i965/miptree: Add new clear color BO for winsys aux buffers
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* See isl_surf_get_mcs_surf for details. */
77 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
78 return false;
79
80 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
81 switch (_mesa_get_format_base_format(mt->format)) {
82 case GL_DEPTH_COMPONENT:
83 case GL_STENCIL_INDEX:
84 case GL_DEPTH_STENCIL:
85 return false;
86 default:
87 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
88 *
89 * This field must be set to 0 for all SINT MSRTs when all RT channels
90 * are not written
91 *
92 * In practice this means that we have to disable MCS for all signed
93 * integer MSAA buffers. The alternative, to disable MCS only when one
94 * of the render target channels is disabled, is impractical because it
95 * would require converting between CMS and UMS MSAA layouts on the fly,
96 * which is expensive.
97 */
98 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
99 return false;
100 } else {
101 return true;
102 }
103 }
104 }
105
106 static bool
107 intel_tiling_supports_ccs(const struct brw_context *brw,
108 enum isl_tiling tiling)
109 {
110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
111
112 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
113 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
114 *
115 * - Support is limited to tiled render targets.
116 *
117 * Gen9 changes the restriction to Y-tile only.
118 */
119 if (devinfo->gen >= 9)
120 return tiling == ISL_TILING_Y0;
121 else if (devinfo->gen >= 7)
122 return tiling != ISL_TILING_LINEAR;
123 else
124 return false;
125 }
126
127 /**
128 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
129 * can be used. This doesn't (and should not) inspect any of the properties of
130 * the miptree's BO.
131 *
132 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
133 * beneath the "Fast Color Clear" bullet (p326):
134 *
135 * - Support is for non-mip-mapped and non-array surface types only.
136 *
137 * And then later, on p327:
138 *
139 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
140 * 64bpp, and 128bpp.
141 *
142 * From the Skylake documentation, it is made clear that X-tiling is no longer
143 * supported:
144 *
145 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
146 * non-MSRTs only.
147 */
148 static bool
149 intel_miptree_supports_ccs(struct brw_context *brw,
150 const struct intel_mipmap_tree *mt)
151 {
152 const struct gen_device_info *devinfo = &brw->screen->devinfo;
153
154 /* MCS support does not exist prior to Gen7 */
155 if (devinfo->gen < 7)
156 return false;
157
158 /* This function applies only to non-multisampled render targets. */
159 if (mt->surf.samples > 1)
160 return false;
161
162 /* MCS is only supported for color buffers */
163 switch (_mesa_get_format_base_format(mt->format)) {
164 case GL_DEPTH_COMPONENT:
165 case GL_DEPTH_STENCIL:
166 case GL_STENCIL_INDEX:
167 return false;
168 }
169
170 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
171 return false;
172
173 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
174 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
175 mt->surf.logical_level0_px.depth > 1;
176
177 if (arrayed) {
178 /* Multisample surfaces with the CMS layout are not layered surfaces,
179 * yet still have physical_depth0 > 1. Assert that we don't
180 * accidentally reject a multisampled surface here. We should have
181 * rejected it earlier by explicitly checking the sample count.
182 */
183 assert(mt->surf.samples == 1);
184 }
185
186 /* Handle the hardware restrictions...
187 *
188 * All GENs have the following restriction: "MCS buffer for non-MSRT is
189 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
190 *
191 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
192 * Non-MultiSampler Render Target Restrictions) Support is for
193 * non-mip-mapped and non-array surface types only.
194 *
195 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
199 *
200 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
201 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
202 * surfaces are supported with MCS buffer layout with these alignments in
203 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
204 */
205 if (devinfo->gen < 8 && (mip_mapped || arrayed))
206 return false;
207
208 /* There's no point in using an MCS buffer if the surface isn't in a
209 * renderable format.
210 */
211 if (!brw->mesa_format_supports_render[mt->format])
212 return false;
213
214 return true;
215 }
216
217 static bool
218 intel_tiling_supports_hiz(const struct brw_context *brw,
219 enum isl_tiling tiling)
220 {
221 const struct gen_device_info *devinfo = &brw->screen->devinfo;
222
223 if (devinfo->gen < 6)
224 return false;
225
226 return tiling == ISL_TILING_Y0;
227 }
228
229 static bool
230 intel_miptree_supports_hiz(const struct brw_context *brw,
231 const struct intel_mipmap_tree *mt)
232 {
233 if (!brw->has_hiz)
234 return false;
235
236 switch (mt->format) {
237 case MESA_FORMAT_Z_FLOAT32:
238 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
239 case MESA_FORMAT_Z24_UNORM_X8_UINT:
240 case MESA_FORMAT_Z24_UNORM_S8_UINT:
241 case MESA_FORMAT_Z_UNORM16:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /**
249 * Return true if the format that will be used to access the miptree is
250 * CCS_E-compatible with the miptree's linear/non-sRGB format.
251 *
252 * Why use the linear format? Well, although the miptree may be specified with
253 * an sRGB format, the usage of that color space/format can be toggled. Since
254 * our HW tends to support more linear formats than sRGB ones, we use this
255 * format variant for check for CCS_E compatibility.
256 */
257 static bool
258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
259 const struct intel_mipmap_tree *mt,
260 enum isl_format access_format)
261 {
262 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
263
264 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
265 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
266 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
267 }
268
269 static bool
270 intel_miptree_supports_ccs_e(struct brw_context *brw,
271 const struct intel_mipmap_tree *mt)
272 {
273 const struct gen_device_info *devinfo = &brw->screen->devinfo;
274
275 if (devinfo->gen < 9)
276 return false;
277
278 /* For now compression is only enabled for integer formats even though
279 * there exist supported floating point formats also. This is a heuristic
280 * decision based on current public benchmarks. In none of the cases these
281 * formats provided any improvement but a few cases were seen to regress.
282 * Hence these are left to to be enabled in the future when they are known
283 * to improve things.
284 */
285 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
286 return false;
287
288 if (!intel_miptree_supports_ccs(brw, mt))
289 return false;
290
291 /* Many window system buffers are sRGB even if they are never rendered as
292 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
293 * surface is used as sRGB, we fall back to CCS_D.
294 */
295 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
296 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
297 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
298 }
299
300 /**
301 * Determine depth format corresponding to a depth+stencil format,
302 * for separate stencil.
303 */
304 mesa_format
305 intel_depth_format_for_depthstencil_format(mesa_format format) {
306 switch (format) {
307 case MESA_FORMAT_Z24_UNORM_S8_UINT:
308 return MESA_FORMAT_Z24_UNORM_X8_UINT;
309 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
310 return MESA_FORMAT_Z_FLOAT32;
311 default:
312 return format;
313 }
314 }
315
316 static bool
317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
318 unsigned depth0, struct intel_mipmap_level *table)
319 {
320 for (unsigned level = first_level; level <= last_level; level++) {
321 const unsigned d =
322 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
323
324 table[level].slice = calloc(d, sizeof(*table[0].slice));
325 if (!table[level].slice)
326 goto unwind;
327 }
328
329 return true;
330
331 unwind:
332 for (unsigned level = first_level; level <= last_level; level++)
333 free(table[level].slice);
334
335 return false;
336 }
337
338 static bool
339 needs_separate_stencil(const struct brw_context *brw,
340 struct intel_mipmap_tree *mt,
341 mesa_format format)
342 {
343 const struct gen_device_info *devinfo = &brw->screen->devinfo;
344
345 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
346 return false;
347
348 if (devinfo->must_use_separate_stencil)
349 return true;
350
351 return brw->has_separate_stencil &&
352 intel_miptree_supports_hiz(brw, mt);
353 }
354
355 /**
356 * Choose the aux usage for this miptree. This function must be called fairly
357 * late in the miptree create process after we have a tiling.
358 */
359 static void
360 intel_miptree_choose_aux_usage(struct brw_context *brw,
361 struct intel_mipmap_tree *mt)
362 {
363 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
364
365 if (intel_miptree_supports_mcs(brw, mt)) {
366 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
367 mt->aux_usage = ISL_AUX_USAGE_MCS;
368 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
369 intel_miptree_supports_ccs(brw, mt)) {
370 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
371 intel_miptree_supports_ccs_e(brw, mt)) {
372 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
373 } else {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
375 }
376 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
377 intel_miptree_supports_hiz(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_HIZ;
379 }
380
381 /* We can do fast-clear on all auxiliary surface types that are
382 * allocated through the normal texture creation paths.
383 */
384 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
385 mt->supports_fast_clear = true;
386 }
387
388
389 /**
390 * Choose an appropriate uncompressed format for a requested
391 * compressed format, if unsupported.
392 */
393 mesa_format
394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
395 {
396 const struct gen_device_info *devinfo = &brw->screen->devinfo;
397
398 /* No need to lower ETC formats on these platforms,
399 * they are supported natively.
400 */
401 if (devinfo->gen >= 8 || devinfo->is_baytrail)
402 return format;
403
404 switch (format) {
405 case MESA_FORMAT_ETC1_RGB8:
406 return MESA_FORMAT_R8G8B8X8_UNORM;
407 case MESA_FORMAT_ETC2_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_SRGB8:
410 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
411 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
412 return MESA_FORMAT_B8G8R8A8_SRGB;
413 case MESA_FORMAT_ETC2_RGBA8_EAC:
414 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
415 return MESA_FORMAT_R8G8B8A8_UNORM;
416 case MESA_FORMAT_ETC2_R11_EAC:
417 return MESA_FORMAT_R_UNORM16;
418 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
419 return MESA_FORMAT_R_SNORM16;
420 case MESA_FORMAT_ETC2_RG11_EAC:
421 return MESA_FORMAT_R16G16_UNORM;
422 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
423 return MESA_FORMAT_R16G16_SNORM;
424 default:
425 /* Non ETC1 / ETC2 format */
426 return format;
427 }
428 }
429
430 unsigned
431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
432 {
433 if (mt->surf.dim == ISL_SURF_DIM_3D)
434 return minify(mt->surf.logical_level0_px.depth, level);
435 else
436 return mt->surf.logical_level0_px.array_len;
437 }
438
439 UNUSED static unsigned
440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
441 {
442 /* In case of physical dimensions one needs to consider also the layout.
443 * See isl_calc_phys_level0_extent_sa().
444 */
445 if (surf->dim != ISL_SURF_DIM_3D)
446 return surf->phys_level0_sa.array_len;
447
448 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
449 return minify(surf->phys_level0_sa.array_len, level);
450
451 return minify(surf->phys_level0_sa.depth, level);
452 }
453
454 /** \brief Assert that the level and layer are valid for the miptree. */
455 void
456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
457 uint32_t level,
458 uint32_t layer)
459 {
460 (void) mt;
461 (void) level;
462 (void) layer;
463
464 assert(level >= mt->first_level);
465 assert(level <= mt->last_level);
466 assert(layer < get_num_phys_layers(&mt->surf, level));
467 }
468
469 static enum isl_aux_state **
470 create_aux_state_map(struct intel_mipmap_tree *mt,
471 enum isl_aux_state initial)
472 {
473 const uint32_t levels = mt->last_level + 1;
474
475 uint32_t total_slices = 0;
476 for (uint32_t level = 0; level < levels; level++)
477 total_slices += brw_get_num_logical_layers(mt, level);
478
479 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
480
481 /* We're going to allocate a single chunk of data for both the per-level
482 * reference array and the arrays of aux_state. This makes cleanup
483 * significantly easier.
484 */
485 const size_t total_size = per_level_array_size +
486 total_slices * sizeof(enum isl_aux_state);
487 void *data = malloc(total_size);
488 if (data == NULL)
489 return NULL;
490
491 enum isl_aux_state **per_level_arr = data;
492 enum isl_aux_state *s = data + per_level_array_size;
493 for (uint32_t level = 0; level < levels; level++) {
494 per_level_arr[level] = s;
495 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
496 for (uint32_t a = 0; a < level_layers; a++)
497 *(s++) = initial;
498 }
499 assert((void *)s == data + total_size);
500
501 return per_level_arr;
502 }
503
504 static void
505 free_aux_state_map(enum isl_aux_state **state)
506 {
507 free(state);
508 }
509
510 static bool
511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
512 enum isl_tiling tiling, unsigned samples)
513 {
514 if (samples > 1)
515 return false;
516
517 if (tiling == ISL_TILING_LINEAR)
518 return false;
519
520 /* If the width is much smaller than a tile, don't bother tiling. */
521 if (row_pitch < 64)
522 return true;
523
524 if (ALIGN(row_pitch, 512) >= 32768) {
525 perf_debug("row pitch %u too large to blit, falling back to untiled",
526 row_pitch);
527 return true;
528 }
529
530 return false;
531 }
532
533 static bool
534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
535 enum isl_tiling tiling)
536 {
537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
538
539 /* If the BO is too large to fit in the aperture, we need to use the
540 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
541 * handle Y-tiling, so we need to fall back to X.
542 */
543 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
544 tiling == ISL_TILING_Y0)
545 return true;
546
547 return false;
548 }
549
550 static struct intel_mipmap_tree *
551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
552 unsigned first_level, unsigned last_level,
553 unsigned width0, unsigned height0, unsigned depth0,
554 unsigned num_samples, isl_tiling_flags_t tiling_flags,
555 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
556 unsigned row_pitch, struct brw_bo *bo)
557 {
558 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
559 if (!mt)
560 return NULL;
561
562 if (!create_mapping_table(target, first_level, last_level, depth0,
563 mt->level)) {
564 free(mt);
565 return NULL;
566 }
567
568 mt->refcount = 1;
569
570 if (target == GL_TEXTURE_CUBE_MAP ||
571 target == GL_TEXTURE_CUBE_MAP_ARRAY)
572 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
573
574 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
575 __func__,
576 _mesa_enum_to_string(target),
577 _mesa_get_format_name(format),
578 num_samples, width0, height0, depth0,
579 first_level, last_level, mt);
580
581 struct isl_surf_init_info init_info = {
582 .dim = get_isl_surf_dim(target),
583 .format = translate_tex_format(brw, format, false),
584 .width = width0,
585 .height = height0,
586 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
587 .levels = last_level - first_level + 1,
588 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
589 .samples = num_samples,
590 .row_pitch = row_pitch,
591 .usage = isl_usage_flags,
592 .tiling_flags = tiling_flags,
593 };
594
595 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
596 goto fail;
597
598 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
599 * on gen7 platforms we also need to create Y-tiled copies of stencil for
600 * texturing since the hardware can't sample from W-tiled surfaces. For
601 * everything else, check for corner cases needing special treatment.
602 */
603 bool is_depth_stencil =
604 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
605 if (!is_depth_stencil) {
606 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
607 mt->surf.tiling, mt->surf.samples)) {
608 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
612 init_info.tiling_flags = 1u << ISL_TILING_X;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 }
616 }
617
618 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
619 * the size may not be multiple of row_pitch.
620 * See isl_apply_surface_padding().
621 */
622 if (mt->surf.tiling != ISL_TILING_LINEAR)
623 assert(mt->surf.size % mt->surf.row_pitch == 0);
624
625 if (!bo) {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
627 mt->surf.size,
628 isl_tiling_to_i915_tiling(
629 mt->surf.tiling),
630 mt->surf.row_pitch, alloc_flags);
631 if (!mt->bo)
632 goto fail;
633 } else {
634 mt->bo = bo;
635 }
636
637 mt->first_level = first_level;
638 mt->last_level = last_level;
639 mt->target = target;
640 mt->format = format;
641 mt->aux_state = NULL;
642 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
643 mt->compressed = _mesa_is_format_compressed(format);
644 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
645
646 return mt;
647
648 fail:
649 intel_miptree_release(&mt);
650 return NULL;
651 }
652
653 static bool
654 make_separate_stencil_surface(struct brw_context *brw,
655 struct intel_mipmap_tree *mt)
656 {
657 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
658 0, mt->surf.levels - 1,
659 mt->surf.logical_level0_px.width,
660 mt->surf.logical_level0_px.height,
661 mt->surf.dim == ISL_SURF_DIM_3D ?
662 mt->surf.logical_level0_px.depth :
663 mt->surf.logical_level0_px.array_len,
664 mt->surf.samples, ISL_TILING_W_BIT,
665 ISL_SURF_USAGE_STENCIL_BIT |
666 ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_BUSY, 0, NULL);
668
669 if (!mt->stencil_mt)
670 return false;
671
672 mt->stencil_mt->r8stencil_needs_update = true;
673
674 return true;
675 }
676
677 static struct intel_mipmap_tree *
678 miptree_create(struct brw_context *brw,
679 GLenum target,
680 mesa_format format,
681 GLuint first_level,
682 GLuint last_level,
683 GLuint width0,
684 GLuint height0,
685 GLuint depth0,
686 GLuint num_samples,
687 enum intel_miptree_create_flags flags)
688 {
689 const struct gen_device_info *devinfo = &brw->screen->devinfo;
690
691 if (format == MESA_FORMAT_S_UINT8)
692 return make_surface(brw, target, format, first_level, last_level,
693 width0, height0, depth0, num_samples,
694 ISL_TILING_W_BIT,
695 ISL_SURF_USAGE_STENCIL_BIT |
696 ISL_SURF_USAGE_TEXTURE_BIT,
697 BO_ALLOC_BUSY,
698 0,
699 NULL);
700
701 const GLenum base_format = _mesa_get_format_base_format(format);
702 if ((base_format == GL_DEPTH_COMPONENT ||
703 base_format == GL_DEPTH_STENCIL) &&
704 !(flags & MIPTREE_CREATE_LINEAR)) {
705 /* Fix up the Z miptree format for how we're splitting out separate
706 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
707 */
708 const mesa_format depth_only_format =
709 intel_depth_format_for_depthstencil_format(format);
710 struct intel_mipmap_tree *mt = make_surface(
711 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
712 first_level, last_level,
713 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
714 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
715 BO_ALLOC_BUSY, 0, NULL);
716
717 if (needs_separate_stencil(brw, mt, format) &&
718 !make_separate_stencil_surface(brw, mt)) {
719 intel_miptree_release(&mt);
720 return NULL;
721 }
722
723 if (!(flags & MIPTREE_CREATE_NO_AUX))
724 intel_miptree_choose_aux_usage(brw, mt);
725
726 return mt;
727 }
728
729 mesa_format tex_format = format;
730 mesa_format etc_format = MESA_FORMAT_NONE;
731 uint32_t alloc_flags = 0;
732
733 format = intel_lower_compressed_format(brw, format);
734
735 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
736
737 if (flags & MIPTREE_CREATE_BUSY)
738 alloc_flags |= BO_ALLOC_BUSY;
739
740 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
741 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
742
743 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
744 if (devinfo->gen < 6)
745 tiling_flags &= ~ISL_TILING_Y0_BIT;
746
747 struct intel_mipmap_tree *mt = make_surface(
748 brw, target, format,
749 first_level, last_level,
750 width0, height0, depth0,
751 num_samples, tiling_flags,
752 ISL_SURF_USAGE_RENDER_TARGET_BIT |
753 ISL_SURF_USAGE_TEXTURE_BIT,
754 alloc_flags, 0, NULL);
755 if (!mt)
756 return NULL;
757
758 mt->etc_format = etc_format;
759
760 if (!(flags & MIPTREE_CREATE_NO_AUX))
761 intel_miptree_choose_aux_usage(brw, mt);
762
763 return mt;
764 }
765
766 struct intel_mipmap_tree *
767 intel_miptree_create(struct brw_context *brw,
768 GLenum target,
769 mesa_format format,
770 GLuint first_level,
771 GLuint last_level,
772 GLuint width0,
773 GLuint height0,
774 GLuint depth0,
775 GLuint num_samples,
776 enum intel_miptree_create_flags flags)
777 {
778 assert(num_samples > 0);
779
780 struct intel_mipmap_tree *mt = miptree_create(
781 brw, target, format,
782 first_level, last_level,
783 width0, height0, depth0, num_samples,
784 flags);
785 if (!mt)
786 return NULL;
787
788 mt->offset = 0;
789
790 if (!intel_miptree_alloc_aux(brw, mt)) {
791 intel_miptree_release(&mt);
792 return NULL;
793 }
794
795 return mt;
796 }
797
798 struct intel_mipmap_tree *
799 intel_miptree_create_for_bo(struct brw_context *brw,
800 struct brw_bo *bo,
801 mesa_format format,
802 uint32_t offset,
803 uint32_t width,
804 uint32_t height,
805 uint32_t depth,
806 int pitch,
807 enum isl_tiling tiling,
808 enum intel_miptree_create_flags flags)
809 {
810 const struct gen_device_info *devinfo = &brw->screen->devinfo;
811 struct intel_mipmap_tree *mt;
812 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
813 const GLenum base_format = _mesa_get_format_base_format(format);
814
815 if ((base_format == GL_DEPTH_COMPONENT ||
816 base_format == GL_DEPTH_STENCIL)) {
817 const mesa_format depth_only_format =
818 intel_depth_format_for_depthstencil_format(format);
819 mt = make_surface(brw, target,
820 devinfo->gen >= 6 ? depth_only_format : format,
821 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
822 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
823 0, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828
829 if (!(flags & MIPTREE_CREATE_NO_AUX))
830 intel_miptree_choose_aux_usage(brw, mt);
831
832 return mt;
833 } else if (format == MESA_FORMAT_S_UINT8) {
834 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
835 0, 0, width, height, depth, 1,
836 ISL_TILING_W_BIT,
837 ISL_SURF_USAGE_STENCIL_BIT |
838 ISL_SURF_USAGE_TEXTURE_BIT,
839 0, pitch, bo);
840 if (!mt)
841 return NULL;
842
843 assert(bo->size >= mt->surf.size);
844
845 brw_bo_reference(bo);
846 return mt;
847 }
848
849 /* Nothing will be able to use this miptree with the BO if the offset isn't
850 * aligned.
851 */
852 if (tiling != ISL_TILING_LINEAR)
853 assert(offset % 4096 == 0);
854
855 /* miptrees can't handle negative pitch. If you need flipping of images,
856 * that's outside of the scope of the mt.
857 */
858 assert(pitch >= 0);
859
860 /* The BO already has a tiling format and we shouldn't confuse the lower
861 * layers by making it try to find a tiling format again.
862 */
863 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
864
865 mt = make_surface(brw, target, format,
866 0, 0, width, height, depth, 1,
867 1lu << tiling,
868 ISL_SURF_USAGE_RENDER_TARGET_BIT |
869 ISL_SURF_USAGE_TEXTURE_BIT,
870 0, pitch, bo);
871 if (!mt)
872 return NULL;
873
874 brw_bo_reference(bo);
875 mt->bo = bo;
876 mt->offset = offset;
877
878 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
879 intel_miptree_choose_aux_usage(brw, mt);
880
881 if (!intel_miptree_alloc_aux(brw, mt)) {
882 intel_miptree_release(&mt);
883 return NULL;
884 }
885 }
886
887 return mt;
888 }
889
890 static struct intel_mipmap_tree *
891 miptree_create_for_planar_image(struct brw_context *brw,
892 __DRIimage *image, GLenum target,
893 enum isl_tiling tiling)
894 {
895 const struct intel_image_format *f = image->planar_format;
896 struct intel_mipmap_tree *planar_mt = NULL;
897
898 for (int i = 0; i < f->nplanes; i++) {
899 const int index = f->planes[i].buffer_index;
900 const uint32_t dri_format = f->planes[i].dri_format;
901 const mesa_format format = driImageFormatToGLFormat(dri_format);
902 const uint32_t width = image->width >> f->planes[i].width_shift;
903 const uint32_t height = image->height >> f->planes[i].height_shift;
904
905 /* Disable creation of the texture's aux buffers because the driver
906 * exposes no EGL API to manage them. That is, there is no API for
907 * resolving the aux buffer's content to the main buffer nor for
908 * invalidating the aux buffer's content.
909 */
910 struct intel_mipmap_tree *mt =
911 intel_miptree_create_for_bo(brw, image->bo, format,
912 image->offsets[index],
913 width, height, 1,
914 image->strides[index],
915 tiling,
916 MIPTREE_CREATE_NO_AUX);
917 if (mt == NULL)
918 return NULL;
919
920 mt->target = target;
921
922 if (i == 0)
923 planar_mt = mt;
924 else
925 planar_mt->plane[i - 1] = mt;
926 }
927
928 planar_mt->drm_modifier = image->modifier;
929
930 return planar_mt;
931 }
932
933 static bool
934 create_ccs_buf_for_image(struct brw_context *brw,
935 __DRIimage *image,
936 struct intel_mipmap_tree *mt,
937 enum isl_aux_state initial_state)
938 {
939 struct isl_surf temp_ccs_surf;
940
941 /* CCS is only supported for very simple miptrees */
942 assert(image->aux_offset != 0 && image->aux_pitch != 0);
943 assert(image->tile_x == 0 && image->tile_y == 0);
944 assert(mt->surf.samples == 1);
945 assert(mt->surf.levels == 1);
946 assert(mt->surf.logical_level0_px.depth == 1);
947 assert(mt->surf.logical_level0_px.array_len == 1);
948 assert(mt->first_level == 0);
949 assert(mt->last_level == 0);
950
951 /* We shouldn't already have a CCS */
952 assert(!mt->mcs_buf);
953
954 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
955 image->aux_pitch))
956 return false;
957
958 assert(image->aux_offset < image->bo->size);
959 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
960
961 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
962 if (mt->mcs_buf == NULL)
963 return false;
964
965 mt->aux_state = create_aux_state_map(mt, initial_state);
966 if (!mt->aux_state) {
967 free(mt->mcs_buf);
968 mt->mcs_buf = NULL;
969 return false;
970 }
971
972 /* On gen10+ we start using an extra space in the aux buffer to store the
973 * indirect clear color. However, if we imported an image from the window
974 * system with CCS, we don't have the extra space at the end of the aux
975 * buffer. So create a new bo here that will store that clear color.
976 */
977 const struct gen_device_info *devinfo = &brw->screen->devinfo;
978 if (devinfo->gen >= 10) {
979 mt->mcs_buf->clear_color_bo =
980 brw_bo_alloc(brw->bufmgr, "clear_color_bo",
981 brw->isl_dev.ss.clear_color_state_size);
982 if (!mt->mcs_buf->clear_color_bo) {
983 free(mt->mcs_buf);
984 mt->mcs_buf = NULL;
985 return false;
986 }
987 }
988
989 mt->mcs_buf->bo = image->bo;
990 brw_bo_reference(image->bo);
991
992 mt->mcs_buf->offset = image->aux_offset;
993 mt->mcs_buf->size = image->bo->size - image->aux_offset;
994 mt->mcs_buf->pitch = image->aux_pitch;
995 mt->mcs_buf->qpitch = 0;
996 mt->mcs_buf->surf = temp_ccs_surf;
997
998 return true;
999 }
1000
1001 struct intel_mipmap_tree *
1002 intel_miptree_create_for_dri_image(struct brw_context *brw,
1003 __DRIimage *image, GLenum target,
1004 mesa_format format,
1005 bool is_winsys_image)
1006 {
1007 uint32_t bo_tiling, bo_swizzle;
1008 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1009
1010 const struct isl_drm_modifier_info *mod_info =
1011 isl_drm_modifier_get_info(image->modifier);
1012
1013 const enum isl_tiling tiling =
1014 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1015
1016 if (image->planar_format && image->planar_format->nplanes > 1)
1017 return miptree_create_for_planar_image(brw, image, target, tiling);
1018
1019 if (image->planar_format)
1020 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1021
1022 if (!brw->ctx.TextureFormatSupported[format]) {
1023 /* The texture storage paths in core Mesa detect if the driver does not
1024 * support the user-requested format, and then searches for a
1025 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1026 * do the fallbacks here for important formats.
1027 *
1028 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1029 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1030 * the Chrome OS compositor consumes as dma_buf EGLImages.
1031 */
1032 format = _mesa_format_fallback_rgbx_to_rgba(format);
1033 }
1034
1035 if (!brw->ctx.TextureFormatSupported[format])
1036 return NULL;
1037
1038 enum intel_miptree_create_flags mt_create_flags = 0;
1039
1040 /* If this image comes in from a window system, we have different
1041 * requirements than if it comes in via an EGL import operation. Window
1042 * system images can use any form of auxiliary compression we wish because
1043 * they get "flushed" before being handed off to the window system and we
1044 * have the opportunity to do resolves. Non window-system images, on the
1045 * other hand, have no resolve point so we can't have aux without a
1046 * modifier.
1047 */
1048 if (!is_winsys_image)
1049 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1050
1051 /* If we have a modifier which specifies aux, don't create one yet */
1052 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1053 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1054
1055 /* Disable creation of the texture's aux buffers because the driver exposes
1056 * no EGL API to manage them. That is, there is no API for resolving the aux
1057 * buffer's content to the main buffer nor for invalidating the aux buffer's
1058 * content.
1059 */
1060 struct intel_mipmap_tree *mt =
1061 intel_miptree_create_for_bo(brw, image->bo, format,
1062 image->offset, image->width, image->height, 1,
1063 image->pitch, tiling, mt_create_flags);
1064 if (mt == NULL)
1065 return NULL;
1066
1067 mt->target = target;
1068 mt->level[0].level_x = image->tile_x;
1069 mt->level[0].level_y = image->tile_y;
1070 mt->drm_modifier = image->modifier;
1071
1072 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1073 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1074 * trouble resolving back to destination image due to alignment issues.
1075 */
1076 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1077 if (!devinfo->has_surface_tile_offset) {
1078 uint32_t draw_x, draw_y;
1079 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1080
1081 if (draw_x != 0 || draw_y != 0) {
1082 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1083 intel_miptree_release(&mt);
1084 return NULL;
1085 }
1086 }
1087
1088 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1089 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1090
1091 mt->aux_usage = mod_info->aux_usage;
1092 /* If we are a window system buffer, then we can support fast-clears
1093 * even if the modifier doesn't support them by doing a partial resolve
1094 * as part of the flush operation.
1095 */
1096 mt->supports_fast_clear =
1097 is_winsys_image || mod_info->supports_clear_color;
1098
1099 /* We don't know the actual state of the surface when we get it but we
1100 * can make a pretty good guess based on the modifier. What we do know
1101 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1102 * a worst case of compression.
1103 */
1104 enum isl_aux_state initial_state =
1105 isl_drm_modifier_get_default_aux_state(image->modifier);
1106
1107 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1108 intel_miptree_release(&mt);
1109 return NULL;
1110 }
1111 }
1112
1113 /* Don't assume coherency for imported EGLimages. We don't know what
1114 * external clients are going to do with it. They may scan it out.
1115 */
1116 image->bo->cache_coherent = false;
1117
1118 return mt;
1119 }
1120
1121 /**
1122 * For a singlesample renderbuffer, this simply wraps the given BO with a
1123 * miptree.
1124 *
1125 * For a multisample renderbuffer, this wraps the window system's
1126 * (singlesample) BO with a singlesample miptree attached to the
1127 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1128 * that will contain the actual rendering (which is lazily resolved to
1129 * irb->singlesample_mt).
1130 */
1131 bool
1132 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1133 struct intel_renderbuffer *irb,
1134 struct intel_mipmap_tree *singlesample_mt,
1135 uint32_t width, uint32_t height,
1136 uint32_t pitch)
1137 {
1138 struct intel_mipmap_tree *multisample_mt = NULL;
1139 struct gl_renderbuffer *rb = &irb->Base.Base;
1140 mesa_format format = rb->Format;
1141 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1142
1143 /* Only the front and back buffers, which are color buffers, are allocated
1144 * through the image loader.
1145 */
1146 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1147 _mesa_get_format_base_format(format) == GL_RGBA);
1148
1149 assert(singlesample_mt);
1150
1151 if (num_samples == 1) {
1152 intel_miptree_release(&irb->mt);
1153 irb->mt = singlesample_mt;
1154
1155 assert(!irb->singlesample_mt);
1156 } else {
1157 intel_miptree_release(&irb->singlesample_mt);
1158 irb->singlesample_mt = singlesample_mt;
1159
1160 if (!irb->mt ||
1161 irb->mt->surf.logical_level0_px.width != width ||
1162 irb->mt->surf.logical_level0_px.height != height) {
1163 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1164 format,
1165 width,
1166 height,
1167 num_samples);
1168 if (!multisample_mt)
1169 goto fail;
1170
1171 irb->need_downsample = false;
1172 intel_miptree_release(&irb->mt);
1173 irb->mt = multisample_mt;
1174 }
1175 }
1176 return true;
1177
1178 fail:
1179 intel_miptree_release(&irb->mt);
1180 return false;
1181 }
1182
1183 struct intel_mipmap_tree*
1184 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1185 mesa_format format,
1186 uint32_t width,
1187 uint32_t height,
1188 uint32_t num_samples)
1189 {
1190 struct intel_mipmap_tree *mt;
1191 uint32_t depth = 1;
1192 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1193
1194 mt = intel_miptree_create(brw, target, format, 0, 0,
1195 width, height, depth, num_samples,
1196 MIPTREE_CREATE_BUSY);
1197 if (!mt)
1198 goto fail;
1199
1200 return mt;
1201
1202 fail:
1203 intel_miptree_release(&mt);
1204 return NULL;
1205 }
1206
1207 void
1208 intel_miptree_reference(struct intel_mipmap_tree **dst,
1209 struct intel_mipmap_tree *src)
1210 {
1211 if (*dst == src)
1212 return;
1213
1214 intel_miptree_release(dst);
1215
1216 if (src) {
1217 src->refcount++;
1218 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1219 }
1220
1221 *dst = src;
1222 }
1223
1224 static void
1225 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1226 {
1227 if (aux_buf == NULL)
1228 return;
1229
1230 brw_bo_unreference(aux_buf->bo);
1231 brw_bo_unreference(aux_buf->clear_color_bo);
1232
1233 free(aux_buf);
1234 }
1235
1236 void
1237 intel_miptree_release(struct intel_mipmap_tree **mt)
1238 {
1239 if (!*mt)
1240 return;
1241
1242 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1243 if (--(*mt)->refcount <= 0) {
1244 GLuint i;
1245
1246 DBG("%s deleting %p\n", __func__, *mt);
1247
1248 brw_bo_unreference((*mt)->bo);
1249 intel_miptree_release(&(*mt)->stencil_mt);
1250 intel_miptree_release(&(*mt)->r8stencil_mt);
1251 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1252 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1253 free_aux_state_map((*mt)->aux_state);
1254
1255 intel_miptree_release(&(*mt)->plane[0]);
1256 intel_miptree_release(&(*mt)->plane[1]);
1257
1258 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1259 free((*mt)->level[i].slice);
1260 }
1261
1262 free(*mt);
1263 }
1264 *mt = NULL;
1265 }
1266
1267
1268 void
1269 intel_get_image_dims(struct gl_texture_image *image,
1270 int *width, int *height, int *depth)
1271 {
1272 switch (image->TexObject->Target) {
1273 case GL_TEXTURE_1D_ARRAY:
1274 /* For a 1D Array texture the OpenGL API will treat the image height as
1275 * the number of array slices. For Intel hardware, we treat the 1D array
1276 * as a 2D Array with a height of 1. So, here we want to swap image
1277 * height and depth.
1278 */
1279 assert(image->Depth == 1);
1280 *width = image->Width;
1281 *height = 1;
1282 *depth = image->Height;
1283 break;
1284 case GL_TEXTURE_CUBE_MAP:
1285 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1286 * though we really have 6 slices.
1287 */
1288 assert(image->Depth == 1);
1289 *width = image->Width;
1290 *height = image->Height;
1291 *depth = 6;
1292 break;
1293 default:
1294 *width = image->Width;
1295 *height = image->Height;
1296 *depth = image->Depth;
1297 break;
1298 }
1299 }
1300
1301 /**
1302 * Can the image be pulled into a unified mipmap tree? This mirrors
1303 * the completeness test in a lot of ways.
1304 *
1305 * Not sure whether I want to pass gl_texture_image here.
1306 */
1307 bool
1308 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1309 struct gl_texture_image *image)
1310 {
1311 struct intel_texture_image *intelImage = intel_texture_image(image);
1312 GLuint level = intelImage->base.Base.Level;
1313 int width, height, depth;
1314
1315 /* glTexImage* choose the texture object based on the target passed in, and
1316 * objects can't change targets over their lifetimes, so this should be
1317 * true.
1318 */
1319 assert(image->TexObject->Target == mt->target);
1320
1321 mesa_format mt_format = mt->format;
1322 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1323 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1324 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1325 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1326 if (mt->etc_format != MESA_FORMAT_NONE)
1327 mt_format = mt->etc_format;
1328
1329 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1330 _mesa_get_srgb_format_linear(mt_format))
1331 return false;
1332
1333 intel_get_image_dims(image, &width, &height, &depth);
1334
1335 if (mt->target == GL_TEXTURE_CUBE_MAP)
1336 depth = 6;
1337
1338 if (level >= mt->surf.levels)
1339 return false;
1340
1341 const unsigned level_depth =
1342 mt->surf.dim == ISL_SURF_DIM_3D ?
1343 minify(mt->surf.logical_level0_px.depth, level) :
1344 mt->surf.logical_level0_px.array_len;
1345
1346 return width == minify(mt->surf.logical_level0_px.width, level) &&
1347 height == minify(mt->surf.logical_level0_px.height, level) &&
1348 depth == level_depth &&
1349 MAX2(image->NumSamples, 1) == mt->surf.samples;
1350 }
1351
1352 void
1353 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1354 GLuint level, GLuint slice,
1355 GLuint *x, GLuint *y)
1356 {
1357 if (level == 0 && slice == 0) {
1358 *x = mt->level[0].level_x;
1359 *y = mt->level[0].level_y;
1360 return;
1361 }
1362
1363 uint32_t x_offset_sa, y_offset_sa;
1364
1365 /* Miptree itself can have an offset only if it represents a single
1366 * slice in an imported buffer object.
1367 * See intel_miptree_create_for_dri_image().
1368 */
1369 assert(mt->level[0].level_x == 0);
1370 assert(mt->level[0].level_y == 0);
1371
1372 /* Given level is relative to level zero while the miptree may be
1373 * represent just a subset of all levels starting from 'first_level'.
1374 */
1375 assert(level >= mt->first_level);
1376 level -= mt->first_level;
1377
1378 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1379 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1380 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1381 &x_offset_sa, &y_offset_sa);
1382
1383 *x = x_offset_sa;
1384 *y = y_offset_sa;
1385 }
1386
1387
1388 /**
1389 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1390 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1391 * and tile_h is set to 1.
1392 */
1393 void
1394 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1395 uint32_t *tile_w, uint32_t *tile_h)
1396 {
1397 switch (tiling) {
1398 case ISL_TILING_X:
1399 *tile_w = 512;
1400 *tile_h = 8;
1401 break;
1402 case ISL_TILING_Y0:
1403 *tile_w = 128;
1404 *tile_h = 32;
1405 break;
1406 case ISL_TILING_LINEAR:
1407 *tile_w = cpp;
1408 *tile_h = 1;
1409 break;
1410 default:
1411 unreachable("not reached");
1412 }
1413 }
1414
1415
1416 /**
1417 * This function computes masks that may be used to select the bits of the X
1418 * and Y coordinates that indicate the offset within a tile. If the BO is
1419 * untiled, the masks are set to 0.
1420 */
1421 void
1422 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1423 uint32_t *mask_x, uint32_t *mask_y)
1424 {
1425 uint32_t tile_w_bytes, tile_h;
1426
1427 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1428
1429 *mask_x = tile_w_bytes / cpp - 1;
1430 *mask_y = tile_h - 1;
1431 }
1432
1433 /**
1434 * Compute the offset (in bytes) from the start of the BO to the given x
1435 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1436 * multiples of the tile size.
1437 */
1438 uint32_t
1439 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1440 uint32_t x, uint32_t y)
1441 {
1442 int cpp = mt->cpp;
1443 uint32_t pitch = mt->surf.row_pitch;
1444
1445 switch (mt->surf.tiling) {
1446 default:
1447 unreachable("not reached");
1448 case ISL_TILING_LINEAR:
1449 return y * pitch + x * cpp;
1450 case ISL_TILING_X:
1451 assert((x % (512 / cpp)) == 0);
1452 assert((y % 8) == 0);
1453 return y * pitch + x / (512 / cpp) * 4096;
1454 case ISL_TILING_Y0:
1455 assert((x % (128 / cpp)) == 0);
1456 assert((y % 32) == 0);
1457 return y * pitch + x / (128 / cpp) * 4096;
1458 }
1459 }
1460
1461 /**
1462 * Rendering with tiled buffers requires that the base address of the buffer
1463 * be aligned to a page boundary. For renderbuffers, and sometimes with
1464 * textures, we may want the surface to point at a texture image level that
1465 * isn't at a page boundary.
1466 *
1467 * This function returns an appropriately-aligned base offset
1468 * according to the tiling restrictions, plus any required x/y offset
1469 * from there.
1470 */
1471 uint32_t
1472 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1473 GLuint level, GLuint slice,
1474 uint32_t *tile_x,
1475 uint32_t *tile_y)
1476 {
1477 uint32_t x, y;
1478 uint32_t mask_x, mask_y;
1479
1480 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1481 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1482
1483 *tile_x = x & mask_x;
1484 *tile_y = y & mask_y;
1485
1486 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1487 }
1488
1489 static void
1490 intel_miptree_copy_slice_sw(struct brw_context *brw,
1491 struct intel_mipmap_tree *src_mt,
1492 unsigned src_level, unsigned src_layer,
1493 struct intel_mipmap_tree *dst_mt,
1494 unsigned dst_level, unsigned dst_layer,
1495 unsigned width, unsigned height)
1496 {
1497 void *src, *dst;
1498 ptrdiff_t src_stride, dst_stride;
1499 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1500
1501 intel_miptree_map(brw, src_mt,
1502 src_level, src_layer,
1503 0, 0,
1504 width, height,
1505 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1506 &src, &src_stride);
1507
1508 intel_miptree_map(brw, dst_mt,
1509 dst_level, dst_layer,
1510 0, 0,
1511 width, height,
1512 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1513 BRW_MAP_DIRECT_BIT,
1514 &dst, &dst_stride);
1515
1516 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1517 _mesa_get_format_name(src_mt->format),
1518 src_mt, src, src_stride,
1519 _mesa_get_format_name(dst_mt->format),
1520 dst_mt, dst, dst_stride,
1521 width, height);
1522
1523 int row_size = cpp * width;
1524 if (src_stride == row_size &&
1525 dst_stride == row_size) {
1526 memcpy(dst, src, row_size * height);
1527 } else {
1528 for (int i = 0; i < height; i++) {
1529 memcpy(dst, src, row_size);
1530 dst += dst_stride;
1531 src += src_stride;
1532 }
1533 }
1534
1535 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1536 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1537
1538 /* Don't forget to copy the stencil data over, too. We could have skipped
1539 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1540 * shuffling the two data sources in/out of temporary storage instead of
1541 * the direct mapping we get this way.
1542 */
1543 if (dst_mt->stencil_mt) {
1544 assert(src_mt->stencil_mt);
1545 intel_miptree_copy_slice_sw(brw,
1546 src_mt->stencil_mt, src_level, src_layer,
1547 dst_mt->stencil_mt, dst_level, dst_layer,
1548 width, height);
1549 }
1550 }
1551
1552 void
1553 intel_miptree_copy_slice(struct brw_context *brw,
1554 struct intel_mipmap_tree *src_mt,
1555 unsigned src_level, unsigned src_layer,
1556 struct intel_mipmap_tree *dst_mt,
1557 unsigned dst_level, unsigned dst_layer)
1558
1559 {
1560 mesa_format format = src_mt->format;
1561 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1562 src_level - src_mt->first_level);
1563 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1564 src_level - src_mt->first_level);
1565
1566 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1567 src_level - src_mt->first_level));
1568
1569 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1570 _mesa_get_srgb_format_linear(dst_mt->format));
1571
1572 if (dst_mt->compressed) {
1573 unsigned int i, j;
1574 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1575 height = ALIGN_NPOT(height, j) / j;
1576 width = ALIGN_NPOT(width, i) / i;
1577 }
1578
1579 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1580 * below won't apply since we can't do the depth's Y tiling or the
1581 * stencil's W tiling in the blitter.
1582 */
1583 if (src_mt->stencil_mt) {
1584 intel_miptree_copy_slice_sw(brw,
1585 src_mt, src_level, src_layer,
1586 dst_mt, dst_level, dst_layer,
1587 width, height);
1588 return;
1589 }
1590
1591 uint32_t dst_x, dst_y, src_x, src_y;
1592 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1593 &dst_x, &dst_y);
1594 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1595 &src_x, &src_y);
1596
1597 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1598 _mesa_get_format_name(src_mt->format),
1599 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1600 _mesa_get_format_name(dst_mt->format),
1601 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1602 width, height);
1603
1604 if (!intel_miptree_blit(brw,
1605 src_mt, src_level, src_layer, 0, 0, false,
1606 dst_mt, dst_level, dst_layer, 0, 0, false,
1607 width, height, COLOR_LOGICOP_COPY)) {
1608 perf_debug("miptree validate blit for %s failed\n",
1609 _mesa_get_format_name(format));
1610
1611 intel_miptree_copy_slice_sw(brw,
1612 src_mt, src_level, src_layer,
1613 dst_mt, dst_level, dst_layer,
1614 width, height);
1615 }
1616 }
1617
1618 /**
1619 * Copies the image's current data to the given miptree, and associates that
1620 * miptree with the image.
1621 */
1622 void
1623 intel_miptree_copy_teximage(struct brw_context *brw,
1624 struct intel_texture_image *intelImage,
1625 struct intel_mipmap_tree *dst_mt)
1626 {
1627 struct intel_mipmap_tree *src_mt = intelImage->mt;
1628 struct intel_texture_object *intel_obj =
1629 intel_texture_object(intelImage->base.Base.TexObject);
1630 int level = intelImage->base.Base.Level;
1631 const unsigned face = intelImage->base.Base.Face;
1632 unsigned start_layer, end_layer;
1633
1634 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1635 assert(face == 0);
1636 assert(intelImage->base.Base.Height);
1637 start_layer = 0;
1638 end_layer = intelImage->base.Base.Height - 1;
1639 } else if (face > 0) {
1640 start_layer = face;
1641 end_layer = face;
1642 } else {
1643 assert(intelImage->base.Base.Depth);
1644 start_layer = 0;
1645 end_layer = intelImage->base.Base.Depth - 1;
1646 }
1647
1648 for (unsigned i = start_layer; i <= end_layer; i++) {
1649 intel_miptree_copy_slice(brw,
1650 src_mt, level, i,
1651 dst_mt, level, i);
1652 }
1653
1654 intel_miptree_reference(&intelImage->mt, dst_mt);
1655 intel_obj->needs_validate = true;
1656 }
1657
1658 static void
1659 intel_miptree_init_mcs(struct brw_context *brw,
1660 struct intel_mipmap_tree *mt,
1661 int init_value)
1662 {
1663 assert(mt->mcs_buf != NULL);
1664
1665 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1666 *
1667 * When MCS buffer is enabled and bound to MSRT, it is required that it
1668 * is cleared prior to any rendering.
1669 *
1670 * Since we don't use the MCS buffer for any purpose other than rendering,
1671 * it makes sense to just clear it immediately upon allocation.
1672 *
1673 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1674 */
1675 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE | MAP_RAW);
1676 if (unlikely(map == NULL)) {
1677 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1678 brw_bo_unreference(mt->mcs_buf->bo);
1679 free(mt->mcs_buf);
1680 return;
1681 }
1682 void *data = map;
1683 memset(data, init_value, mt->mcs_buf->size);
1684 brw_bo_unmap(mt->mcs_buf->bo);
1685 }
1686
1687 static struct intel_miptree_aux_buffer *
1688 intel_alloc_aux_buffer(struct brw_context *brw,
1689 const char *name,
1690 const struct isl_surf *aux_surf,
1691 uint32_t alloc_flags,
1692 struct intel_mipmap_tree *mt)
1693 {
1694 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1695 if (!buf)
1696 return false;
1697
1698 buf->size = aux_surf->size;
1699
1700 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1701 if (devinfo->gen >= 10) {
1702 /* On CNL, instead of setting the clear color in the SURFACE_STATE, we
1703 * will set a pointer to a dword somewhere that contains the color. So,
1704 * allocate the space for the clear color value here on the aux buffer.
1705 */
1706 buf->clear_color_offset = buf->size;
1707 buf->size += brw->isl_dev.ss.clear_color_state_size;
1708 }
1709
1710 buf->pitch = aux_surf->row_pitch;
1711 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1712
1713 /* ISL has stricter set of alignment rules then the drm allocator.
1714 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1715 * trying to recalculate based on different format block sizes.
1716 */
1717 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1718 I915_TILING_Y, buf->pitch, alloc_flags);
1719 if (!buf->bo) {
1720 free(buf);
1721 return NULL;
1722 }
1723
1724 if (devinfo->gen >= 10) {
1725 buf->clear_color_bo = buf->bo;
1726 brw_bo_reference(buf->clear_color_bo);
1727 }
1728
1729 buf->surf = *aux_surf;
1730
1731 return buf;
1732 }
1733
1734 static bool
1735 intel_miptree_alloc_mcs(struct brw_context *brw,
1736 struct intel_mipmap_tree *mt,
1737 GLuint num_samples)
1738 {
1739 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1740 assert(mt->mcs_buf == NULL);
1741 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1742
1743 /* Multisampled miptrees are only supported for single level. */
1744 assert(mt->first_level == 0);
1745 enum isl_aux_state **aux_state =
1746 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1747 if (!aux_state)
1748 return false;
1749
1750 struct isl_surf temp_mcs_surf;
1751
1752 MAYBE_UNUSED bool ok =
1753 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1754 assert(ok);
1755
1756 /* Buffer needs to be initialised requiring the buffer to be immediately
1757 * mapped to cpu space for writing. Therefore do not use the gpu access
1758 * flag which can cause an unnecessary delay if the backing pages happened
1759 * to be just used by the GPU.
1760 */
1761 const uint32_t alloc_flags = 0;
1762 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1763 &temp_mcs_surf, alloc_flags, mt);
1764 if (!mt->mcs_buf) {
1765 free(aux_state);
1766 return false;
1767 }
1768
1769 mt->aux_state = aux_state;
1770
1771 intel_miptree_init_mcs(brw, mt, 0xFF);
1772
1773 return true;
1774 }
1775
1776 bool
1777 intel_miptree_alloc_ccs(struct brw_context *brw,
1778 struct intel_mipmap_tree *mt)
1779 {
1780 assert(mt->mcs_buf == NULL);
1781 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1782 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1783
1784 struct isl_surf temp_ccs_surf;
1785
1786 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1787 return false;
1788
1789 assert(temp_ccs_surf.size &&
1790 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1791
1792 enum isl_aux_state **aux_state =
1793 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1794 if (!aux_state)
1795 return false;
1796
1797 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1798 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1799 *
1800 * "If Software wants to enable Color Compression without Fast clear,
1801 * Software needs to initialize MCS with zeros."
1802 *
1803 * A CCS value of 0 indicates that the corresponding block is in the
1804 * pass-through state which is what we want.
1805 *
1806 * For CCS_D, on the other hand, we don't care as we're about to perform a
1807 * fast-clear operation. In that case, being hot in caches more useful.
1808 */
1809 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1810 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1811 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1812 &temp_ccs_surf, alloc_flags, mt);
1813 if (!mt->mcs_buf) {
1814 free(aux_state);
1815 return false;
1816 }
1817
1818 mt->aux_state = aux_state;
1819
1820 return true;
1821 }
1822
1823 /**
1824 * Helper for intel_miptree_alloc_hiz() that sets
1825 * \c mt->level[level].has_hiz. Return true if and only if
1826 * \c has_hiz was set.
1827 */
1828 static bool
1829 intel_miptree_level_enable_hiz(struct brw_context *brw,
1830 struct intel_mipmap_tree *mt,
1831 uint32_t level)
1832 {
1833 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1834
1835 assert(mt->hiz_buf);
1836 assert(mt->surf.size > 0);
1837
1838 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1839 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1840 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1841
1842 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1843 * and the height is 4 aligned. This allows our HiZ support
1844 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1845 * we can grow the width & height to allow the HiZ op to
1846 * force the proper size alignments.
1847 */
1848 if (level > 0 && ((width & 7) || (height & 3))) {
1849 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1850 return false;
1851 }
1852 }
1853
1854 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1855 mt->level[level].has_hiz = true;
1856 return true;
1857 }
1858
1859 bool
1860 intel_miptree_alloc_hiz(struct brw_context *brw,
1861 struct intel_mipmap_tree *mt)
1862 {
1863 assert(mt->hiz_buf == NULL);
1864 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1865
1866 enum isl_aux_state **aux_state =
1867 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1868 if (!aux_state)
1869 return false;
1870
1871 struct isl_surf temp_hiz_surf;
1872
1873 MAYBE_UNUSED bool ok =
1874 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1875 assert(ok);
1876
1877 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1878 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1879 &temp_hiz_surf, alloc_flags, mt);
1880
1881 if (!mt->hiz_buf) {
1882 free(aux_state);
1883 return false;
1884 }
1885
1886 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1887 intel_miptree_level_enable_hiz(brw, mt, level);
1888
1889 mt->aux_state = aux_state;
1890
1891 return true;
1892 }
1893
1894
1895 /**
1896 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1897 *
1898 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1899 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1900 * compress clear color so we wait until an actual fast-clear to allocate it.
1901 */
1902 static bool
1903 intel_miptree_alloc_aux(struct brw_context *brw,
1904 struct intel_mipmap_tree *mt)
1905 {
1906 switch (mt->aux_usage) {
1907 case ISL_AUX_USAGE_NONE:
1908 return true;
1909
1910 case ISL_AUX_USAGE_HIZ:
1911 assert(!_mesa_is_format_color_format(mt->format));
1912 if (!intel_miptree_alloc_hiz(brw, mt))
1913 return false;
1914 return true;
1915
1916 case ISL_AUX_USAGE_MCS:
1917 assert(_mesa_is_format_color_format(mt->format));
1918 assert(mt->surf.samples > 1);
1919 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1920 return false;
1921 return true;
1922
1923 case ISL_AUX_USAGE_CCS_D:
1924 /* Since CCS_D can only compress clear color so we wait until an actual
1925 * fast-clear to allocate it.
1926 */
1927 return true;
1928
1929 case ISL_AUX_USAGE_CCS_E:
1930 assert(_mesa_is_format_color_format(mt->format));
1931 assert(mt->surf.samples == 1);
1932 if (!intel_miptree_alloc_ccs(brw, mt))
1933 return false;
1934 return true;
1935 }
1936
1937 unreachable("Invalid aux usage");
1938 }
1939
1940
1941 /**
1942 * Can the miptree sample using the hiz buffer?
1943 */
1944 bool
1945 intel_miptree_sample_with_hiz(struct brw_context *brw,
1946 struct intel_mipmap_tree *mt)
1947 {
1948 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1949
1950 if (!devinfo->has_sample_with_hiz) {
1951 return false;
1952 }
1953
1954 if (!mt->hiz_buf) {
1955 return false;
1956 }
1957
1958 /* It seems the hardware won't fallback to the depth buffer if some of the
1959 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1960 * of the texture to be HiZ enabled.
1961 */
1962 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1963 if (!intel_miptree_level_has_hiz(mt, level))
1964 return false;
1965 }
1966
1967 /* If compressed multisampling is enabled, then we use it for the auxiliary
1968 * buffer instead.
1969 *
1970 * From the BDW PRM (Volume 2d: Command Reference: Structures
1971 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1972 *
1973 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1974 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1975 *
1976 * There is no such blurb for 1D textures, but there is sufficient evidence
1977 * that this is broken on SKL+.
1978 */
1979 return (mt->surf.samples == 1 &&
1980 mt->target != GL_TEXTURE_3D &&
1981 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1982 }
1983
1984 /**
1985 * Does the miptree slice have hiz enabled?
1986 */
1987 bool
1988 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1989 {
1990 intel_miptree_check_level_layer(mt, level, 0);
1991 return mt->level[level].has_hiz;
1992 }
1993
1994 static inline uint32_t
1995 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1996 uint32_t start_level, uint32_t num_levels)
1997 {
1998 assert(start_level >= mt->first_level);
1999 assert(start_level <= mt->last_level);
2000
2001 if (num_levels == INTEL_REMAINING_LAYERS)
2002 num_levels = mt->last_level - start_level + 1;
2003 /* Check for overflow */
2004 assert(start_level + num_levels >= start_level);
2005 assert(start_level + num_levels <= mt->last_level + 1);
2006
2007 return num_levels;
2008 }
2009
2010 static inline uint32_t
2011 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2012 uint32_t start_layer, uint32_t num_layers)
2013 {
2014 assert(level <= mt->last_level);
2015
2016 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2017 assert(start_layer < total_num_layers);
2018 if (num_layers == INTEL_REMAINING_LAYERS)
2019 num_layers = total_num_layers - start_layer;
2020 /* Check for overflow */
2021 assert(start_layer + num_layers >= start_layer);
2022 assert(start_layer + num_layers <= total_num_layers);
2023
2024 return num_layers;
2025 }
2026
2027 bool
2028 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2029 unsigned start_level, unsigned num_levels,
2030 unsigned start_layer, unsigned num_layers)
2031 {
2032 assert(_mesa_is_format_color_format(mt->format));
2033
2034 if (!mt->mcs_buf)
2035 return false;
2036
2037 /* Clamp the level range to fit the miptree */
2038 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2039
2040 for (uint32_t l = 0; l < num_levels; l++) {
2041 const uint32_t level = start_level + l;
2042 const uint32_t level_layers =
2043 miptree_layer_range_length(mt, level, start_layer, num_layers);
2044 for (unsigned a = 0; a < level_layers; a++) {
2045 enum isl_aux_state aux_state =
2046 intel_miptree_get_aux_state(mt, level, start_layer + a);
2047 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2048 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2049 return true;
2050 }
2051 }
2052
2053 return false;
2054 }
2055
2056 static void
2057 intel_miptree_check_color_resolve(const struct brw_context *brw,
2058 const struct intel_mipmap_tree *mt,
2059 unsigned level, unsigned layer)
2060 {
2061 if (!mt->mcs_buf)
2062 return;
2063
2064 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2065 assert(brw->screen->devinfo.gen >= 8 ||
2066 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2067
2068 /* Compression of arrayed msaa surfaces is supported. */
2069 if (mt->surf.samples > 1)
2070 return;
2071
2072 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2073 assert(brw->screen->devinfo.gen >= 8 ||
2074 (layer == 0 &&
2075 mt->surf.logical_level0_px.depth == 1 &&
2076 mt->surf.logical_level0_px.array_len == 1));
2077
2078 (void)level;
2079 (void)layer;
2080 }
2081
2082 static enum isl_aux_op
2083 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2084 enum isl_aux_usage aux_usage,
2085 bool fast_clear_supported)
2086 {
2087 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2088
2089 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2090
2091 assert(ccs_supported == fast_clear_supported);
2092
2093 switch (aux_state) {
2094 case ISL_AUX_STATE_CLEAR:
2095 case ISL_AUX_STATE_PARTIAL_CLEAR:
2096 if (!ccs_supported)
2097 return ISL_AUX_OP_FULL_RESOLVE;
2098 else
2099 return ISL_AUX_OP_NONE;
2100
2101 case ISL_AUX_STATE_PASS_THROUGH:
2102 return ISL_AUX_OP_NONE;
2103
2104 case ISL_AUX_STATE_RESOLVED:
2105 case ISL_AUX_STATE_AUX_INVALID:
2106 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2107 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2108 break;
2109 }
2110
2111 unreachable("Invalid aux state for CCS_D");
2112 }
2113
2114 static enum isl_aux_op
2115 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2116 enum isl_aux_usage aux_usage,
2117 bool fast_clear_supported)
2118 {
2119 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2120 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2121 aux_usage == ISL_AUX_USAGE_CCS_D ||
2122 aux_usage == ISL_AUX_USAGE_CCS_E);
2123
2124 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2125 assert(fast_clear_supported);
2126
2127 switch (aux_state) {
2128 case ISL_AUX_STATE_CLEAR:
2129 case ISL_AUX_STATE_PARTIAL_CLEAR:
2130 if (fast_clear_supported)
2131 return ISL_AUX_OP_NONE;
2132 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2133 return ISL_AUX_OP_PARTIAL_RESOLVE;
2134 else
2135 return ISL_AUX_OP_FULL_RESOLVE;
2136
2137 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2138 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2139 return ISL_AUX_OP_FULL_RESOLVE;
2140 else if (!fast_clear_supported)
2141 return ISL_AUX_OP_PARTIAL_RESOLVE;
2142 else
2143 return ISL_AUX_OP_NONE;
2144
2145 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2146 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2147 return ISL_AUX_OP_FULL_RESOLVE;
2148 else
2149 return ISL_AUX_OP_NONE;
2150
2151 case ISL_AUX_STATE_PASS_THROUGH:
2152 return ISL_AUX_OP_NONE;
2153
2154 case ISL_AUX_STATE_RESOLVED:
2155 case ISL_AUX_STATE_AUX_INVALID:
2156 break;
2157 }
2158
2159 unreachable("Invalid aux state for CCS_E");
2160 }
2161
2162 static void
2163 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2164 struct intel_mipmap_tree *mt,
2165 uint32_t level, uint32_t layer,
2166 enum isl_aux_usage aux_usage,
2167 bool fast_clear_supported)
2168 {
2169 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2170
2171 enum isl_aux_op resolve_op;
2172 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2173 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2174 fast_clear_supported);
2175 } else {
2176 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2177 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2178 fast_clear_supported);
2179 }
2180
2181 if (resolve_op != ISL_AUX_OP_NONE) {
2182 intel_miptree_check_color_resolve(brw, mt, level, layer);
2183 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2184
2185 switch (resolve_op) {
2186 case ISL_AUX_OP_FULL_RESOLVE:
2187 /* The CCS full resolve operation destroys the CCS and sets it to the
2188 * pass-through state. (You can also think of this as being both a
2189 * resolve and an ambiguate in one operation.)
2190 */
2191 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2192 ISL_AUX_STATE_PASS_THROUGH);
2193 break;
2194
2195 case ISL_AUX_OP_PARTIAL_RESOLVE:
2196 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2197 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2198 break;
2199
2200 default:
2201 unreachable("Invalid resolve op");
2202 }
2203 }
2204 }
2205
2206 static void
2207 intel_miptree_finish_ccs_write(struct brw_context *brw,
2208 struct intel_mipmap_tree *mt,
2209 uint32_t level, uint32_t layer,
2210 enum isl_aux_usage aux_usage)
2211 {
2212 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2213 aux_usage == ISL_AUX_USAGE_CCS_D ||
2214 aux_usage == ISL_AUX_USAGE_CCS_E);
2215
2216 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2217
2218 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2219 switch (aux_state) {
2220 case ISL_AUX_STATE_CLEAR:
2221 case ISL_AUX_STATE_PARTIAL_CLEAR:
2222 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2223 aux_usage == ISL_AUX_USAGE_CCS_D);
2224
2225 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2226 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2227 ISL_AUX_STATE_COMPRESSED_CLEAR);
2228 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2229 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2230 ISL_AUX_STATE_PARTIAL_CLEAR);
2231 }
2232 break;
2233
2234 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2235 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2236 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2237 break; /* Nothing to do */
2238
2239 case ISL_AUX_STATE_PASS_THROUGH:
2240 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2241 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2242 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2243 } else {
2244 /* Nothing to do */
2245 }
2246 break;
2247
2248 case ISL_AUX_STATE_RESOLVED:
2249 case ISL_AUX_STATE_AUX_INVALID:
2250 unreachable("Invalid aux state for CCS_E");
2251 }
2252 } else {
2253 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2254 /* CCS_D is a bit simpler */
2255 switch (aux_state) {
2256 case ISL_AUX_STATE_CLEAR:
2257 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2258 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2259 ISL_AUX_STATE_PARTIAL_CLEAR);
2260 break;
2261
2262 case ISL_AUX_STATE_PARTIAL_CLEAR:
2263 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2264 break; /* Nothing to do */
2265
2266 case ISL_AUX_STATE_PASS_THROUGH:
2267 /* Nothing to do */
2268 break;
2269
2270 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2271 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2272 case ISL_AUX_STATE_RESOLVED:
2273 case ISL_AUX_STATE_AUX_INVALID:
2274 unreachable("Invalid aux state for CCS_D");
2275 }
2276 }
2277 }
2278
2279 static void
2280 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2281 struct intel_mipmap_tree *mt,
2282 uint32_t layer,
2283 enum isl_aux_usage aux_usage,
2284 bool fast_clear_supported)
2285 {
2286 assert(aux_usage == ISL_AUX_USAGE_MCS);
2287
2288 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2289 case ISL_AUX_STATE_CLEAR:
2290 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2291 if (!fast_clear_supported) {
2292 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2293 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2294 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2295 }
2296 break;
2297
2298 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2299 break; /* Nothing to do */
2300
2301 case ISL_AUX_STATE_RESOLVED:
2302 case ISL_AUX_STATE_PASS_THROUGH:
2303 case ISL_AUX_STATE_AUX_INVALID:
2304 case ISL_AUX_STATE_PARTIAL_CLEAR:
2305 unreachable("Invalid aux state for MCS");
2306 }
2307 }
2308
2309 static void
2310 intel_miptree_finish_mcs_write(struct brw_context *brw,
2311 struct intel_mipmap_tree *mt,
2312 uint32_t layer,
2313 enum isl_aux_usage aux_usage)
2314 {
2315 assert(aux_usage == ISL_AUX_USAGE_MCS);
2316
2317 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2318 case ISL_AUX_STATE_CLEAR:
2319 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2320 ISL_AUX_STATE_COMPRESSED_CLEAR);
2321 break;
2322
2323 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2324 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2325 break; /* Nothing to do */
2326
2327 case ISL_AUX_STATE_RESOLVED:
2328 case ISL_AUX_STATE_PASS_THROUGH:
2329 case ISL_AUX_STATE_AUX_INVALID:
2330 case ISL_AUX_STATE_PARTIAL_CLEAR:
2331 unreachable("Invalid aux state for MCS");
2332 }
2333 }
2334
2335 static void
2336 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2337 struct intel_mipmap_tree *mt,
2338 uint32_t level, uint32_t layer,
2339 enum isl_aux_usage aux_usage,
2340 bool fast_clear_supported)
2341 {
2342 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2343
2344 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2345 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2346 case ISL_AUX_STATE_CLEAR:
2347 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2348 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2349 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2350 break;
2351
2352 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2353 if (aux_usage != ISL_AUX_USAGE_HIZ)
2354 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2355 break;
2356
2357 case ISL_AUX_STATE_PASS_THROUGH:
2358 case ISL_AUX_STATE_RESOLVED:
2359 break;
2360
2361 case ISL_AUX_STATE_AUX_INVALID:
2362 if (aux_usage == ISL_AUX_USAGE_HIZ)
2363 hiz_op = ISL_AUX_OP_AMBIGUATE;
2364 break;
2365
2366 case ISL_AUX_STATE_PARTIAL_CLEAR:
2367 unreachable("Invalid HiZ state");
2368 }
2369
2370 if (hiz_op != ISL_AUX_OP_NONE) {
2371 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2372
2373 switch (hiz_op) {
2374 case ISL_AUX_OP_FULL_RESOLVE:
2375 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2376 ISL_AUX_STATE_RESOLVED);
2377 break;
2378
2379 case ISL_AUX_OP_AMBIGUATE:
2380 /* The HiZ resolve operation is actually an ambiguate */
2381 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2382 ISL_AUX_STATE_PASS_THROUGH);
2383 break;
2384
2385 default:
2386 unreachable("Invalid HiZ op");
2387 }
2388 }
2389 }
2390
2391 static void
2392 intel_miptree_finish_hiz_write(struct brw_context *brw,
2393 struct intel_mipmap_tree *mt,
2394 uint32_t level, uint32_t layer,
2395 enum isl_aux_usage aux_usage)
2396 {
2397 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2398
2399 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2400 case ISL_AUX_STATE_CLEAR:
2401 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2402 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2403 ISL_AUX_STATE_COMPRESSED_CLEAR);
2404 break;
2405
2406 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2407 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2408 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2409 break; /* Nothing to do */
2410
2411 case ISL_AUX_STATE_RESOLVED:
2412 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2413 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2414 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2415 } else {
2416 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2417 ISL_AUX_STATE_AUX_INVALID);
2418 }
2419 break;
2420
2421 case ISL_AUX_STATE_PASS_THROUGH:
2422 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2423 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2424 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2425 }
2426 break;
2427
2428 case ISL_AUX_STATE_AUX_INVALID:
2429 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2430 break;
2431
2432 case ISL_AUX_STATE_PARTIAL_CLEAR:
2433 unreachable("Invalid HiZ state");
2434 }
2435 }
2436
2437 void
2438 intel_miptree_prepare_access(struct brw_context *brw,
2439 struct intel_mipmap_tree *mt,
2440 uint32_t start_level, uint32_t num_levels,
2441 uint32_t start_layer, uint32_t num_layers,
2442 enum isl_aux_usage aux_usage,
2443 bool fast_clear_supported)
2444 {
2445 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2446
2447 switch (mt->aux_usage) {
2448 case ISL_AUX_USAGE_NONE:
2449 /* Nothing to do */
2450 break;
2451
2452 case ISL_AUX_USAGE_MCS:
2453 assert(mt->mcs_buf);
2454 assert(start_level == 0 && num_levels == 1);
2455 const uint32_t level_layers =
2456 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2457 for (uint32_t a = 0; a < level_layers; a++) {
2458 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2459 aux_usage, fast_clear_supported);
2460 }
2461 break;
2462
2463 case ISL_AUX_USAGE_CCS_D:
2464 case ISL_AUX_USAGE_CCS_E:
2465 if (!mt->mcs_buf)
2466 return;
2467
2468 for (uint32_t l = 0; l < num_levels; l++) {
2469 const uint32_t level = start_level + l;
2470 const uint32_t level_layers =
2471 miptree_layer_range_length(mt, level, start_layer, num_layers);
2472 for (uint32_t a = 0; a < level_layers; a++) {
2473 intel_miptree_prepare_ccs_access(brw, mt, level,
2474 start_layer + a,
2475 aux_usage, fast_clear_supported);
2476 }
2477 }
2478 break;
2479
2480 case ISL_AUX_USAGE_HIZ:
2481 assert(mt->hiz_buf);
2482 for (uint32_t l = 0; l < num_levels; l++) {
2483 const uint32_t level = start_level + l;
2484 if (!intel_miptree_level_has_hiz(mt, level))
2485 continue;
2486
2487 const uint32_t level_layers =
2488 miptree_layer_range_length(mt, level, start_layer, num_layers);
2489 for (uint32_t a = 0; a < level_layers; a++) {
2490 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2491 aux_usage, fast_clear_supported);
2492 }
2493 }
2494 break;
2495
2496 default:
2497 unreachable("Invalid aux usage");
2498 }
2499 }
2500
2501 void
2502 intel_miptree_finish_write(struct brw_context *brw,
2503 struct intel_mipmap_tree *mt, uint32_t level,
2504 uint32_t start_layer, uint32_t num_layers,
2505 enum isl_aux_usage aux_usage)
2506 {
2507 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2508
2509 switch (mt->aux_usage) {
2510 case ISL_AUX_USAGE_NONE:
2511 /* Nothing to do */
2512 break;
2513
2514 case ISL_AUX_USAGE_MCS:
2515 assert(mt->mcs_buf);
2516 for (uint32_t a = 0; a < num_layers; a++) {
2517 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2518 aux_usage);
2519 }
2520 break;
2521
2522 case ISL_AUX_USAGE_CCS_D:
2523 case ISL_AUX_USAGE_CCS_E:
2524 if (!mt->mcs_buf)
2525 return;
2526
2527 for (uint32_t a = 0; a < num_layers; a++) {
2528 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2529 aux_usage);
2530 }
2531 break;
2532
2533 case ISL_AUX_USAGE_HIZ:
2534 if (!intel_miptree_level_has_hiz(mt, level))
2535 return;
2536
2537 for (uint32_t a = 0; a < num_layers; a++) {
2538 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2539 aux_usage);
2540 }
2541 break;
2542
2543 default:
2544 unreachable("Invavlid aux usage");
2545 }
2546 }
2547
2548 enum isl_aux_state
2549 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2550 uint32_t level, uint32_t layer)
2551 {
2552 intel_miptree_check_level_layer(mt, level, layer);
2553
2554 if (_mesa_is_format_color_format(mt->format)) {
2555 assert(mt->mcs_buf != NULL);
2556 assert(mt->surf.samples == 1 ||
2557 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2558 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2559 unreachable("Cannot get aux state for stencil");
2560 } else {
2561 assert(intel_miptree_level_has_hiz(mt, level));
2562 }
2563
2564 return mt->aux_state[level][layer];
2565 }
2566
2567 void
2568 intel_miptree_set_aux_state(struct brw_context *brw,
2569 struct intel_mipmap_tree *mt, uint32_t level,
2570 uint32_t start_layer, uint32_t num_layers,
2571 enum isl_aux_state aux_state)
2572 {
2573 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2574
2575 if (_mesa_is_format_color_format(mt->format)) {
2576 assert(mt->mcs_buf != NULL);
2577 assert(mt->surf.samples == 1 ||
2578 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2579 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2580 unreachable("Cannot get aux state for stencil");
2581 } else {
2582 assert(intel_miptree_level_has_hiz(mt, level));
2583 }
2584
2585 for (unsigned a = 0; a < num_layers; a++) {
2586 if (mt->aux_state[level][start_layer + a] != aux_state) {
2587 mt->aux_state[level][start_layer + a] = aux_state;
2588 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2589 }
2590 }
2591 }
2592
2593 /* On Gen9 color buffers may be compressed by the hardware (lossless
2594 * compression). There are, however, format restrictions and care needs to be
2595 * taken that the sampler engine is capable for re-interpreting a buffer with
2596 * format different the buffer was originally written with.
2597 *
2598 * For example, SRGB formats are not compressible and the sampler engine isn't
2599 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2600 * color buffer needs to be resolved so that the sampling surface can be
2601 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2602 * set).
2603 */
2604 static bool
2605 can_texture_with_ccs(struct brw_context *brw,
2606 struct intel_mipmap_tree *mt,
2607 enum isl_format view_format)
2608 {
2609 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2610 return false;
2611
2612 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2613 mt, view_format)) {
2614 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2615 isl_format_get_layout(view_format)->name,
2616 _mesa_get_format_name(mt->format));
2617 return false;
2618 }
2619
2620 return true;
2621 }
2622
2623 enum isl_aux_usage
2624 intel_miptree_texture_aux_usage(struct brw_context *brw,
2625 struct intel_mipmap_tree *mt,
2626 enum isl_format view_format)
2627 {
2628 switch (mt->aux_usage) {
2629 case ISL_AUX_USAGE_HIZ:
2630 if (intel_miptree_sample_with_hiz(brw, mt))
2631 return ISL_AUX_USAGE_HIZ;
2632 break;
2633
2634 case ISL_AUX_USAGE_MCS:
2635 return ISL_AUX_USAGE_MCS;
2636
2637 case ISL_AUX_USAGE_CCS_D:
2638 case ISL_AUX_USAGE_CCS_E:
2639 if (!mt->mcs_buf) {
2640 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2641 return ISL_AUX_USAGE_NONE;
2642 }
2643
2644 /* If we don't have any unresolved color, report an aux usage of
2645 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2646 * aux surface and we can save some bandwidth.
2647 */
2648 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2649 0, INTEL_REMAINING_LAYERS))
2650 return ISL_AUX_USAGE_NONE;
2651
2652 if (can_texture_with_ccs(brw, mt, view_format))
2653 return ISL_AUX_USAGE_CCS_E;
2654 break;
2655
2656 default:
2657 break;
2658 }
2659
2660 return ISL_AUX_USAGE_NONE;
2661 }
2662
2663 static bool
2664 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2665 {
2666 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2667 * values so sRGB curve application was a no-op for all fast-clearable
2668 * formats.
2669 *
2670 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2671 * values, the hardware interprets the floats, not as what would be
2672 * returned from the sampler (or written by the shader), but as being
2673 * between format conversion and sRGB curve application. This means that
2674 * we can switch between sRGB and UNORM without having to whack the clear
2675 * color.
2676 */
2677 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2678 }
2679
2680 void
2681 intel_miptree_prepare_texture(struct brw_context *brw,
2682 struct intel_mipmap_tree *mt,
2683 enum isl_format view_format,
2684 uint32_t start_level, uint32_t num_levels,
2685 uint32_t start_layer, uint32_t num_layers)
2686 {
2687 enum isl_aux_usage aux_usage =
2688 intel_miptree_texture_aux_usage(brw, mt, view_format);
2689 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2690
2691 /* Clear color is specified as ints or floats and the conversion is done by
2692 * the sampler. If we have a texture view, we would have to perform the
2693 * clear color conversion manually. Just disable clear color.
2694 */
2695 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2696 clear_supported = false;
2697
2698 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2699 start_layer, num_layers,
2700 aux_usage, clear_supported);
2701 }
2702
2703 void
2704 intel_miptree_prepare_image(struct brw_context *brw,
2705 struct intel_mipmap_tree *mt)
2706 {
2707 /* The data port doesn't understand any compression */
2708 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2709 0, INTEL_REMAINING_LAYERS,
2710 ISL_AUX_USAGE_NONE, false);
2711 }
2712
2713 enum isl_aux_usage
2714 intel_miptree_render_aux_usage(struct brw_context *brw,
2715 struct intel_mipmap_tree *mt,
2716 enum isl_format render_format,
2717 bool blend_enabled,
2718 bool draw_aux_disabled)
2719 {
2720 struct gen_device_info *devinfo = &brw->screen->devinfo;
2721
2722 if (draw_aux_disabled)
2723 return ISL_AUX_USAGE_NONE;
2724
2725 switch (mt->aux_usage) {
2726 case ISL_AUX_USAGE_MCS:
2727 assert(mt->mcs_buf);
2728 return ISL_AUX_USAGE_MCS;
2729
2730 case ISL_AUX_USAGE_CCS_D:
2731 case ISL_AUX_USAGE_CCS_E:
2732 if (!mt->mcs_buf) {
2733 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2734 return ISL_AUX_USAGE_NONE;
2735 }
2736
2737 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2738 * formats. However, there are issues with blending where it doesn't
2739 * properly apply the sRGB curve to the clear color when blending.
2740 */
2741 if (devinfo->gen == 9 && blend_enabled &&
2742 isl_format_is_srgb(render_format) &&
2743 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2744 return ISL_AUX_USAGE_NONE;
2745
2746 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2747 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2748 mt, render_format))
2749 return ISL_AUX_USAGE_CCS_E;
2750
2751 /* Otherwise, we have to fall back to CCS_D */
2752 return ISL_AUX_USAGE_CCS_D;
2753
2754 default:
2755 return ISL_AUX_USAGE_NONE;
2756 }
2757 }
2758
2759 void
2760 intel_miptree_prepare_render(struct brw_context *brw,
2761 struct intel_mipmap_tree *mt, uint32_t level,
2762 uint32_t start_layer, uint32_t layer_count,
2763 enum isl_aux_usage aux_usage)
2764 {
2765 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2766 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2767 }
2768
2769 void
2770 intel_miptree_finish_render(struct brw_context *brw,
2771 struct intel_mipmap_tree *mt, uint32_t level,
2772 uint32_t start_layer, uint32_t layer_count,
2773 enum isl_aux_usage aux_usage)
2774 {
2775 assert(_mesa_is_format_color_format(mt->format));
2776
2777 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2778 aux_usage);
2779 }
2780
2781 void
2782 intel_miptree_prepare_depth(struct brw_context *brw,
2783 struct intel_mipmap_tree *mt, uint32_t level,
2784 uint32_t start_layer, uint32_t layer_count)
2785 {
2786 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2787 mt->aux_usage, mt->hiz_buf != NULL);
2788 }
2789
2790 void
2791 intel_miptree_finish_depth(struct brw_context *brw,
2792 struct intel_mipmap_tree *mt, uint32_t level,
2793 uint32_t start_layer, uint32_t layer_count,
2794 bool depth_written)
2795 {
2796 if (depth_written) {
2797 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2798 mt->hiz_buf != NULL);
2799 }
2800 }
2801
2802 void
2803 intel_miptree_prepare_external(struct brw_context *brw,
2804 struct intel_mipmap_tree *mt)
2805 {
2806 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2807 bool supports_fast_clear = false;
2808
2809 const struct isl_drm_modifier_info *mod_info =
2810 isl_drm_modifier_get_info(mt->drm_modifier);
2811
2812 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2813 /* CCS_E is the only supported aux for external images and it's only
2814 * supported on very simple images.
2815 */
2816 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2817 assert(_mesa_is_format_color_format(mt->format));
2818 assert(mt->first_level == 0 && mt->last_level == 0);
2819 assert(mt->surf.logical_level0_px.depth == 1);
2820 assert(mt->surf.logical_level0_px.array_len == 1);
2821 assert(mt->surf.samples == 1);
2822 assert(mt->mcs_buf != NULL);
2823
2824 aux_usage = mod_info->aux_usage;
2825 supports_fast_clear = mod_info->supports_clear_color;
2826 }
2827
2828 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2829 0, INTEL_REMAINING_LAYERS,
2830 aux_usage, supports_fast_clear);
2831 }
2832
2833 void
2834 intel_miptree_finish_external(struct brw_context *brw,
2835 struct intel_mipmap_tree *mt)
2836 {
2837 if (!mt->mcs_buf)
2838 return;
2839
2840 /* We don't know the actual aux state of the aux surface. The previous
2841 * owner could have given it to us in a number of different states.
2842 * Because we don't know the aux state, we reset the aux state to the
2843 * least common denominator of possible valid states.
2844 */
2845 enum isl_aux_state default_aux_state =
2846 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2847 assert(mt->last_level == mt->first_level);
2848 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2849 default_aux_state);
2850 }
2851
2852 /**
2853 * Make it possible to share the BO backing the given miptree with another
2854 * process or another miptree.
2855 *
2856 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2857 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2858 * ensure that no MCS buffer gets allocated in the future.
2859 *
2860 * HiZ is similarly unsafe with shared buffers.
2861 */
2862 void
2863 intel_miptree_make_shareable(struct brw_context *brw,
2864 struct intel_mipmap_tree *mt)
2865 {
2866 /* MCS buffers are also used for multisample buffers, but we can't resolve
2867 * away a multisample MCS buffer because it's an integral part of how the
2868 * pixel data is stored. Fortunately this code path should never be
2869 * reached for multisample buffers.
2870 */
2871 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2872 mt->surf.samples == 1);
2873
2874 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2875 0, INTEL_REMAINING_LAYERS,
2876 ISL_AUX_USAGE_NONE, false);
2877
2878 if (mt->mcs_buf) {
2879 brw_bo_unreference(mt->mcs_buf->bo);
2880 free(mt->mcs_buf);
2881 mt->mcs_buf = NULL;
2882
2883 /* Any pending MCS/CCS operations are no longer needed. Trying to
2884 * execute any will likely crash due to the missing aux buffer. So let's
2885 * delete all pending ops.
2886 */
2887 free(mt->aux_state);
2888 mt->aux_state = NULL;
2889 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2890 }
2891
2892 if (mt->hiz_buf) {
2893 intel_miptree_aux_buffer_free(mt->hiz_buf);
2894 mt->hiz_buf = NULL;
2895
2896 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2897 mt->level[l].has_hiz = false;
2898 }
2899
2900 /* Any pending HiZ operations are no longer needed. Trying to execute
2901 * any will likely crash due to the missing aux buffer. So let's delete
2902 * all pending ops.
2903 */
2904 free(mt->aux_state);
2905 mt->aux_state = NULL;
2906 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2907 }
2908
2909 mt->aux_usage = ISL_AUX_USAGE_NONE;
2910 mt->supports_fast_clear = false;
2911 }
2912
2913
2914 /**
2915 * \brief Get pointer offset into stencil buffer.
2916 *
2917 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2918 * must decode the tile's layout in software.
2919 *
2920 * See
2921 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2922 * Format.
2923 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2924 *
2925 * Even though the returned offset is always positive, the return type is
2926 * signed due to
2927 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2928 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2929 */
2930 static intptr_t
2931 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2932 {
2933 uint32_t tile_size = 4096;
2934 uint32_t tile_width = 64;
2935 uint32_t tile_height = 64;
2936 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2937
2938 uint32_t tile_x = x / tile_width;
2939 uint32_t tile_y = y / tile_height;
2940
2941 /* The byte's address relative to the tile's base addres. */
2942 uint32_t byte_x = x % tile_width;
2943 uint32_t byte_y = y % tile_height;
2944
2945 uintptr_t u = tile_y * row_size
2946 + tile_x * tile_size
2947 + 512 * (byte_x / 8)
2948 + 64 * (byte_y / 8)
2949 + 32 * ((byte_y / 4) % 2)
2950 + 16 * ((byte_x / 4) % 2)
2951 + 8 * ((byte_y / 2) % 2)
2952 + 4 * ((byte_x / 2) % 2)
2953 + 2 * (byte_y % 2)
2954 + 1 * (byte_x % 2);
2955
2956 if (swizzled) {
2957 /* adjust for bit6 swizzling */
2958 if (((byte_x / 8) % 2) == 1) {
2959 if (((byte_y / 8) % 2) == 0) {
2960 u += 64;
2961 } else {
2962 u -= 64;
2963 }
2964 }
2965 }
2966
2967 return u;
2968 }
2969
2970 void
2971 intel_miptree_updownsample(struct brw_context *brw,
2972 struct intel_mipmap_tree *src,
2973 struct intel_mipmap_tree *dst)
2974 {
2975 unsigned src_w = src->surf.logical_level0_px.width;
2976 unsigned src_h = src->surf.logical_level0_px.height;
2977 unsigned dst_w = dst->surf.logical_level0_px.width;
2978 unsigned dst_h = dst->surf.logical_level0_px.height;
2979
2980 brw_blorp_blit_miptrees(brw,
2981 src, 0 /* level */, 0 /* layer */,
2982 src->format, SWIZZLE_XYZW,
2983 dst, 0 /* level */, 0 /* layer */, dst->format,
2984 0, 0, src_w, src_h,
2985 0, 0, dst_w, dst_h,
2986 GL_NEAREST, false, false /*mirror x, y*/,
2987 false, false);
2988
2989 if (src->stencil_mt) {
2990 src_w = src->stencil_mt->surf.logical_level0_px.width;
2991 src_h = src->stencil_mt->surf.logical_level0_px.height;
2992 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2993 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2994
2995 brw_blorp_blit_miptrees(brw,
2996 src->stencil_mt, 0 /* level */, 0 /* layer */,
2997 src->stencil_mt->format, SWIZZLE_XYZW,
2998 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2999 dst->stencil_mt->format,
3000 0, 0, src_w, src_h,
3001 0, 0, dst_w, dst_h,
3002 GL_NEAREST, false, false /*mirror x, y*/,
3003 false, false /* decode/encode srgb */);
3004 }
3005 }
3006
3007 void
3008 intel_update_r8stencil(struct brw_context *brw,
3009 struct intel_mipmap_tree *mt)
3010 {
3011 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3012
3013 assert(devinfo->gen >= 7);
3014 struct intel_mipmap_tree *src =
3015 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
3016 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3017 return;
3018
3019 assert(src->surf.size > 0);
3020
3021 if (!mt->r8stencil_mt) {
3022 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3023 mt->r8stencil_mt = make_surface(
3024 brw,
3025 src->target,
3026 MESA_FORMAT_R_UINT8,
3027 src->first_level, src->last_level,
3028 src->surf.logical_level0_px.width,
3029 src->surf.logical_level0_px.height,
3030 src->surf.dim == ISL_SURF_DIM_3D ?
3031 src->surf.logical_level0_px.depth :
3032 src->surf.logical_level0_px.array_len,
3033 src->surf.samples,
3034 ISL_TILING_Y0_BIT,
3035 ISL_SURF_USAGE_TEXTURE_BIT,
3036 BO_ALLOC_BUSY, 0, NULL);
3037 assert(mt->r8stencil_mt);
3038 }
3039
3040 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3041
3042 for (int level = src->first_level; level <= src->last_level; level++) {
3043 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3044 minify(src->surf.phys_level0_sa.depth, level) :
3045 src->surf.phys_level0_sa.array_len;
3046
3047 for (unsigned layer = 0; layer < depth; layer++) {
3048 brw_blorp_copy_miptrees(brw,
3049 src, level, layer,
3050 dst, level, layer,
3051 0, 0, 0, 0,
3052 minify(src->surf.logical_level0_px.width,
3053 level),
3054 minify(src->surf.logical_level0_px.height,
3055 level));
3056 }
3057 }
3058
3059 brw_cache_flush_for_read(brw, dst->bo);
3060 src->r8stencil_needs_update = false;
3061 }
3062
3063 static void *
3064 intel_miptree_map_raw(struct brw_context *brw,
3065 struct intel_mipmap_tree *mt,
3066 GLbitfield mode)
3067 {
3068 struct brw_bo *bo = mt->bo;
3069
3070 if (brw_batch_references(&brw->batch, bo))
3071 intel_batchbuffer_flush(brw);
3072
3073 return brw_bo_map(brw, bo, mode);
3074 }
3075
3076 static void
3077 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3078 {
3079 brw_bo_unmap(mt->bo);
3080 }
3081
3082 static void
3083 intel_miptree_map_gtt(struct brw_context *brw,
3084 struct intel_mipmap_tree *mt,
3085 struct intel_miptree_map *map,
3086 unsigned int level, unsigned int slice)
3087 {
3088 unsigned int bw, bh;
3089 void *base;
3090 unsigned int image_x, image_y;
3091 intptr_t x = map->x;
3092 intptr_t y = map->y;
3093
3094 /* For compressed formats, the stride is the number of bytes per
3095 * row of blocks. intel_miptree_get_image_offset() already does
3096 * the divide.
3097 */
3098 _mesa_get_format_block_size(mt->format, &bw, &bh);
3099 assert(y % bh == 0);
3100 assert(x % bw == 0);
3101 y /= bh;
3102 x /= bw;
3103
3104 base = intel_miptree_map_raw(brw, mt, map->mode);
3105
3106 if (base == NULL)
3107 map->ptr = NULL;
3108 else {
3109 base += mt->offset;
3110
3111 /* Note that in the case of cube maps, the caller must have passed the
3112 * slice number referencing the face.
3113 */
3114 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3115 x += image_x;
3116 y += image_y;
3117
3118 map->stride = mt->surf.row_pitch;
3119 map->ptr = base + y * map->stride + x * mt->cpp;
3120 }
3121
3122 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3123 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3124 map->x, map->y, map->w, map->h,
3125 mt, _mesa_get_format_name(mt->format),
3126 x, y, map->ptr, map->stride);
3127 }
3128
3129 static void
3130 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3131 {
3132 intel_miptree_unmap_raw(mt);
3133 }
3134
3135 static void
3136 intel_miptree_map_blit(struct brw_context *brw,
3137 struct intel_mipmap_tree *mt,
3138 struct intel_miptree_map *map,
3139 unsigned int level, unsigned int slice)
3140 {
3141 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3142 /* first_level */ 0,
3143 /* last_level */ 0,
3144 map->w, map->h, 1,
3145 /* samples */ 1,
3146 MIPTREE_CREATE_LINEAR);
3147
3148 if (!map->linear_mt) {
3149 fprintf(stderr, "Failed to allocate blit temporary\n");
3150 goto fail;
3151 }
3152 map->stride = map->linear_mt->surf.row_pitch;
3153
3154 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3155 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3156 * invalidate is set, since we'll be writing the whole rectangle from our
3157 * temporary buffer back out.
3158 */
3159 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3160 if (!intel_miptree_copy(brw,
3161 mt, level, slice, map->x, map->y,
3162 map->linear_mt, 0, 0, 0, 0,
3163 map->w, map->h)) {
3164 fprintf(stderr, "Failed to blit\n");
3165 goto fail;
3166 }
3167 }
3168
3169 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3170
3171 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3172 map->x, map->y, map->w, map->h,
3173 mt, _mesa_get_format_name(mt->format),
3174 level, slice, map->ptr, map->stride);
3175
3176 return;
3177
3178 fail:
3179 intel_miptree_release(&map->linear_mt);
3180 map->ptr = NULL;
3181 map->stride = 0;
3182 }
3183
3184 static void
3185 intel_miptree_unmap_blit(struct brw_context *brw,
3186 struct intel_mipmap_tree *mt,
3187 struct intel_miptree_map *map,
3188 unsigned int level,
3189 unsigned int slice)
3190 {
3191 struct gl_context *ctx = &brw->ctx;
3192
3193 intel_miptree_unmap_raw(map->linear_mt);
3194
3195 if (map->mode & GL_MAP_WRITE_BIT) {
3196 bool ok = intel_miptree_copy(brw,
3197 map->linear_mt, 0, 0, 0, 0,
3198 mt, level, slice, map->x, map->y,
3199 map->w, map->h);
3200 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3201 }
3202
3203 intel_miptree_release(&map->linear_mt);
3204 }
3205
3206 /**
3207 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3208 */
3209 #if defined(USE_SSE41)
3210 static void
3211 intel_miptree_map_movntdqa(struct brw_context *brw,
3212 struct intel_mipmap_tree *mt,
3213 struct intel_miptree_map *map,
3214 unsigned int level, unsigned int slice)
3215 {
3216 assert(map->mode & GL_MAP_READ_BIT);
3217 assert(!(map->mode & GL_MAP_WRITE_BIT));
3218
3219 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3220 map->x, map->y, map->w, map->h,
3221 mt, _mesa_get_format_name(mt->format),
3222 level, slice, map->ptr, map->stride);
3223
3224 /* Map the original image */
3225 uint32_t image_x;
3226 uint32_t image_y;
3227 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3228 image_x += map->x;
3229 image_y += map->y;
3230
3231 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3232 if (!src)
3233 return;
3234
3235 src += mt->offset;
3236
3237 src += image_y * mt->surf.row_pitch;
3238 src += image_x * mt->cpp;
3239
3240 /* Due to the pixel offsets for the particular image being mapped, our
3241 * src pointer may not be 16-byte aligned. However, if the pitch is
3242 * divisible by 16, then the amount by which it's misaligned will remain
3243 * consistent from row to row.
3244 */
3245 assert((mt->surf.row_pitch % 16) == 0);
3246 const int misalignment = ((uintptr_t) src) & 15;
3247
3248 /* Create an untiled temporary buffer for the mapping. */
3249 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3250
3251 map->stride = ALIGN(misalignment + width_bytes, 16);
3252
3253 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3254 /* Offset the destination so it has the same misalignment as src. */
3255 map->ptr = map->buffer + misalignment;
3256
3257 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3258
3259 for (uint32_t y = 0; y < map->h; y++) {
3260 void *dst_ptr = map->ptr + y * map->stride;
3261 void *src_ptr = src + y * mt->surf.row_pitch;
3262
3263 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3264 }
3265
3266 intel_miptree_unmap_raw(mt);
3267 }
3268
3269 static void
3270 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3271 struct intel_mipmap_tree *mt,
3272 struct intel_miptree_map *map,
3273 unsigned int level,
3274 unsigned int slice)
3275 {
3276 _mesa_align_free(map->buffer);
3277 map->buffer = NULL;
3278 map->ptr = NULL;
3279 }
3280 #endif
3281
3282 static void
3283 intel_miptree_map_s8(struct brw_context *brw,
3284 struct intel_mipmap_tree *mt,
3285 struct intel_miptree_map *map,
3286 unsigned int level, unsigned int slice)
3287 {
3288 map->stride = map->w;
3289 map->buffer = map->ptr = malloc(map->stride * map->h);
3290 if (!map->buffer)
3291 return;
3292
3293 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3294 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3295 * invalidate is set, since we'll be writing the whole rectangle from our
3296 * temporary buffer back out.
3297 */
3298 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3299 uint8_t *untiled_s8_map = map->ptr;
3300 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3301 unsigned int image_x, image_y;
3302
3303 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3304
3305 for (uint32_t y = 0; y < map->h; y++) {
3306 for (uint32_t x = 0; x < map->w; x++) {
3307 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3308 x + image_x + map->x,
3309 y + image_y + map->y,
3310 brw->has_swizzling);
3311 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3312 }
3313 }
3314
3315 intel_miptree_unmap_raw(mt);
3316
3317 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3318 map->x, map->y, map->w, map->h,
3319 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3320 } else {
3321 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3322 map->x, map->y, map->w, map->h,
3323 mt, map->ptr, map->stride);
3324 }
3325 }
3326
3327 static void
3328 intel_miptree_unmap_s8(struct brw_context *brw,
3329 struct intel_mipmap_tree *mt,
3330 struct intel_miptree_map *map,
3331 unsigned int level,
3332 unsigned int slice)
3333 {
3334 if (map->mode & GL_MAP_WRITE_BIT) {
3335 unsigned int image_x, image_y;
3336 uint8_t *untiled_s8_map = map->ptr;
3337 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3338
3339 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3340
3341 for (uint32_t y = 0; y < map->h; y++) {
3342 for (uint32_t x = 0; x < map->w; x++) {
3343 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3344 image_x + x + map->x,
3345 image_y + y + map->y,
3346 brw->has_swizzling);
3347 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3348 }
3349 }
3350
3351 intel_miptree_unmap_raw(mt);
3352 }
3353
3354 free(map->buffer);
3355 }
3356
3357 static void
3358 intel_miptree_map_etc(struct brw_context *brw,
3359 struct intel_mipmap_tree *mt,
3360 struct intel_miptree_map *map,
3361 unsigned int level,
3362 unsigned int slice)
3363 {
3364 assert(mt->etc_format != MESA_FORMAT_NONE);
3365 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3366 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3367 }
3368
3369 assert(map->mode & GL_MAP_WRITE_BIT);
3370 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3371
3372 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3373 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3374 map->w, map->h, 1));
3375 map->ptr = map->buffer;
3376 }
3377
3378 static void
3379 intel_miptree_unmap_etc(struct brw_context *brw,
3380 struct intel_mipmap_tree *mt,
3381 struct intel_miptree_map *map,
3382 unsigned int level,
3383 unsigned int slice)
3384 {
3385 uint32_t image_x;
3386 uint32_t image_y;
3387 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3388
3389 image_x += map->x;
3390 image_y += map->y;
3391
3392 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3393 + image_y * mt->surf.row_pitch
3394 + image_x * mt->cpp;
3395
3396 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3397 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3398 map->ptr, map->stride,
3399 map->w, map->h);
3400 else
3401 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3402 map->ptr, map->stride,
3403 map->w, map->h, mt->etc_format);
3404
3405 intel_miptree_unmap_raw(mt);
3406 free(map->buffer);
3407 }
3408
3409 /**
3410 * Mapping function for packed depth/stencil miptrees backed by real separate
3411 * miptrees for depth and stencil.
3412 *
3413 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3414 * separate from the depth buffer. Yet at the GL API level, we have to expose
3415 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3416 * be able to map that memory for texture storage and glReadPixels-type
3417 * operations. We give Mesa core that access by mallocing a temporary and
3418 * copying the data between the actual backing store and the temporary.
3419 */
3420 static void
3421 intel_miptree_map_depthstencil(struct brw_context *brw,
3422 struct intel_mipmap_tree *mt,
3423 struct intel_miptree_map *map,
3424 unsigned int level, unsigned int slice)
3425 {
3426 struct intel_mipmap_tree *z_mt = mt;
3427 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3428 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3429 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3430
3431 map->stride = map->w * packed_bpp;
3432 map->buffer = map->ptr = malloc(map->stride * map->h);
3433 if (!map->buffer)
3434 return;
3435
3436 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3437 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3438 * invalidate is set, since we'll be writing the whole rectangle from our
3439 * temporary buffer back out.
3440 */
3441 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3442 uint32_t *packed_map = map->ptr;
3443 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3444 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3445 unsigned int s_image_x, s_image_y;
3446 unsigned int z_image_x, z_image_y;
3447
3448 intel_miptree_get_image_offset(s_mt, level, slice,
3449 &s_image_x, &s_image_y);
3450 intel_miptree_get_image_offset(z_mt, level, slice,
3451 &z_image_x, &z_image_y);
3452
3453 for (uint32_t y = 0; y < map->h; y++) {
3454 for (uint32_t x = 0; x < map->w; x++) {
3455 int map_x = map->x + x, map_y = map->y + y;
3456 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3457 map_x + s_image_x,
3458 map_y + s_image_y,
3459 brw->has_swizzling);
3460 ptrdiff_t z_offset = ((map_y + z_image_y) *
3461 (z_mt->surf.row_pitch / 4) +
3462 (map_x + z_image_x));
3463 uint8_t s = s_map[s_offset];
3464 uint32_t z = z_map[z_offset];
3465
3466 if (map_z32f_x24s8) {
3467 packed_map[(y * map->w + x) * 2 + 0] = z;
3468 packed_map[(y * map->w + x) * 2 + 1] = s;
3469 } else {
3470 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3471 }
3472 }
3473 }
3474
3475 intel_miptree_unmap_raw(s_mt);
3476 intel_miptree_unmap_raw(z_mt);
3477
3478 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3479 __func__,
3480 map->x, map->y, map->w, map->h,
3481 z_mt, map->x + z_image_x, map->y + z_image_y,
3482 s_mt, map->x + s_image_x, map->y + s_image_y,
3483 map->ptr, map->stride);
3484 } else {
3485 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3486 map->x, map->y, map->w, map->h,
3487 mt, map->ptr, map->stride);
3488 }
3489 }
3490
3491 static void
3492 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3493 struct intel_mipmap_tree *mt,
3494 struct intel_miptree_map *map,
3495 unsigned int level,
3496 unsigned int slice)
3497 {
3498 struct intel_mipmap_tree *z_mt = mt;
3499 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3500 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3501
3502 if (map->mode & GL_MAP_WRITE_BIT) {
3503 uint32_t *packed_map = map->ptr;
3504 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3505 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3506 unsigned int s_image_x, s_image_y;
3507 unsigned int z_image_x, z_image_y;
3508
3509 intel_miptree_get_image_offset(s_mt, level, slice,
3510 &s_image_x, &s_image_y);
3511 intel_miptree_get_image_offset(z_mt, level, slice,
3512 &z_image_x, &z_image_y);
3513
3514 for (uint32_t y = 0; y < map->h; y++) {
3515 for (uint32_t x = 0; x < map->w; x++) {
3516 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3517 x + s_image_x + map->x,
3518 y + s_image_y + map->y,
3519 brw->has_swizzling);
3520 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3521 (z_mt->surf.row_pitch / 4) +
3522 (x + z_image_x + map->x));
3523
3524 if (map_z32f_x24s8) {
3525 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3526 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3527 } else {
3528 uint32_t packed = packed_map[y * map->w + x];
3529 s_map[s_offset] = packed >> 24;
3530 z_map[z_offset] = packed;
3531 }
3532 }
3533 }
3534
3535 intel_miptree_unmap_raw(s_mt);
3536 intel_miptree_unmap_raw(z_mt);
3537
3538 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3539 __func__,
3540 map->x, map->y, map->w, map->h,
3541 z_mt, _mesa_get_format_name(z_mt->format),
3542 map->x + z_image_x, map->y + z_image_y,
3543 s_mt, map->x + s_image_x, map->y + s_image_y,
3544 map->ptr, map->stride);
3545 }
3546
3547 free(map->buffer);
3548 }
3549
3550 /**
3551 * Create and attach a map to the miptree at (level, slice). Return the
3552 * attached map.
3553 */
3554 static struct intel_miptree_map*
3555 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3556 unsigned int level,
3557 unsigned int slice,
3558 unsigned int x,
3559 unsigned int y,
3560 unsigned int w,
3561 unsigned int h,
3562 GLbitfield mode)
3563 {
3564 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3565
3566 if (!map)
3567 return NULL;
3568
3569 assert(mt->level[level].slice[slice].map == NULL);
3570 mt->level[level].slice[slice].map = map;
3571
3572 map->mode = mode;
3573 map->x = x;
3574 map->y = y;
3575 map->w = w;
3576 map->h = h;
3577
3578 return map;
3579 }
3580
3581 /**
3582 * Release the map at (level, slice).
3583 */
3584 static void
3585 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3586 unsigned int level,
3587 unsigned int slice)
3588 {
3589 struct intel_miptree_map **map;
3590
3591 map = &mt->level[level].slice[slice].map;
3592 free(*map);
3593 *map = NULL;
3594 }
3595
3596 static bool
3597 can_blit_slice(struct intel_mipmap_tree *mt,
3598 unsigned int level, unsigned int slice)
3599 {
3600 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3601 if (mt->surf.row_pitch >= 32768)
3602 return false;
3603
3604 return true;
3605 }
3606
3607 static bool
3608 use_intel_mipree_map_blit(struct brw_context *brw,
3609 struct intel_mipmap_tree *mt,
3610 GLbitfield mode,
3611 unsigned int level,
3612 unsigned int slice)
3613 {
3614 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3615
3616 if (devinfo->has_llc &&
3617 /* It's probably not worth swapping to the blit ring because of
3618 * all the overhead involved.
3619 */
3620 !(mode & GL_MAP_WRITE_BIT) &&
3621 !mt->compressed &&
3622 (mt->surf.tiling == ISL_TILING_X ||
3623 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3624 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3625 /* Fast copy blit on skl+ supports all tiling formats. */
3626 devinfo->gen >= 9) &&
3627 can_blit_slice(mt, level, slice))
3628 return true;
3629
3630 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3631 mt->bo->size >= brw->max_gtt_map_object_size) {
3632 assert(can_blit_slice(mt, level, slice));
3633 return true;
3634 }
3635
3636 return false;
3637 }
3638
3639 /**
3640 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3641 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3642 * arithmetic overflow.
3643 *
3644 * If you call this function and use \a out_stride, then you're doing pointer
3645 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3646 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3647 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3648 * which usually have type uint32_t or GLuint.
3649 */
3650 void
3651 intel_miptree_map(struct brw_context *brw,
3652 struct intel_mipmap_tree *mt,
3653 unsigned int level,
3654 unsigned int slice,
3655 unsigned int x,
3656 unsigned int y,
3657 unsigned int w,
3658 unsigned int h,
3659 GLbitfield mode,
3660 void **out_ptr,
3661 ptrdiff_t *out_stride)
3662 {
3663 struct intel_miptree_map *map;
3664
3665 assert(mt->surf.samples == 1);
3666
3667 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3668 if (!map){
3669 *out_ptr = NULL;
3670 *out_stride = 0;
3671 return;
3672 }
3673
3674 intel_miptree_access_raw(brw, mt, level, slice,
3675 map->mode & GL_MAP_WRITE_BIT);
3676
3677 if (mt->format == MESA_FORMAT_S_UINT8) {
3678 intel_miptree_map_s8(brw, mt, map, level, slice);
3679 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3680 !(mode & BRW_MAP_DIRECT_BIT)) {
3681 intel_miptree_map_etc(brw, mt, map, level, slice);
3682 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3683 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3684 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3685 intel_miptree_map_blit(brw, mt, map, level, slice);
3686 #if defined(USE_SSE41)
3687 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3688 !mt->compressed && cpu_has_sse4_1 &&
3689 (mt->surf.row_pitch % 16 == 0)) {
3690 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3691 #endif
3692 } else {
3693 intel_miptree_map_gtt(brw, mt, map, level, slice);
3694 }
3695
3696 *out_ptr = map->ptr;
3697 *out_stride = map->stride;
3698
3699 if (map->ptr == NULL)
3700 intel_miptree_release_map(mt, level, slice);
3701 }
3702
3703 void
3704 intel_miptree_unmap(struct brw_context *brw,
3705 struct intel_mipmap_tree *mt,
3706 unsigned int level,
3707 unsigned int slice)
3708 {
3709 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3710
3711 assert(mt->surf.samples == 1);
3712
3713 if (!map)
3714 return;
3715
3716 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3717 mt, _mesa_get_format_name(mt->format), level, slice);
3718
3719 if (mt->format == MESA_FORMAT_S_UINT8) {
3720 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3721 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3722 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3723 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3724 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3725 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3726 } else if (map->linear_mt) {
3727 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3728 #if defined(USE_SSE41)
3729 } else if (map->buffer && cpu_has_sse4_1) {
3730 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3731 #endif
3732 } else {
3733 intel_miptree_unmap_gtt(mt);
3734 }
3735
3736 intel_miptree_release_map(mt, level, slice);
3737 }
3738
3739 enum isl_surf_dim
3740 get_isl_surf_dim(GLenum target)
3741 {
3742 switch (target) {
3743 case GL_TEXTURE_1D:
3744 case GL_TEXTURE_1D_ARRAY:
3745 return ISL_SURF_DIM_1D;
3746
3747 case GL_TEXTURE_2D:
3748 case GL_TEXTURE_2D_ARRAY:
3749 case GL_TEXTURE_RECTANGLE:
3750 case GL_TEXTURE_CUBE_MAP:
3751 case GL_TEXTURE_CUBE_MAP_ARRAY:
3752 case GL_TEXTURE_2D_MULTISAMPLE:
3753 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3754 case GL_TEXTURE_EXTERNAL_OES:
3755 return ISL_SURF_DIM_2D;
3756
3757 case GL_TEXTURE_3D:
3758 return ISL_SURF_DIM_3D;
3759 }
3760
3761 unreachable("Invalid texture target");
3762 }
3763
3764 enum isl_dim_layout
3765 get_isl_dim_layout(const struct gen_device_info *devinfo,
3766 enum isl_tiling tiling, GLenum target)
3767 {
3768 switch (target) {
3769 case GL_TEXTURE_1D:
3770 case GL_TEXTURE_1D_ARRAY:
3771 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3772 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3773
3774 case GL_TEXTURE_2D:
3775 case GL_TEXTURE_2D_ARRAY:
3776 case GL_TEXTURE_RECTANGLE:
3777 case GL_TEXTURE_2D_MULTISAMPLE:
3778 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3779 case GL_TEXTURE_EXTERNAL_OES:
3780 return ISL_DIM_LAYOUT_GEN4_2D;
3781
3782 case GL_TEXTURE_CUBE_MAP:
3783 case GL_TEXTURE_CUBE_MAP_ARRAY:
3784 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3785 ISL_DIM_LAYOUT_GEN4_2D);
3786
3787 case GL_TEXTURE_3D:
3788 return (devinfo->gen >= 9 ?
3789 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3790 }
3791
3792 unreachable("Invalid texture target");
3793 }
3794
3795 enum isl_aux_usage
3796 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3797 const struct intel_mipmap_tree *mt)
3798 {
3799 if (mt->hiz_buf)
3800 return ISL_AUX_USAGE_HIZ;
3801
3802 if (!mt->mcs_buf)
3803 return ISL_AUX_USAGE_NONE;
3804
3805 return mt->aux_usage;
3806 }