i965/miptree: Delete an unused function
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_meta_util.h"
40 #include "brw_state.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49 #include "x86/common_x86_asm.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 static void *intel_miptree_map_raw(struct brw_context *brw,
54 struct intel_mipmap_tree *mt,
55 GLbitfield mode);
56
57 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
58
59 static bool
60 intel_miptree_alloc_aux(struct brw_context *brw,
61 struct intel_mipmap_tree *mt);
62
63 static bool
64 intel_miptree_supports_mcs(struct brw_context *brw,
65 const struct intel_mipmap_tree *mt)
66 {
67 const struct gen_device_info *devinfo = &brw->screen->devinfo;
68
69 /* MCS compression only applies to multisampled miptrees */
70 if (mt->surf.samples <= 1)
71 return false;
72
73 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
74 if (devinfo->gen < 7)
75 return false;
76
77 /* See isl_surf_get_mcs_surf for details. */
78 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
79 return false;
80
81 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
82 switch (_mesa_get_format_base_format(mt->format)) {
83 case GL_DEPTH_COMPONENT:
84 case GL_STENCIL_INDEX:
85 case GL_DEPTH_STENCIL:
86 return false;
87 default:
88 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
89 *
90 * This field must be set to 0 for all SINT MSRTs when all RT channels
91 * are not written
92 *
93 * In practice this means that we have to disable MCS for all signed
94 * integer MSAA buffers. The alternative, to disable MCS only when one
95 * of the render target channels is disabled, is impractical because it
96 * would require converting between CMS and UMS MSAA layouts on the fly,
97 * which is expensive.
98 */
99 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
100 return false;
101 } else {
102 return true;
103 }
104 }
105 }
106
107 static bool
108 intel_tiling_supports_ccs(const struct brw_context *brw,
109 enum isl_tiling tiling)
110 {
111 const struct gen_device_info *devinfo = &brw->screen->devinfo;
112
113 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
114 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
115 *
116 * - Support is limited to tiled render targets.
117 *
118 * Gen9 changes the restriction to Y-tile only.
119 */
120 if (devinfo->gen >= 9)
121 return tiling == ISL_TILING_Y0;
122 else if (devinfo->gen >= 7)
123 return tiling != ISL_TILING_LINEAR;
124 else
125 return false;
126 }
127
128 /**
129 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
130 * can be used. This doesn't (and should not) inspect any of the properties of
131 * the miptree's BO.
132 *
133 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
134 * beneath the "Fast Color Clear" bullet (p326):
135 *
136 * - Support is for non-mip-mapped and non-array surface types only.
137 *
138 * And then later, on p327:
139 *
140 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
141 * 64bpp, and 128bpp.
142 *
143 * From the Skylake documentation, it is made clear that X-tiling is no longer
144 * supported:
145 *
146 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
147 * non-MSRTs only.
148 */
149 static bool
150 intel_miptree_supports_ccs(struct brw_context *brw,
151 const struct intel_mipmap_tree *mt)
152 {
153 const struct gen_device_info *devinfo = &brw->screen->devinfo;
154
155 /* MCS support does not exist prior to Gen7 */
156 if (devinfo->gen < 7)
157 return false;
158
159 /* This function applies only to non-multisampled render targets. */
160 if (mt->surf.samples > 1)
161 return false;
162
163 /* MCS is only supported for color buffers */
164 switch (_mesa_get_format_base_format(mt->format)) {
165 case GL_DEPTH_COMPONENT:
166 case GL_DEPTH_STENCIL:
167 case GL_STENCIL_INDEX:
168 return false;
169 }
170
171 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
172 return false;
173
174 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
175 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
176 mt->surf.logical_level0_px.depth > 1;
177
178 if (arrayed) {
179 /* Multisample surfaces with the CMS layout are not layered surfaces,
180 * yet still have physical_depth0 > 1. Assert that we don't
181 * accidentally reject a multisampled surface here. We should have
182 * rejected it earlier by explicitly checking the sample count.
183 */
184 assert(mt->surf.samples == 1);
185 }
186
187 /* Handle the hardware restrictions...
188 *
189 * All GENs have the following restriction: "MCS buffer for non-MSRT is
190 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
191 *
192 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
193 * Non-MultiSampler Render Target Restrictions) Support is for
194 * non-mip-mapped and non-array surface types only.
195 *
196 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
200 *
201 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
202 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
203 * surfaces are supported with MCS buffer layout with these alignments in
204 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
205 */
206 if (devinfo->gen < 8 && (mip_mapped || arrayed))
207 return false;
208
209 /* There's no point in using an MCS buffer if the surface isn't in a
210 * renderable format.
211 */
212 if (!brw->mesa_format_supports_render[mt->format])
213 return false;
214
215 return true;
216 }
217
218 static bool
219 intel_tiling_supports_hiz(const struct brw_context *brw,
220 enum isl_tiling tiling)
221 {
222 const struct gen_device_info *devinfo = &brw->screen->devinfo;
223
224 if (devinfo->gen < 6)
225 return false;
226
227 return tiling == ISL_TILING_Y0;
228 }
229
230 static bool
231 intel_miptree_supports_hiz(const struct brw_context *brw,
232 const struct intel_mipmap_tree *mt)
233 {
234 if (!brw->has_hiz)
235 return false;
236
237 switch (mt->format) {
238 case MESA_FORMAT_Z_FLOAT32:
239 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
240 case MESA_FORMAT_Z24_UNORM_X8_UINT:
241 case MESA_FORMAT_Z24_UNORM_S8_UINT:
242 case MESA_FORMAT_Z_UNORM16:
243 return true;
244 default:
245 return false;
246 }
247 }
248
249 /**
250 * Return true if the format that will be used to access the miptree is
251 * CCS_E-compatible with the miptree's linear/non-sRGB format.
252 *
253 * Why use the linear format? Well, although the miptree may be specified with
254 * an sRGB format, the usage of that color space/format can be toggled. Since
255 * our HW tends to support more linear formats than sRGB ones, we use this
256 * format variant for check for CCS_E compatibility.
257 */
258 static bool
259 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
260 const struct intel_mipmap_tree *mt,
261 enum isl_format access_format)
262 {
263 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
264
265 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
266 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
267 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
268 }
269
270 static bool
271 intel_miptree_supports_ccs_e(struct brw_context *brw,
272 const struct intel_mipmap_tree *mt)
273 {
274 const struct gen_device_info *devinfo = &brw->screen->devinfo;
275
276 if (devinfo->gen < 9)
277 return false;
278
279 /* For now compression is only enabled for integer formats even though
280 * there exist supported floating point formats also. This is a heuristic
281 * decision based on current public benchmarks. In none of the cases these
282 * formats provided any improvement but a few cases were seen to regress.
283 * Hence these are left to to be enabled in the future when they are known
284 * to improve things.
285 */
286 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
287 return false;
288
289 if (!intel_miptree_supports_ccs(brw, mt))
290 return false;
291
292 /* Many window system buffers are sRGB even if they are never rendered as
293 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
294 * surface is used as sRGB, we fall back to CCS_D.
295 */
296 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
297 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
298 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
299 }
300
301 /**
302 * Determine depth format corresponding to a depth+stencil format,
303 * for separate stencil.
304 */
305 mesa_format
306 intel_depth_format_for_depthstencil_format(mesa_format format) {
307 switch (format) {
308 case MESA_FORMAT_Z24_UNORM_S8_UINT:
309 return MESA_FORMAT_Z24_UNORM_X8_UINT;
310 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
311 return MESA_FORMAT_Z_FLOAT32;
312 default:
313 return format;
314 }
315 }
316
317 static bool
318 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
319 unsigned depth0, struct intel_mipmap_level *table)
320 {
321 for (unsigned level = first_level; level <= last_level; level++) {
322 const unsigned d =
323 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
324
325 table[level].slice = calloc(d, sizeof(*table[0].slice));
326 if (!table[level].slice)
327 goto unwind;
328 }
329
330 return true;
331
332 unwind:
333 for (unsigned level = first_level; level <= last_level; level++)
334 free(table[level].slice);
335
336 return false;
337 }
338
339 static bool
340 needs_separate_stencil(const struct brw_context *brw,
341 struct intel_mipmap_tree *mt,
342 mesa_format format)
343 {
344 const struct gen_device_info *devinfo = &brw->screen->devinfo;
345
346 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
347 return false;
348
349 if (devinfo->must_use_separate_stencil)
350 return true;
351
352 return brw->has_separate_stencil &&
353 intel_miptree_supports_hiz(brw, mt);
354 }
355
356 /**
357 * Choose the aux usage for this miptree. This function must be called fairly
358 * late in the miptree create process after we have a tiling.
359 */
360 static void
361 intel_miptree_choose_aux_usage(struct brw_context *brw,
362 struct intel_mipmap_tree *mt)
363 {
364 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
365
366 if (intel_miptree_supports_mcs(brw, mt)) {
367 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
368 mt->aux_usage = ISL_AUX_USAGE_MCS;
369 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
370 intel_miptree_supports_ccs(brw, mt)) {
371 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
372 intel_miptree_supports_ccs_e(brw, mt)) {
373 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
374 } else {
375 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
376 }
377 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
378 intel_miptree_supports_hiz(brw, mt)) {
379 mt->aux_usage = ISL_AUX_USAGE_HIZ;
380 }
381
382 /* We can do fast-clear on all auxiliary surface types that are
383 * allocated through the normal texture creation paths.
384 */
385 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
386 mt->supports_fast_clear = true;
387 }
388
389
390 /**
391 * Choose an appropriate uncompressed format for a requested
392 * compressed format, if unsupported.
393 */
394 mesa_format
395 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
396 {
397 const struct gen_device_info *devinfo = &brw->screen->devinfo;
398
399 /* No need to lower ETC formats on these platforms,
400 * they are supported natively.
401 */
402 if (devinfo->gen >= 8 || devinfo->is_baytrail)
403 return format;
404
405 switch (format) {
406 case MESA_FORMAT_ETC1_RGB8:
407 return MESA_FORMAT_R8G8B8X8_UNORM;
408 case MESA_FORMAT_ETC2_RGB8:
409 return MESA_FORMAT_R8G8B8X8_UNORM;
410 case MESA_FORMAT_ETC2_SRGB8:
411 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
412 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
413 return MESA_FORMAT_B8G8R8A8_SRGB;
414 case MESA_FORMAT_ETC2_RGBA8_EAC:
415 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
416 return MESA_FORMAT_R8G8B8A8_UNORM;
417 case MESA_FORMAT_ETC2_R11_EAC:
418 return MESA_FORMAT_R_UNORM16;
419 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
420 return MESA_FORMAT_R_SNORM16;
421 case MESA_FORMAT_ETC2_RG11_EAC:
422 return MESA_FORMAT_R16G16_UNORM;
423 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
424 return MESA_FORMAT_R16G16_SNORM;
425 default:
426 /* Non ETC1 / ETC2 format */
427 return format;
428 }
429 }
430
431 unsigned
432 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
433 {
434 if (mt->surf.dim == ISL_SURF_DIM_3D)
435 return minify(mt->surf.logical_level0_px.depth, level);
436 else
437 return mt->surf.logical_level0_px.array_len;
438 }
439
440 UNUSED static unsigned
441 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
442 {
443 /* In case of physical dimensions one needs to consider also the layout.
444 * See isl_calc_phys_level0_extent_sa().
445 */
446 if (surf->dim != ISL_SURF_DIM_3D)
447 return surf->phys_level0_sa.array_len;
448
449 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
450 return minify(surf->phys_level0_sa.array_len, level);
451
452 return minify(surf->phys_level0_sa.depth, level);
453 }
454
455 /** \brief Assert that the level and layer are valid for the miptree. */
456 void
457 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
458 uint32_t level,
459 uint32_t layer)
460 {
461 (void) mt;
462 (void) level;
463 (void) layer;
464
465 assert(level >= mt->first_level);
466 assert(level <= mt->last_level);
467 assert(layer < get_num_phys_layers(&mt->surf, level));
468 }
469
470 static enum isl_aux_state **
471 create_aux_state_map(struct intel_mipmap_tree *mt,
472 enum isl_aux_state initial)
473 {
474 const uint32_t levels = mt->last_level + 1;
475
476 uint32_t total_slices = 0;
477 for (uint32_t level = 0; level < levels; level++)
478 total_slices += brw_get_num_logical_layers(mt, level);
479
480 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
481
482 /* We're going to allocate a single chunk of data for both the per-level
483 * reference array and the arrays of aux_state. This makes cleanup
484 * significantly easier.
485 */
486 const size_t total_size = per_level_array_size +
487 total_slices * sizeof(enum isl_aux_state);
488 void *data = malloc(total_size);
489 if (data == NULL)
490 return NULL;
491
492 enum isl_aux_state **per_level_arr = data;
493 enum isl_aux_state *s = data + per_level_array_size;
494 for (uint32_t level = 0; level < levels; level++) {
495 per_level_arr[level] = s;
496 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
497 for (uint32_t a = 0; a < level_layers; a++)
498 *(s++) = initial;
499 }
500 assert((void *)s == data + total_size);
501
502 return per_level_arr;
503 }
504
505 static void
506 free_aux_state_map(enum isl_aux_state **state)
507 {
508 free(state);
509 }
510
511 static bool
512 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
513 enum isl_tiling tiling, unsigned samples)
514 {
515 if (samples > 1)
516 return false;
517
518 if (tiling == ISL_TILING_LINEAR)
519 return false;
520
521 /* If the width is much smaller than a tile, don't bother tiling. */
522 if (row_pitch < 64)
523 return true;
524
525 if (ALIGN(row_pitch, 512) >= 32768) {
526 perf_debug("row pitch %u too large to blit, falling back to untiled",
527 row_pitch);
528 return true;
529 }
530
531 return false;
532 }
533
534 static bool
535 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
536 enum isl_tiling tiling)
537 {
538 const struct gen_device_info *devinfo = &brw->screen->devinfo;
539
540 /* If the BO is too large to fit in the aperture, we need to use the
541 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
542 * handle Y-tiling, so we need to fall back to X.
543 */
544 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
545 tiling == ISL_TILING_Y0)
546 return true;
547
548 return false;
549 }
550
551 static struct intel_mipmap_tree *
552 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
553 unsigned first_level, unsigned last_level,
554 unsigned width0, unsigned height0, unsigned depth0,
555 unsigned num_samples, isl_tiling_flags_t tiling_flags,
556 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
557 unsigned row_pitch, struct brw_bo *bo)
558 {
559 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
560 if (!mt)
561 return NULL;
562
563 if (!create_mapping_table(target, first_level, last_level, depth0,
564 mt->level)) {
565 free(mt);
566 return NULL;
567 }
568
569 mt->refcount = 1;
570
571 if (target == GL_TEXTURE_CUBE_MAP ||
572 target == GL_TEXTURE_CUBE_MAP_ARRAY)
573 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
574
575 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
576 __func__,
577 _mesa_enum_to_string(target),
578 _mesa_get_format_name(format),
579 num_samples, width0, height0, depth0,
580 first_level, last_level, mt);
581
582 struct isl_surf_init_info init_info = {
583 .dim = get_isl_surf_dim(target),
584 .format = translate_tex_format(brw, format, false),
585 .width = width0,
586 .height = height0,
587 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
588 .levels = last_level - first_level + 1,
589 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
590 .samples = num_samples,
591 .row_pitch = row_pitch,
592 .usage = isl_usage_flags,
593 .tiling_flags = tiling_flags,
594 };
595
596 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
597 goto fail;
598
599 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
600 * on gen7 platforms we also need to create Y-tiled copies of stencil for
601 * texturing since the hardware can't sample from W-tiled surfaces. For
602 * everything else, check for corner cases needing special treatment.
603 */
604 bool is_depth_stencil =
605 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
606 if (!is_depth_stencil) {
607 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
608 mt->surf.tiling, mt->surf.samples)) {
609 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
610 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
611 goto fail;
612 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
613 init_info.tiling_flags = 1u << ISL_TILING_X;
614 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
615 goto fail;
616 }
617 }
618
619 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
620 * the size may not be multiple of row_pitch.
621 * See isl_apply_surface_padding().
622 */
623 if (mt->surf.tiling != ISL_TILING_LINEAR)
624 assert(mt->surf.size % mt->surf.row_pitch == 0);
625
626 if (!bo) {
627 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
628 mt->surf.size,
629 isl_tiling_to_i915_tiling(
630 mt->surf.tiling),
631 mt->surf.row_pitch, alloc_flags);
632 if (!mt->bo)
633 goto fail;
634 } else {
635 mt->bo = bo;
636 }
637
638 mt->first_level = first_level;
639 mt->last_level = last_level;
640 mt->target = target;
641 mt->format = format;
642 mt->aux_state = NULL;
643 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
644 mt->compressed = _mesa_is_format_compressed(format);
645 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
646
647 return mt;
648
649 fail:
650 intel_miptree_release(&mt);
651 return NULL;
652 }
653
654 static bool
655 make_separate_stencil_surface(struct brw_context *brw,
656 struct intel_mipmap_tree *mt)
657 {
658 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
659 0, mt->surf.levels - 1,
660 mt->surf.logical_level0_px.width,
661 mt->surf.logical_level0_px.height,
662 mt->surf.dim == ISL_SURF_DIM_3D ?
663 mt->surf.logical_level0_px.depth :
664 mt->surf.logical_level0_px.array_len,
665 mt->surf.samples, ISL_TILING_W_BIT,
666 ISL_SURF_USAGE_STENCIL_BIT |
667 ISL_SURF_USAGE_TEXTURE_BIT,
668 BO_ALLOC_BUSY, 0, NULL);
669
670 if (!mt->stencil_mt)
671 return false;
672
673 mt->stencil_mt->r8stencil_needs_update = true;
674
675 return true;
676 }
677
678 static struct intel_mipmap_tree *
679 miptree_create(struct brw_context *brw,
680 GLenum target,
681 mesa_format format,
682 GLuint first_level,
683 GLuint last_level,
684 GLuint width0,
685 GLuint height0,
686 GLuint depth0,
687 GLuint num_samples,
688 enum intel_miptree_create_flags flags)
689 {
690 const struct gen_device_info *devinfo = &brw->screen->devinfo;
691
692 if (format == MESA_FORMAT_S_UINT8)
693 return make_surface(brw, target, format, first_level, last_level,
694 width0, height0, depth0, num_samples,
695 ISL_TILING_W_BIT,
696 ISL_SURF_USAGE_STENCIL_BIT |
697 ISL_SURF_USAGE_TEXTURE_BIT,
698 BO_ALLOC_BUSY,
699 0,
700 NULL);
701
702 const GLenum base_format = _mesa_get_format_base_format(format);
703 if ((base_format == GL_DEPTH_COMPONENT ||
704 base_format == GL_DEPTH_STENCIL) &&
705 !(flags & MIPTREE_CREATE_LINEAR)) {
706 /* Fix up the Z miptree format for how we're splitting out separate
707 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
708 */
709 const mesa_format depth_only_format =
710 intel_depth_format_for_depthstencil_format(format);
711 struct intel_mipmap_tree *mt = make_surface(
712 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
713 first_level, last_level,
714 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
715 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
716 BO_ALLOC_BUSY, 0, NULL);
717
718 if (needs_separate_stencil(brw, mt, format) &&
719 !make_separate_stencil_surface(brw, mt)) {
720 intel_miptree_release(&mt);
721 return NULL;
722 }
723
724 if (!(flags & MIPTREE_CREATE_NO_AUX))
725 intel_miptree_choose_aux_usage(brw, mt);
726
727 return mt;
728 }
729
730 mesa_format tex_format = format;
731 mesa_format etc_format = MESA_FORMAT_NONE;
732 uint32_t alloc_flags = 0;
733
734 format = intel_lower_compressed_format(brw, format);
735
736 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
737
738 if (flags & MIPTREE_CREATE_BUSY)
739 alloc_flags |= BO_ALLOC_BUSY;
740
741 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
742 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
743
744 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
745 if (devinfo->gen < 6)
746 tiling_flags &= ~ISL_TILING_Y0_BIT;
747
748 struct intel_mipmap_tree *mt = make_surface(
749 brw, target, format,
750 first_level, last_level,
751 width0, height0, depth0,
752 num_samples, tiling_flags,
753 ISL_SURF_USAGE_RENDER_TARGET_BIT |
754 ISL_SURF_USAGE_TEXTURE_BIT,
755 alloc_flags, 0, NULL);
756 if (!mt)
757 return NULL;
758
759 mt->etc_format = etc_format;
760
761 if (!(flags & MIPTREE_CREATE_NO_AUX))
762 intel_miptree_choose_aux_usage(brw, mt);
763
764 return mt;
765 }
766
767 struct intel_mipmap_tree *
768 intel_miptree_create(struct brw_context *brw,
769 GLenum target,
770 mesa_format format,
771 GLuint first_level,
772 GLuint last_level,
773 GLuint width0,
774 GLuint height0,
775 GLuint depth0,
776 GLuint num_samples,
777 enum intel_miptree_create_flags flags)
778 {
779 assert(num_samples > 0);
780
781 struct intel_mipmap_tree *mt = miptree_create(
782 brw, target, format,
783 first_level, last_level,
784 width0, height0, depth0, num_samples,
785 flags);
786 if (!mt)
787 return NULL;
788
789 mt->offset = 0;
790
791 if (!intel_miptree_alloc_aux(brw, mt)) {
792 intel_miptree_release(&mt);
793 return NULL;
794 }
795
796 return mt;
797 }
798
799 struct intel_mipmap_tree *
800 intel_miptree_create_for_bo(struct brw_context *brw,
801 struct brw_bo *bo,
802 mesa_format format,
803 uint32_t offset,
804 uint32_t width,
805 uint32_t height,
806 uint32_t depth,
807 int pitch,
808 enum isl_tiling tiling,
809 enum intel_miptree_create_flags flags)
810 {
811 const struct gen_device_info *devinfo = &brw->screen->devinfo;
812 struct intel_mipmap_tree *mt;
813 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
814 const GLenum base_format = _mesa_get_format_base_format(format);
815
816 if ((base_format == GL_DEPTH_COMPONENT ||
817 base_format == GL_DEPTH_STENCIL)) {
818 const mesa_format depth_only_format =
819 intel_depth_format_for_depthstencil_format(format);
820 mt = make_surface(brw, target,
821 devinfo->gen >= 6 ? depth_only_format : format,
822 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
823 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
824 0, pitch, bo);
825 if (!mt)
826 return NULL;
827
828 brw_bo_reference(bo);
829
830 if (!(flags & MIPTREE_CREATE_NO_AUX))
831 intel_miptree_choose_aux_usage(brw, mt);
832
833 return mt;
834 } else if (format == MESA_FORMAT_S_UINT8) {
835 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
836 0, 0, width, height, depth, 1,
837 ISL_TILING_W_BIT,
838 ISL_SURF_USAGE_STENCIL_BIT |
839 ISL_SURF_USAGE_TEXTURE_BIT,
840 0, pitch, bo);
841 if (!mt)
842 return NULL;
843
844 assert(bo->size >= mt->surf.size);
845
846 brw_bo_reference(bo);
847 return mt;
848 }
849
850 /* Nothing will be able to use this miptree with the BO if the offset isn't
851 * aligned.
852 */
853 if (tiling != ISL_TILING_LINEAR)
854 assert(offset % 4096 == 0);
855
856 /* miptrees can't handle negative pitch. If you need flipping of images,
857 * that's outside of the scope of the mt.
858 */
859 assert(pitch >= 0);
860
861 /* The BO already has a tiling format and we shouldn't confuse the lower
862 * layers by making it try to find a tiling format again.
863 */
864 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
865
866 mt = make_surface(brw, target, format,
867 0, 0, width, height, depth, 1,
868 1lu << tiling,
869 ISL_SURF_USAGE_RENDER_TARGET_BIT |
870 ISL_SURF_USAGE_TEXTURE_BIT,
871 0, pitch, bo);
872 if (!mt)
873 return NULL;
874
875 brw_bo_reference(bo);
876 mt->bo = bo;
877 mt->offset = offset;
878
879 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
880 intel_miptree_choose_aux_usage(brw, mt);
881
882 if (!intel_miptree_alloc_aux(brw, mt)) {
883 intel_miptree_release(&mt);
884 return NULL;
885 }
886 }
887
888 return mt;
889 }
890
891 static struct intel_mipmap_tree *
892 miptree_create_for_planar_image(struct brw_context *brw,
893 __DRIimage *image, GLenum target,
894 enum isl_tiling tiling)
895 {
896 const struct intel_image_format *f = image->planar_format;
897 struct intel_mipmap_tree *planar_mt = NULL;
898
899 for (int i = 0; i < f->nplanes; i++) {
900 const int index = f->planes[i].buffer_index;
901 const uint32_t dri_format = f->planes[i].dri_format;
902 const mesa_format format = driImageFormatToGLFormat(dri_format);
903 const uint32_t width = image->width >> f->planes[i].width_shift;
904 const uint32_t height = image->height >> f->planes[i].height_shift;
905
906 /* Disable creation of the texture's aux buffers because the driver
907 * exposes no EGL API to manage them. That is, there is no API for
908 * resolving the aux buffer's content to the main buffer nor for
909 * invalidating the aux buffer's content.
910 */
911 struct intel_mipmap_tree *mt =
912 intel_miptree_create_for_bo(brw, image->bo, format,
913 image->offsets[index],
914 width, height, 1,
915 image->strides[index],
916 tiling,
917 MIPTREE_CREATE_NO_AUX);
918 if (mt == NULL)
919 return NULL;
920
921 mt->target = target;
922
923 if (i == 0)
924 planar_mt = mt;
925 else
926 planar_mt->plane[i - 1] = mt;
927 }
928
929 planar_mt->drm_modifier = image->modifier;
930
931 return planar_mt;
932 }
933
934 static bool
935 create_ccs_buf_for_image(struct brw_context *brw,
936 __DRIimage *image,
937 struct intel_mipmap_tree *mt,
938 enum isl_aux_state initial_state)
939 {
940 struct isl_surf temp_ccs_surf;
941
942 /* CCS is only supported for very simple miptrees */
943 assert(image->aux_offset != 0 && image->aux_pitch != 0);
944 assert(image->tile_x == 0 && image->tile_y == 0);
945 assert(mt->surf.samples == 1);
946 assert(mt->surf.levels == 1);
947 assert(mt->surf.logical_level0_px.depth == 1);
948 assert(mt->surf.logical_level0_px.array_len == 1);
949 assert(mt->first_level == 0);
950 assert(mt->last_level == 0);
951
952 /* We shouldn't already have a CCS */
953 assert(!mt->mcs_buf);
954
955 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
956 image->aux_pitch))
957 return false;
958
959 assert(image->aux_offset < image->bo->size);
960 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
961
962 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
963 if (mt->mcs_buf == NULL)
964 return false;
965
966 mt->aux_state = create_aux_state_map(mt, initial_state);
967 if (!mt->aux_state) {
968 free(mt->mcs_buf);
969 mt->mcs_buf = NULL;
970 return false;
971 }
972
973 /* On gen10+ we start using an extra space in the aux buffer to store the
974 * indirect clear color. However, if we imported an image from the window
975 * system with CCS, we don't have the extra space at the end of the aux
976 * buffer. So create a new bo here that will store that clear color.
977 */
978 const struct gen_device_info *devinfo = &brw->screen->devinfo;
979 if (devinfo->gen >= 10) {
980 mt->mcs_buf->clear_color_bo =
981 brw_bo_alloc(brw->bufmgr, "clear_color_bo",
982 brw->isl_dev.ss.clear_color_state_size);
983 if (!mt->mcs_buf->clear_color_bo) {
984 free(mt->mcs_buf);
985 mt->mcs_buf = NULL;
986 return false;
987 }
988 }
989
990 mt->mcs_buf->bo = image->bo;
991 brw_bo_reference(image->bo);
992
993 mt->mcs_buf->offset = image->aux_offset;
994 mt->mcs_buf->size = image->bo->size - image->aux_offset;
995 mt->mcs_buf->pitch = image->aux_pitch;
996 mt->mcs_buf->qpitch = 0;
997 mt->mcs_buf->surf = temp_ccs_surf;
998
999 return true;
1000 }
1001
1002 struct intel_mipmap_tree *
1003 intel_miptree_create_for_dri_image(struct brw_context *brw,
1004 __DRIimage *image, GLenum target,
1005 mesa_format format,
1006 bool is_winsys_image)
1007 {
1008 uint32_t bo_tiling, bo_swizzle;
1009 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1010
1011 const struct isl_drm_modifier_info *mod_info =
1012 isl_drm_modifier_get_info(image->modifier);
1013
1014 const enum isl_tiling tiling =
1015 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1016
1017 if (image->planar_format && image->planar_format->nplanes > 1)
1018 return miptree_create_for_planar_image(brw, image, target, tiling);
1019
1020 if (image->planar_format)
1021 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1022
1023 if (!brw->ctx.TextureFormatSupported[format]) {
1024 /* The texture storage paths in core Mesa detect if the driver does not
1025 * support the user-requested format, and then searches for a
1026 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1027 * do the fallbacks here for important formats.
1028 *
1029 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1030 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1031 * the Chrome OS compositor consumes as dma_buf EGLImages.
1032 */
1033 format = _mesa_format_fallback_rgbx_to_rgba(format);
1034 }
1035
1036 if (!brw->ctx.TextureFormatSupported[format])
1037 return NULL;
1038
1039 enum intel_miptree_create_flags mt_create_flags = 0;
1040
1041 /* If this image comes in from a window system, we have different
1042 * requirements than if it comes in via an EGL import operation. Window
1043 * system images can use any form of auxiliary compression we wish because
1044 * they get "flushed" before being handed off to the window system and we
1045 * have the opportunity to do resolves. Non window-system images, on the
1046 * other hand, have no resolve point so we can't have aux without a
1047 * modifier.
1048 */
1049 if (!is_winsys_image)
1050 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1051
1052 /* If we have a modifier which specifies aux, don't create one yet */
1053 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1054 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1055
1056 /* Disable creation of the texture's aux buffers because the driver exposes
1057 * no EGL API to manage them. That is, there is no API for resolving the aux
1058 * buffer's content to the main buffer nor for invalidating the aux buffer's
1059 * content.
1060 */
1061 struct intel_mipmap_tree *mt =
1062 intel_miptree_create_for_bo(brw, image->bo, format,
1063 image->offset, image->width, image->height, 1,
1064 image->pitch, tiling, mt_create_flags);
1065 if (mt == NULL)
1066 return NULL;
1067
1068 mt->target = target;
1069 mt->level[0].level_x = image->tile_x;
1070 mt->level[0].level_y = image->tile_y;
1071 mt->drm_modifier = image->modifier;
1072
1073 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1074 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1075 * trouble resolving back to destination image due to alignment issues.
1076 */
1077 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1078 if (!devinfo->has_surface_tile_offset) {
1079 uint32_t draw_x, draw_y;
1080 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1081
1082 if (draw_x != 0 || draw_y != 0) {
1083 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1084 intel_miptree_release(&mt);
1085 return NULL;
1086 }
1087 }
1088
1089 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1090 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1091
1092 mt->aux_usage = mod_info->aux_usage;
1093 /* If we are a window system buffer, then we can support fast-clears
1094 * even if the modifier doesn't support them by doing a partial resolve
1095 * as part of the flush operation.
1096 */
1097 mt->supports_fast_clear =
1098 is_winsys_image || mod_info->supports_clear_color;
1099
1100 /* We don't know the actual state of the surface when we get it but we
1101 * can make a pretty good guess based on the modifier. What we do know
1102 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1103 * a worst case of compression.
1104 */
1105 enum isl_aux_state initial_state =
1106 isl_drm_modifier_get_default_aux_state(image->modifier);
1107
1108 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1109 intel_miptree_release(&mt);
1110 return NULL;
1111 }
1112 }
1113
1114 /* Don't assume coherency for imported EGLimages. We don't know what
1115 * external clients are going to do with it. They may scan it out.
1116 */
1117 image->bo->cache_coherent = false;
1118
1119 return mt;
1120 }
1121
1122 /**
1123 * For a singlesample renderbuffer, this simply wraps the given BO with a
1124 * miptree.
1125 *
1126 * For a multisample renderbuffer, this wraps the window system's
1127 * (singlesample) BO with a singlesample miptree attached to the
1128 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1129 * that will contain the actual rendering (which is lazily resolved to
1130 * irb->singlesample_mt).
1131 */
1132 bool
1133 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1134 struct intel_renderbuffer *irb,
1135 struct intel_mipmap_tree *singlesample_mt,
1136 uint32_t width, uint32_t height,
1137 uint32_t pitch)
1138 {
1139 struct intel_mipmap_tree *multisample_mt = NULL;
1140 struct gl_renderbuffer *rb = &irb->Base.Base;
1141 mesa_format format = rb->Format;
1142 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1143
1144 /* Only the front and back buffers, which are color buffers, are allocated
1145 * through the image loader.
1146 */
1147 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1148 _mesa_get_format_base_format(format) == GL_RGBA);
1149
1150 assert(singlesample_mt);
1151
1152 if (num_samples == 1) {
1153 intel_miptree_release(&irb->mt);
1154 irb->mt = singlesample_mt;
1155
1156 assert(!irb->singlesample_mt);
1157 } else {
1158 intel_miptree_release(&irb->singlesample_mt);
1159 irb->singlesample_mt = singlesample_mt;
1160
1161 if (!irb->mt ||
1162 irb->mt->surf.logical_level0_px.width != width ||
1163 irb->mt->surf.logical_level0_px.height != height) {
1164 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1165 format,
1166 width,
1167 height,
1168 num_samples);
1169 if (!multisample_mt)
1170 goto fail;
1171
1172 irb->need_downsample = false;
1173 intel_miptree_release(&irb->mt);
1174 irb->mt = multisample_mt;
1175 }
1176 }
1177 return true;
1178
1179 fail:
1180 intel_miptree_release(&irb->mt);
1181 return false;
1182 }
1183
1184 struct intel_mipmap_tree*
1185 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1186 mesa_format format,
1187 uint32_t width,
1188 uint32_t height,
1189 uint32_t num_samples)
1190 {
1191 struct intel_mipmap_tree *mt;
1192 uint32_t depth = 1;
1193 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1194
1195 mt = intel_miptree_create(brw, target, format, 0, 0,
1196 width, height, depth, num_samples,
1197 MIPTREE_CREATE_BUSY);
1198 if (!mt)
1199 goto fail;
1200
1201 return mt;
1202
1203 fail:
1204 intel_miptree_release(&mt);
1205 return NULL;
1206 }
1207
1208 void
1209 intel_miptree_reference(struct intel_mipmap_tree **dst,
1210 struct intel_mipmap_tree *src)
1211 {
1212 if (*dst == src)
1213 return;
1214
1215 intel_miptree_release(dst);
1216
1217 if (src) {
1218 src->refcount++;
1219 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1220 }
1221
1222 *dst = src;
1223 }
1224
1225 static void
1226 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1227 {
1228 if (aux_buf == NULL)
1229 return;
1230
1231 brw_bo_unreference(aux_buf->bo);
1232 brw_bo_unreference(aux_buf->clear_color_bo);
1233
1234 free(aux_buf);
1235 }
1236
1237 void
1238 intel_miptree_release(struct intel_mipmap_tree **mt)
1239 {
1240 if (!*mt)
1241 return;
1242
1243 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1244 if (--(*mt)->refcount <= 0) {
1245 GLuint i;
1246
1247 DBG("%s deleting %p\n", __func__, *mt);
1248
1249 brw_bo_unreference((*mt)->bo);
1250 intel_miptree_release(&(*mt)->stencil_mt);
1251 intel_miptree_release(&(*mt)->r8stencil_mt);
1252 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1253 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1254 free_aux_state_map((*mt)->aux_state);
1255
1256 intel_miptree_release(&(*mt)->plane[0]);
1257 intel_miptree_release(&(*mt)->plane[1]);
1258
1259 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1260 free((*mt)->level[i].slice);
1261 }
1262
1263 free(*mt);
1264 }
1265 *mt = NULL;
1266 }
1267
1268
1269 void
1270 intel_get_image_dims(struct gl_texture_image *image,
1271 int *width, int *height, int *depth)
1272 {
1273 switch (image->TexObject->Target) {
1274 case GL_TEXTURE_1D_ARRAY:
1275 /* For a 1D Array texture the OpenGL API will treat the image height as
1276 * the number of array slices. For Intel hardware, we treat the 1D array
1277 * as a 2D Array with a height of 1. So, here we want to swap image
1278 * height and depth.
1279 */
1280 assert(image->Depth == 1);
1281 *width = image->Width;
1282 *height = 1;
1283 *depth = image->Height;
1284 break;
1285 case GL_TEXTURE_CUBE_MAP:
1286 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1287 * though we really have 6 slices.
1288 */
1289 assert(image->Depth == 1);
1290 *width = image->Width;
1291 *height = image->Height;
1292 *depth = 6;
1293 break;
1294 default:
1295 *width = image->Width;
1296 *height = image->Height;
1297 *depth = image->Depth;
1298 break;
1299 }
1300 }
1301
1302 /**
1303 * Can the image be pulled into a unified mipmap tree? This mirrors
1304 * the completeness test in a lot of ways.
1305 *
1306 * Not sure whether I want to pass gl_texture_image here.
1307 */
1308 bool
1309 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1310 struct gl_texture_image *image)
1311 {
1312 struct intel_texture_image *intelImage = intel_texture_image(image);
1313 GLuint level = intelImage->base.Base.Level;
1314 int width, height, depth;
1315
1316 /* glTexImage* choose the texture object based on the target passed in, and
1317 * objects can't change targets over their lifetimes, so this should be
1318 * true.
1319 */
1320 assert(image->TexObject->Target == mt->target);
1321
1322 mesa_format mt_format = mt->format;
1323 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1324 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1325 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1326 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1327 if (mt->etc_format != MESA_FORMAT_NONE)
1328 mt_format = mt->etc_format;
1329
1330 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1331 _mesa_get_srgb_format_linear(mt_format))
1332 return false;
1333
1334 intel_get_image_dims(image, &width, &height, &depth);
1335
1336 if (mt->target == GL_TEXTURE_CUBE_MAP)
1337 depth = 6;
1338
1339 if (level >= mt->surf.levels)
1340 return false;
1341
1342 const unsigned level_depth =
1343 mt->surf.dim == ISL_SURF_DIM_3D ?
1344 minify(mt->surf.logical_level0_px.depth, level) :
1345 mt->surf.logical_level0_px.array_len;
1346
1347 return width == minify(mt->surf.logical_level0_px.width, level) &&
1348 height == minify(mt->surf.logical_level0_px.height, level) &&
1349 depth == level_depth &&
1350 MAX2(image->NumSamples, 1) == mt->surf.samples;
1351 }
1352
1353 void
1354 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1355 GLuint level, GLuint slice,
1356 GLuint *x, GLuint *y)
1357 {
1358 if (level == 0 && slice == 0) {
1359 *x = mt->level[0].level_x;
1360 *y = mt->level[0].level_y;
1361 return;
1362 }
1363
1364 uint32_t x_offset_sa, y_offset_sa;
1365
1366 /* Miptree itself can have an offset only if it represents a single
1367 * slice in an imported buffer object.
1368 * See intel_miptree_create_for_dri_image().
1369 */
1370 assert(mt->level[0].level_x == 0);
1371 assert(mt->level[0].level_y == 0);
1372
1373 /* Given level is relative to level zero while the miptree may be
1374 * represent just a subset of all levels starting from 'first_level'.
1375 */
1376 assert(level >= mt->first_level);
1377 level -= mt->first_level;
1378
1379 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1380 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1381 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1382 &x_offset_sa, &y_offset_sa);
1383
1384 *x = x_offset_sa;
1385 *y = y_offset_sa;
1386 }
1387
1388
1389 /**
1390 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1391 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1392 * and tile_h is set to 1.
1393 */
1394 void
1395 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1396 uint32_t *tile_w, uint32_t *tile_h)
1397 {
1398 switch (tiling) {
1399 case ISL_TILING_X:
1400 *tile_w = 512;
1401 *tile_h = 8;
1402 break;
1403 case ISL_TILING_Y0:
1404 *tile_w = 128;
1405 *tile_h = 32;
1406 break;
1407 case ISL_TILING_LINEAR:
1408 *tile_w = cpp;
1409 *tile_h = 1;
1410 break;
1411 default:
1412 unreachable("not reached");
1413 }
1414 }
1415
1416
1417 /**
1418 * This function computes masks that may be used to select the bits of the X
1419 * and Y coordinates that indicate the offset within a tile. If the BO is
1420 * untiled, the masks are set to 0.
1421 */
1422 void
1423 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1424 uint32_t *mask_x, uint32_t *mask_y)
1425 {
1426 uint32_t tile_w_bytes, tile_h;
1427
1428 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1429
1430 *mask_x = tile_w_bytes / cpp - 1;
1431 *mask_y = tile_h - 1;
1432 }
1433
1434 /**
1435 * Compute the offset (in bytes) from the start of the BO to the given x
1436 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1437 * multiples of the tile size.
1438 */
1439 uint32_t
1440 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1441 uint32_t x, uint32_t y)
1442 {
1443 int cpp = mt->cpp;
1444 uint32_t pitch = mt->surf.row_pitch;
1445
1446 switch (mt->surf.tiling) {
1447 default:
1448 unreachable("not reached");
1449 case ISL_TILING_LINEAR:
1450 return y * pitch + x * cpp;
1451 case ISL_TILING_X:
1452 assert((x % (512 / cpp)) == 0);
1453 assert((y % 8) == 0);
1454 return y * pitch + x / (512 / cpp) * 4096;
1455 case ISL_TILING_Y0:
1456 assert((x % (128 / cpp)) == 0);
1457 assert((y % 32) == 0);
1458 return y * pitch + x / (128 / cpp) * 4096;
1459 }
1460 }
1461
1462 /**
1463 * Rendering with tiled buffers requires that the base address of the buffer
1464 * be aligned to a page boundary. For renderbuffers, and sometimes with
1465 * textures, we may want the surface to point at a texture image level that
1466 * isn't at a page boundary.
1467 *
1468 * This function returns an appropriately-aligned base offset
1469 * according to the tiling restrictions, plus any required x/y offset
1470 * from there.
1471 */
1472 uint32_t
1473 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1474 GLuint level, GLuint slice,
1475 uint32_t *tile_x,
1476 uint32_t *tile_y)
1477 {
1478 uint32_t x, y;
1479 uint32_t mask_x, mask_y;
1480
1481 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1482 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1483
1484 *tile_x = x & mask_x;
1485 *tile_y = y & mask_y;
1486
1487 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1488 }
1489
1490 static void
1491 intel_miptree_copy_slice_sw(struct brw_context *brw,
1492 struct intel_mipmap_tree *src_mt,
1493 unsigned src_level, unsigned src_layer,
1494 struct intel_mipmap_tree *dst_mt,
1495 unsigned dst_level, unsigned dst_layer,
1496 unsigned width, unsigned height)
1497 {
1498 void *src, *dst;
1499 ptrdiff_t src_stride, dst_stride;
1500 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1501
1502 intel_miptree_map(brw, src_mt,
1503 src_level, src_layer,
1504 0, 0,
1505 width, height,
1506 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1507 &src, &src_stride);
1508
1509 intel_miptree_map(brw, dst_mt,
1510 dst_level, dst_layer,
1511 0, 0,
1512 width, height,
1513 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1514 BRW_MAP_DIRECT_BIT,
1515 &dst, &dst_stride);
1516
1517 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1518 _mesa_get_format_name(src_mt->format),
1519 src_mt, src, src_stride,
1520 _mesa_get_format_name(dst_mt->format),
1521 dst_mt, dst, dst_stride,
1522 width, height);
1523
1524 int row_size = cpp * width;
1525 if (src_stride == row_size &&
1526 dst_stride == row_size) {
1527 memcpy(dst, src, row_size * height);
1528 } else {
1529 for (int i = 0; i < height; i++) {
1530 memcpy(dst, src, row_size);
1531 dst += dst_stride;
1532 src += src_stride;
1533 }
1534 }
1535
1536 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1537 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1538
1539 /* Don't forget to copy the stencil data over, too. We could have skipped
1540 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1541 * shuffling the two data sources in/out of temporary storage instead of
1542 * the direct mapping we get this way.
1543 */
1544 if (dst_mt->stencil_mt) {
1545 assert(src_mt->stencil_mt);
1546 intel_miptree_copy_slice_sw(brw,
1547 src_mt->stencil_mt, src_level, src_layer,
1548 dst_mt->stencil_mt, dst_level, dst_layer,
1549 width, height);
1550 }
1551 }
1552
1553 void
1554 intel_miptree_copy_slice(struct brw_context *brw,
1555 struct intel_mipmap_tree *src_mt,
1556 unsigned src_level, unsigned src_layer,
1557 struct intel_mipmap_tree *dst_mt,
1558 unsigned dst_level, unsigned dst_layer)
1559
1560 {
1561 mesa_format format = src_mt->format;
1562 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1563 src_level - src_mt->first_level);
1564 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1565 src_level - src_mt->first_level);
1566
1567 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1568 src_level - src_mt->first_level));
1569
1570 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1571 _mesa_get_srgb_format_linear(dst_mt->format));
1572
1573 if (dst_mt->compressed) {
1574 unsigned int i, j;
1575 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1576 height = ALIGN_NPOT(height, j) / j;
1577 width = ALIGN_NPOT(width, i) / i;
1578 }
1579
1580 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1581 * below won't apply since we can't do the depth's Y tiling or the
1582 * stencil's W tiling in the blitter.
1583 */
1584 if (src_mt->stencil_mt) {
1585 intel_miptree_copy_slice_sw(brw,
1586 src_mt, src_level, src_layer,
1587 dst_mt, dst_level, dst_layer,
1588 width, height);
1589 return;
1590 }
1591
1592 uint32_t dst_x, dst_y, src_x, src_y;
1593 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1594 &dst_x, &dst_y);
1595 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1596 &src_x, &src_y);
1597
1598 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1599 _mesa_get_format_name(src_mt->format),
1600 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1601 _mesa_get_format_name(dst_mt->format),
1602 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1603 width, height);
1604
1605 if (!intel_miptree_blit(brw,
1606 src_mt, src_level, src_layer, 0, 0, false,
1607 dst_mt, dst_level, dst_layer, 0, 0, false,
1608 width, height, COLOR_LOGICOP_COPY)) {
1609 perf_debug("miptree validate blit for %s failed\n",
1610 _mesa_get_format_name(format));
1611
1612 intel_miptree_copy_slice_sw(brw,
1613 src_mt, src_level, src_layer,
1614 dst_mt, dst_level, dst_layer,
1615 width, height);
1616 }
1617 }
1618
1619 /**
1620 * Copies the image's current data to the given miptree, and associates that
1621 * miptree with the image.
1622 */
1623 void
1624 intel_miptree_copy_teximage(struct brw_context *brw,
1625 struct intel_texture_image *intelImage,
1626 struct intel_mipmap_tree *dst_mt)
1627 {
1628 struct intel_mipmap_tree *src_mt = intelImage->mt;
1629 struct intel_texture_object *intel_obj =
1630 intel_texture_object(intelImage->base.Base.TexObject);
1631 int level = intelImage->base.Base.Level;
1632 const unsigned face = intelImage->base.Base.Face;
1633 unsigned start_layer, end_layer;
1634
1635 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1636 assert(face == 0);
1637 assert(intelImage->base.Base.Height);
1638 start_layer = 0;
1639 end_layer = intelImage->base.Base.Height - 1;
1640 } else if (face > 0) {
1641 start_layer = face;
1642 end_layer = face;
1643 } else {
1644 assert(intelImage->base.Base.Depth);
1645 start_layer = 0;
1646 end_layer = intelImage->base.Base.Depth - 1;
1647 }
1648
1649 for (unsigned i = start_layer; i <= end_layer; i++) {
1650 intel_miptree_copy_slice(brw,
1651 src_mt, level, i,
1652 dst_mt, level, i);
1653 }
1654
1655 intel_miptree_reference(&intelImage->mt, dst_mt);
1656 intel_obj->needs_validate = true;
1657 }
1658
1659 static void
1660 intel_miptree_init_mcs(struct brw_context *brw,
1661 struct intel_mipmap_tree *mt,
1662 int init_value)
1663 {
1664 assert(mt->mcs_buf != NULL);
1665
1666 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1667 *
1668 * When MCS buffer is enabled and bound to MSRT, it is required that it
1669 * is cleared prior to any rendering.
1670 *
1671 * Since we don't use the MCS buffer for any purpose other than rendering,
1672 * it makes sense to just clear it immediately upon allocation.
1673 *
1674 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1675 */
1676 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE | MAP_RAW);
1677 if (unlikely(map == NULL)) {
1678 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1679 brw_bo_unreference(mt->mcs_buf->bo);
1680 free(mt->mcs_buf);
1681 return;
1682 }
1683 void *data = map;
1684 memset(data, init_value, mt->mcs_buf->size);
1685 brw_bo_unmap(mt->mcs_buf->bo);
1686 }
1687
1688 static struct intel_miptree_aux_buffer *
1689 intel_alloc_aux_buffer(struct brw_context *brw,
1690 const char *name,
1691 const struct isl_surf *aux_surf,
1692 uint32_t alloc_flags,
1693 struct intel_mipmap_tree *mt)
1694 {
1695 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1696 if (!buf)
1697 return false;
1698
1699 buf->size = aux_surf->size;
1700
1701 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1702 if (devinfo->gen >= 10) {
1703 /* On CNL, instead of setting the clear color in the SURFACE_STATE, we
1704 * will set a pointer to a dword somewhere that contains the color. So,
1705 * allocate the space for the clear color value here on the aux buffer.
1706 */
1707 buf->clear_color_offset = buf->size;
1708 buf->size += brw->isl_dev.ss.clear_color_state_size;
1709 }
1710
1711 buf->pitch = aux_surf->row_pitch;
1712 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1713
1714 /* ISL has stricter set of alignment rules then the drm allocator.
1715 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1716 * trying to recalculate based on different format block sizes.
1717 */
1718 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1719 I915_TILING_Y, buf->pitch, alloc_flags);
1720 if (!buf->bo) {
1721 free(buf);
1722 return NULL;
1723 }
1724
1725 if (devinfo->gen >= 10) {
1726 buf->clear_color_bo = buf->bo;
1727 brw_bo_reference(buf->clear_color_bo);
1728 }
1729
1730 buf->surf = *aux_surf;
1731
1732 return buf;
1733 }
1734
1735 static bool
1736 intel_miptree_alloc_mcs(struct brw_context *brw,
1737 struct intel_mipmap_tree *mt,
1738 GLuint num_samples)
1739 {
1740 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1741 assert(mt->mcs_buf == NULL);
1742 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1743
1744 /* Multisampled miptrees are only supported for single level. */
1745 assert(mt->first_level == 0);
1746 enum isl_aux_state **aux_state =
1747 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1748 if (!aux_state)
1749 return false;
1750
1751 struct isl_surf temp_mcs_surf;
1752
1753 MAYBE_UNUSED bool ok =
1754 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1755 assert(ok);
1756
1757 /* Buffer needs to be initialised requiring the buffer to be immediately
1758 * mapped to cpu space for writing. Therefore do not use the gpu access
1759 * flag which can cause an unnecessary delay if the backing pages happened
1760 * to be just used by the GPU.
1761 */
1762 const uint32_t alloc_flags = 0;
1763 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1764 &temp_mcs_surf, alloc_flags, mt);
1765 if (!mt->mcs_buf) {
1766 free(aux_state);
1767 return false;
1768 }
1769
1770 mt->aux_state = aux_state;
1771
1772 intel_miptree_init_mcs(brw, mt, 0xFF);
1773
1774 return true;
1775 }
1776
1777 bool
1778 intel_miptree_alloc_ccs(struct brw_context *brw,
1779 struct intel_mipmap_tree *mt)
1780 {
1781 assert(mt->mcs_buf == NULL);
1782 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1783 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1784
1785 struct isl_surf temp_ccs_surf;
1786
1787 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1788 return false;
1789
1790 assert(temp_ccs_surf.size &&
1791 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1792
1793 enum isl_aux_state **aux_state =
1794 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1795 if (!aux_state)
1796 return false;
1797
1798 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1799 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1800 *
1801 * "If Software wants to enable Color Compression without Fast clear,
1802 * Software needs to initialize MCS with zeros."
1803 *
1804 * A CCS value of 0 indicates that the corresponding block is in the
1805 * pass-through state which is what we want.
1806 *
1807 * For CCS_D, on the other hand, we don't care as we're about to perform a
1808 * fast-clear operation. In that case, being hot in caches more useful.
1809 */
1810 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1811 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1812 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1813 &temp_ccs_surf, alloc_flags, mt);
1814 if (!mt->mcs_buf) {
1815 free(aux_state);
1816 return false;
1817 }
1818
1819 mt->aux_state = aux_state;
1820
1821 return true;
1822 }
1823
1824 /**
1825 * Helper for intel_miptree_alloc_hiz() that sets
1826 * \c mt->level[level].has_hiz. Return true if and only if
1827 * \c has_hiz was set.
1828 */
1829 static bool
1830 intel_miptree_level_enable_hiz(struct brw_context *brw,
1831 struct intel_mipmap_tree *mt,
1832 uint32_t level)
1833 {
1834 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1835
1836 assert(mt->hiz_buf);
1837 assert(mt->surf.size > 0);
1838
1839 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1840 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1841 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1842
1843 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1844 * and the height is 4 aligned. This allows our HiZ support
1845 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1846 * we can grow the width & height to allow the HiZ op to
1847 * force the proper size alignments.
1848 */
1849 if (level > 0 && ((width & 7) || (height & 3))) {
1850 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1851 return false;
1852 }
1853 }
1854
1855 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1856 mt->level[level].has_hiz = true;
1857 return true;
1858 }
1859
1860 bool
1861 intel_miptree_alloc_hiz(struct brw_context *brw,
1862 struct intel_mipmap_tree *mt)
1863 {
1864 assert(mt->hiz_buf == NULL);
1865 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1866
1867 enum isl_aux_state **aux_state =
1868 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1869 if (!aux_state)
1870 return false;
1871
1872 struct isl_surf temp_hiz_surf;
1873
1874 MAYBE_UNUSED bool ok =
1875 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1876 assert(ok);
1877
1878 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1879 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1880 &temp_hiz_surf, alloc_flags, mt);
1881
1882 if (!mt->hiz_buf) {
1883 free(aux_state);
1884 return false;
1885 }
1886
1887 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1888 intel_miptree_level_enable_hiz(brw, mt, level);
1889
1890 mt->aux_state = aux_state;
1891
1892 return true;
1893 }
1894
1895
1896 /**
1897 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1898 *
1899 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1900 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1901 * compress clear color so we wait until an actual fast-clear to allocate it.
1902 */
1903 static bool
1904 intel_miptree_alloc_aux(struct brw_context *brw,
1905 struct intel_mipmap_tree *mt)
1906 {
1907 switch (mt->aux_usage) {
1908 case ISL_AUX_USAGE_NONE:
1909 return true;
1910
1911 case ISL_AUX_USAGE_HIZ:
1912 assert(!_mesa_is_format_color_format(mt->format));
1913 if (!intel_miptree_alloc_hiz(brw, mt))
1914 return false;
1915 return true;
1916
1917 case ISL_AUX_USAGE_MCS:
1918 assert(_mesa_is_format_color_format(mt->format));
1919 assert(mt->surf.samples > 1);
1920 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1921 return false;
1922 return true;
1923
1924 case ISL_AUX_USAGE_CCS_D:
1925 /* Since CCS_D can only compress clear color so we wait until an actual
1926 * fast-clear to allocate it.
1927 */
1928 return true;
1929
1930 case ISL_AUX_USAGE_CCS_E:
1931 assert(_mesa_is_format_color_format(mt->format));
1932 assert(mt->surf.samples == 1);
1933 if (!intel_miptree_alloc_ccs(brw, mt))
1934 return false;
1935 return true;
1936 }
1937
1938 unreachable("Invalid aux usage");
1939 }
1940
1941
1942 /**
1943 * Can the miptree sample using the hiz buffer?
1944 */
1945 bool
1946 intel_miptree_sample_with_hiz(struct brw_context *brw,
1947 struct intel_mipmap_tree *mt)
1948 {
1949 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1950
1951 if (!devinfo->has_sample_with_hiz) {
1952 return false;
1953 }
1954
1955 if (!mt->hiz_buf) {
1956 return false;
1957 }
1958
1959 /* It seems the hardware won't fallback to the depth buffer if some of the
1960 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1961 * of the texture to be HiZ enabled.
1962 */
1963 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1964 if (!intel_miptree_level_has_hiz(mt, level))
1965 return false;
1966 }
1967
1968 /* If compressed multisampling is enabled, then we use it for the auxiliary
1969 * buffer instead.
1970 *
1971 * From the BDW PRM (Volume 2d: Command Reference: Structures
1972 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1973 *
1974 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1975 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1976 *
1977 * There is no such blurb for 1D textures, but there is sufficient evidence
1978 * that this is broken on SKL+.
1979 */
1980 return (mt->surf.samples == 1 &&
1981 mt->target != GL_TEXTURE_3D &&
1982 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1983 }
1984
1985 /**
1986 * Does the miptree slice have hiz enabled?
1987 */
1988 bool
1989 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1990 {
1991 intel_miptree_check_level_layer(mt, level, 0);
1992 return mt->level[level].has_hiz;
1993 }
1994
1995 static inline uint32_t
1996 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1997 uint32_t start_level, uint32_t num_levels)
1998 {
1999 assert(start_level >= mt->first_level);
2000 assert(start_level <= mt->last_level);
2001
2002 if (num_levels == INTEL_REMAINING_LAYERS)
2003 num_levels = mt->last_level - start_level + 1;
2004 /* Check for overflow */
2005 assert(start_level + num_levels >= start_level);
2006 assert(start_level + num_levels <= mt->last_level + 1);
2007
2008 return num_levels;
2009 }
2010
2011 static inline uint32_t
2012 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2013 uint32_t start_layer, uint32_t num_layers)
2014 {
2015 assert(level <= mt->last_level);
2016
2017 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2018 assert(start_layer < total_num_layers);
2019 if (num_layers == INTEL_REMAINING_LAYERS)
2020 num_layers = total_num_layers - start_layer;
2021 /* Check for overflow */
2022 assert(start_layer + num_layers >= start_layer);
2023 assert(start_layer + num_layers <= total_num_layers);
2024
2025 return num_layers;
2026 }
2027
2028 bool
2029 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2030 unsigned start_level, unsigned num_levels,
2031 unsigned start_layer, unsigned num_layers)
2032 {
2033 assert(_mesa_is_format_color_format(mt->format));
2034
2035 if (!mt->mcs_buf)
2036 return false;
2037
2038 /* Clamp the level range to fit the miptree */
2039 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2040
2041 for (uint32_t l = 0; l < num_levels; l++) {
2042 const uint32_t level = start_level + l;
2043 const uint32_t level_layers =
2044 miptree_layer_range_length(mt, level, start_layer, num_layers);
2045 for (unsigned a = 0; a < level_layers; a++) {
2046 enum isl_aux_state aux_state =
2047 intel_miptree_get_aux_state(mt, level, start_layer + a);
2048 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2049 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2050 return true;
2051 }
2052 }
2053
2054 return false;
2055 }
2056
2057 static void
2058 intel_miptree_check_color_resolve(const struct brw_context *brw,
2059 const struct intel_mipmap_tree *mt,
2060 unsigned level, unsigned layer)
2061 {
2062 if (!mt->mcs_buf)
2063 return;
2064
2065 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2066 assert(brw->screen->devinfo.gen >= 8 ||
2067 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2068
2069 /* Compression of arrayed msaa surfaces is supported. */
2070 if (mt->surf.samples > 1)
2071 return;
2072
2073 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2074 assert(brw->screen->devinfo.gen >= 8 ||
2075 (layer == 0 &&
2076 mt->surf.logical_level0_px.depth == 1 &&
2077 mt->surf.logical_level0_px.array_len == 1));
2078
2079 (void)level;
2080 (void)layer;
2081 }
2082
2083 static enum isl_aux_op
2084 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2085 enum isl_aux_usage aux_usage,
2086 bool fast_clear_supported)
2087 {
2088 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2089
2090 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2091
2092 assert(ccs_supported == fast_clear_supported);
2093
2094 switch (aux_state) {
2095 case ISL_AUX_STATE_CLEAR:
2096 case ISL_AUX_STATE_PARTIAL_CLEAR:
2097 if (!ccs_supported)
2098 return ISL_AUX_OP_FULL_RESOLVE;
2099 else
2100 return ISL_AUX_OP_NONE;
2101
2102 case ISL_AUX_STATE_PASS_THROUGH:
2103 return ISL_AUX_OP_NONE;
2104
2105 case ISL_AUX_STATE_RESOLVED:
2106 case ISL_AUX_STATE_AUX_INVALID:
2107 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2108 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2109 break;
2110 }
2111
2112 unreachable("Invalid aux state for CCS_D");
2113 }
2114
2115 static enum isl_aux_op
2116 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2117 enum isl_aux_usage aux_usage,
2118 bool fast_clear_supported)
2119 {
2120 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2121 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2122 aux_usage == ISL_AUX_USAGE_CCS_D ||
2123 aux_usage == ISL_AUX_USAGE_CCS_E);
2124
2125 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2126 assert(fast_clear_supported);
2127
2128 switch (aux_state) {
2129 case ISL_AUX_STATE_CLEAR:
2130 case ISL_AUX_STATE_PARTIAL_CLEAR:
2131 if (fast_clear_supported)
2132 return ISL_AUX_OP_NONE;
2133 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2134 return ISL_AUX_OP_PARTIAL_RESOLVE;
2135 else
2136 return ISL_AUX_OP_FULL_RESOLVE;
2137
2138 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2139 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2140 return ISL_AUX_OP_FULL_RESOLVE;
2141 else if (!fast_clear_supported)
2142 return ISL_AUX_OP_PARTIAL_RESOLVE;
2143 else
2144 return ISL_AUX_OP_NONE;
2145
2146 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2147 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2148 return ISL_AUX_OP_FULL_RESOLVE;
2149 else
2150 return ISL_AUX_OP_NONE;
2151
2152 case ISL_AUX_STATE_PASS_THROUGH:
2153 return ISL_AUX_OP_NONE;
2154
2155 case ISL_AUX_STATE_RESOLVED:
2156 case ISL_AUX_STATE_AUX_INVALID:
2157 break;
2158 }
2159
2160 unreachable("Invalid aux state for CCS_E");
2161 }
2162
2163 static void
2164 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2165 struct intel_mipmap_tree *mt,
2166 uint32_t level, uint32_t layer,
2167 enum isl_aux_usage aux_usage,
2168 bool fast_clear_supported)
2169 {
2170 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2171
2172 enum isl_aux_op resolve_op;
2173 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2174 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2175 fast_clear_supported);
2176 } else {
2177 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2178 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2179 fast_clear_supported);
2180 }
2181
2182 if (resolve_op != ISL_AUX_OP_NONE) {
2183 intel_miptree_check_color_resolve(brw, mt, level, layer);
2184 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2185
2186 switch (resolve_op) {
2187 case ISL_AUX_OP_FULL_RESOLVE:
2188 /* The CCS full resolve operation destroys the CCS and sets it to the
2189 * pass-through state. (You can also think of this as being both a
2190 * resolve and an ambiguate in one operation.)
2191 */
2192 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2193 ISL_AUX_STATE_PASS_THROUGH);
2194 break;
2195
2196 case ISL_AUX_OP_PARTIAL_RESOLVE:
2197 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2198 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2199 break;
2200
2201 default:
2202 unreachable("Invalid resolve op");
2203 }
2204 }
2205 }
2206
2207 static void
2208 intel_miptree_finish_ccs_write(struct brw_context *brw,
2209 struct intel_mipmap_tree *mt,
2210 uint32_t level, uint32_t layer,
2211 enum isl_aux_usage aux_usage)
2212 {
2213 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2214 aux_usage == ISL_AUX_USAGE_CCS_D ||
2215 aux_usage == ISL_AUX_USAGE_CCS_E);
2216
2217 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2218
2219 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2220 switch (aux_state) {
2221 case ISL_AUX_STATE_CLEAR:
2222 case ISL_AUX_STATE_PARTIAL_CLEAR:
2223 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2224 aux_usage == ISL_AUX_USAGE_CCS_D);
2225
2226 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2227 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2228 ISL_AUX_STATE_COMPRESSED_CLEAR);
2229 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2230 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2231 ISL_AUX_STATE_PARTIAL_CLEAR);
2232 }
2233 break;
2234
2235 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2236 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2237 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2238 break; /* Nothing to do */
2239
2240 case ISL_AUX_STATE_PASS_THROUGH:
2241 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2242 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2243 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2244 } else {
2245 /* Nothing to do */
2246 }
2247 break;
2248
2249 case ISL_AUX_STATE_RESOLVED:
2250 case ISL_AUX_STATE_AUX_INVALID:
2251 unreachable("Invalid aux state for CCS_E");
2252 }
2253 } else {
2254 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2255 /* CCS_D is a bit simpler */
2256 switch (aux_state) {
2257 case ISL_AUX_STATE_CLEAR:
2258 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2259 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2260 ISL_AUX_STATE_PARTIAL_CLEAR);
2261 break;
2262
2263 case ISL_AUX_STATE_PARTIAL_CLEAR:
2264 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2265 break; /* Nothing to do */
2266
2267 case ISL_AUX_STATE_PASS_THROUGH:
2268 /* Nothing to do */
2269 break;
2270
2271 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2272 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2273 case ISL_AUX_STATE_RESOLVED:
2274 case ISL_AUX_STATE_AUX_INVALID:
2275 unreachable("Invalid aux state for CCS_D");
2276 }
2277 }
2278 }
2279
2280 static void
2281 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2282 struct intel_mipmap_tree *mt,
2283 uint32_t layer,
2284 enum isl_aux_usage aux_usage,
2285 bool fast_clear_supported)
2286 {
2287 assert(aux_usage == ISL_AUX_USAGE_MCS);
2288
2289 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2290 case ISL_AUX_STATE_CLEAR:
2291 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2292 if (!fast_clear_supported) {
2293 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2294 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2295 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2296 }
2297 break;
2298
2299 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2300 break; /* Nothing to do */
2301
2302 case ISL_AUX_STATE_RESOLVED:
2303 case ISL_AUX_STATE_PASS_THROUGH:
2304 case ISL_AUX_STATE_AUX_INVALID:
2305 case ISL_AUX_STATE_PARTIAL_CLEAR:
2306 unreachable("Invalid aux state for MCS");
2307 }
2308 }
2309
2310 static void
2311 intel_miptree_finish_mcs_write(struct brw_context *brw,
2312 struct intel_mipmap_tree *mt,
2313 uint32_t layer,
2314 enum isl_aux_usage aux_usage)
2315 {
2316 assert(aux_usage == ISL_AUX_USAGE_MCS);
2317
2318 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2319 case ISL_AUX_STATE_CLEAR:
2320 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2321 ISL_AUX_STATE_COMPRESSED_CLEAR);
2322 break;
2323
2324 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2325 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2326 break; /* Nothing to do */
2327
2328 case ISL_AUX_STATE_RESOLVED:
2329 case ISL_AUX_STATE_PASS_THROUGH:
2330 case ISL_AUX_STATE_AUX_INVALID:
2331 case ISL_AUX_STATE_PARTIAL_CLEAR:
2332 unreachable("Invalid aux state for MCS");
2333 }
2334 }
2335
2336 static void
2337 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2338 struct intel_mipmap_tree *mt,
2339 uint32_t level, uint32_t layer,
2340 enum isl_aux_usage aux_usage,
2341 bool fast_clear_supported)
2342 {
2343 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2344
2345 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2346 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2347 case ISL_AUX_STATE_CLEAR:
2348 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2349 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2350 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2351 break;
2352
2353 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2354 if (aux_usage != ISL_AUX_USAGE_HIZ)
2355 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2356 break;
2357
2358 case ISL_AUX_STATE_PASS_THROUGH:
2359 case ISL_AUX_STATE_RESOLVED:
2360 break;
2361
2362 case ISL_AUX_STATE_AUX_INVALID:
2363 if (aux_usage == ISL_AUX_USAGE_HIZ)
2364 hiz_op = ISL_AUX_OP_AMBIGUATE;
2365 break;
2366
2367 case ISL_AUX_STATE_PARTIAL_CLEAR:
2368 unreachable("Invalid HiZ state");
2369 }
2370
2371 if (hiz_op != ISL_AUX_OP_NONE) {
2372 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2373
2374 switch (hiz_op) {
2375 case ISL_AUX_OP_FULL_RESOLVE:
2376 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2377 ISL_AUX_STATE_RESOLVED);
2378 break;
2379
2380 case ISL_AUX_OP_AMBIGUATE:
2381 /* The HiZ resolve operation is actually an ambiguate */
2382 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2383 ISL_AUX_STATE_PASS_THROUGH);
2384 break;
2385
2386 default:
2387 unreachable("Invalid HiZ op");
2388 }
2389 }
2390 }
2391
2392 static void
2393 intel_miptree_finish_hiz_write(struct brw_context *brw,
2394 struct intel_mipmap_tree *mt,
2395 uint32_t level, uint32_t layer,
2396 enum isl_aux_usage aux_usage)
2397 {
2398 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2399
2400 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2401 case ISL_AUX_STATE_CLEAR:
2402 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2403 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2404 ISL_AUX_STATE_COMPRESSED_CLEAR);
2405 break;
2406
2407 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2408 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2409 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2410 break; /* Nothing to do */
2411
2412 case ISL_AUX_STATE_RESOLVED:
2413 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2414 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2415 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2416 } else {
2417 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2418 ISL_AUX_STATE_AUX_INVALID);
2419 }
2420 break;
2421
2422 case ISL_AUX_STATE_PASS_THROUGH:
2423 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2424 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2425 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2426 }
2427 break;
2428
2429 case ISL_AUX_STATE_AUX_INVALID:
2430 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2431 break;
2432
2433 case ISL_AUX_STATE_PARTIAL_CLEAR:
2434 unreachable("Invalid HiZ state");
2435 }
2436 }
2437
2438 void
2439 intel_miptree_prepare_access(struct brw_context *brw,
2440 struct intel_mipmap_tree *mt,
2441 uint32_t start_level, uint32_t num_levels,
2442 uint32_t start_layer, uint32_t num_layers,
2443 enum isl_aux_usage aux_usage,
2444 bool fast_clear_supported)
2445 {
2446 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2447
2448 switch (mt->aux_usage) {
2449 case ISL_AUX_USAGE_NONE:
2450 /* Nothing to do */
2451 break;
2452
2453 case ISL_AUX_USAGE_MCS:
2454 assert(mt->mcs_buf);
2455 assert(start_level == 0 && num_levels == 1);
2456 const uint32_t level_layers =
2457 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2458 for (uint32_t a = 0; a < level_layers; a++) {
2459 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2460 aux_usage, fast_clear_supported);
2461 }
2462 break;
2463
2464 case ISL_AUX_USAGE_CCS_D:
2465 case ISL_AUX_USAGE_CCS_E:
2466 if (!mt->mcs_buf)
2467 return;
2468
2469 for (uint32_t l = 0; l < num_levels; l++) {
2470 const uint32_t level = start_level + l;
2471 const uint32_t level_layers =
2472 miptree_layer_range_length(mt, level, start_layer, num_layers);
2473 for (uint32_t a = 0; a < level_layers; a++) {
2474 intel_miptree_prepare_ccs_access(brw, mt, level,
2475 start_layer + a,
2476 aux_usage, fast_clear_supported);
2477 }
2478 }
2479 break;
2480
2481 case ISL_AUX_USAGE_HIZ:
2482 assert(mt->hiz_buf);
2483 for (uint32_t l = 0; l < num_levels; l++) {
2484 const uint32_t level = start_level + l;
2485 if (!intel_miptree_level_has_hiz(mt, level))
2486 continue;
2487
2488 const uint32_t level_layers =
2489 miptree_layer_range_length(mt, level, start_layer, num_layers);
2490 for (uint32_t a = 0; a < level_layers; a++) {
2491 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2492 aux_usage, fast_clear_supported);
2493 }
2494 }
2495 break;
2496
2497 default:
2498 unreachable("Invalid aux usage");
2499 }
2500 }
2501
2502 void
2503 intel_miptree_finish_write(struct brw_context *brw,
2504 struct intel_mipmap_tree *mt, uint32_t level,
2505 uint32_t start_layer, uint32_t num_layers,
2506 enum isl_aux_usage aux_usage)
2507 {
2508 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2509
2510 switch (mt->aux_usage) {
2511 case ISL_AUX_USAGE_NONE:
2512 /* Nothing to do */
2513 break;
2514
2515 case ISL_AUX_USAGE_MCS:
2516 assert(mt->mcs_buf);
2517 for (uint32_t a = 0; a < num_layers; a++) {
2518 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2519 aux_usage);
2520 }
2521 break;
2522
2523 case ISL_AUX_USAGE_CCS_D:
2524 case ISL_AUX_USAGE_CCS_E:
2525 if (!mt->mcs_buf)
2526 return;
2527
2528 for (uint32_t a = 0; a < num_layers; a++) {
2529 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2530 aux_usage);
2531 }
2532 break;
2533
2534 case ISL_AUX_USAGE_HIZ:
2535 if (!intel_miptree_level_has_hiz(mt, level))
2536 return;
2537
2538 for (uint32_t a = 0; a < num_layers; a++) {
2539 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2540 aux_usage);
2541 }
2542 break;
2543
2544 default:
2545 unreachable("Invavlid aux usage");
2546 }
2547 }
2548
2549 enum isl_aux_state
2550 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2551 uint32_t level, uint32_t layer)
2552 {
2553 intel_miptree_check_level_layer(mt, level, layer);
2554
2555 if (_mesa_is_format_color_format(mt->format)) {
2556 assert(mt->mcs_buf != NULL);
2557 assert(mt->surf.samples == 1 ||
2558 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2559 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2560 unreachable("Cannot get aux state for stencil");
2561 } else {
2562 assert(intel_miptree_level_has_hiz(mt, level));
2563 }
2564
2565 return mt->aux_state[level][layer];
2566 }
2567
2568 void
2569 intel_miptree_set_aux_state(struct brw_context *brw,
2570 struct intel_mipmap_tree *mt, uint32_t level,
2571 uint32_t start_layer, uint32_t num_layers,
2572 enum isl_aux_state aux_state)
2573 {
2574 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2575
2576 if (_mesa_is_format_color_format(mt->format)) {
2577 assert(mt->mcs_buf != NULL);
2578 assert(mt->surf.samples == 1 ||
2579 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2580 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2581 unreachable("Cannot get aux state for stencil");
2582 } else {
2583 assert(intel_miptree_level_has_hiz(mt, level));
2584 }
2585
2586 for (unsigned a = 0; a < num_layers; a++) {
2587 if (mt->aux_state[level][start_layer + a] != aux_state) {
2588 mt->aux_state[level][start_layer + a] = aux_state;
2589 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2590 }
2591 }
2592 }
2593
2594 /* On Gen9 color buffers may be compressed by the hardware (lossless
2595 * compression). There are, however, format restrictions and care needs to be
2596 * taken that the sampler engine is capable for re-interpreting a buffer with
2597 * format different the buffer was originally written with.
2598 *
2599 * For example, SRGB formats are not compressible and the sampler engine isn't
2600 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2601 * color buffer needs to be resolved so that the sampling surface can be
2602 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2603 * set).
2604 */
2605 static bool
2606 can_texture_with_ccs(struct brw_context *brw,
2607 struct intel_mipmap_tree *mt,
2608 enum isl_format view_format)
2609 {
2610 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2611 return false;
2612
2613 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2614 mt, view_format)) {
2615 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2616 isl_format_get_layout(view_format)->name,
2617 _mesa_get_format_name(mt->format));
2618 return false;
2619 }
2620
2621 return true;
2622 }
2623
2624 enum isl_aux_usage
2625 intel_miptree_texture_aux_usage(struct brw_context *brw,
2626 struct intel_mipmap_tree *mt,
2627 enum isl_format view_format)
2628 {
2629 switch (mt->aux_usage) {
2630 case ISL_AUX_USAGE_HIZ:
2631 if (intel_miptree_sample_with_hiz(brw, mt))
2632 return ISL_AUX_USAGE_HIZ;
2633 break;
2634
2635 case ISL_AUX_USAGE_MCS:
2636 return ISL_AUX_USAGE_MCS;
2637
2638 case ISL_AUX_USAGE_CCS_D:
2639 case ISL_AUX_USAGE_CCS_E:
2640 if (!mt->mcs_buf) {
2641 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2642 return ISL_AUX_USAGE_NONE;
2643 }
2644
2645 /* If we don't have any unresolved color, report an aux usage of
2646 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2647 * aux surface and we can save some bandwidth.
2648 */
2649 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2650 0, INTEL_REMAINING_LAYERS))
2651 return ISL_AUX_USAGE_NONE;
2652
2653 if (can_texture_with_ccs(brw, mt, view_format))
2654 return ISL_AUX_USAGE_CCS_E;
2655 break;
2656
2657 default:
2658 break;
2659 }
2660
2661 return ISL_AUX_USAGE_NONE;
2662 }
2663
2664 static bool
2665 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2666 {
2667 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2668 * values so sRGB curve application was a no-op for all fast-clearable
2669 * formats.
2670 *
2671 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2672 * values, the hardware interprets the floats, not as what would be
2673 * returned from the sampler (or written by the shader), but as being
2674 * between format conversion and sRGB curve application. This means that
2675 * we can switch between sRGB and UNORM without having to whack the clear
2676 * color.
2677 */
2678 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2679 }
2680
2681 void
2682 intel_miptree_prepare_texture(struct brw_context *brw,
2683 struct intel_mipmap_tree *mt,
2684 enum isl_format view_format,
2685 uint32_t start_level, uint32_t num_levels,
2686 uint32_t start_layer, uint32_t num_layers)
2687 {
2688 enum isl_aux_usage aux_usage =
2689 intel_miptree_texture_aux_usage(brw, mt, view_format);
2690 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2691
2692 /* Clear color is specified as ints or floats and the conversion is done by
2693 * the sampler. If we have a texture view, we would have to perform the
2694 * clear color conversion manually. Just disable clear color.
2695 */
2696 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2697 clear_supported = false;
2698
2699 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2700 start_layer, num_layers,
2701 aux_usage, clear_supported);
2702 }
2703
2704 void
2705 intel_miptree_prepare_image(struct brw_context *brw,
2706 struct intel_mipmap_tree *mt)
2707 {
2708 /* The data port doesn't understand any compression */
2709 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2710 0, INTEL_REMAINING_LAYERS,
2711 ISL_AUX_USAGE_NONE, false);
2712 }
2713
2714 enum isl_aux_usage
2715 intel_miptree_render_aux_usage(struct brw_context *brw,
2716 struct intel_mipmap_tree *mt,
2717 enum isl_format render_format,
2718 bool blend_enabled,
2719 bool draw_aux_disabled)
2720 {
2721 struct gen_device_info *devinfo = &brw->screen->devinfo;
2722
2723 if (draw_aux_disabled)
2724 return ISL_AUX_USAGE_NONE;
2725
2726 switch (mt->aux_usage) {
2727 case ISL_AUX_USAGE_MCS:
2728 assert(mt->mcs_buf);
2729 return ISL_AUX_USAGE_MCS;
2730
2731 case ISL_AUX_USAGE_CCS_D:
2732 case ISL_AUX_USAGE_CCS_E:
2733 if (!mt->mcs_buf) {
2734 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2735 return ISL_AUX_USAGE_NONE;
2736 }
2737
2738 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2739 * formats. However, there are issues with blending where it doesn't
2740 * properly apply the sRGB curve to the clear color when blending.
2741 */
2742 if (devinfo->gen == 9 && blend_enabled &&
2743 isl_format_is_srgb(render_format) &&
2744 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2745 return ISL_AUX_USAGE_NONE;
2746
2747 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2748 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2749 mt, render_format))
2750 return ISL_AUX_USAGE_CCS_E;
2751
2752 /* Otherwise, we have to fall back to CCS_D */
2753 return ISL_AUX_USAGE_CCS_D;
2754
2755 default:
2756 return ISL_AUX_USAGE_NONE;
2757 }
2758 }
2759
2760 void
2761 intel_miptree_prepare_render(struct brw_context *brw,
2762 struct intel_mipmap_tree *mt, uint32_t level,
2763 uint32_t start_layer, uint32_t layer_count,
2764 enum isl_aux_usage aux_usage)
2765 {
2766 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2767 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2768 }
2769
2770 void
2771 intel_miptree_finish_render(struct brw_context *brw,
2772 struct intel_mipmap_tree *mt, uint32_t level,
2773 uint32_t start_layer, uint32_t layer_count,
2774 enum isl_aux_usage aux_usage)
2775 {
2776 assert(_mesa_is_format_color_format(mt->format));
2777
2778 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2779 aux_usage);
2780 }
2781
2782 void
2783 intel_miptree_prepare_depth(struct brw_context *brw,
2784 struct intel_mipmap_tree *mt, uint32_t level,
2785 uint32_t start_layer, uint32_t layer_count)
2786 {
2787 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2788 mt->aux_usage, mt->hiz_buf != NULL);
2789 }
2790
2791 void
2792 intel_miptree_finish_depth(struct brw_context *brw,
2793 struct intel_mipmap_tree *mt, uint32_t level,
2794 uint32_t start_layer, uint32_t layer_count,
2795 bool depth_written)
2796 {
2797 if (depth_written) {
2798 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2799 mt->hiz_buf != NULL);
2800 }
2801 }
2802
2803 void
2804 intel_miptree_prepare_external(struct brw_context *brw,
2805 struct intel_mipmap_tree *mt)
2806 {
2807 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2808 bool supports_fast_clear = false;
2809
2810 const struct isl_drm_modifier_info *mod_info =
2811 isl_drm_modifier_get_info(mt->drm_modifier);
2812
2813 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2814 /* CCS_E is the only supported aux for external images and it's only
2815 * supported on very simple images.
2816 */
2817 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2818 assert(_mesa_is_format_color_format(mt->format));
2819 assert(mt->first_level == 0 && mt->last_level == 0);
2820 assert(mt->surf.logical_level0_px.depth == 1);
2821 assert(mt->surf.logical_level0_px.array_len == 1);
2822 assert(mt->surf.samples == 1);
2823 assert(mt->mcs_buf != NULL);
2824
2825 aux_usage = mod_info->aux_usage;
2826 supports_fast_clear = mod_info->supports_clear_color;
2827 }
2828
2829 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2830 0, INTEL_REMAINING_LAYERS,
2831 aux_usage, supports_fast_clear);
2832 }
2833
2834 void
2835 intel_miptree_finish_external(struct brw_context *brw,
2836 struct intel_mipmap_tree *mt)
2837 {
2838 if (!mt->mcs_buf)
2839 return;
2840
2841 /* We don't know the actual aux state of the aux surface. The previous
2842 * owner could have given it to us in a number of different states.
2843 * Because we don't know the aux state, we reset the aux state to the
2844 * least common denominator of possible valid states.
2845 */
2846 enum isl_aux_state default_aux_state =
2847 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2848 assert(mt->last_level == mt->first_level);
2849 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2850 default_aux_state);
2851 }
2852
2853 /**
2854 * Make it possible to share the BO backing the given miptree with another
2855 * process or another miptree.
2856 *
2857 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2858 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2859 * ensure that no MCS buffer gets allocated in the future.
2860 *
2861 * HiZ is similarly unsafe with shared buffers.
2862 */
2863 void
2864 intel_miptree_make_shareable(struct brw_context *brw,
2865 struct intel_mipmap_tree *mt)
2866 {
2867 /* MCS buffers are also used for multisample buffers, but we can't resolve
2868 * away a multisample MCS buffer because it's an integral part of how the
2869 * pixel data is stored. Fortunately this code path should never be
2870 * reached for multisample buffers.
2871 */
2872 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2873 mt->surf.samples == 1);
2874
2875 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2876 0, INTEL_REMAINING_LAYERS,
2877 ISL_AUX_USAGE_NONE, false);
2878
2879 if (mt->mcs_buf) {
2880 intel_miptree_aux_buffer_free(mt->mcs_buf);
2881 mt->mcs_buf = NULL;
2882
2883 /* Any pending MCS/CCS operations are no longer needed. Trying to
2884 * execute any will likely crash due to the missing aux buffer. So let's
2885 * delete all pending ops.
2886 */
2887 free(mt->aux_state);
2888 mt->aux_state = NULL;
2889 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2890 }
2891
2892 if (mt->hiz_buf) {
2893 intel_miptree_aux_buffer_free(mt->hiz_buf);
2894 mt->hiz_buf = NULL;
2895
2896 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2897 mt->level[l].has_hiz = false;
2898 }
2899
2900 /* Any pending HiZ operations are no longer needed. Trying to execute
2901 * any will likely crash due to the missing aux buffer. So let's delete
2902 * all pending ops.
2903 */
2904 free(mt->aux_state);
2905 mt->aux_state = NULL;
2906 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2907 }
2908
2909 mt->aux_usage = ISL_AUX_USAGE_NONE;
2910 mt->supports_fast_clear = false;
2911 }
2912
2913
2914 /**
2915 * \brief Get pointer offset into stencil buffer.
2916 *
2917 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2918 * must decode the tile's layout in software.
2919 *
2920 * See
2921 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2922 * Format.
2923 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2924 *
2925 * Even though the returned offset is always positive, the return type is
2926 * signed due to
2927 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2928 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2929 */
2930 static intptr_t
2931 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2932 {
2933 uint32_t tile_size = 4096;
2934 uint32_t tile_width = 64;
2935 uint32_t tile_height = 64;
2936 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2937
2938 uint32_t tile_x = x / tile_width;
2939 uint32_t tile_y = y / tile_height;
2940
2941 /* The byte's address relative to the tile's base addres. */
2942 uint32_t byte_x = x % tile_width;
2943 uint32_t byte_y = y % tile_height;
2944
2945 uintptr_t u = tile_y * row_size
2946 + tile_x * tile_size
2947 + 512 * (byte_x / 8)
2948 + 64 * (byte_y / 8)
2949 + 32 * ((byte_y / 4) % 2)
2950 + 16 * ((byte_x / 4) % 2)
2951 + 8 * ((byte_y / 2) % 2)
2952 + 4 * ((byte_x / 2) % 2)
2953 + 2 * (byte_y % 2)
2954 + 1 * (byte_x % 2);
2955
2956 if (swizzled) {
2957 /* adjust for bit6 swizzling */
2958 if (((byte_x / 8) % 2) == 1) {
2959 if (((byte_y / 8) % 2) == 0) {
2960 u += 64;
2961 } else {
2962 u -= 64;
2963 }
2964 }
2965 }
2966
2967 return u;
2968 }
2969
2970 void
2971 intel_miptree_updownsample(struct brw_context *brw,
2972 struct intel_mipmap_tree *src,
2973 struct intel_mipmap_tree *dst)
2974 {
2975 unsigned src_w = src->surf.logical_level0_px.width;
2976 unsigned src_h = src->surf.logical_level0_px.height;
2977 unsigned dst_w = dst->surf.logical_level0_px.width;
2978 unsigned dst_h = dst->surf.logical_level0_px.height;
2979
2980 brw_blorp_blit_miptrees(brw,
2981 src, 0 /* level */, 0 /* layer */,
2982 src->format, SWIZZLE_XYZW,
2983 dst, 0 /* level */, 0 /* layer */, dst->format,
2984 0, 0, src_w, src_h,
2985 0, 0, dst_w, dst_h,
2986 GL_NEAREST, false, false /*mirror x, y*/,
2987 false, false);
2988
2989 if (src->stencil_mt) {
2990 src_w = src->stencil_mt->surf.logical_level0_px.width;
2991 src_h = src->stencil_mt->surf.logical_level0_px.height;
2992 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2993 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2994
2995 brw_blorp_blit_miptrees(brw,
2996 src->stencil_mt, 0 /* level */, 0 /* layer */,
2997 src->stencil_mt->format, SWIZZLE_XYZW,
2998 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2999 dst->stencil_mt->format,
3000 0, 0, src_w, src_h,
3001 0, 0, dst_w, dst_h,
3002 GL_NEAREST, false, false /*mirror x, y*/,
3003 false, false /* decode/encode srgb */);
3004 }
3005 }
3006
3007 void
3008 intel_update_r8stencil(struct brw_context *brw,
3009 struct intel_mipmap_tree *mt)
3010 {
3011 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3012
3013 assert(devinfo->gen >= 7);
3014 struct intel_mipmap_tree *src =
3015 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
3016 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3017 return;
3018
3019 assert(src->surf.size > 0);
3020
3021 if (!mt->r8stencil_mt) {
3022 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3023 mt->r8stencil_mt = make_surface(
3024 brw,
3025 src->target,
3026 MESA_FORMAT_R_UINT8,
3027 src->first_level, src->last_level,
3028 src->surf.logical_level0_px.width,
3029 src->surf.logical_level0_px.height,
3030 src->surf.dim == ISL_SURF_DIM_3D ?
3031 src->surf.logical_level0_px.depth :
3032 src->surf.logical_level0_px.array_len,
3033 src->surf.samples,
3034 ISL_TILING_Y0_BIT,
3035 ISL_SURF_USAGE_TEXTURE_BIT,
3036 BO_ALLOC_BUSY, 0, NULL);
3037 assert(mt->r8stencil_mt);
3038 }
3039
3040 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3041
3042 for (int level = src->first_level; level <= src->last_level; level++) {
3043 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3044 minify(src->surf.phys_level0_sa.depth, level) :
3045 src->surf.phys_level0_sa.array_len;
3046
3047 for (unsigned layer = 0; layer < depth; layer++) {
3048 brw_blorp_copy_miptrees(brw,
3049 src, level, layer,
3050 dst, level, layer,
3051 0, 0, 0, 0,
3052 minify(src->surf.logical_level0_px.width,
3053 level),
3054 minify(src->surf.logical_level0_px.height,
3055 level));
3056 }
3057 }
3058
3059 brw_cache_flush_for_read(brw, dst->bo);
3060 src->r8stencil_needs_update = false;
3061 }
3062
3063 static void *
3064 intel_miptree_map_raw(struct brw_context *brw,
3065 struct intel_mipmap_tree *mt,
3066 GLbitfield mode)
3067 {
3068 struct brw_bo *bo = mt->bo;
3069
3070 if (brw_batch_references(&brw->batch, bo))
3071 intel_batchbuffer_flush(brw);
3072
3073 return brw_bo_map(brw, bo, mode);
3074 }
3075
3076 static void
3077 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3078 {
3079 brw_bo_unmap(mt->bo);
3080 }
3081
3082 static void
3083 intel_miptree_map_gtt(struct brw_context *brw,
3084 struct intel_mipmap_tree *mt,
3085 struct intel_miptree_map *map,
3086 unsigned int level, unsigned int slice)
3087 {
3088 unsigned int bw, bh;
3089 void *base;
3090 unsigned int image_x, image_y;
3091 intptr_t x = map->x;
3092 intptr_t y = map->y;
3093
3094 /* For compressed formats, the stride is the number of bytes per
3095 * row of blocks. intel_miptree_get_image_offset() already does
3096 * the divide.
3097 */
3098 _mesa_get_format_block_size(mt->format, &bw, &bh);
3099 assert(y % bh == 0);
3100 assert(x % bw == 0);
3101 y /= bh;
3102 x /= bw;
3103
3104 base = intel_miptree_map_raw(brw, mt, map->mode);
3105
3106 if (base == NULL)
3107 map->ptr = NULL;
3108 else {
3109 base += mt->offset;
3110
3111 /* Note that in the case of cube maps, the caller must have passed the
3112 * slice number referencing the face.
3113 */
3114 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3115 x += image_x;
3116 y += image_y;
3117
3118 map->stride = mt->surf.row_pitch;
3119 map->ptr = base + y * map->stride + x * mt->cpp;
3120 }
3121
3122 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3123 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3124 map->x, map->y, map->w, map->h,
3125 mt, _mesa_get_format_name(mt->format),
3126 x, y, map->ptr, map->stride);
3127 }
3128
3129 static void
3130 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3131 {
3132 intel_miptree_unmap_raw(mt);
3133 }
3134
3135 static void
3136 intel_miptree_map_blit(struct brw_context *brw,
3137 struct intel_mipmap_tree *mt,
3138 struct intel_miptree_map *map,
3139 unsigned int level, unsigned int slice)
3140 {
3141 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3142 /* first_level */ 0,
3143 /* last_level */ 0,
3144 map->w, map->h, 1,
3145 /* samples */ 1,
3146 MIPTREE_CREATE_LINEAR);
3147
3148 if (!map->linear_mt) {
3149 fprintf(stderr, "Failed to allocate blit temporary\n");
3150 goto fail;
3151 }
3152 map->stride = map->linear_mt->surf.row_pitch;
3153
3154 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3155 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3156 * invalidate is set, since we'll be writing the whole rectangle from our
3157 * temporary buffer back out.
3158 */
3159 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3160 if (!intel_miptree_copy(brw,
3161 mt, level, slice, map->x, map->y,
3162 map->linear_mt, 0, 0, 0, 0,
3163 map->w, map->h)) {
3164 fprintf(stderr, "Failed to blit\n");
3165 goto fail;
3166 }
3167 }
3168
3169 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3170
3171 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3172 map->x, map->y, map->w, map->h,
3173 mt, _mesa_get_format_name(mt->format),
3174 level, slice, map->ptr, map->stride);
3175
3176 return;
3177
3178 fail:
3179 intel_miptree_release(&map->linear_mt);
3180 map->ptr = NULL;
3181 map->stride = 0;
3182 }
3183
3184 static void
3185 intel_miptree_unmap_blit(struct brw_context *brw,
3186 struct intel_mipmap_tree *mt,
3187 struct intel_miptree_map *map,
3188 unsigned int level,
3189 unsigned int slice)
3190 {
3191 struct gl_context *ctx = &brw->ctx;
3192
3193 intel_miptree_unmap_raw(map->linear_mt);
3194
3195 if (map->mode & GL_MAP_WRITE_BIT) {
3196 bool ok = intel_miptree_copy(brw,
3197 map->linear_mt, 0, 0, 0, 0,
3198 mt, level, slice, map->x, map->y,
3199 map->w, map->h);
3200 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3201 }
3202
3203 intel_miptree_release(&map->linear_mt);
3204 }
3205
3206 /**
3207 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3208 */
3209 #if defined(USE_SSE41)
3210 static void
3211 intel_miptree_map_movntdqa(struct brw_context *brw,
3212 struct intel_mipmap_tree *mt,
3213 struct intel_miptree_map *map,
3214 unsigned int level, unsigned int slice)
3215 {
3216 assert(map->mode & GL_MAP_READ_BIT);
3217 assert(!(map->mode & GL_MAP_WRITE_BIT));
3218
3219 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3220 map->x, map->y, map->w, map->h,
3221 mt, _mesa_get_format_name(mt->format),
3222 level, slice, map->ptr, map->stride);
3223
3224 /* Map the original image */
3225 uint32_t image_x;
3226 uint32_t image_y;
3227 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3228 image_x += map->x;
3229 image_y += map->y;
3230
3231 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3232 if (!src)
3233 return;
3234
3235 src += mt->offset;
3236
3237 src += image_y * mt->surf.row_pitch;
3238 src += image_x * mt->cpp;
3239
3240 /* Due to the pixel offsets for the particular image being mapped, our
3241 * src pointer may not be 16-byte aligned. However, if the pitch is
3242 * divisible by 16, then the amount by which it's misaligned will remain
3243 * consistent from row to row.
3244 */
3245 assert((mt->surf.row_pitch % 16) == 0);
3246 const int misalignment = ((uintptr_t) src) & 15;
3247
3248 /* Create an untiled temporary buffer for the mapping. */
3249 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3250
3251 map->stride = ALIGN(misalignment + width_bytes, 16);
3252
3253 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3254 /* Offset the destination so it has the same misalignment as src. */
3255 map->ptr = map->buffer + misalignment;
3256
3257 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3258
3259 for (uint32_t y = 0; y < map->h; y++) {
3260 void *dst_ptr = map->ptr + y * map->stride;
3261 void *src_ptr = src + y * mt->surf.row_pitch;
3262
3263 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3264 }
3265
3266 intel_miptree_unmap_raw(mt);
3267 }
3268
3269 static void
3270 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3271 struct intel_mipmap_tree *mt,
3272 struct intel_miptree_map *map,
3273 unsigned int level,
3274 unsigned int slice)
3275 {
3276 _mesa_align_free(map->buffer);
3277 map->buffer = NULL;
3278 map->ptr = NULL;
3279 }
3280 #endif
3281
3282 static void
3283 intel_miptree_map_s8(struct brw_context *brw,
3284 struct intel_mipmap_tree *mt,
3285 struct intel_miptree_map *map,
3286 unsigned int level, unsigned int slice)
3287 {
3288 map->stride = map->w;
3289 map->buffer = map->ptr = malloc(map->stride * map->h);
3290 if (!map->buffer)
3291 return;
3292
3293 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3294 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3295 * invalidate is set, since we'll be writing the whole rectangle from our
3296 * temporary buffer back out.
3297 */
3298 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3299 uint8_t *untiled_s8_map = map->ptr;
3300 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3301 unsigned int image_x, image_y;
3302
3303 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3304
3305 for (uint32_t y = 0; y < map->h; y++) {
3306 for (uint32_t x = 0; x < map->w; x++) {
3307 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3308 x + image_x + map->x,
3309 y + image_y + map->y,
3310 brw->has_swizzling);
3311 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3312 }
3313 }
3314
3315 intel_miptree_unmap_raw(mt);
3316
3317 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3318 map->x, map->y, map->w, map->h,
3319 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3320 } else {
3321 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3322 map->x, map->y, map->w, map->h,
3323 mt, map->ptr, map->stride);
3324 }
3325 }
3326
3327 static void
3328 intel_miptree_unmap_s8(struct brw_context *brw,
3329 struct intel_mipmap_tree *mt,
3330 struct intel_miptree_map *map,
3331 unsigned int level,
3332 unsigned int slice)
3333 {
3334 if (map->mode & GL_MAP_WRITE_BIT) {
3335 unsigned int image_x, image_y;
3336 uint8_t *untiled_s8_map = map->ptr;
3337 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3338
3339 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3340
3341 for (uint32_t y = 0; y < map->h; y++) {
3342 for (uint32_t x = 0; x < map->w; x++) {
3343 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3344 image_x + x + map->x,
3345 image_y + y + map->y,
3346 brw->has_swizzling);
3347 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3348 }
3349 }
3350
3351 intel_miptree_unmap_raw(mt);
3352 }
3353
3354 free(map->buffer);
3355 }
3356
3357 static void
3358 intel_miptree_map_etc(struct brw_context *brw,
3359 struct intel_mipmap_tree *mt,
3360 struct intel_miptree_map *map,
3361 unsigned int level,
3362 unsigned int slice)
3363 {
3364 assert(mt->etc_format != MESA_FORMAT_NONE);
3365 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3366 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3367 }
3368
3369 assert(map->mode & GL_MAP_WRITE_BIT);
3370 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3371
3372 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3373 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3374 map->w, map->h, 1));
3375 map->ptr = map->buffer;
3376 }
3377
3378 static void
3379 intel_miptree_unmap_etc(struct brw_context *brw,
3380 struct intel_mipmap_tree *mt,
3381 struct intel_miptree_map *map,
3382 unsigned int level,
3383 unsigned int slice)
3384 {
3385 uint32_t image_x;
3386 uint32_t image_y;
3387 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3388
3389 image_x += map->x;
3390 image_y += map->y;
3391
3392 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3393 + image_y * mt->surf.row_pitch
3394 + image_x * mt->cpp;
3395
3396 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3397 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3398 map->ptr, map->stride,
3399 map->w, map->h);
3400 else
3401 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3402 map->ptr, map->stride,
3403 map->w, map->h, mt->etc_format);
3404
3405 intel_miptree_unmap_raw(mt);
3406 free(map->buffer);
3407 }
3408
3409 /**
3410 * Mapping function for packed depth/stencil miptrees backed by real separate
3411 * miptrees for depth and stencil.
3412 *
3413 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3414 * separate from the depth buffer. Yet at the GL API level, we have to expose
3415 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3416 * be able to map that memory for texture storage and glReadPixels-type
3417 * operations. We give Mesa core that access by mallocing a temporary and
3418 * copying the data between the actual backing store and the temporary.
3419 */
3420 static void
3421 intel_miptree_map_depthstencil(struct brw_context *brw,
3422 struct intel_mipmap_tree *mt,
3423 struct intel_miptree_map *map,
3424 unsigned int level, unsigned int slice)
3425 {
3426 struct intel_mipmap_tree *z_mt = mt;
3427 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3428 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3429 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3430
3431 map->stride = map->w * packed_bpp;
3432 map->buffer = map->ptr = malloc(map->stride * map->h);
3433 if (!map->buffer)
3434 return;
3435
3436 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3437 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3438 * invalidate is set, since we'll be writing the whole rectangle from our
3439 * temporary buffer back out.
3440 */
3441 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3442 uint32_t *packed_map = map->ptr;
3443 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3444 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3445 unsigned int s_image_x, s_image_y;
3446 unsigned int z_image_x, z_image_y;
3447
3448 intel_miptree_get_image_offset(s_mt, level, slice,
3449 &s_image_x, &s_image_y);
3450 intel_miptree_get_image_offset(z_mt, level, slice,
3451 &z_image_x, &z_image_y);
3452
3453 for (uint32_t y = 0; y < map->h; y++) {
3454 for (uint32_t x = 0; x < map->w; x++) {
3455 int map_x = map->x + x, map_y = map->y + y;
3456 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3457 map_x + s_image_x,
3458 map_y + s_image_y,
3459 brw->has_swizzling);
3460 ptrdiff_t z_offset = ((map_y + z_image_y) *
3461 (z_mt->surf.row_pitch / 4) +
3462 (map_x + z_image_x));
3463 uint8_t s = s_map[s_offset];
3464 uint32_t z = z_map[z_offset];
3465
3466 if (map_z32f_x24s8) {
3467 packed_map[(y * map->w + x) * 2 + 0] = z;
3468 packed_map[(y * map->w + x) * 2 + 1] = s;
3469 } else {
3470 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3471 }
3472 }
3473 }
3474
3475 intel_miptree_unmap_raw(s_mt);
3476 intel_miptree_unmap_raw(z_mt);
3477
3478 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3479 __func__,
3480 map->x, map->y, map->w, map->h,
3481 z_mt, map->x + z_image_x, map->y + z_image_y,
3482 s_mt, map->x + s_image_x, map->y + s_image_y,
3483 map->ptr, map->stride);
3484 } else {
3485 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3486 map->x, map->y, map->w, map->h,
3487 mt, map->ptr, map->stride);
3488 }
3489 }
3490
3491 static void
3492 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3493 struct intel_mipmap_tree *mt,
3494 struct intel_miptree_map *map,
3495 unsigned int level,
3496 unsigned int slice)
3497 {
3498 struct intel_mipmap_tree *z_mt = mt;
3499 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3500 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3501
3502 if (map->mode & GL_MAP_WRITE_BIT) {
3503 uint32_t *packed_map = map->ptr;
3504 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3505 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3506 unsigned int s_image_x, s_image_y;
3507 unsigned int z_image_x, z_image_y;
3508
3509 intel_miptree_get_image_offset(s_mt, level, slice,
3510 &s_image_x, &s_image_y);
3511 intel_miptree_get_image_offset(z_mt, level, slice,
3512 &z_image_x, &z_image_y);
3513
3514 for (uint32_t y = 0; y < map->h; y++) {
3515 for (uint32_t x = 0; x < map->w; x++) {
3516 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3517 x + s_image_x + map->x,
3518 y + s_image_y + map->y,
3519 brw->has_swizzling);
3520 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3521 (z_mt->surf.row_pitch / 4) +
3522 (x + z_image_x + map->x));
3523
3524 if (map_z32f_x24s8) {
3525 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3526 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3527 } else {
3528 uint32_t packed = packed_map[y * map->w + x];
3529 s_map[s_offset] = packed >> 24;
3530 z_map[z_offset] = packed;
3531 }
3532 }
3533 }
3534
3535 intel_miptree_unmap_raw(s_mt);
3536 intel_miptree_unmap_raw(z_mt);
3537
3538 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3539 __func__,
3540 map->x, map->y, map->w, map->h,
3541 z_mt, _mesa_get_format_name(z_mt->format),
3542 map->x + z_image_x, map->y + z_image_y,
3543 s_mt, map->x + s_image_x, map->y + s_image_y,
3544 map->ptr, map->stride);
3545 }
3546
3547 free(map->buffer);
3548 }
3549
3550 /**
3551 * Create and attach a map to the miptree at (level, slice). Return the
3552 * attached map.
3553 */
3554 static struct intel_miptree_map*
3555 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3556 unsigned int level,
3557 unsigned int slice,
3558 unsigned int x,
3559 unsigned int y,
3560 unsigned int w,
3561 unsigned int h,
3562 GLbitfield mode)
3563 {
3564 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3565
3566 if (!map)
3567 return NULL;
3568
3569 assert(mt->level[level].slice[slice].map == NULL);
3570 mt->level[level].slice[slice].map = map;
3571
3572 map->mode = mode;
3573 map->x = x;
3574 map->y = y;
3575 map->w = w;
3576 map->h = h;
3577
3578 return map;
3579 }
3580
3581 /**
3582 * Release the map at (level, slice).
3583 */
3584 static void
3585 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3586 unsigned int level,
3587 unsigned int slice)
3588 {
3589 struct intel_miptree_map **map;
3590
3591 map = &mt->level[level].slice[slice].map;
3592 free(*map);
3593 *map = NULL;
3594 }
3595
3596 static bool
3597 can_blit_slice(struct intel_mipmap_tree *mt,
3598 unsigned int level, unsigned int slice)
3599 {
3600 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3601 if (mt->surf.row_pitch >= 32768)
3602 return false;
3603
3604 return true;
3605 }
3606
3607 static bool
3608 use_intel_mipree_map_blit(struct brw_context *brw,
3609 struct intel_mipmap_tree *mt,
3610 GLbitfield mode,
3611 unsigned int level,
3612 unsigned int slice)
3613 {
3614 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3615
3616 if (devinfo->has_llc &&
3617 /* It's probably not worth swapping to the blit ring because of
3618 * all the overhead involved.
3619 */
3620 !(mode & GL_MAP_WRITE_BIT) &&
3621 !mt->compressed &&
3622 (mt->surf.tiling == ISL_TILING_X ||
3623 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3624 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3625 /* Fast copy blit on skl+ supports all tiling formats. */
3626 devinfo->gen >= 9) &&
3627 can_blit_slice(mt, level, slice))
3628 return true;
3629
3630 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3631 mt->bo->size >= brw->max_gtt_map_object_size) {
3632 assert(can_blit_slice(mt, level, slice));
3633 return true;
3634 }
3635
3636 return false;
3637 }
3638
3639 /**
3640 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3641 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3642 * arithmetic overflow.
3643 *
3644 * If you call this function and use \a out_stride, then you're doing pointer
3645 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3646 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3647 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3648 * which usually have type uint32_t or GLuint.
3649 */
3650 void
3651 intel_miptree_map(struct brw_context *brw,
3652 struct intel_mipmap_tree *mt,
3653 unsigned int level,
3654 unsigned int slice,
3655 unsigned int x,
3656 unsigned int y,
3657 unsigned int w,
3658 unsigned int h,
3659 GLbitfield mode,
3660 void **out_ptr,
3661 ptrdiff_t *out_stride)
3662 {
3663 struct intel_miptree_map *map;
3664
3665 assert(mt->surf.samples == 1);
3666
3667 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3668 if (!map){
3669 *out_ptr = NULL;
3670 *out_stride = 0;
3671 return;
3672 }
3673
3674 intel_miptree_access_raw(brw, mt, level, slice,
3675 map->mode & GL_MAP_WRITE_BIT);
3676
3677 if (mt->format == MESA_FORMAT_S_UINT8) {
3678 intel_miptree_map_s8(brw, mt, map, level, slice);
3679 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3680 !(mode & BRW_MAP_DIRECT_BIT)) {
3681 intel_miptree_map_etc(brw, mt, map, level, slice);
3682 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3683 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3684 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3685 intel_miptree_map_blit(brw, mt, map, level, slice);
3686 #if defined(USE_SSE41)
3687 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3688 !mt->compressed && cpu_has_sse4_1 &&
3689 (mt->surf.row_pitch % 16 == 0)) {
3690 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3691 #endif
3692 } else {
3693 intel_miptree_map_gtt(brw, mt, map, level, slice);
3694 }
3695
3696 *out_ptr = map->ptr;
3697 *out_stride = map->stride;
3698
3699 if (map->ptr == NULL)
3700 intel_miptree_release_map(mt, level, slice);
3701 }
3702
3703 void
3704 intel_miptree_unmap(struct brw_context *brw,
3705 struct intel_mipmap_tree *mt,
3706 unsigned int level,
3707 unsigned int slice)
3708 {
3709 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3710
3711 assert(mt->surf.samples == 1);
3712
3713 if (!map)
3714 return;
3715
3716 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3717 mt, _mesa_get_format_name(mt->format), level, slice);
3718
3719 if (mt->format == MESA_FORMAT_S_UINT8) {
3720 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3721 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3722 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3723 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3724 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3725 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3726 } else if (map->linear_mt) {
3727 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3728 #if defined(USE_SSE41)
3729 } else if (map->buffer && cpu_has_sse4_1) {
3730 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3731 #endif
3732 } else {
3733 intel_miptree_unmap_gtt(mt);
3734 }
3735
3736 intel_miptree_release_map(mt, level, slice);
3737 }
3738
3739 enum isl_surf_dim
3740 get_isl_surf_dim(GLenum target)
3741 {
3742 switch (target) {
3743 case GL_TEXTURE_1D:
3744 case GL_TEXTURE_1D_ARRAY:
3745 return ISL_SURF_DIM_1D;
3746
3747 case GL_TEXTURE_2D:
3748 case GL_TEXTURE_2D_ARRAY:
3749 case GL_TEXTURE_RECTANGLE:
3750 case GL_TEXTURE_CUBE_MAP:
3751 case GL_TEXTURE_CUBE_MAP_ARRAY:
3752 case GL_TEXTURE_2D_MULTISAMPLE:
3753 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3754 case GL_TEXTURE_EXTERNAL_OES:
3755 return ISL_SURF_DIM_2D;
3756
3757 case GL_TEXTURE_3D:
3758 return ISL_SURF_DIM_3D;
3759 }
3760
3761 unreachable("Invalid texture target");
3762 }
3763
3764 enum isl_dim_layout
3765 get_isl_dim_layout(const struct gen_device_info *devinfo,
3766 enum isl_tiling tiling, GLenum target)
3767 {
3768 switch (target) {
3769 case GL_TEXTURE_1D:
3770 case GL_TEXTURE_1D_ARRAY:
3771 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3772 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3773
3774 case GL_TEXTURE_2D:
3775 case GL_TEXTURE_2D_ARRAY:
3776 case GL_TEXTURE_RECTANGLE:
3777 case GL_TEXTURE_2D_MULTISAMPLE:
3778 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3779 case GL_TEXTURE_EXTERNAL_OES:
3780 return ISL_DIM_LAYOUT_GEN4_2D;
3781
3782 case GL_TEXTURE_CUBE_MAP:
3783 case GL_TEXTURE_CUBE_MAP_ARRAY:
3784 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3785 ISL_DIM_LAYOUT_GEN4_2D);
3786
3787 case GL_TEXTURE_3D:
3788 return (devinfo->gen >= 9 ?
3789 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3790 }
3791
3792 unreachable("Invalid texture target");
3793 }
3794
3795 bool
3796 intel_miptree_set_clear_color(struct brw_context *brw,
3797 struct intel_mipmap_tree *mt,
3798 const union gl_color_union *color)
3799 {
3800 const union isl_color_value clear_color =
3801 brw_meta_convert_fast_clear_color(brw, mt, color);
3802
3803 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3804 mt->fast_clear_color = clear_color;
3805 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3806 return true;
3807 }
3808 return false;
3809 }
3810
3811 bool
3812 intel_miptree_set_depth_clear_value(struct brw_context *brw,
3813 struct intel_mipmap_tree *mt,
3814 float clear_value)
3815 {
3816 if (mt->fast_clear_color.f32[0] != clear_value) {
3817 mt->fast_clear_color.f32[0] = clear_value;
3818 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3819 return true;
3820 }
3821 return false;
3822 }