enum isl_aux_usage aux_usage,
2442 bool fast_clear_supported)
2443 {
2444 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2445
2446 switch (mt->aux_usage) {
2447 case ISL_AUX_USAGE_NONE:
2448 /* Nothing to do */
2449 break;
2450
2451 case ISL_AUX_USAGE_MCS:
2452 assert(mt->aux_buf);
2453 assert(start_level == 0 && num_levels == 1);
2454 const uint32_t level_layers =
2455 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2456 for (uint32_t a = 0; a < level_layers; a++) {
2457 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2458 aux_usage, fast_clear_supported);
2459 }
2460 break;
2461
2462 case ISL_AUX_USAGE_CCS_D:
2463 case ISL_AUX_USAGE_CCS_E:
2464 if (!mt->aux_buf)
2465 return;
2466
2467 for (uint32_t l = 0; l < num_levels; l++) {
2468 const uint32_t level = start_level + l;
2469 const uint32_t level_layers =
2470 miptree_layer_range_length(mt, level, start_layer, num_layers);
2471 for (uint32_t a = 0; a < level_layers; a++) {
2472 intel_miptree_prepare_ccs_access(brw, mt, level,
2473 start_layer + a,
2474 aux_usage, fast_clear_supported);
2475 }
2476 }
2477 break;
2478
2479 case ISL_AUX_USAGE_HIZ:
2480 assert(mt->aux_buf);
2481 for (uint32_t l = 0; l < num_levels; l++) {
2482 const uint32_t level = start_level + l;
2483 if (!intel_miptree_level_has_hiz(mt, level))
2484 continue;
2485
2486 const uint32_t level_layers =
2487 miptree_layer_range_length(mt, level, start_layer, num_layers);
2488 for (uint32_t a = 0; a < level_layers; a++) {
2489 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2490 aux_usage, fast_clear_supported);
2491 }
2492 }
2493 break;
2494
2495 default:
2496 unreachable("Invalid aux usage");
2497 }
2498 }
2499
2500 void
2501 intel_miptree_finish_write(struct brw_context *brw,
2502 struct intel_mipmap_tree *mt, uint32_t level,
2503 uint32_t start_layer, uint32_t num_layers,
2504 enum isl_aux_usage aux_usage)
2505 {
2506 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2507
2508 switch (mt->aux_usage) {
2509 case ISL_AUX_USAGE_NONE:
2510 /* Nothing to do */
2511 break;
2512
2513 case ISL_AUX_USAGE_MCS:
2514 assert(mt->aux_buf);
2515 for (uint32_t a = 0; a < num_layers; a++) {
2516 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2517 aux_usage);
2518 }
2519 break;
2520
2521 case ISL_AUX_USAGE_CCS_D:
2522 case ISL_AUX_USAGE_CCS_E:
2523 if (!mt->aux_buf)
2524 return;
2525
2526 for (uint32_t a = 0; a < num_layers; a++) {
2527 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2528 aux_usage);
2529 }
2530 break;
2531
2532 case ISL_AUX_USAGE_HIZ:
2533 if (!intel_miptree_level_has_hiz(mt, level))
2534 return;
2535
2536 for (uint32_t a = 0; a < num_layers; a++) {
2537 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2538 aux_usage);
2539 }
2540 break;
2541
2542 default:
2543 unreachable("Invavlid aux usage");
2544 }
2545 }
2546
2547 enum isl_aux_state
2548 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2549 uint32_t level, uint32_t layer)
2550 {
2551 intel_miptree_check_level_layer(mt, level, layer);
2552
2553 if (_mesa_is_format_color_format(mt->format)) {
2554 assert(mt->aux_buf != NULL);
2555 assert(mt->surf.samples == 1 ||
2556 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2557 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2558 unreachable("Cannot get aux state for stencil");
2559 } else {
2560 assert(intel_miptree_level_has_hiz(mt, level));
2561 }
2562
2563 return mt->aux_state[level][layer];
2564 }
2565
2566 void
2567 intel_miptree_set_aux_state(struct brw_context *brw,
2568 struct intel_mipmap_tree *mt, uint32_t level,
2569 uint32_t start_layer, uint32_t num_layers,
2570 enum isl_aux_state aux_state)
2571 {
2572 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2573
2574 if (_mesa_is_format_color_format(mt->format)) {
2575 assert(mt->aux_buf != NULL);
2576 assert(mt->surf.samples == 1 ||
2577 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2578 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2579 unreachable("Cannot get aux state for stencil");
2580 } else {
2581 assert(intel_miptree_level_has_hiz(mt, level));
2582 }
2583
2584 for (unsigned a = 0; a < num_layers; a++) {
2585 if (mt->aux_state[level][start_layer + a] != aux_state) {
2586 mt->aux_state[level][start_layer + a] = aux_state;
2587 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2588 }
2589 }
2590 }
2591
2592 /* On Gen9 color buffers may be compressed by the hardware (lossless
2593 * compression). There are, however, format restrictions and care needs to be
2594 * taken that the sampler engine is capable for re-interpreting a buffer with
2595 * format different the buffer was originally written with.
2596 *
2597 * For example, SRGB formats are not compressible and the sampler engine isn't
2598 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2599 * color buffer needs to be resolved so that the sampling surface can be
2600 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2601 * set).
2602 */
2603 static bool
2604 can_texture_with_ccs(struct brw_context *brw,
2605 struct intel_mipmap_tree *mt,
2606 enum isl_format view_format)
2607 {
2608 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2609 return false;
2610
2611 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2612 mt, view_format)) {
2613 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2614 isl_format_get_layout(view_format)->name,
2615 _mesa_get_format_name(mt->format));
2616 return false;
2617 }
2618
2619 return true;
2620 }
2621
2622 enum isl_aux_usage
2623 intel_miptree_texture_aux_usage(struct brw_context *brw,
2624 struct intel_mipmap_tree *mt,
2625 enum isl_format view_format)
2626 {
2627 switch (mt->aux_usage) {
2628 case ISL_AUX_USAGE_HIZ:
2629 if (intel_miptree_sample_with_hiz(brw, mt))
2630 return ISL_AUX_USAGE_HIZ;
2631 break;
2632
2633 case ISL_AUX_USAGE_MCS:
2634 return ISL_AUX_USAGE_MCS;
2635
2636 case ISL_AUX_USAGE_CCS_D:
2637 case ISL_AUX_USAGE_CCS_E:
2638 if (!mt->aux_buf) {
2639 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2640 return ISL_AUX_USAGE_NONE;
2641 }
2642
2643 /* If we don't have any unresolved color, report an aux usage of
2644 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2645 * aux surface and we can save some bandwidth.
2646 */
2647 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2648 0, INTEL_REMAINING_LAYERS))
2649 return ISL_AUX_USAGE_NONE;
2650
2651 if (can_texture_with_ccs(brw, mt, view_format))
2652 return ISL_AUX_USAGE_CCS_E;
2653 break;
2654
2655 default:
2656 break;
2657 }
2658
2659 return ISL_AUX_USAGE_NONE;
2660 }
2661
2662 static bool
2663 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2664 {
2665 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2666 * values so sRGB curve application was a no-op for all fast-clearable
2667 * formats.
2668 *
2669 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2670 * values, the hardware interprets the floats, not as what would be
2671 * returned from the sampler (or written by the shader), but as being
2672 * between format conversion and sRGB curve application. This means that
2673 * we can switch between sRGB and UNORM without having to whack the clear
2674 * color.
2675 */
2676 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2677 }
2678
2679 void
2680 intel_miptree_prepare_texture(struct brw_context *brw,
2681 struct intel_mipmap_tree *mt,
2682 enum isl_format view_format,
2683 uint32_t start_level, uint32_t num_levels,
2684 uint32_t start_layer, uint32_t num_layers)
2685 {
2686 enum isl_aux_usage aux_usage =
2687 intel_miptree_texture_aux_usage(brw, mt, view_format);
2688 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2689
2690 /* Clear color is specified as ints or floats and the conversion is done by
2691 * the sampler. If we have a texture view, we would have to perform the
2692 * clear color conversion manually. Just disable clear color.
2693 */
2694 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2695 clear_supported = false;
2696
2697 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2698 start_layer, num_layers,
2699 aux_usage, clear_supported);
2700 }
2701
2702 void
2703 intel_miptree_prepare_image(struct brw_context *brw,
2704 struct intel_mipmap_tree *mt)
2705 {
2706 /* The data port doesn't understand any compression */
2707 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2708 0, INTEL_REMAINING_LAYERS,
2709 ISL_AUX_USAGE_NONE, false);
2710 }
2711
2712 enum isl_aux_usage
2713 intel_miptree_render_aux_usage(struct brw_context *brw,
2714 struct intel_mipmap_tree *mt,
2715 enum isl_format render_format,
2716 bool blend_enabled,
2717 bool draw_aux_disabled)
2718 {
2719 struct gen_device_info *devinfo = &brw->screen->devinfo;
2720
2721 if (draw_aux_disabled)
2722 return ISL_AUX_USAGE_NONE;
2723
2724 switch (mt->aux_usage) {
2725 case ISL_AUX_USAGE_MCS:
2726 assert(mt->aux_buf);
2727 return ISL_AUX_USAGE_MCS;
2728
2729 case ISL_AUX_USAGE_CCS_D:
2730 case ISL_AUX_USAGE_CCS_E:
2731 if (!mt->aux_buf) {
2732 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2733 return ISL_AUX_USAGE_NONE;
2734 }
2735
2736 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2737 * formats. However, there are issues with blending where it doesn't
2738 * properly apply the sRGB curve to the clear color when blending.
2739 */
2740 if (devinfo->gen >= 9 && blend_enabled &&
2741 isl_format_is_srgb(render_format) &&
2742 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2743 return ISL_AUX_USAGE_NONE;
2744
2745 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2746 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2747 mt, render_format))
2748 return ISL_AUX_USAGE_CCS_E;
2749
2750 /* Otherwise, we have to fall back to CCS_D */
2751 return ISL_AUX_USAGE_CCS_D;
2752
2753 default:
2754 return ISL_AUX_USAGE_NONE;
2755 }
2756 }
2757
2758 void
2759 intel_miptree_prepare_render(struct brw_context *brw,
2760 struct intel_mipmap_tree *mt, uint32_t level,
2761 uint32_t start_layer, uint32_t layer_count,
2762 enum isl_aux_usage aux_usage)
2763 {
2764 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2765 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2766 }
2767
2768 void
2769 intel_miptree_finish_render(struct brw_context *brw,
2770 struct intel_mipmap_tree *mt, uint32_t level,
2771 uint32_t start_layer, uint32_t layer_count,
2772 enum isl_aux_usage aux_usage)
2773 {
2774 assert(_mesa_is_format_color_format(mt->format));
2775
2776 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2777 aux_usage);
2778 }
2779
2780 void
2781 intel_miptree_prepare_depth(struct brw_context *brw,
2782 struct intel_mipmap_tree *mt, uint32_t level,
2783 uint32_t start_layer, uint32_t layer_count)
2784 {
2785 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2786 mt->aux_usage, mt->aux_buf != NULL);
2787 }
2788
2789 void
2790 intel_miptree_finish_depth(struct brw_context *brw,
2791 struct intel_mipmap_tree *mt, uint32_t level,
2792 uint32_t start_layer, uint32_t layer_count,
2793 bool depth_written)
2794 {
2795 if (depth_written) {
2796 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2797 mt->aux_buf != NULL);
2798 }
2799 }
2800
2801 void
2802 intel_miptree_prepare_external(struct brw_context *brw,
2803 struct intel_mipmap_tree *mt)
2804 {
2805 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2806 bool supports_fast_clear = false;
2807
2808 const struct isl_drm_modifier_info *mod_info =
2809 isl_drm_modifier_get_info(mt->drm_modifier);
2810
2811 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2812 /* CCS_E is the only supported aux for external images and it's only
2813 * supported on very simple images.
2814 */
2815 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2816 assert(_mesa_is_format_color_format(mt->format));
2817 assert(mt->first_level == 0 && mt->last_level == 0);
2818 assert(mt->surf.logical_level0_px.depth == 1);
2819 assert(mt->surf.logical_level0_px.array_len == 1);
2820 assert(mt->surf.samples == 1);
2821 assert(mt->aux_buf != NULL);
2822
2823 aux_usage = mod_info->aux_usage;
2824 supports_fast_clear = mod_info->supports_clear_color;
2825 }
2826
2827 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2828 0, INTEL_REMAINING_LAYERS,
2829 aux_usage, supports_fast_clear);
2830 }
2831
2832 void
2833 intel_miptree_finish_external(struct brw_context *brw,
2834 struct intel_mipmap_tree *mt)
2835 {
2836 if (!mt->aux_buf)
2837 return;
2838
2839 /* We don't know the actual aux state of the aux surface. The previous
2840 * owner could have given it to us in a number of different states.
2841 * Because we don't know the aux state, we reset the aux state to the
2842 * least common denominator of possible valid states.
2843 */
2844 enum isl_aux_state default_aux_state =
2845 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2846 assert(mt->last_level == mt->first_level);
2847 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2848 default_aux_state);
2849 }
2850
2851 /**
2852 * Make it possible to share the BO backing the given miptree with another
2853 * process or another miptree.
2854 *
2855 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2856 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2857 * ensure that no MCS buffer gets allocated in the future.
2858 *
2859 * HiZ is similarly unsafe with shared buffers.
2860 */
2861 void
2862 intel_miptree_make_shareable(struct brw_context *brw,
2863 struct intel_mipmap_tree *mt)
2864 {
2865 /* MCS buffers are also used for multisample buffers, but we can't resolve
2866 * away a multisample MCS buffer because it's an integral part of how the
2867 * pixel data is stored. Fortunately this code path should never be
2868 * reached for multisample buffers.
2869 */
2870 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2871 mt->surf.samples == 1);
2872
2873 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2874 0, INTEL_REMAINING_LAYERS,
2875 ISL_AUX_USAGE_NONE, false);
2876
2877 if (mt->aux_buf) {
2878 intel_miptree_aux_buffer_free(mt->aux_buf);
2879 mt->aux_buf = NULL;
2880
2881 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2882 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2883 mt->level[l].has_hiz = false;
2884 }
2885
2886 free(mt->aux_state);
2887 mt->aux_state = NULL;
2888 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2889 }
2890
2891 mt->aux_usage = ISL_AUX_USAGE_NONE;
2892 mt->supports_fast_clear = false;
2893 }
2894
2895
2896 /**
2897 * \brief Get pointer offset into stencil buffer.
2898 *
2899 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2900 * must decode the tile's layout in software.
2901 *
2902 * See
2903 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2904 * Format.
2905 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2906 *
2907 * Even though the returned offset is always positive, the return type is
2908 * signed due to
2909 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2910 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2911 */
2912 static intptr_t
2913 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2914 {
2915 uint32_t tile_size = 4096;
2916 uint32_t tile_width = 64;
2917 uint32_t tile_height = 64;
2918 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2919
2920 uint32_t tile_x = x / tile_width;
2921 uint32_t tile_y = y / tile_height;
2922
2923 /* The byte's address relative to the tile's base addres. */
2924 uint32_t byte_x = x % tile_width;
2925 uint32_t byte_y = y % tile_height;
2926
2927 uintptr_t u = tile_y * row_size
2928 + tile_x * tile_size
2929 + 512 * (byte_x / 8)
2930 + 64 * (byte_y / 8)
2931 + 32 * ((byte_y / 4) % 2)
2932 + 16 * ((byte_x / 4) % 2)
2933 + 8 * ((byte_y / 2) % 2)
2934 + 4 * ((byte_x / 2) % 2)
2935 + 2 * (byte_y % 2)
2936 + 1 * (byte_x % 2);
2937
2938 if (swizzled) {
2939 /* adjust for bit6 swizzling */
2940 if (((byte_x / 8) % 2) == 1) {
2941 if (((byte_y / 8) % 2) == 0) {
2942 u += 64;
2943 } else {
2944 u -= 64;
2945 }
2946 }
2947 }
2948
2949 return u;
2950 }
2951
2952 void
2953 intel_miptree_updownsample(struct brw_context *brw,
2954 struct intel_mipmap_tree *src,
2955 struct intel_mipmap_tree *dst)
2956 {
2957 unsigned src_w = src->surf.logical_level0_px.width;
2958 unsigned src_h = src->surf.logical_level0_px.height;
2959 unsigned dst_w = dst->surf.logical_level0_px.width;
2960 unsigned dst_h = dst->surf.logical_level0_px.height;
2961
2962 brw_blorp_blit_miptrees(brw,
2963 src, 0 /* level */, 0 /* layer */,
2964 src->format, SWIZZLE_XYZW,
2965 dst, 0 /* level */, 0 /* layer */, dst->format,
2966 0, 0, src_w, src_h,
2967 0, 0, dst_w, dst_h,
2968 GL_NEAREST, false, false /*mirror x, y*/,
2969 false, false);
2970
2971 if (src->stencil_mt) {
2972 src_w = src->stencil_mt->surf.logical_level0_px.width;
2973 src_h = src->stencil_mt->surf.logical_level0_px.height;
2974 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2975 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2976
2977 brw_blorp_blit_miptrees(brw,
2978 src->stencil_mt, 0 /* level */, 0 /* layer */,
2979 src->stencil_mt->format, SWIZZLE_XYZW,
2980 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2981 dst->stencil_mt->format,
2982 0, 0, src_w, src_h,
2983 0, 0, dst_w, dst_h,
2984 GL_NEAREST, false, false /*mirror x, y*/,
2985 false, false /* decode/encode srgb */);
2986 }
2987 }
2988
2989 void
2990 intel_update_r8stencil(struct brw_context *brw,
2991 struct intel_mipmap_tree *mt)
2992 {
2993 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2994
2995 assert(devinfo->gen >= 7);
2996 struct intel_mipmap_tree *src =
2997 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2998 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2999 return;
3000
3001 assert(src->surf.size > 0);
3002
3003 if (!mt->r8stencil_mt) {
3004 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3005 mt->r8stencil_mt = make_surface(
3006 brw,
3007 src->target,
3008 MESA_FORMAT_R_UINT8,
3009 src->first_level, src->last_level,
3010 src->surf.logical_level0_px.width,
3011 src->surf.logical_level0_px.height,
3012 src->surf.dim == ISL_SURF_DIM_3D ?
3013 src->surf.logical_level0_px.depth :
3014 src->surf.logical_level0_px.array_len,
3015 src->surf.samples,
3016 ISL_TILING_Y0_BIT,
3017 ISL_SURF_USAGE_TEXTURE_BIT,
3018 BO_ALLOC_BUSY, 0, NULL);
3019 assert(mt->r8stencil_mt);
3020 }
3021
3022 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3023
3024 for (int level = src->first_level; level <= src->last_level; level++) {
3025 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3026 minify(src->surf.phys_level0_sa.depth, level) :
3027 src->surf.phys_level0_sa.array_len;
3028
3029 for (unsigned layer = 0; layer < depth; layer++) {
3030 brw_blorp_copy_miptrees(brw,
3031 src, level, layer,
3032 dst, level, layer,
3033 0, 0, 0, 0,
3034 minify(src->surf.logical_level0_px.width,
3035 level),
3036 minify(src->surf.logical_level0_px.height,
3037 level));
3038 }
3039 }
3040
3041 brw_cache_flush_for_read(brw, dst->bo);
3042 src->r8stencil_needs_update = false;
3043 }
3044
3045 static void *
3046 intel_miptree_map_raw(struct brw_context *brw,
3047 struct intel_mipmap_tree *mt,
3048 GLbitfield mode)
3049 {
3050 struct brw_bo *bo = mt->bo;
3051
3052 if (brw_batch_references(&brw->batch, bo))
3053 intel_batchbuffer_flush(brw);
3054
3055 return brw_bo_map(brw, bo, mode);
3056 }
3057
3058 static void
3059 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3060 {
3061 brw_bo_unmap(mt->bo);
3062 }
3063
3064 static void
3065 intel_miptree_unmap_gtt(struct brw_context *brw,
3066 struct intel_mipmap_tree *mt,
3067 struct intel_miptree_map *map,
3068 unsigned int level, unsigned int slice)
3069 {
3070 intel_miptree_unmap_raw(mt);
3071 }
3072
3073 static void
3074 intel_miptree_map_gtt(struct brw_context *brw,
3075 struct intel_mipmap_tree *mt,
3076 struct intel_miptree_map *map,
3077 unsigned int level, unsigned int slice)
3078 {
3079 unsigned int bw, bh;
3080 void *base;
3081 unsigned int image_x, image_y;
3082 intptr_t x = map->x;
3083 intptr_t y = map->y;
3084
3085 /* For compressed formats, the stride is the number of bytes per
3086 * row of blocks. intel_miptree_get_image_offset() already does
3087 * the divide.
3088 */
3089 _mesa_get_format_block_size(mt->format, &bw, &bh);
3090 assert(y % bh == 0);
3091 assert(x % bw == 0);
3092 y /= bh;
3093 x /= bw;
3094
3095 base = intel_miptree_map_raw(brw, mt, map->mode);
3096
3097 if (base == NULL)
3098 map->ptr = NULL;
3099 else {
3100 base += mt->offset;
3101
3102 /* Note that in the case of cube maps, the caller must have passed the
3103 * slice number referencing the face.
3104 */
3105 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3106 x += image_x;
3107 y += image_y;
3108
3109 map->stride = mt->surf.row_pitch;
3110 map->ptr = base + y * map->stride + x * mt->cpp;
3111 }
3112
3113 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3114 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3115 map->x, map->y, map->w, map->h,
3116 mt, _mesa_get_format_name(mt->format),
3117 x, y, map->ptr, map->stride);
3118
3119 map->unmap = intel_miptree_unmap_gtt;
3120 }
3121
3122 static void
3123 intel_miptree_unmap_blit(struct brw_context *brw,
3124 struct intel_mipmap_tree *mt,
3125 struct intel_miptree_map *map,
3126 unsigned int level,
3127 unsigned int slice)
3128 {
3129 struct gl_context *ctx = &brw->ctx;
3130
3131 intel_miptree_unmap_raw(map->linear_mt);
3132
3133 if (map->mode & GL_MAP_WRITE_BIT) {
3134 bool ok = intel_miptree_copy(brw,
3135 map->linear_mt, 0, 0, 0, 0,
3136 mt, level, slice, map->x, map->y,
3137 map->w, map->h);
3138 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3139 }
3140
3141 intel_miptree_release(&map->linear_mt);
3142 }
3143
3144 static void
3145 intel_miptree_map_blit(struct brw_context *brw,
3146 struct intel_mipmap_tree *mt,
3147 struct intel_miptree_map *map,
3148 unsigned int level, unsigned int slice)
3149 {
3150 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3151 /* first_level */ 0,
3152 /* last_level */ 0,
3153 map->w, map->h, 1,
3154 /* samples */ 1,
3155 MIPTREE_CREATE_LINEAR);
3156
3157 if (!map->linear_mt) {
3158 fprintf(stderr, "Failed to allocate blit temporary\n");
3159 goto fail;
3160 }
3161 map->stride = map->linear_mt->surf.row_pitch;
3162
3163 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3164 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3165 * invalidate is set, since we'll be writing the whole rectangle from our
3166 * temporary buffer back out.
3167 */
3168 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3169 if (!intel_miptree_copy(brw,
3170 mt, level, slice, map->x, map->y,
3171 map->linear_mt, 0, 0, 0, 0,
3172 map->w, map->h)) {
3173 fprintf(stderr, "Failed to blit\n");
3174 goto fail;
3175 }
3176 }
3177
3178 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3179
3180 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3181 map->x, map->y, map->w, map->h,
3182 mt, _mesa_get_format_name(mt->format),
3183 level, slice, map->ptr, map->stride);
3184
3185 map->unmap = intel_miptree_unmap_blit;
3186 return;
3187
3188 fail:
3189 intel_miptree_release(&map->linear_mt);
3190 map->ptr = NULL;
3191 map->stride = 0;
3192 }
3193
3194 /**
3195 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3196 */
3197 #if defined(USE_SSE41)
3198 static void
3199 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3200 struct intel_mipmap_tree *mt,
3201 struct intel_miptree_map *map,
3202 unsigned int level,
3203 unsigned int slice)
3204 {
3205 _mesa_align_free(map->buffer);
3206 map->buffer = NULL;
3207 map->ptr = NULL;
3208 }
3209
3210 static void
3211 intel_miptree_map_movntdqa(struct brw_context *brw,
3212 struct intel_mipmap_tree *mt,
3213 struct intel_miptree_map *map,
3214 unsigned int level, unsigned int slice)
3215 {
3216 assert(map->mode & GL_MAP_READ_BIT);
3217 assert(!(map->mode & GL_MAP_WRITE_BIT));
3218
3219 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3220 map->x, map->y, map->w, map->h,
3221 mt, _mesa_get_format_name(mt->format),
3222 level, slice, map->ptr, map->stride);
3223
3224 /* Map the original image */
3225 uint32_t image_x;
3226 uint32_t image_y;
3227 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3228 image_x += map->x;
3229 image_y += map->y;
3230
3231 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3232 if (!src)
3233 return;
3234
3235 src += mt->offset;
3236
3237 src += image_y * mt->surf.row_pitch;
3238 src += image_x * mt->cpp;
3239
3240 /* Due to the pixel offsets for the particular image being mapped, our
3241 * src pointer may not be 16-byte aligned. However, if the pitch is
3242 * divisible by 16, then the amount by which it's misaligned will remain
3243 * consistent from row to row.
3244 */
3245 assert((mt->surf.row_pitch % 16) == 0);
3246 const int misalignment = ((uintptr_t) src) & 15;
3247
3248 /* Create an untiled temporary buffer for the mapping. */
3249 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3250
3251 map->stride = ALIGN(misalignment + width_bytes, 16);
3252
3253 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3254 /* Offset the destination so it has the same misalignment as src. */
3255 map->ptr = map->buffer + misalignment;
3256
3257 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3258
3259 for (uint32_t y = 0; y < map->h; y++) {
3260 void *dst_ptr = map->ptr + y * map->stride;
3261 void *src_ptr = src + y * mt->surf.row_pitch;
3262
3263 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3264 }
3265
3266 intel_miptree_unmap_raw(mt);
3267
3268 map->unmap = intel_miptree_unmap_movntdqa;
3269 }
3270 #endif
3271
3272 static void
3273 intel_miptree_unmap_s8(struct brw_context *brw,
3274 struct intel_mipmap_tree *mt,
3275 struct intel_miptree_map *map,
3276 unsigned int level,
3277 unsigned int slice)
3278 {
3279 if (map->mode & GL_MAP_WRITE_BIT) {
3280 unsigned int image_x, image_y;
3281 uint8_t *untiled_s8_map = map->ptr;
3282 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3283
3284 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3285
3286 for (uint32_t y = 0; y < map->h; y++) {
3287 for (uint32_t x = 0; x < map->w; x++) {
3288 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3289 image_x + x + map->x,
3290 image_y + y + map->y,
3291 brw->has_swizzling);
3292 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3293 }
3294 }
3295
3296 intel_miptree_unmap_raw(mt);
3297 }
3298
3299 free(map->buffer);
3300 }
3301
3302 static void
3303 intel_miptree_map_s8(struct brw_context *brw,
3304 struct intel_mipmap_tree *mt,
3305 struct intel_miptree_map *map,
3306 unsigned int level, unsigned int slice)
3307 {
3308 map->stride = map->w;
3309 map->buffer = map->ptr = malloc(map->stride * map->h);
3310 if (!map->buffer)
3311 return;
3312
3313 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3314 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3315 * invalidate is set, since we'll be writing the whole rectangle from our
3316 * temporary buffer back out.
3317 */
3318 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3319 uint8_t *untiled_s8_map = map->ptr;
3320 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3321 unsigned int image_x, image_y;
3322
3323 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3324
3325 for (uint32_t y = 0; y < map->h; y++) {
3326 for (uint32_t x = 0; x < map->w; x++) {
3327 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3328 x + image_x + map->x,
3329 y + image_y + map->y,
3330 brw->has_swizzling);
3331 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3332 }
3333 }
3334
3335 intel_miptree_unmap_raw(mt);
3336
3337 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3338 map->x, map->y, map->w, map->h,
3339 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3340 } else {
3341 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3342 map->x, map->y, map->w, map->h,
3343 mt, map->ptr, map->stride);
3344 }
3345
3346 map->unmap = intel_miptree_unmap_s8;
3347 }
3348
3349 static void
3350 intel_miptree_unmap_etc(struct brw_context *brw,
3351 struct intel_mipmap_tree *mt,
3352 struct intel_miptree_map *map,
3353 unsigned int level,
3354 unsigned int slice)
3355 {
3356 uint32_t image_x;
3357 uint32_t image_y;
3358 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3359
3360 image_x += map->x;
3361 image_y += map->y;
3362
3363 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3364 + image_y * mt->surf.row_pitch
3365 + image_x * mt->cpp;
3366
3367 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3368 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3369 map->ptr, map->stride,
3370 map->w, map->h);
3371 else
3372 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3373 map->ptr, map->stride,
3374 map->w, map->h, mt->etc_format);
3375
3376 intel_miptree_unmap_raw(mt);
3377 free(map->buffer);
3378 }
3379
3380 static void
3381 intel_miptree_map_etc(struct brw_context *brw,
3382 struct intel_mipmap_tree *mt,
3383 struct intel_miptree_map *map,
3384 unsigned int level,
3385 unsigned int slice)
3386 {
3387 assert(mt->etc_format != MESA_FORMAT_NONE);
3388 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3389 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3390 }
3391
3392 assert(map->mode & GL_MAP_WRITE_BIT);
3393 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3394
3395 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3396 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3397 map->w, map->h, 1));
3398 map->ptr = map->buffer;
3399 map->unmap = intel_miptree_unmap_etc;
3400 }
3401
3402 /**
3403 * Mapping functions for packed depth/stencil miptrees backed by real separate
3404 * miptrees for depth and stencil.
3405 *
3406 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3407 * separate from the depth buffer. Yet at the GL API level, we have to expose
3408 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3409 * be able to map that memory for texture storage and glReadPixels-type
3410 * operations. We give Mesa core that access by mallocing a temporary and
3411 * copying the data between the actual backing store and the temporary.
3412 */
3413 static void
3414 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3415 struct intel_mipmap_tree *mt,
3416 struct intel_miptree_map *map,
3417 unsigned int level,
3418 unsigned int slice)
3419 {
3420 struct intel_mipmap_tree *z_mt = mt;
3421 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3422 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3423
3424 if (map->mode & GL_MAP_WRITE_BIT) {
3425 uint32_t *packed_map = map->ptr;
3426 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3427 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3428 unsigned int s_image_x, s_image_y;
3429 unsigned int z_image_x, z_image_y;
3430
3431 intel_miptree_get_image_offset(s_mt, level, slice,
3432 &s_image_x, &s_image_y);
3433 intel_miptree_get_image_offset(z_mt, level, slice,
3434 &z_image_x, &z_image_y);
3435
3436 for (uint32_t y = 0; y < map->h; y++) {
3437 for (uint32_t x = 0; x < map->w; x++) {
3438 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3439 x + s_image_x + map->x,
3440 y + s_image_y + map->y,
3441 brw->has_swizzling);
3442 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3443 (z_mt->surf.row_pitch / 4) +
3444 (x + z_image_x + map->x));
3445
3446 if (map_z32f_x24s8) {
3447 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3448 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3449 } else {
3450 uint32_t packed = packed_map[y * map->w + x];
3451 s_map[s_offset] = packed >> 24;
3452 z_map[z_offset] = packed;
3453 }
3454 }
3455 }
3456
3457 intel_miptree_unmap_raw(s_mt);
3458 intel_miptree_unmap_raw(z_mt);
3459
3460 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3461 __func__,
3462 map->x, map->y, map->w, map->h,
3463 z_mt, _mesa_get_format_name(z_mt->format),
3464 map->x + z_image_x, map->y + z_image_y,
3465 s_mt, map->x + s_image_x, map->y + s_image_y,
3466 map->ptr, map->stride);
3467 }
3468
3469 free(map->buffer);
3470 }
3471
3472 static void
3473 intel_miptree_map_depthstencil(struct brw_context *brw,
3474 struct intel_mipmap_tree *mt,
3475 struct intel_miptree_map *map,
3476 unsigned int level, unsigned int slice)
3477 {
3478 struct intel_mipmap_tree *z_mt = mt;
3479 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3480 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3481 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3482
3483 map->stride = map->w * packed_bpp;
3484 map->buffer = map->ptr = malloc(map->stride * map->h);
3485 if (!map->buffer)
3486 return;
3487
3488 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3489 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3490 * invalidate is set, since we'll be writing the whole rectangle from our
3491 * temporary buffer back out.
3492 */
3493 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3494 uint32_t *packed_map = map->ptr;
3495 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3496 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3497 unsigned int s_image_x, s_image_y;
3498 unsigned int z_image_x, z_image_y;
3499
3500 intel_miptree_get_image_offset(s_mt, level, slice,
3501 &s_image_x, &s_image_y);
3502 intel_miptree_get_image_offset(z_mt, level, slice,
3503 &z_image_x, &z_image_y);
3504
3505 for (uint32_t y = 0; y < map->h; y++) {
3506 for (uint32_t x = 0; x < map->w; x++) {
3507 int map_x = map->x + x, map_y = map->y + y;
3508 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3509 map_x + s_image_x,
3510 map_y + s_image_y,
3511 brw->has_swizzling);
3512 ptrdiff_t z_offset = ((map_y + z_image_y) *
3513 (z_mt->surf.row_pitch / 4) +
3514 (map_x + z_image_x));
3515 uint8_t s = s_map[s_offset];
3516 uint32_t z = z_map[z_offset];
3517
3518 if (map_z32f_x24s8) {
3519 packed_map[(y * map->w + x) * 2 + 0] = z;
3520 packed_map[(y * map->w + x) * 2 + 1] = s;
3521 } else {
3522 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3523 }
3524 }
3525 }
3526
3527 intel_miptree_unmap_raw(s_mt);
3528 intel_miptree_unmap_raw(z_mt);
3529
3530 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3531 __func__,
3532 map->x, map->y, map->w, map->h,
3533 z_mt, map->x + z_image_x, map->y + z_image_y,
3534 s_mt, map->x + s_image_x, map->y + s_image_y,
3535 map->ptr, map->stride);
3536 } else {
3537 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3538 map->x, map->y, map->w, map->h,
3539 mt, map->ptr, map->stride);
3540 }
3541
3542 map->unmap = intel_miptree_unmap_depthstencil;
3543 }
3544
3545 /**
3546 * Create and attach a map to the miptree at (level, slice). Return the
3547 * attached map.
3548 */
3549 static struct intel_miptree_map*
3550 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3551 unsigned int level,
3552 unsigned int slice,
3553 unsigned int x,
3554 unsigned int y,
3555 unsigned int w,
3556 unsigned int h,
3557 GLbitfield mode)
3558 {
3559 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3560
3561 if (!map)
3562 return NULL;
3563
3564 assert(mt->level[level].slice[slice].map == NULL);
3565 mt->level[level].slice[slice].map = map;
3566
3567 map->mode = mode;
3568 map->x = x;
3569 map->y = y;
3570 map->w = w;
3571 map->h = h;
3572
3573 return map;
3574 }
3575
3576 /**
3577 * Release the map at (level, slice).
3578 */
3579 static void
3580 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3581 unsigned int level,
3582 unsigned int slice)
3583 {
3584 struct intel_miptree_map **map;
3585
3586 map = &mt->level[level].slice[slice].map;
3587 free(*map);
3588 *map = NULL;
3589 }
3590
3591 static bool
3592 can_blit_slice(struct intel_mipmap_tree *mt,
3593 unsigned int level, unsigned int slice)
3594 {
3595 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3596 if (mt->surf.row_pitch >= 32768)
3597 return false;
3598
3599 return true;
3600 }
3601
3602 static bool
3603 use_intel_mipree_map_blit(struct brw_context *brw,
3604 struct intel_mipmap_tree *mt,
3605 GLbitfield mode,
3606 unsigned int level,
3607 unsigned int slice)
3608 {
3609 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3610
3611 if (devinfo->has_llc &&
3612 /* It's probably not worth swapping to the blit ring because of
3613 * all the overhead involved.
3614 */
3615 !(mode & GL_MAP_WRITE_BIT) &&
3616 !mt->compressed &&
3617 (mt->surf.tiling == ISL_TILING_X ||
3618 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3619 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3620 /* Fast copy blit on skl+ supports all tiling formats. */
3621 devinfo->gen >= 9) &&
3622 can_blit_slice(mt, level, slice))
3623 return true;
3624
3625 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3626 mt->bo->size >= brw->max_gtt_map_object_size) {
3627 assert(can_blit_slice(mt, level, slice));
3628 return true;
3629 }
3630
3631 return false;
3632 }
3633
3634 /**
3635 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3636 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3637 * arithmetic overflow.
3638 *
3639 * If you call this function and use \a out_stride, then you're doing pointer
3640 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3641 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3642 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3643 * which usually have type uint32_t or GLuint.
3644 */
3645 void
3646 intel_miptree_map(struct brw_context *brw,
3647 struct intel_mipmap_tree *mt,
3648 unsigned int level,
3649 unsigned int slice,
3650 unsigned int x,
3651 unsigned int y,
3652 unsigned int w,
3653 unsigned int h,
3654 GLbitfield mode,
3655 void **out_ptr,
3656 ptrdiff_t *out_stride)
3657 {
3658 struct intel_miptree_map *map;
3659
3660 assert(mt->surf.samples == 1);
3661
3662 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3663 if (!map){
3664 *out_ptr = NULL;
3665 *out_stride = 0;
3666 return;
3667 }
3668
3669 intel_miptree_access_raw(brw, mt, level, slice,
3670 map->mode & GL_MAP_WRITE_BIT);
3671
3672 if (mt->format == MESA_FORMAT_S_UINT8) {
3673 intel_miptree_map_s8(brw, mt, map, level, slice);
3674 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3675 !(mode & BRW_MAP_DIRECT_BIT)) {
3676 intel_miptree_map_etc(brw, mt, map, level, slice);
3677 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3678 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3679 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3680 intel_miptree_map_blit(brw, mt, map, level, slice);
3681 #if defined(USE_SSE41)
3682 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3683 !mt->compressed && cpu_has_sse4_1 &&
3684 (mt->surf.row_pitch % 16 == 0)) {
3685 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3686 #endif
3687 } else {
3688 intel_miptree_map_gtt(brw, mt, map, level, slice);
3689 }
3690
3691 *out_ptr = map->ptr;
3692 *out_stride = map->stride;
3693
3694 if (map->ptr == NULL)
3695 intel_miptree_release_map(mt, level, slice);
3696 }
3697
3698 void
3699 intel_miptree_unmap(struct brw_context *brw,
3700 struct intel_mipmap_tree *mt,
3701 unsigned int level,
3702 unsigned int slice)
3703 {
3704 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3705
3706 assert(mt->surf.samples == 1);
3707
3708 if (!map)
3709 return;
3710
3711 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3712 mt, _mesa_get_format_name(mt->format), level, slice);
3713
3714 if (map->unmap)
3715 map->unmap(brw, mt, map, level, slice);
3716
3717 intel_miptree_release_map(mt, level, slice);
3718 }
3719
3720 enum isl_surf_dim
3721 get_isl_surf_dim(GLenum target)
3722 {
3723 switch (target) {
3724 case GL_TEXTURE_1D:
3725 case GL_TEXTURE_1D_ARRAY:
3726 return ISL_SURF_DIM_1D;
3727
3728 case GL_TEXTURE_2D:
3729 case GL_TEXTURE_2D_ARRAY:
3730 case GL_TEXTURE_RECTANGLE:
3731 case GL_TEXTURE_CUBE_MAP:
3732 case GL_TEXTURE_CUBE_MAP_ARRAY:
3733 case GL_TEXTURE_2D_MULTISAMPLE:
3734 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3735 case GL_TEXTURE_EXTERNAL_OES:
3736 return ISL_SURF_DIM_2D;
3737
3738 case GL_TEXTURE_3D:
3739 return ISL_SURF_DIM_3D;
3740 }
3741
3742 unreachable("Invalid texture target");
3743 }
3744
3745 enum isl_dim_layout
3746 get_isl_dim_layout(const struct gen_device_info *devinfo,
3747 enum isl_tiling tiling, GLenum target)
3748 {
3749 switch (target) {
3750 case GL_TEXTURE_1D:
3751 case GL_TEXTURE_1D_ARRAY:
3752 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3753 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3754
3755 case GL_TEXTURE_2D:
3756 case GL_TEXTURE_2D_ARRAY:
3757 case GL_TEXTURE_RECTANGLE:
3758 case GL_TEXTURE_2D_MULTISAMPLE:
3759 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3760 case GL_TEXTURE_EXTERNAL_OES:
3761 return ISL_DIM_LAYOUT_GEN4_2D;
3762
3763 case GL_TEXTURE_CUBE_MAP:
3764 case GL_TEXTURE_CUBE_MAP_ARRAY:
3765 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3766 ISL_DIM_LAYOUT_GEN4_2D);
3767
3768 case GL_TEXTURE_3D:
3769 return (devinfo->gen >= 9 ?
3770 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3771 }
3772
3773 unreachable("Invalid texture target");
3774 }
3775
3776 bool
3777 intel_miptree_set_clear_color(struct brw_context *brw,
3778 struct intel_mipmap_tree *mt,
3779 const union gl_color_union *color)
3780 {
3781 const union isl_color_value clear_color =
3782 brw_meta_convert_fast_clear_color(brw, mt, color);
3783
3784 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3785 mt->fast_clear_color = clear_color;
3786 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3787 return true;
3788 }
3789 return false;
3790 }
3791
3792 bool
3793 intel_miptree_set_depth_clear_value(struct brw_context *brw,
3794 struct intel_mipmap_tree *mt,
3795 float clear_value)
3796 {
3797 if (mt->fast_clear_color.f32[0] != clear_value) {
3798 mt->fast_clear_color.f32[0] = clear_value;
3799 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3800 return true;
3801 }
3802 return false;
3803 }
3804
3805 union isl_color_value
3806 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3807 const struct intel_mipmap_tree *mt,
3808 enum isl_format view_format, bool sampling,
3809 struct brw_bo **clear_color_bo,
3810 uint32_t *clear_color_offset)
3811 {
3812 assert(mt->aux_buf);
3813
3814 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3815 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3816 * we switch to using the inline clear color and do the sRGB color
3817 * conversion process defined in the OpenGL spec. The red, green, and
3818 * blue channels take part in gamma correction, while the alpha channel
3819 * is unchanged.
3820 */
3821 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3822 for (unsigned i = 0; i < 3; i++) {
3823 srgb_decoded_value.f32[i] =
3824 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3825 }
3826 *clear_color_bo = 0;
3827 *clear_color_offset = 0;
3828 return srgb_decoded_value;
3829 } else {
3830 *clear_color_bo = mt->aux_buf->clear_color_bo;
3831 *clear_color_offset = mt->aux_buf->clear_color_offset;
3832 return mt->fast_clear_color;
3833 }
3834 }