i965/miptree: Call alloc_aux in create_for_bo
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_aux(struct brw_context *brw,
59 struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 /* MCS compression only applies to multisampled miptrees */
66 if (mt->surf.samples <= 1)
67 return false;
68
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return false;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(mt->format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return false;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
92 return false;
93 } else {
94 return true;
95 }
96 }
97 }
98
99 static bool
100 intel_tiling_supports_ccs(const struct brw_context *brw,
101 enum isl_tiling tiling)
102 {
103 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
104 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
105 *
106 * - Support is limited to tiled render targets.
107 *
108 * Gen9 changes the restriction to Y-tile only.
109 */
110 if (brw->gen >= 9)
111 return tiling == ISL_TILING_Y0;
112 else if (brw->gen >= 7)
113 return tiling != ISL_TILING_LINEAR;
114 else
115 return false;
116 }
117
118 /**
119 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
120 * can be used. This doesn't (and should not) inspect any of the properties of
121 * the miptree's BO.
122 *
123 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
124 * beneath the "Fast Color Clear" bullet (p326):
125 *
126 * - Support is for non-mip-mapped and non-array surface types only.
127 *
128 * And then later, on p327:
129 *
130 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
131 * 64bpp, and 128bpp.
132 *
133 * From the Skylake documentation, it is made clear that X-tiling is no longer
134 * supported:
135 *
136 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
137 * non-MSRTs only.
138 */
139 static bool
140 intel_miptree_supports_ccs(struct brw_context *brw,
141 const struct intel_mipmap_tree *mt)
142 {
143 /* MCS support does not exist prior to Gen7 */
144 if (brw->gen < 7)
145 return false;
146
147 /* This function applies only to non-multisampled render targets. */
148 if (mt->surf.samples > 1)
149 return false;
150
151 /* MCS is only supported for color buffers */
152 switch (_mesa_get_format_base_format(mt->format)) {
153 case GL_DEPTH_COMPONENT:
154 case GL_DEPTH_STENCIL:
155 case GL_STENCIL_INDEX:
156 return false;
157 }
158
159 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
160 return false;
161
162 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
163 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
164 mt->surf.logical_level0_px.depth > 1;
165
166 if (arrayed) {
167 /* Multisample surfaces with the CMS layout are not layered surfaces,
168 * yet still have physical_depth0 > 1. Assert that we don't
169 * accidentally reject a multisampled surface here. We should have
170 * rejected it earlier by explicitly checking the sample count.
171 */
172 assert(mt->surf.samples == 1);
173 }
174
175 /* Handle the hardware restrictions...
176 *
177 * All GENs have the following restriction: "MCS buffer for non-MSRT is
178 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
179 *
180 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
181 * Non-MultiSampler Render Target Restrictions) Support is for
182 * non-mip-mapped and non-array surface types only.
183 *
184 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
185 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
186 * surfaces are supported with MCS buffer layout with these alignments in
187 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
188 *
189 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
190 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
191 * surfaces are supported with MCS buffer layout with these alignments in
192 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
193 */
194 if (brw->gen < 8 && (mip_mapped || arrayed))
195 return false;
196
197 /* There's no point in using an MCS buffer if the surface isn't in a
198 * renderable format.
199 */
200 if (!brw->mesa_format_supports_render[mt->format])
201 return false;
202
203 return true;
204 }
205
206 static bool
207 intel_tiling_supports_hiz(const struct brw_context *brw,
208 enum isl_tiling tiling)
209 {
210 if (brw->gen < 6)
211 return false;
212
213 return tiling == ISL_TILING_Y0;
214 }
215
216 static bool
217 intel_miptree_supports_hiz(const struct brw_context *brw,
218 const struct intel_mipmap_tree *mt)
219 {
220 if (!brw->has_hiz)
221 return false;
222
223 switch (mt->format) {
224 case MESA_FORMAT_Z_FLOAT32:
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 case MESA_FORMAT_Z24_UNORM_X8_UINT:
227 case MESA_FORMAT_Z24_UNORM_S8_UINT:
228 case MESA_FORMAT_Z_UNORM16:
229 return true;
230 default:
231 return false;
232 }
233 }
234
235 static bool
236 intel_miptree_supports_ccs_e(struct brw_context *brw,
237 const struct intel_mipmap_tree *mt)
238 {
239 if (brw->gen < 9)
240 return false;
241
242 /* For now compression is only enabled for integer formats even though
243 * there exist supported floating point formats also. This is a heuristic
244 * decision based on current public benchmarks. In none of the cases these
245 * formats provided any improvement but a few cases were seen to regress.
246 * Hence these are left to to be enabled in the future when they are known
247 * to improve things.
248 */
249 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
250 return false;
251
252 if (!intel_miptree_supports_ccs(brw, mt))
253 return false;
254
255 /* Many window system buffers are sRGB even if they are never rendered as
256 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
257 * surface is used as sRGB, we fall back to CCS_D.
258 */
259 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
260 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
261 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
262 }
263
264 /**
265 * Determine depth format corresponding to a depth+stencil format,
266 * for separate stencil.
267 */
268 mesa_format
269 intel_depth_format_for_depthstencil_format(mesa_format format) {
270 switch (format) {
271 case MESA_FORMAT_Z24_UNORM_S8_UINT:
272 return MESA_FORMAT_Z24_UNORM_X8_UINT;
273 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
274 return MESA_FORMAT_Z_FLOAT32;
275 default:
276 return format;
277 }
278 }
279
280 static bool
281 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
282 unsigned depth0, struct intel_mipmap_level *table)
283 {
284 for (unsigned level = first_level; level <= last_level; level++) {
285 const unsigned d =
286 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
287
288 table[level].slice = calloc(d, sizeof(*table[0].slice));
289 if (!table[level].slice)
290 goto unwind;
291 }
292
293 return true;
294
295 unwind:
296 for (unsigned level = first_level; level <= last_level; level++)
297 free(table[level].slice);
298
299 return false;
300 }
301
302 static bool
303 needs_separate_stencil(const struct brw_context *brw,
304 struct intel_mipmap_tree *mt,
305 mesa_format format)
306 {
307 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
308 return false;
309
310 if (brw->must_use_separate_stencil)
311 return true;
312
313 return brw->has_separate_stencil &&
314 intel_miptree_supports_hiz(brw, mt);
315 }
316
317 /**
318 * Choose the aux usage for this miptree. This function must be called fairly
319 * late in the miptree create process after we have a tiling.
320 */
321 static void
322 intel_miptree_choose_aux_usage(struct brw_context *brw,
323 struct intel_mipmap_tree *mt)
324 {
325 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
326
327 if (intel_miptree_supports_mcs(brw, mt)) {
328 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
329 mt->aux_usage = ISL_AUX_USAGE_MCS;
330 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
331 intel_miptree_supports_ccs(brw, mt)) {
332 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
333 intel_miptree_supports_ccs_e(brw, mt)) {
334 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
335 } else {
336 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
337 }
338 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
339 intel_miptree_supports_hiz(brw, mt)) {
340 mt->aux_usage = ISL_AUX_USAGE_HIZ;
341 }
342
343 /* We can do fast-clear on all auxiliary surface types that are
344 * allocated through the normal texture creation paths.
345 */
346 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
347 mt->supports_fast_clear = true;
348 }
349
350
351 /**
352 * Choose an appropriate uncompressed format for a requested
353 * compressed format, if unsupported.
354 */
355 mesa_format
356 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
357 {
358 /* No need to lower ETC formats on these platforms,
359 * they are supported natively.
360 */
361 if (brw->gen >= 8 || brw->is_baytrail)
362 return format;
363
364 switch (format) {
365 case MESA_FORMAT_ETC1_RGB8:
366 return MESA_FORMAT_R8G8B8X8_UNORM;
367 case MESA_FORMAT_ETC2_RGB8:
368 return MESA_FORMAT_R8G8B8X8_UNORM;
369 case MESA_FORMAT_ETC2_SRGB8:
370 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
371 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
372 return MESA_FORMAT_B8G8R8A8_SRGB;
373 case MESA_FORMAT_ETC2_RGBA8_EAC:
374 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
375 return MESA_FORMAT_R8G8B8A8_UNORM;
376 case MESA_FORMAT_ETC2_R11_EAC:
377 return MESA_FORMAT_R_UNORM16;
378 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
379 return MESA_FORMAT_R_SNORM16;
380 case MESA_FORMAT_ETC2_RG11_EAC:
381 return MESA_FORMAT_R16G16_UNORM;
382 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
383 return MESA_FORMAT_R16G16_SNORM;
384 default:
385 /* Non ETC1 / ETC2 format */
386 return format;
387 }
388 }
389
390 unsigned
391 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
392 {
393 if (mt->surf.dim == ISL_SURF_DIM_3D)
394 return minify(mt->surf.logical_level0_px.depth, level);
395 else
396 return mt->surf.logical_level0_px.array_len;
397 }
398
399 static unsigned
400 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
401 {
402 /* In case of physical dimensions one needs to consider also the layout.
403 * See isl_calc_phys_level0_extent_sa().
404 */
405 if (surf->dim != ISL_SURF_DIM_3D)
406 return surf->phys_level0_sa.array_len;
407
408 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
409 return minify(surf->phys_level0_sa.array_len, level);
410
411 return minify(surf->phys_level0_sa.depth, level);
412 }
413
414 /** \brief Assert that the level and layer are valid for the miptree. */
415 void
416 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
417 uint32_t level,
418 uint32_t layer)
419 {
420 (void) mt;
421 (void) level;
422 (void) layer;
423
424 assert(level >= mt->first_level);
425 assert(level <= mt->last_level);
426 assert(layer < get_num_phys_layers(&mt->surf, level));
427 }
428
429 static enum isl_aux_state **
430 create_aux_state_map(struct intel_mipmap_tree *mt,
431 enum isl_aux_state initial)
432 {
433 const uint32_t levels = mt->last_level + 1;
434
435 uint32_t total_slices = 0;
436 for (uint32_t level = 0; level < levels; level++)
437 total_slices += brw_get_num_logical_layers(mt, level);
438
439 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
440
441 /* We're going to allocate a single chunk of data for both the per-level
442 * reference array and the arrays of aux_state. This makes cleanup
443 * significantly easier.
444 */
445 const size_t total_size = per_level_array_size +
446 total_slices * sizeof(enum isl_aux_state);
447 void *data = malloc(total_size);
448 if (data == NULL)
449 return NULL;
450
451 enum isl_aux_state **per_level_arr = data;
452 enum isl_aux_state *s = data + per_level_array_size;
453 for (uint32_t level = 0; level < levels; level++) {
454 per_level_arr[level] = s;
455 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
456 for (uint32_t a = 0; a < level_layers; a++)
457 *(s++) = initial;
458 }
459 assert((void *)s == data + total_size);
460
461 return per_level_arr;
462 }
463
464 static void
465 free_aux_state_map(enum isl_aux_state **state)
466 {
467 free(state);
468 }
469
470 static bool
471 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
472 enum isl_tiling tiling, unsigned samples)
473 {
474 if (samples > 1)
475 return false;
476
477 if (tiling == ISL_TILING_LINEAR)
478 return false;
479
480 /* If the width is much smaller than a tile, don't bother tiling. */
481 if (row_pitch < 64)
482 return true;
483
484 if (ALIGN(row_pitch, 512) >= 32768) {
485 perf_debug("row pitch %u too large to blit, falling back to untiled",
486 row_pitch);
487 return true;
488 }
489
490 return false;
491 }
492
493 static bool
494 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
495 enum isl_tiling tiling)
496 {
497 /* If the BO is too large to fit in the aperture, we need to use the
498 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
499 * handle Y-tiling, so we need to fall back to X.
500 */
501 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
502 tiling == ISL_TILING_Y0)
503 return true;
504
505 return false;
506 }
507
508 static struct intel_mipmap_tree *
509 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
510 unsigned first_level, unsigned last_level,
511 unsigned width0, unsigned height0, unsigned depth0,
512 unsigned num_samples, isl_tiling_flags_t tiling_flags,
513 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
514 unsigned row_pitch, struct brw_bo *bo)
515 {
516 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
517 if (!mt)
518 return NULL;
519
520 if (!create_mapping_table(target, first_level, last_level, depth0,
521 mt->level)) {
522 free(mt);
523 return NULL;
524 }
525
526 mt->refcount = 1;
527
528 if (target == GL_TEXTURE_CUBE_MAP ||
529 target == GL_TEXTURE_CUBE_MAP_ARRAY)
530 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
531
532 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
533 __func__,
534 _mesa_enum_to_string(target),
535 _mesa_get_format_name(format),
536 num_samples, width0, height0, depth0,
537 first_level, last_level, mt);
538
539 struct isl_surf_init_info init_info = {
540 .dim = get_isl_surf_dim(target),
541 .format = translate_tex_format(brw, format, false),
542 .width = width0,
543 .height = height0,
544 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
545 .levels = last_level - first_level + 1,
546 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
547 .samples = num_samples,
548 .row_pitch = row_pitch,
549 .usage = isl_usage_flags,
550 .tiling_flags = tiling_flags,
551 };
552
553 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
554 goto fail;
555
556 /* In case caller doesn't specifically request Y-tiling (needed
557 * unconditionally for depth), check for corner cases needing special
558 * treatment.
559 */
560 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
561 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
562 mt->surf.tiling, mt->surf.samples)) {
563 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
564 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
565 goto fail;
566 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
567 init_info.tiling_flags = 1u << ISL_TILING_X;
568 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
569 goto fail;
570 }
571 }
572
573 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
574 * the size may not be multiple of row_pitch.
575 * See isl_apply_surface_padding().
576 */
577 if (mt->surf.tiling != ISL_TILING_LINEAR)
578 assert(mt->surf.size % mt->surf.row_pitch == 0);
579
580 if (!bo) {
581 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
582 mt->surf.size,
583 isl_tiling_to_i915_tiling(
584 mt->surf.tiling),
585 mt->surf.row_pitch, alloc_flags);
586 if (!mt->bo)
587 goto fail;
588 } else {
589 mt->bo = bo;
590 }
591
592 mt->first_level = first_level;
593 mt->last_level = last_level;
594 mt->target = target;
595 mt->format = format;
596 mt->aux_state = NULL;
597 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
598 mt->compressed = _mesa_is_format_compressed(format);
599
600 return mt;
601
602 fail:
603 intel_miptree_release(&mt);
604 return NULL;
605 }
606
607 static bool
608 make_separate_stencil_surface(struct brw_context *brw,
609 struct intel_mipmap_tree *mt)
610 {
611 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
612 0, mt->surf.levels - 1,
613 mt->surf.logical_level0_px.width,
614 mt->surf.logical_level0_px.height,
615 mt->surf.dim == ISL_SURF_DIM_3D ?
616 mt->surf.logical_level0_px.depth :
617 mt->surf.logical_level0_px.array_len,
618 mt->surf.samples, ISL_TILING_W_BIT,
619 ISL_SURF_USAGE_STENCIL_BIT |
620 ISL_SURF_USAGE_TEXTURE_BIT,
621 BO_ALLOC_FOR_RENDER, 0, NULL);
622
623 if (!mt->stencil_mt)
624 return false;
625
626 mt->stencil_mt->r8stencil_needs_update = true;
627
628 return true;
629 }
630
631 static bool
632 force_linear_tiling(uint32_t layout_flags)
633 {
634 /* ANY includes NONE and Y bit. */
635 if (layout_flags & MIPTREE_LAYOUT_TILING_Y)
636 return false;
637
638 return layout_flags & MIPTREE_LAYOUT_TILING_NONE;
639 }
640
641 static struct intel_mipmap_tree *
642 miptree_create(struct brw_context *brw,
643 GLenum target,
644 mesa_format format,
645 GLuint first_level,
646 GLuint last_level,
647 GLuint width0,
648 GLuint height0,
649 GLuint depth0,
650 GLuint num_samples,
651 uint32_t layout_flags)
652 {
653 if (format == MESA_FORMAT_S_UINT8)
654 return make_surface(brw, target, format, first_level, last_level,
655 width0, height0, depth0, num_samples,
656 ISL_TILING_W_BIT,
657 ISL_SURF_USAGE_STENCIL_BIT |
658 ISL_SURF_USAGE_TEXTURE_BIT,
659 BO_ALLOC_FOR_RENDER,
660 0,
661 NULL);
662
663 const GLenum base_format = _mesa_get_format_base_format(format);
664 if ((base_format == GL_DEPTH_COMPONENT ||
665 base_format == GL_DEPTH_STENCIL) &&
666 !force_linear_tiling(layout_flags)) {
667 /* Fix up the Z miptree format for how we're splitting out separate
668 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
669 */
670 const mesa_format depth_only_format =
671 intel_depth_format_for_depthstencil_format(format);
672 struct intel_mipmap_tree *mt = make_surface(
673 brw, target, brw->gen >= 6 ? depth_only_format : format,
674 first_level, last_level,
675 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
676 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
677 BO_ALLOC_FOR_RENDER, 0, NULL);
678
679 if (needs_separate_stencil(brw, mt, format) &&
680 !make_separate_stencil_surface(brw, mt)) {
681 intel_miptree_release(&mt);
682 return NULL;
683 }
684
685 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
686 intel_miptree_choose_aux_usage(brw, mt);
687
688 return mt;
689 }
690
691 mesa_format tex_format = format;
692 mesa_format etc_format = MESA_FORMAT_NONE;
693 uint32_t alloc_flags = 0;
694
695 format = intel_lower_compressed_format(brw, format);
696
697 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
698
699 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
700 alloc_flags |= BO_ALLOC_FOR_RENDER;
701
702 isl_tiling_flags_t tiling_flags = force_linear_tiling(layout_flags) ?
703 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
704
705 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
706 if (brw->gen < 6)
707 tiling_flags &= ~ISL_TILING_Y0_BIT;
708
709 struct intel_mipmap_tree *mt = make_surface(
710 brw, target, format,
711 first_level, last_level,
712 width0, height0, depth0,
713 num_samples, tiling_flags,
714 ISL_SURF_USAGE_RENDER_TARGET_BIT |
715 ISL_SURF_USAGE_TEXTURE_BIT,
716 alloc_flags, 0, NULL);
717 if (!mt)
718 return NULL;
719
720 mt->etc_format = etc_format;
721
722 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
723 intel_miptree_choose_aux_usage(brw, mt);
724
725 return mt;
726 }
727
728 struct intel_mipmap_tree *
729 intel_miptree_create(struct brw_context *brw,
730 GLenum target,
731 mesa_format format,
732 GLuint first_level,
733 GLuint last_level,
734 GLuint width0,
735 GLuint height0,
736 GLuint depth0,
737 GLuint num_samples,
738 uint32_t layout_flags)
739 {
740 assert(num_samples > 0);
741
742 struct intel_mipmap_tree *mt = miptree_create(
743 brw, target, format,
744 first_level, last_level,
745 width0, height0, depth0, num_samples,
746 layout_flags);
747 if (!mt)
748 return NULL;
749
750 mt->offset = 0;
751
752 if (!intel_miptree_alloc_aux(brw, mt)) {
753 intel_miptree_release(&mt);
754 return NULL;
755 }
756
757 return mt;
758 }
759
760 struct intel_mipmap_tree *
761 intel_miptree_create_for_bo(struct brw_context *brw,
762 struct brw_bo *bo,
763 mesa_format format,
764 uint32_t offset,
765 uint32_t width,
766 uint32_t height,
767 uint32_t depth,
768 int pitch,
769 uint32_t layout_flags)
770 {
771 struct intel_mipmap_tree *mt;
772 uint32_t tiling, swizzle;
773 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
774 const GLenum base_format = _mesa_get_format_base_format(format);
775
776 if ((base_format == GL_DEPTH_COMPONENT ||
777 base_format == GL_DEPTH_STENCIL)) {
778 const mesa_format depth_only_format =
779 intel_depth_format_for_depthstencil_format(format);
780 mt = make_surface(brw, target,
781 brw->gen >= 6 ? depth_only_format : format,
782 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
783 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
784 BO_ALLOC_FOR_RENDER, pitch, bo);
785 if (!mt)
786 return NULL;
787
788 brw_bo_reference(bo);
789
790 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
791 intel_miptree_choose_aux_usage(brw, mt);
792
793 return mt;
794 } else if (format == MESA_FORMAT_S_UINT8) {
795 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
796 0, 0, width, height, depth, 1,
797 ISL_TILING_W_BIT,
798 ISL_SURF_USAGE_STENCIL_BIT |
799 ISL_SURF_USAGE_TEXTURE_BIT,
800 BO_ALLOC_FOR_RENDER, pitch, bo);
801 if (!mt)
802 return NULL;
803
804 assert(bo->size >= mt->surf.size);
805
806 brw_bo_reference(bo);
807 return mt;
808 }
809
810 brw_bo_get_tiling(bo, &tiling, &swizzle);
811
812 /* Nothing will be able to use this miptree with the BO if the offset isn't
813 * aligned.
814 */
815 if (tiling != I915_TILING_NONE)
816 assert(offset % 4096 == 0);
817
818 /* miptrees can't handle negative pitch. If you need flipping of images,
819 * that's outside of the scope of the mt.
820 */
821 assert(pitch >= 0);
822
823 /* The BO already has a tiling format and we shouldn't confuse the lower
824 * layers by making it try to find a tiling format again.
825 */
826 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
827 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
828
829 mt = make_surface(brw, target, format,
830 0, 0, width, height, depth, 1,
831 1lu << isl_tiling_from_i915_tiling(tiling),
832 ISL_SURF_USAGE_RENDER_TARGET_BIT |
833 ISL_SURF_USAGE_TEXTURE_BIT,
834 0, pitch, bo);
835 if (!mt)
836 return NULL;
837
838 brw_bo_reference(bo);
839 mt->bo = bo;
840 mt->offset = offset;
841
842 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX)) {
843 intel_miptree_choose_aux_usage(brw, mt);
844
845 if (!intel_miptree_alloc_aux(brw, mt)) {
846 intel_miptree_release(&mt);
847 return NULL;
848 }
849 }
850
851 return mt;
852 }
853
854 static struct intel_mipmap_tree *
855 miptree_create_for_planar_image(struct brw_context *brw,
856 __DRIimage *image, GLenum target)
857 {
858 const struct intel_image_format *f = image->planar_format;
859 struct intel_mipmap_tree *planar_mt = NULL;
860
861 for (int i = 0; i < f->nplanes; i++) {
862 const int index = f->planes[i].buffer_index;
863 const uint32_t dri_format = f->planes[i].dri_format;
864 const mesa_format format = driImageFormatToGLFormat(dri_format);
865 const uint32_t width = image->width >> f->planes[i].width_shift;
866 const uint32_t height = image->height >> f->planes[i].height_shift;
867
868 /* Disable creation of the texture's aux buffers because the driver
869 * exposes no EGL API to manage them. That is, there is no API for
870 * resolving the aux buffer's content to the main buffer nor for
871 * invalidating the aux buffer's content.
872 */
873 struct intel_mipmap_tree *mt =
874 intel_miptree_create_for_bo(brw, image->bo, format,
875 image->offsets[index],
876 width, height, 1,
877 image->strides[index],
878 MIPTREE_LAYOUT_DISABLE_AUX);
879 if (mt == NULL)
880 return NULL;
881
882 mt->target = target;
883
884 if (i == 0)
885 planar_mt = mt;
886 else
887 planar_mt->plane[i - 1] = mt;
888 }
889
890 return planar_mt;
891 }
892
893 struct intel_mipmap_tree *
894 intel_miptree_create_for_dri_image(struct brw_context *brw,
895 __DRIimage *image, GLenum target,
896 enum isl_colorspace colorspace,
897 bool is_winsys_image)
898 {
899 if (image->planar_format && image->planar_format->nplanes > 0) {
900 assert(colorspace == ISL_COLORSPACE_NONE ||
901 colorspace == ISL_COLORSPACE_YUV);
902 return miptree_create_for_planar_image(brw, image, target);
903 }
904
905 mesa_format format = image->format;
906 switch (colorspace) {
907 case ISL_COLORSPACE_NONE:
908 /* Keep the image format unmodified */
909 break;
910
911 case ISL_COLORSPACE_LINEAR:
912 format =_mesa_get_srgb_format_linear(format);
913 break;
914
915 case ISL_COLORSPACE_SRGB:
916 format =_mesa_get_linear_format_srgb(format);
917 break;
918
919 default:
920 unreachable("Inalid colorspace for non-planar image");
921 }
922
923 if (!brw->ctx.TextureFormatSupported[format]) {
924 /* The texture storage paths in core Mesa detect if the driver does not
925 * support the user-requested format, and then searches for a
926 * fallback format. The DRIimage code bypasses core Mesa, though. So we
927 * do the fallbacks here for important formats.
928 *
929 * We must support DRM_FOURCC_XBGR8888 textures because the Android
930 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
931 * the Chrome OS compositor consumes as dma_buf EGLImages.
932 */
933 format = _mesa_format_fallback_rgbx_to_rgba(format);
934 }
935
936 if (!brw->ctx.TextureFormatSupported[format])
937 return NULL;
938
939 /* If this image comes in from a window system, we have different
940 * requirements than if it comes in via an EGL import operation. Window
941 * system images can use any form of auxiliary compression we wish because
942 * they get "flushed" before being handed off to the window system and we
943 * have the opportunity to do resolves. Window system buffers also may be
944 * used for scanout so we need to flag that appropriately.
945 */
946 const uint32_t mt_layout_flags =
947 is_winsys_image ? 0 : MIPTREE_LAYOUT_DISABLE_AUX;
948
949 /* Disable creation of the texture's aux buffers because the driver exposes
950 * no EGL API to manage them. That is, there is no API for resolving the aux
951 * buffer's content to the main buffer nor for invalidating the aux buffer's
952 * content.
953 */
954 struct intel_mipmap_tree *mt =
955 intel_miptree_create_for_bo(brw, image->bo, format,
956 image->offset, image->width, image->height, 1,
957 image->pitch, mt_layout_flags);
958 if (mt == NULL)
959 return NULL;
960
961 mt->target = target;
962 mt->level[0].level_x = image->tile_x;
963 mt->level[0].level_y = image->tile_y;
964
965 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
966 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
967 * trouble resolving back to destination image due to alignment issues.
968 */
969 if (!brw->has_surface_tile_offset) {
970 uint32_t draw_x, draw_y;
971 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
972
973 if (draw_x != 0 || draw_y != 0) {
974 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
975 intel_miptree_release(&mt);
976 return NULL;
977 }
978 }
979
980 /* If this is a window-system image, then we can no longer assume it's
981 * cache-coherent because it may suddenly get scanned out which destroys
982 * coherency.
983 */
984 if (is_winsys_image)
985 image->bo->cache_coherent = false;
986
987 return mt;
988 }
989
990 /**
991 * For a singlesample renderbuffer, this simply wraps the given BO with a
992 * miptree.
993 *
994 * For a multisample renderbuffer, this wraps the window system's
995 * (singlesample) BO with a singlesample miptree attached to the
996 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
997 * that will contain the actual rendering (which is lazily resolved to
998 * irb->singlesample_mt).
999 */
1000 bool
1001 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1002 struct intel_renderbuffer *irb,
1003 struct intel_mipmap_tree *singlesample_mt,
1004 uint32_t width, uint32_t height,
1005 uint32_t pitch)
1006 {
1007 struct intel_mipmap_tree *multisample_mt = NULL;
1008 struct gl_renderbuffer *rb = &irb->Base.Base;
1009 mesa_format format = rb->Format;
1010 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1011
1012 /* Only the front and back buffers, which are color buffers, are allocated
1013 * through the image loader.
1014 */
1015 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1016 _mesa_get_format_base_format(format) == GL_RGBA);
1017
1018 assert(singlesample_mt);
1019
1020 if (num_samples == 1) {
1021 intel_miptree_release(&irb->mt);
1022 irb->mt = singlesample_mt;
1023
1024 assert(!irb->singlesample_mt);
1025 } else {
1026 intel_miptree_release(&irb->singlesample_mt);
1027 irb->singlesample_mt = singlesample_mt;
1028
1029 if (!irb->mt ||
1030 irb->mt->surf.logical_level0_px.width != width ||
1031 irb->mt->surf.logical_level0_px.height != height) {
1032 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1033 format,
1034 width,
1035 height,
1036 num_samples);
1037 if (!multisample_mt)
1038 goto fail;
1039
1040 irb->need_downsample = false;
1041 intel_miptree_release(&irb->mt);
1042 irb->mt = multisample_mt;
1043 }
1044 }
1045 return true;
1046
1047 fail:
1048 intel_miptree_release(&irb->mt);
1049 return false;
1050 }
1051
1052 struct intel_mipmap_tree*
1053 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1054 mesa_format format,
1055 uint32_t width,
1056 uint32_t height,
1057 uint32_t num_samples)
1058 {
1059 struct intel_mipmap_tree *mt;
1060 uint32_t depth = 1;
1061 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1062 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1063 MIPTREE_LAYOUT_TILING_ANY;
1064
1065 mt = intel_miptree_create(brw, target, format, 0, 0,
1066 width, height, depth, num_samples,
1067 layout_flags);
1068 if (!mt)
1069 goto fail;
1070
1071 return mt;
1072
1073 fail:
1074 intel_miptree_release(&mt);
1075 return NULL;
1076 }
1077
1078 void
1079 intel_miptree_reference(struct intel_mipmap_tree **dst,
1080 struct intel_mipmap_tree *src)
1081 {
1082 if (*dst == src)
1083 return;
1084
1085 intel_miptree_release(dst);
1086
1087 if (src) {
1088 src->refcount++;
1089 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1090 }
1091
1092 *dst = src;
1093 }
1094
1095 static void
1096 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1097 {
1098 if (aux_buf == NULL)
1099 return;
1100
1101 brw_bo_unreference(aux_buf->bo);
1102
1103 free(aux_buf);
1104 }
1105
1106 void
1107 intel_miptree_release(struct intel_mipmap_tree **mt)
1108 {
1109 if (!*mt)
1110 return;
1111
1112 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1113 if (--(*mt)->refcount <= 0) {
1114 GLuint i;
1115
1116 DBG("%s deleting %p\n", __func__, *mt);
1117
1118 brw_bo_unreference((*mt)->bo);
1119 intel_miptree_release(&(*mt)->stencil_mt);
1120 intel_miptree_release(&(*mt)->r8stencil_mt);
1121 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1122 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1123 free_aux_state_map((*mt)->aux_state);
1124
1125 intel_miptree_release(&(*mt)->plane[0]);
1126 intel_miptree_release(&(*mt)->plane[1]);
1127
1128 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1129 free((*mt)->level[i].slice);
1130 }
1131
1132 free(*mt);
1133 }
1134 *mt = NULL;
1135 }
1136
1137
1138 void
1139 intel_get_image_dims(struct gl_texture_image *image,
1140 int *width, int *height, int *depth)
1141 {
1142 switch (image->TexObject->Target) {
1143 case GL_TEXTURE_1D_ARRAY:
1144 /* For a 1D Array texture the OpenGL API will treat the image height as
1145 * the number of array slices. For Intel hardware, we treat the 1D array
1146 * as a 2D Array with a height of 1. So, here we want to swap image
1147 * height and depth.
1148 */
1149 assert(image->Depth == 1);
1150 *width = image->Width;
1151 *height = 1;
1152 *depth = image->Height;
1153 break;
1154 case GL_TEXTURE_CUBE_MAP:
1155 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1156 * though we really have 6 slices.
1157 */
1158 assert(image->Depth == 1);
1159 *width = image->Width;
1160 *height = image->Height;
1161 *depth = 6;
1162 break;
1163 default:
1164 *width = image->Width;
1165 *height = image->Height;
1166 *depth = image->Depth;
1167 break;
1168 }
1169 }
1170
1171 /**
1172 * Can the image be pulled into a unified mipmap tree? This mirrors
1173 * the completeness test in a lot of ways.
1174 *
1175 * Not sure whether I want to pass gl_texture_image here.
1176 */
1177 bool
1178 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1179 struct gl_texture_image *image)
1180 {
1181 struct intel_texture_image *intelImage = intel_texture_image(image);
1182 GLuint level = intelImage->base.Base.Level;
1183 int width, height, depth;
1184
1185 /* glTexImage* choose the texture object based on the target passed in, and
1186 * objects can't change targets over their lifetimes, so this should be
1187 * true.
1188 */
1189 assert(image->TexObject->Target == mt->target);
1190
1191 mesa_format mt_format = mt->format;
1192 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1193 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1194 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1195 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1196 if (mt->etc_format != MESA_FORMAT_NONE)
1197 mt_format = mt->etc_format;
1198
1199 if (image->TexFormat != mt_format)
1200 return false;
1201
1202 intel_get_image_dims(image, &width, &height, &depth);
1203
1204 if (mt->target == GL_TEXTURE_CUBE_MAP)
1205 depth = 6;
1206
1207 if (level >= mt->surf.levels)
1208 return false;
1209
1210 const unsigned level_depth =
1211 mt->surf.dim == ISL_SURF_DIM_3D ?
1212 minify(mt->surf.logical_level0_px.depth, level) :
1213 mt->surf.logical_level0_px.array_len;
1214
1215 return width == minify(mt->surf.logical_level0_px.width, level) &&
1216 height == minify(mt->surf.logical_level0_px.height, level) &&
1217 depth == level_depth &&
1218 MAX2(image->NumSamples, 1) == mt->surf.samples;
1219 }
1220
1221 void
1222 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1223 GLuint level, GLuint slice,
1224 GLuint *x, GLuint *y)
1225 {
1226 if (level == 0 && slice == 0) {
1227 *x = mt->level[0].level_x;
1228 *y = mt->level[0].level_y;
1229 return;
1230 }
1231
1232 uint32_t x_offset_sa, y_offset_sa;
1233
1234 /* Miptree itself can have an offset only if it represents a single
1235 * slice in an imported buffer object.
1236 * See intel_miptree_create_for_dri_image().
1237 */
1238 assert(mt->level[0].level_x == 0);
1239 assert(mt->level[0].level_y == 0);
1240
1241 /* Given level is relative to level zero while the miptree may be
1242 * represent just a subset of all levels starting from 'first_level'.
1243 */
1244 assert(level >= mt->first_level);
1245 level -= mt->first_level;
1246
1247 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1248 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1249 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1250 &x_offset_sa, &y_offset_sa);
1251
1252 *x = x_offset_sa;
1253 *y = y_offset_sa;
1254 }
1255
1256
1257 /**
1258 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1259 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1260 * and tile_h is set to 1.
1261 */
1262 void
1263 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1264 uint32_t *tile_w, uint32_t *tile_h)
1265 {
1266 switch (tiling) {
1267 case ISL_TILING_X:
1268 *tile_w = 512;
1269 *tile_h = 8;
1270 break;
1271 case ISL_TILING_Y0:
1272 *tile_w = 128;
1273 *tile_h = 32;
1274 break;
1275 case ISL_TILING_LINEAR:
1276 *tile_w = cpp;
1277 *tile_h = 1;
1278 break;
1279 default:
1280 unreachable("not reached");
1281 }
1282 }
1283
1284
1285 /**
1286 * This function computes masks that may be used to select the bits of the X
1287 * and Y coordinates that indicate the offset within a tile. If the BO is
1288 * untiled, the masks are set to 0.
1289 */
1290 void
1291 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1292 uint32_t *mask_x, uint32_t *mask_y)
1293 {
1294 uint32_t tile_w_bytes, tile_h;
1295
1296 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1297
1298 *mask_x = tile_w_bytes / cpp - 1;
1299 *mask_y = tile_h - 1;
1300 }
1301
1302 /**
1303 * Compute the offset (in bytes) from the start of the BO to the given x
1304 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1305 * multiples of the tile size.
1306 */
1307 uint32_t
1308 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1309 uint32_t x, uint32_t y)
1310 {
1311 int cpp = mt->cpp;
1312 uint32_t pitch = mt->surf.row_pitch;
1313
1314 switch (mt->surf.tiling) {
1315 default:
1316 unreachable("not reached");
1317 case ISL_TILING_LINEAR:
1318 return y * pitch + x * cpp;
1319 case ISL_TILING_X:
1320 assert((x % (512 / cpp)) == 0);
1321 assert((y % 8) == 0);
1322 return y * pitch + x / (512 / cpp) * 4096;
1323 case ISL_TILING_Y0:
1324 assert((x % (128 / cpp)) == 0);
1325 assert((y % 32) == 0);
1326 return y * pitch + x / (128 / cpp) * 4096;
1327 }
1328 }
1329
1330 /**
1331 * Rendering with tiled buffers requires that the base address of the buffer
1332 * be aligned to a page boundary. For renderbuffers, and sometimes with
1333 * textures, we may want the surface to point at a texture image level that
1334 * isn't at a page boundary.
1335 *
1336 * This function returns an appropriately-aligned base offset
1337 * according to the tiling restrictions, plus any required x/y offset
1338 * from there.
1339 */
1340 uint32_t
1341 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1342 GLuint level, GLuint slice,
1343 uint32_t *tile_x,
1344 uint32_t *tile_y)
1345 {
1346 uint32_t x, y;
1347 uint32_t mask_x, mask_y;
1348
1349 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1350 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1351
1352 *tile_x = x & mask_x;
1353 *tile_y = y & mask_y;
1354
1355 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1356 }
1357
1358 static void
1359 intel_miptree_copy_slice_sw(struct brw_context *brw,
1360 struct intel_mipmap_tree *src_mt,
1361 unsigned src_level, unsigned src_layer,
1362 struct intel_mipmap_tree *dst_mt,
1363 unsigned dst_level, unsigned dst_layer,
1364 unsigned width, unsigned height)
1365 {
1366 void *src, *dst;
1367 ptrdiff_t src_stride, dst_stride;
1368 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1369
1370 intel_miptree_map(brw, src_mt,
1371 src_level, src_layer,
1372 0, 0,
1373 width, height,
1374 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1375 &src, &src_stride);
1376
1377 intel_miptree_map(brw, dst_mt,
1378 dst_level, dst_layer,
1379 0, 0,
1380 width, height,
1381 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1382 BRW_MAP_DIRECT_BIT,
1383 &dst, &dst_stride);
1384
1385 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1386 _mesa_get_format_name(src_mt->format),
1387 src_mt, src, src_stride,
1388 _mesa_get_format_name(dst_mt->format),
1389 dst_mt, dst, dst_stride,
1390 width, height);
1391
1392 int row_size = cpp * width;
1393 if (src_stride == row_size &&
1394 dst_stride == row_size) {
1395 memcpy(dst, src, row_size * height);
1396 } else {
1397 for (int i = 0; i < height; i++) {
1398 memcpy(dst, src, row_size);
1399 dst += dst_stride;
1400 src += src_stride;
1401 }
1402 }
1403
1404 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1405 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1406
1407 /* Don't forget to copy the stencil data over, too. We could have skipped
1408 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1409 * shuffling the two data sources in/out of temporary storage instead of
1410 * the direct mapping we get this way.
1411 */
1412 if (dst_mt->stencil_mt) {
1413 assert(src_mt->stencil_mt);
1414 intel_miptree_copy_slice_sw(brw,
1415 src_mt->stencil_mt, src_level, src_layer,
1416 dst_mt->stencil_mt, dst_level, dst_layer,
1417 width, height);
1418 }
1419 }
1420
1421 void
1422 intel_miptree_copy_slice(struct brw_context *brw,
1423 struct intel_mipmap_tree *src_mt,
1424 unsigned src_level, unsigned src_layer,
1425 struct intel_mipmap_tree *dst_mt,
1426 unsigned dst_level, unsigned dst_layer)
1427
1428 {
1429 mesa_format format = src_mt->format;
1430 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1431 src_level - src_mt->first_level);
1432 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1433 src_level - src_mt->first_level);
1434
1435 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1436 src_level - src_mt->first_level));
1437
1438 assert(src_mt->format == dst_mt->format);
1439
1440 if (dst_mt->compressed) {
1441 unsigned int i, j;
1442 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1443 height = ALIGN_NPOT(height, j) / j;
1444 width = ALIGN_NPOT(width, i) / i;
1445 }
1446
1447 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1448 * below won't apply since we can't do the depth's Y tiling or the
1449 * stencil's W tiling in the blitter.
1450 */
1451 if (src_mt->stencil_mt) {
1452 intel_miptree_copy_slice_sw(brw,
1453 src_mt, src_level, src_layer,
1454 dst_mt, dst_level, dst_layer,
1455 width, height);
1456 return;
1457 }
1458
1459 uint32_t dst_x, dst_y, src_x, src_y;
1460 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1461 &dst_x, &dst_y);
1462 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1463 &src_x, &src_y);
1464
1465 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1466 _mesa_get_format_name(src_mt->format),
1467 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1468 _mesa_get_format_name(dst_mt->format),
1469 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1470 width, height);
1471
1472 if (!intel_miptree_blit(brw,
1473 src_mt, src_level, src_layer, 0, 0, false,
1474 dst_mt, dst_level, dst_layer, 0, 0, false,
1475 width, height, GL_COPY)) {
1476 perf_debug("miptree validate blit for %s failed\n",
1477 _mesa_get_format_name(format));
1478
1479 intel_miptree_copy_slice_sw(brw,
1480 src_mt, src_level, src_layer,
1481 dst_mt, dst_level, dst_layer,
1482 width, height);
1483 }
1484 }
1485
1486 /**
1487 * Copies the image's current data to the given miptree, and associates that
1488 * miptree with the image.
1489 *
1490 * If \c invalidate is true, then the actual image data does not need to be
1491 * copied, but the image still needs to be associated to the new miptree (this
1492 * is set to true if we're about to clear the image).
1493 */
1494 void
1495 intel_miptree_copy_teximage(struct brw_context *brw,
1496 struct intel_texture_image *intelImage,
1497 struct intel_mipmap_tree *dst_mt,
1498 bool invalidate)
1499 {
1500 struct intel_mipmap_tree *src_mt = intelImage->mt;
1501 struct intel_texture_object *intel_obj =
1502 intel_texture_object(intelImage->base.Base.TexObject);
1503 int level = intelImage->base.Base.Level;
1504 const unsigned face = intelImage->base.Base.Face;
1505 unsigned start_layer, end_layer;
1506
1507 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1508 assert(face == 0);
1509 assert(intelImage->base.Base.Height);
1510 start_layer = 0;
1511 end_layer = intelImage->base.Base.Height - 1;
1512 } else if (face > 0) {
1513 start_layer = face;
1514 end_layer = face;
1515 } else {
1516 assert(intelImage->base.Base.Depth);
1517 start_layer = 0;
1518 end_layer = intelImage->base.Base.Depth - 1;
1519 }
1520
1521 if (!invalidate) {
1522 for (unsigned i = start_layer; i <= end_layer; i++) {
1523 intel_miptree_copy_slice(brw,
1524 src_mt, level, i,
1525 dst_mt, level, i);
1526 }
1527 }
1528
1529 intel_miptree_reference(&intelImage->mt, dst_mt);
1530 intel_obj->needs_validate = true;
1531 }
1532
1533 static void
1534 intel_miptree_init_mcs(struct brw_context *brw,
1535 struct intel_mipmap_tree *mt,
1536 int init_value)
1537 {
1538 assert(mt->mcs_buf != NULL);
1539
1540 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1541 *
1542 * When MCS buffer is enabled and bound to MSRT, it is required that it
1543 * is cleared prior to any rendering.
1544 *
1545 * Since we don't use the MCS buffer for any purpose other than rendering,
1546 * it makes sense to just clear it immediately upon allocation.
1547 *
1548 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1549 */
1550 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1551 if (unlikely(map == NULL)) {
1552 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1553 brw_bo_unreference(mt->mcs_buf->bo);
1554 free(mt->mcs_buf);
1555 return;
1556 }
1557 void *data = map;
1558 memset(data, init_value, mt->mcs_buf->size);
1559 brw_bo_unmap(mt->mcs_buf->bo);
1560 }
1561
1562 static struct intel_miptree_aux_buffer *
1563 intel_alloc_aux_buffer(struct brw_context *brw,
1564 const char *name,
1565 const struct isl_surf *aux_surf,
1566 uint32_t alloc_flags,
1567 struct intel_mipmap_tree *mt)
1568 {
1569 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1570 if (!buf)
1571 return false;
1572
1573 buf->size = aux_surf->size;
1574 buf->pitch = aux_surf->row_pitch;
1575 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1576
1577 /* ISL has stricter set of alignment rules then the drm allocator.
1578 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1579 * trying to recalculate based on different format block sizes.
1580 */
1581 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1582 I915_TILING_Y, buf->pitch, alloc_flags);
1583 if (!buf->bo) {
1584 free(buf);
1585 return NULL;
1586 }
1587
1588 buf->surf = *aux_surf;
1589
1590 return buf;
1591 }
1592
1593 static bool
1594 intel_miptree_alloc_mcs(struct brw_context *brw,
1595 struct intel_mipmap_tree *mt,
1596 GLuint num_samples)
1597 {
1598 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1599 assert(mt->mcs_buf == NULL);
1600 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1601
1602 /* Multisampled miptrees are only supported for single level. */
1603 assert(mt->first_level == 0);
1604 enum isl_aux_state **aux_state =
1605 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1606 if (!aux_state)
1607 return false;
1608
1609 struct isl_surf temp_mcs_surf;
1610
1611 MAYBE_UNUSED bool ok =
1612 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1613 assert(ok);
1614
1615 /* Buffer needs to be initialised requiring the buffer to be immediately
1616 * mapped to cpu space for writing. Therefore do not use the gpu access
1617 * flag which can cause an unnecessary delay if the backing pages happened
1618 * to be just used by the GPU.
1619 */
1620 const uint32_t alloc_flags = 0;
1621 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1622 &temp_mcs_surf, alloc_flags, mt);
1623 if (!mt->mcs_buf) {
1624 free(aux_state);
1625 return false;
1626 }
1627
1628 mt->aux_state = aux_state;
1629
1630 intel_miptree_init_mcs(brw, mt, 0xFF);
1631
1632 return true;
1633 }
1634
1635 bool
1636 intel_miptree_alloc_ccs(struct brw_context *brw,
1637 struct intel_mipmap_tree *mt)
1638 {
1639 assert(mt->mcs_buf == NULL);
1640 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1641 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1642
1643 struct isl_surf temp_ccs_surf;
1644
1645 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1646 return false;
1647
1648 assert(temp_ccs_surf.size &&
1649 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1650
1651 enum isl_aux_state **aux_state =
1652 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1653 if (!aux_state)
1654 return false;
1655
1656 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1657 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1658 *
1659 * "If Software wants to enable Color Compression without Fast clear,
1660 * Software needs to initialize MCS with zeros."
1661 *
1662 * A CCS value of 0 indicates that the corresponding block is in the
1663 * pass-through state which is what we want.
1664 *
1665 * For CCS_D, on the other hand, we don't care as we're about to perform a
1666 * fast-clear operation. In that case, being hot in caches more useful.
1667 */
1668 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1669 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1670 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1671 &temp_ccs_surf, alloc_flags, mt);
1672 if (!mt->mcs_buf) {
1673 free(aux_state);
1674 return false;
1675 }
1676
1677 mt->aux_state = aux_state;
1678
1679 return true;
1680 }
1681
1682 /**
1683 * Helper for intel_miptree_alloc_hiz() that sets
1684 * \c mt->level[level].has_hiz. Return true if and only if
1685 * \c has_hiz was set.
1686 */
1687 static bool
1688 intel_miptree_level_enable_hiz(struct brw_context *brw,
1689 struct intel_mipmap_tree *mt,
1690 uint32_t level)
1691 {
1692 assert(mt->hiz_buf);
1693 assert(mt->surf.size > 0);
1694
1695 if (brw->gen >= 8 || brw->is_haswell) {
1696 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1697 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1698
1699 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1700 * and the height is 4 aligned. This allows our HiZ support
1701 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1702 * we can grow the width & height to allow the HiZ op to
1703 * force the proper size alignments.
1704 */
1705 if (level > 0 && ((width & 7) || (height & 3))) {
1706 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1707 return false;
1708 }
1709 }
1710
1711 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1712 mt->level[level].has_hiz = true;
1713 return true;
1714 }
1715
1716 bool
1717 intel_miptree_alloc_hiz(struct brw_context *brw,
1718 struct intel_mipmap_tree *mt)
1719 {
1720 assert(mt->hiz_buf == NULL);
1721 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1722
1723 enum isl_aux_state **aux_state =
1724 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1725 if (!aux_state)
1726 return false;
1727
1728 struct isl_surf temp_hiz_surf;
1729
1730 MAYBE_UNUSED bool ok =
1731 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1732 assert(ok);
1733
1734 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1735 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1736 &temp_hiz_surf, alloc_flags, mt);
1737
1738 if (!mt->hiz_buf) {
1739 free(aux_state);
1740 return false;
1741 }
1742
1743 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1744 intel_miptree_level_enable_hiz(brw, mt, level);
1745
1746 mt->aux_state = aux_state;
1747
1748 return true;
1749 }
1750
1751
1752 /**
1753 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1754 *
1755 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1756 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1757 * compress clear color so we wait until an actual fast-clear to allocate it.
1758 */
1759 static bool
1760 intel_miptree_alloc_aux(struct brw_context *brw,
1761 struct intel_mipmap_tree *mt)
1762 {
1763 switch (mt->aux_usage) {
1764 case ISL_AUX_USAGE_NONE:
1765 return true;
1766
1767 case ISL_AUX_USAGE_HIZ:
1768 assert(!_mesa_is_format_color_format(mt->format));
1769 if (!intel_miptree_alloc_hiz(brw, mt))
1770 return false;
1771 return true;
1772
1773 case ISL_AUX_USAGE_MCS:
1774 assert(_mesa_is_format_color_format(mt->format));
1775 assert(mt->surf.samples > 1);
1776 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1777 return false;
1778 return true;
1779
1780 case ISL_AUX_USAGE_CCS_D:
1781 /* Since CCS_D can only compress clear color so we wait until an actual
1782 * fast-clear to allocate it.
1783 */
1784 return true;
1785
1786 case ISL_AUX_USAGE_CCS_E:
1787 assert(_mesa_is_format_color_format(mt->format));
1788 assert(mt->surf.samples == 1);
1789 if (!intel_miptree_alloc_ccs(brw, mt))
1790 return false;
1791 return true;
1792 }
1793
1794 unreachable("Invalid aux usage");
1795 }
1796
1797
1798 /**
1799 * Can the miptree sample using the hiz buffer?
1800 */
1801 bool
1802 intel_miptree_sample_with_hiz(struct brw_context *brw,
1803 struct intel_mipmap_tree *mt)
1804 {
1805 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1806 * so keep things conservative for now and never enable it unless we're SKL+.
1807 */
1808 if (brw->gen < 9) {
1809 return false;
1810 }
1811
1812 if (!mt->hiz_buf) {
1813 return false;
1814 }
1815
1816 /* It seems the hardware won't fallback to the depth buffer if some of the
1817 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1818 * of the texture to be HiZ enabled.
1819 */
1820 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1821 if (!intel_miptree_level_has_hiz(mt, level))
1822 return false;
1823 }
1824
1825 /* If compressed multisampling is enabled, then we use it for the auxiliary
1826 * buffer instead.
1827 *
1828 * From the BDW PRM (Volume 2d: Command Reference: Structures
1829 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1830 *
1831 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1832 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1833 *
1834 * There is no such blurb for 1D textures, but there is sufficient evidence
1835 * that this is broken on SKL+.
1836 */
1837 return (mt->surf.samples == 1 &&
1838 mt->target != GL_TEXTURE_3D &&
1839 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1840 }
1841
1842 /**
1843 * Does the miptree slice have hiz enabled?
1844 */
1845 bool
1846 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1847 {
1848 intel_miptree_check_level_layer(mt, level, 0);
1849 return mt->level[level].has_hiz;
1850 }
1851
1852 static inline uint32_t
1853 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1854 uint32_t start_level, uint32_t num_levels)
1855 {
1856 assert(start_level >= mt->first_level);
1857 assert(start_level <= mt->last_level);
1858
1859 if (num_levels == INTEL_REMAINING_LAYERS)
1860 num_levels = mt->last_level - start_level + 1;
1861 /* Check for overflow */
1862 assert(start_level + num_levels >= start_level);
1863 assert(start_level + num_levels <= mt->last_level + 1);
1864
1865 return num_levels;
1866 }
1867
1868 static inline uint32_t
1869 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1870 uint32_t start_layer, uint32_t num_layers)
1871 {
1872 assert(level <= mt->last_level);
1873
1874 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1875 assert(start_layer < total_num_layers);
1876 if (num_layers == INTEL_REMAINING_LAYERS)
1877 num_layers = total_num_layers - start_layer;
1878 /* Check for overflow */
1879 assert(start_layer + num_layers >= start_layer);
1880 assert(start_layer + num_layers <= total_num_layers);
1881
1882 return num_layers;
1883 }
1884
1885 bool
1886 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1887 unsigned start_level, unsigned num_levels,
1888 unsigned start_layer, unsigned num_layers)
1889 {
1890 assert(_mesa_is_format_color_format(mt->format));
1891
1892 if (!mt->mcs_buf)
1893 return false;
1894
1895 /* Clamp the level range to fit the miptree */
1896 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1897
1898 for (uint32_t l = 0; l < num_levels; l++) {
1899 const uint32_t level = start_level + l;
1900 const uint32_t level_layers =
1901 miptree_layer_range_length(mt, level, start_layer, num_layers);
1902 for (unsigned a = 0; a < level_layers; a++) {
1903 enum isl_aux_state aux_state =
1904 intel_miptree_get_aux_state(mt, level, start_layer + a);
1905 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1906 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1907 return true;
1908 }
1909 }
1910
1911 return false;
1912 }
1913
1914 static void
1915 intel_miptree_check_color_resolve(const struct brw_context *brw,
1916 const struct intel_mipmap_tree *mt,
1917 unsigned level, unsigned layer)
1918 {
1919
1920 if (!mt->mcs_buf)
1921 return;
1922
1923 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1924 assert(brw->gen >= 8 ||
1925 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1926
1927 /* Compression of arrayed msaa surfaces is supported. */
1928 if (mt->surf.samples > 1)
1929 return;
1930
1931 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1932 assert(brw->gen >= 8 ||
1933 (layer == 0 &&
1934 mt->surf.logical_level0_px.depth == 1 &&
1935 mt->surf.logical_level0_px.array_len == 1));
1936
1937 (void)level;
1938 (void)layer;
1939 }
1940
1941 static enum blorp_fast_clear_op
1942 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1943 enum isl_aux_usage aux_usage,
1944 bool fast_clear_supported)
1945 {
1946 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
1947
1948 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
1949
1950 assert(ccs_supported == fast_clear_supported);
1951
1952 switch (aux_state) {
1953 case ISL_AUX_STATE_CLEAR:
1954 case ISL_AUX_STATE_PARTIAL_CLEAR:
1955 if (!ccs_supported)
1956 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1957 else
1958 return BLORP_FAST_CLEAR_OP_NONE;
1959
1960 case ISL_AUX_STATE_PASS_THROUGH:
1961 return BLORP_FAST_CLEAR_OP_NONE;
1962
1963 case ISL_AUX_STATE_RESOLVED:
1964 case ISL_AUX_STATE_AUX_INVALID:
1965 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1966 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1967 break;
1968 }
1969
1970 unreachable("Invalid aux state for CCS_D");
1971 }
1972
1973 static enum blorp_fast_clear_op
1974 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
1975 enum isl_aux_usage aux_usage,
1976 bool fast_clear_supported)
1977 {
1978 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
1979 assert(aux_usage == ISL_AUX_USAGE_NONE ||
1980 aux_usage == ISL_AUX_USAGE_CCS_D ||
1981 aux_usage == ISL_AUX_USAGE_CCS_E);
1982
1983 if (aux_usage == ISL_AUX_USAGE_CCS_D)
1984 assert(fast_clear_supported);
1985
1986 switch (aux_state) {
1987 case ISL_AUX_STATE_CLEAR:
1988 case ISL_AUX_STATE_PARTIAL_CLEAR:
1989 if (fast_clear_supported)
1990 return BLORP_FAST_CLEAR_OP_NONE;
1991 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
1992 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1993 else
1994 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1995
1996 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1997 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1998 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1999 else if (!fast_clear_supported)
2000 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2001 else
2002 return BLORP_FAST_CLEAR_OP_NONE;
2003
2004 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2005 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2006 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2007 else
2008 return BLORP_FAST_CLEAR_OP_NONE;
2009
2010 case ISL_AUX_STATE_PASS_THROUGH:
2011 return BLORP_FAST_CLEAR_OP_NONE;
2012
2013 case ISL_AUX_STATE_RESOLVED:
2014 case ISL_AUX_STATE_AUX_INVALID:
2015 break;
2016 }
2017
2018 unreachable("Invalid aux state for CCS_E");
2019 }
2020
2021 static void
2022 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2023 struct intel_mipmap_tree *mt,
2024 uint32_t level, uint32_t layer,
2025 enum isl_aux_usage aux_usage,
2026 bool fast_clear_supported)
2027 {
2028 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2029
2030 enum blorp_fast_clear_op resolve_op;
2031 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2032 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2033 fast_clear_supported);
2034 } else {
2035 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2036 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2037 fast_clear_supported);
2038 }
2039
2040 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2041 intel_miptree_check_color_resolve(brw, mt, level, layer);
2042 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2043
2044 switch (resolve_op) {
2045 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2046 /* The CCS full resolve operation destroys the CCS and sets it to the
2047 * pass-through state. (You can also think of this as being both a
2048 * resolve and an ambiguate in one operation.)
2049 */
2050 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2051 ISL_AUX_STATE_PASS_THROUGH);
2052 break;
2053
2054 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2055 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2056 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2057 break;
2058
2059 default:
2060 unreachable("Invalid resolve op");
2061 }
2062 }
2063 }
2064
2065 static void
2066 intel_miptree_finish_ccs_write(struct brw_context *brw,
2067 struct intel_mipmap_tree *mt,
2068 uint32_t level, uint32_t layer,
2069 enum isl_aux_usage aux_usage)
2070 {
2071 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2072 aux_usage == ISL_AUX_USAGE_CCS_D ||
2073 aux_usage == ISL_AUX_USAGE_CCS_E);
2074
2075 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2076
2077 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2078 switch (aux_state) {
2079 case ISL_AUX_STATE_CLEAR:
2080 case ISL_AUX_STATE_PARTIAL_CLEAR:
2081 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2082 aux_usage == ISL_AUX_USAGE_CCS_D);
2083
2084 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2085 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2086 ISL_AUX_STATE_COMPRESSED_CLEAR);
2087 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2088 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2089 ISL_AUX_STATE_PARTIAL_CLEAR);
2090 }
2091 break;
2092
2093 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2094 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2095 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2096 break; /* Nothing to do */
2097
2098 case ISL_AUX_STATE_PASS_THROUGH:
2099 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2100 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2101 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2102 } else {
2103 /* Nothing to do */
2104 }
2105 break;
2106
2107 case ISL_AUX_STATE_RESOLVED:
2108 case ISL_AUX_STATE_AUX_INVALID:
2109 unreachable("Invalid aux state for CCS_E");
2110 }
2111 } else {
2112 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2113 /* CCS_D is a bit simpler */
2114 switch (aux_state) {
2115 case ISL_AUX_STATE_CLEAR:
2116 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2117 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2118 ISL_AUX_STATE_PARTIAL_CLEAR);
2119 break;
2120
2121 case ISL_AUX_STATE_PARTIAL_CLEAR:
2122 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2123 break; /* Nothing to do */
2124
2125 case ISL_AUX_STATE_PASS_THROUGH:
2126 /* Nothing to do */
2127 break;
2128
2129 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2130 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2131 case ISL_AUX_STATE_RESOLVED:
2132 case ISL_AUX_STATE_AUX_INVALID:
2133 unreachable("Invalid aux state for CCS_D");
2134 }
2135 }
2136 }
2137
2138 static void
2139 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2140 struct intel_mipmap_tree *mt,
2141 uint32_t layer,
2142 enum isl_aux_usage aux_usage,
2143 bool fast_clear_supported)
2144 {
2145 assert(aux_usage == ISL_AUX_USAGE_MCS);
2146
2147 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2148 case ISL_AUX_STATE_CLEAR:
2149 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2150 if (!fast_clear_supported) {
2151 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2152 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2153 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2154 }
2155 break;
2156
2157 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2158 break; /* Nothing to do */
2159
2160 case ISL_AUX_STATE_RESOLVED:
2161 case ISL_AUX_STATE_PASS_THROUGH:
2162 case ISL_AUX_STATE_AUX_INVALID:
2163 case ISL_AUX_STATE_PARTIAL_CLEAR:
2164 unreachable("Invalid aux state for MCS");
2165 }
2166 }
2167
2168 static void
2169 intel_miptree_finish_mcs_write(struct brw_context *brw,
2170 struct intel_mipmap_tree *mt,
2171 uint32_t layer,
2172 enum isl_aux_usage aux_usage)
2173 {
2174 assert(aux_usage == ISL_AUX_USAGE_MCS);
2175
2176 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2177 case ISL_AUX_STATE_CLEAR:
2178 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2179 ISL_AUX_STATE_COMPRESSED_CLEAR);
2180 break;
2181
2182 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2183 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2184 break; /* Nothing to do */
2185
2186 case ISL_AUX_STATE_RESOLVED:
2187 case ISL_AUX_STATE_PASS_THROUGH:
2188 case ISL_AUX_STATE_AUX_INVALID:
2189 case ISL_AUX_STATE_PARTIAL_CLEAR:
2190 unreachable("Invalid aux state for MCS");
2191 }
2192 }
2193
2194 static void
2195 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2196 struct intel_mipmap_tree *mt,
2197 uint32_t level, uint32_t layer,
2198 enum isl_aux_usage aux_usage,
2199 bool fast_clear_supported)
2200 {
2201 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2202
2203 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2204 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2205 case ISL_AUX_STATE_CLEAR:
2206 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2207 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2208 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2209 break;
2210
2211 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2212 if (aux_usage != ISL_AUX_USAGE_HIZ)
2213 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2214 break;
2215
2216 case ISL_AUX_STATE_PASS_THROUGH:
2217 case ISL_AUX_STATE_RESOLVED:
2218 break;
2219
2220 case ISL_AUX_STATE_AUX_INVALID:
2221 if (aux_usage == ISL_AUX_USAGE_HIZ)
2222 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2223 break;
2224
2225 case ISL_AUX_STATE_PARTIAL_CLEAR:
2226 unreachable("Invalid HiZ state");
2227 }
2228
2229 if (hiz_op != BLORP_HIZ_OP_NONE) {
2230 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2231
2232 switch (hiz_op) {
2233 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2234 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2235 ISL_AUX_STATE_RESOLVED);
2236 break;
2237
2238 case BLORP_HIZ_OP_HIZ_RESOLVE:
2239 /* The HiZ resolve operation is actually an ambiguate */
2240 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2241 ISL_AUX_STATE_PASS_THROUGH);
2242 break;
2243
2244 default:
2245 unreachable("Invalid HiZ op");
2246 }
2247 }
2248 }
2249
2250 static void
2251 intel_miptree_finish_hiz_write(struct brw_context *brw,
2252 struct intel_mipmap_tree *mt,
2253 uint32_t level, uint32_t layer,
2254 enum isl_aux_usage aux_usage)
2255 {
2256 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2257
2258 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2259 case ISL_AUX_STATE_CLEAR:
2260 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2261 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2262 ISL_AUX_STATE_COMPRESSED_CLEAR);
2263 break;
2264
2265 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2266 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2267 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2268 break; /* Nothing to do */
2269
2270 case ISL_AUX_STATE_RESOLVED:
2271 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2272 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2273 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2274 } else {
2275 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2276 ISL_AUX_STATE_AUX_INVALID);
2277 }
2278 break;
2279
2280 case ISL_AUX_STATE_PASS_THROUGH:
2281 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2282 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2283 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2284 }
2285 break;
2286
2287 case ISL_AUX_STATE_AUX_INVALID:
2288 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2289 break;
2290
2291 case ISL_AUX_STATE_PARTIAL_CLEAR:
2292 unreachable("Invalid HiZ state");
2293 }
2294 }
2295
2296 void
2297 intel_miptree_prepare_access(struct brw_context *brw,
2298 struct intel_mipmap_tree *mt,
2299 uint32_t start_level, uint32_t num_levels,
2300 uint32_t start_layer, uint32_t num_layers,
2301 enum isl_aux_usage aux_usage,
2302 bool fast_clear_supported)
2303 {
2304 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2305
2306 switch (mt->aux_usage) {
2307 case ISL_AUX_USAGE_NONE:
2308 /* Nothing to do */
2309 break;
2310
2311 case ISL_AUX_USAGE_MCS:
2312 assert(mt->mcs_buf);
2313 assert(start_level == 0 && num_levels == 1);
2314 const uint32_t level_layers =
2315 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2316 for (uint32_t a = 0; a < level_layers; a++) {
2317 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2318 aux_usage, fast_clear_supported);
2319 }
2320 break;
2321
2322 case ISL_AUX_USAGE_CCS_D:
2323 case ISL_AUX_USAGE_CCS_E:
2324 if (!mt->mcs_buf)
2325 return;
2326
2327 for (uint32_t l = 0; l < num_levels; l++) {
2328 const uint32_t level = start_level + l;
2329 const uint32_t level_layers =
2330 miptree_layer_range_length(mt, level, start_layer, num_layers);
2331 for (uint32_t a = 0; a < level_layers; a++) {
2332 intel_miptree_prepare_ccs_access(brw, mt, level,
2333 start_layer + a,
2334 aux_usage, fast_clear_supported);
2335 }
2336 }
2337 break;
2338
2339 case ISL_AUX_USAGE_HIZ:
2340 assert(mt->hiz_buf);
2341 for (uint32_t l = 0; l < num_levels; l++) {
2342 const uint32_t level = start_level + l;
2343 if (!intel_miptree_level_has_hiz(mt, level))
2344 continue;
2345
2346 const uint32_t level_layers =
2347 miptree_layer_range_length(mt, level, start_layer, num_layers);
2348 for (uint32_t a = 0; a < level_layers; a++) {
2349 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2350 aux_usage, fast_clear_supported);
2351 }
2352 }
2353 break;
2354
2355 default:
2356 unreachable("Invalid aux usage");
2357 }
2358 }
2359
2360 void
2361 intel_miptree_finish_write(struct brw_context *brw,
2362 struct intel_mipmap_tree *mt, uint32_t level,
2363 uint32_t start_layer, uint32_t num_layers,
2364 enum isl_aux_usage aux_usage)
2365 {
2366 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2367
2368 switch (mt->aux_usage) {
2369 case ISL_AUX_USAGE_NONE:
2370 /* Nothing to do */
2371 break;
2372
2373 case ISL_AUX_USAGE_MCS:
2374 assert(mt->mcs_buf);
2375 for (uint32_t a = 0; a < num_layers; a++) {
2376 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2377 aux_usage);
2378 }
2379 break;
2380
2381 case ISL_AUX_USAGE_CCS_D:
2382 case ISL_AUX_USAGE_CCS_E:
2383 if (!mt->mcs_buf)
2384 return;
2385
2386 for (uint32_t a = 0; a < num_layers; a++) {
2387 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2388 aux_usage);
2389 }
2390 break;
2391
2392 case ISL_AUX_USAGE_HIZ:
2393 if (!intel_miptree_level_has_hiz(mt, level))
2394 return;
2395
2396 for (uint32_t a = 0; a < num_layers; a++) {
2397 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2398 aux_usage);
2399 }
2400 break;
2401
2402 default:
2403 unreachable("Invavlid aux usage");
2404 }
2405 }
2406
2407 enum isl_aux_state
2408 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2409 uint32_t level, uint32_t layer)
2410 {
2411 intel_miptree_check_level_layer(mt, level, layer);
2412
2413 if (_mesa_is_format_color_format(mt->format)) {
2414 assert(mt->mcs_buf != NULL);
2415 assert(mt->surf.samples == 1 ||
2416 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2417 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2418 unreachable("Cannot get aux state for stencil");
2419 } else {
2420 assert(intel_miptree_level_has_hiz(mt, level));
2421 }
2422
2423 return mt->aux_state[level][layer];
2424 }
2425
2426 void
2427 intel_miptree_set_aux_state(struct brw_context *brw,
2428 struct intel_mipmap_tree *mt, uint32_t level,
2429 uint32_t start_layer, uint32_t num_layers,
2430 enum isl_aux_state aux_state)
2431 {
2432 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2433
2434 if (_mesa_is_format_color_format(mt->format)) {
2435 assert(mt->mcs_buf != NULL);
2436 assert(mt->surf.samples == 1 ||
2437 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2438 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2439 unreachable("Cannot get aux state for stencil");
2440 } else {
2441 assert(intel_miptree_level_has_hiz(mt, level));
2442 }
2443
2444 for (unsigned a = 0; a < num_layers; a++)
2445 mt->aux_state[level][start_layer + a] = aux_state;
2446 }
2447
2448 /* On Gen9 color buffers may be compressed by the hardware (lossless
2449 * compression). There are, however, format restrictions and care needs to be
2450 * taken that the sampler engine is capable for re-interpreting a buffer with
2451 * format different the buffer was originally written with.
2452 *
2453 * For example, SRGB formats are not compressible and the sampler engine isn't
2454 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2455 * color buffer needs to be resolved so that the sampling surface can be
2456 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2457 * set).
2458 */
2459 static bool
2460 can_texture_with_ccs(struct brw_context *brw,
2461 struct intel_mipmap_tree *mt,
2462 enum isl_format view_format)
2463 {
2464 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2465 return false;
2466
2467 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2468 mt->surf.format, view_format)) {
2469 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2470 isl_format_get_layout(view_format)->name,
2471 _mesa_get_format_name(mt->format));
2472 return false;
2473 }
2474
2475 return true;
2476 }
2477
2478 enum isl_aux_usage
2479 intel_miptree_texture_aux_usage(struct brw_context *brw,
2480 struct intel_mipmap_tree *mt,
2481 enum isl_format view_format)
2482 {
2483 switch (mt->aux_usage) {
2484 case ISL_AUX_USAGE_HIZ:
2485 if (intel_miptree_sample_with_hiz(brw, mt))
2486 return ISL_AUX_USAGE_HIZ;
2487 break;
2488
2489 case ISL_AUX_USAGE_MCS:
2490 return ISL_AUX_USAGE_MCS;
2491
2492 case ISL_AUX_USAGE_CCS_D:
2493 case ISL_AUX_USAGE_CCS_E:
2494 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2495 return ISL_AUX_USAGE_CCS_E;
2496 break;
2497
2498 default:
2499 break;
2500 }
2501
2502 return ISL_AUX_USAGE_NONE;
2503 }
2504
2505 static bool
2506 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2507 {
2508 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2509 * values so sRGB curve application was a no-op for all fast-clearable
2510 * formats.
2511 *
2512 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2513 * values, the hardware interprets the floats, not as what would be
2514 * returned from the sampler (or written by the shader), but as being
2515 * between format conversion and sRGB curve application. This means that
2516 * we can switch between sRGB and UNORM without having to whack the clear
2517 * color.
2518 */
2519 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2520 }
2521
2522 static void
2523 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2524 struct intel_mipmap_tree *mt,
2525 enum isl_format view_format,
2526 uint32_t start_level, uint32_t num_levels,
2527 uint32_t start_layer, uint32_t num_layers,
2528 bool *aux_supported_out)
2529 {
2530 enum isl_aux_usage aux_usage =
2531 intel_miptree_texture_aux_usage(brw, mt, view_format);
2532 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2533
2534 /* Clear color is specified as ints or floats and the conversion is done by
2535 * the sampler. If we have a texture view, we would have to perform the
2536 * clear color conversion manually. Just disable clear color.
2537 */
2538 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2539 clear_supported = false;
2540
2541 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2542 start_layer, num_layers,
2543 aux_usage, clear_supported);
2544 if (aux_supported_out)
2545 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2546 }
2547
2548 void
2549 intel_miptree_prepare_texture(struct brw_context *brw,
2550 struct intel_mipmap_tree *mt,
2551 enum isl_format view_format,
2552 bool *aux_supported_out)
2553 {
2554 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2555 0, INTEL_REMAINING_LEVELS,
2556 0, INTEL_REMAINING_LAYERS,
2557 aux_supported_out);
2558 }
2559
2560 void
2561 intel_miptree_prepare_image(struct brw_context *brw,
2562 struct intel_mipmap_tree *mt)
2563 {
2564 /* The data port doesn't understand any compression */
2565 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2566 0, INTEL_REMAINING_LAYERS,
2567 ISL_AUX_USAGE_NONE, false);
2568 }
2569
2570 void
2571 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2572 struct intel_mipmap_tree *mt, uint32_t level,
2573 uint32_t start_layer, uint32_t num_layers)
2574 {
2575 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2576 start_layer, num_layers, NULL);
2577 }
2578
2579 enum isl_aux_usage
2580 intel_miptree_render_aux_usage(struct brw_context *brw,
2581 struct intel_mipmap_tree *mt,
2582 bool srgb_enabled, bool blend_enabled)
2583 {
2584 switch (mt->aux_usage) {
2585 case ISL_AUX_USAGE_MCS:
2586 assert(mt->mcs_buf);
2587 return ISL_AUX_USAGE_MCS;
2588
2589 case ISL_AUX_USAGE_CCS_D:
2590 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2591
2592 case ISL_AUX_USAGE_CCS_E: {
2593 mesa_format mesa_format =
2594 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2595 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2596
2597 /* If the format supports CCS_E, then we can just use it */
2598 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2599 return ISL_AUX_USAGE_CCS_E;
2600
2601 /* Otherwise, we have to fall back to CCS_D */
2602
2603 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2604 * formats. However, there are issues with blending where it doesn't
2605 * properly apply the sRGB curve to the clear color when blending.
2606 */
2607 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2608 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2609 return ISL_AUX_USAGE_NONE;
2610
2611 return ISL_AUX_USAGE_CCS_D;
2612 }
2613
2614 default:
2615 return ISL_AUX_USAGE_NONE;
2616 }
2617 }
2618
2619 void
2620 intel_miptree_prepare_render(struct brw_context *brw,
2621 struct intel_mipmap_tree *mt, uint32_t level,
2622 uint32_t start_layer, uint32_t layer_count,
2623 bool srgb_enabled, bool blend_enabled)
2624 {
2625 enum isl_aux_usage aux_usage =
2626 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2627 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2628 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2629 }
2630
2631 void
2632 intel_miptree_finish_render(struct brw_context *brw,
2633 struct intel_mipmap_tree *mt, uint32_t level,
2634 uint32_t start_layer, uint32_t layer_count,
2635 bool srgb_enabled, bool blend_enabled)
2636 {
2637 assert(_mesa_is_format_color_format(mt->format));
2638
2639 enum isl_aux_usage aux_usage =
2640 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2641 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2642 aux_usage);
2643 }
2644
2645 void
2646 intel_miptree_prepare_depth(struct brw_context *brw,
2647 struct intel_mipmap_tree *mt, uint32_t level,
2648 uint32_t start_layer, uint32_t layer_count)
2649 {
2650 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2651 mt->aux_usage, mt->hiz_buf != NULL);
2652 }
2653
2654 void
2655 intel_miptree_finish_depth(struct brw_context *brw,
2656 struct intel_mipmap_tree *mt, uint32_t level,
2657 uint32_t start_layer, uint32_t layer_count,
2658 bool depth_written)
2659 {
2660 if (depth_written) {
2661 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2662 mt->hiz_buf != NULL);
2663 }
2664 }
2665
2666 /**
2667 * Make it possible to share the BO backing the given miptree with another
2668 * process or another miptree.
2669 *
2670 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2671 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2672 * ensure that no MCS buffer gets allocated in the future.
2673 *
2674 * HiZ is similarly unsafe with shared buffers.
2675 */
2676 void
2677 intel_miptree_make_shareable(struct brw_context *brw,
2678 struct intel_mipmap_tree *mt)
2679 {
2680 /* MCS buffers are also used for multisample buffers, but we can't resolve
2681 * away a multisample MCS buffer because it's an integral part of how the
2682 * pixel data is stored. Fortunately this code path should never be
2683 * reached for multisample buffers.
2684 */
2685 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2686 mt->surf.samples == 1);
2687
2688 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2689 0, INTEL_REMAINING_LAYERS,
2690 ISL_AUX_USAGE_NONE, false);
2691
2692 if (mt->mcs_buf) {
2693 brw_bo_unreference(mt->mcs_buf->bo);
2694 free(mt->mcs_buf);
2695 mt->mcs_buf = NULL;
2696
2697 /* Any pending MCS/CCS operations are no longer needed. Trying to
2698 * execute any will likely crash due to the missing aux buffer. So let's
2699 * delete all pending ops.
2700 */
2701 free(mt->aux_state);
2702 mt->aux_state = NULL;
2703 }
2704
2705 if (mt->hiz_buf) {
2706 intel_miptree_aux_buffer_free(mt->hiz_buf);
2707 mt->hiz_buf = NULL;
2708
2709 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2710 mt->level[l].has_hiz = false;
2711 }
2712
2713 /* Any pending HiZ operations are no longer needed. Trying to execute
2714 * any will likely crash due to the missing aux buffer. So let's delete
2715 * all pending ops.
2716 */
2717 free(mt->aux_state);
2718 mt->aux_state = NULL;
2719 }
2720
2721 mt->aux_usage = ISL_AUX_USAGE_NONE;
2722 }
2723
2724
2725 /**
2726 * \brief Get pointer offset into stencil buffer.
2727 *
2728 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2729 * must decode the tile's layout in software.
2730 *
2731 * See
2732 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2733 * Format.
2734 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2735 *
2736 * Even though the returned offset is always positive, the return type is
2737 * signed due to
2738 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2739 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2740 */
2741 static intptr_t
2742 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2743 {
2744 uint32_t tile_size = 4096;
2745 uint32_t tile_width = 64;
2746 uint32_t tile_height = 64;
2747 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2748
2749 uint32_t tile_x = x / tile_width;
2750 uint32_t tile_y = y / tile_height;
2751
2752 /* The byte's address relative to the tile's base addres. */
2753 uint32_t byte_x = x % tile_width;
2754 uint32_t byte_y = y % tile_height;
2755
2756 uintptr_t u = tile_y * row_size
2757 + tile_x * tile_size
2758 + 512 * (byte_x / 8)
2759 + 64 * (byte_y / 8)
2760 + 32 * ((byte_y / 4) % 2)
2761 + 16 * ((byte_x / 4) % 2)
2762 + 8 * ((byte_y / 2) % 2)
2763 + 4 * ((byte_x / 2) % 2)
2764 + 2 * (byte_y % 2)
2765 + 1 * (byte_x % 2);
2766
2767 if (swizzled) {
2768 /* adjust for bit6 swizzling */
2769 if (((byte_x / 8) % 2) == 1) {
2770 if (((byte_y / 8) % 2) == 0) {
2771 u += 64;
2772 } else {
2773 u -= 64;
2774 }
2775 }
2776 }
2777
2778 return u;
2779 }
2780
2781 void
2782 intel_miptree_updownsample(struct brw_context *brw,
2783 struct intel_mipmap_tree *src,
2784 struct intel_mipmap_tree *dst)
2785 {
2786 unsigned src_w = src->surf.logical_level0_px.width;
2787 unsigned src_h = src->surf.logical_level0_px.height;
2788 unsigned dst_w = dst->surf.logical_level0_px.width;
2789 unsigned dst_h = dst->surf.logical_level0_px.height;
2790
2791 brw_blorp_blit_miptrees(brw,
2792 src, 0 /* level */, 0 /* layer */,
2793 src->format, SWIZZLE_XYZW,
2794 dst, 0 /* level */, 0 /* layer */, dst->format,
2795 0, 0, src_w, src_h,
2796 0, 0, dst_w, dst_h,
2797 GL_NEAREST, false, false /*mirror x, y*/,
2798 false, false);
2799
2800 if (src->stencil_mt) {
2801 src_w = src->stencil_mt->surf.logical_level0_px.width;
2802 src_h = src->stencil_mt->surf.logical_level0_px.height;
2803 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2804 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2805
2806 brw_blorp_blit_miptrees(brw,
2807 src->stencil_mt, 0 /* level */, 0 /* layer */,
2808 src->stencil_mt->format, SWIZZLE_XYZW,
2809 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2810 dst->stencil_mt->format,
2811 0, 0, src_w, src_h,
2812 0, 0, dst_w, dst_h,
2813 GL_NEAREST, false, false /*mirror x, y*/,
2814 false, false /* decode/encode srgb */);
2815 }
2816 }
2817
2818 void
2819 intel_update_r8stencil(struct brw_context *brw,
2820 struct intel_mipmap_tree *mt)
2821 {
2822 assert(brw->gen >= 7);
2823 struct intel_mipmap_tree *src =
2824 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2825 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2826 return;
2827
2828 assert(src->surf.size > 0);
2829
2830 if (!mt->r8stencil_mt) {
2831 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2832 mt->r8stencil_mt = make_surface(
2833 brw,
2834 src->target,
2835 MESA_FORMAT_R_UINT8,
2836 src->first_level, src->last_level,
2837 src->surf.logical_level0_px.width,
2838 src->surf.logical_level0_px.height,
2839 src->surf.dim == ISL_SURF_DIM_3D ?
2840 src->surf.logical_level0_px.depth :
2841 src->surf.logical_level0_px.array_len,
2842 src->surf.samples,
2843 ISL_TILING_Y0_BIT,
2844 ISL_SURF_USAGE_TEXTURE_BIT,
2845 BO_ALLOC_FOR_RENDER, 0, NULL);
2846 assert(mt->r8stencil_mt);
2847 }
2848
2849 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2850
2851 for (int level = src->first_level; level <= src->last_level; level++) {
2852 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2853 minify(src->surf.phys_level0_sa.depth, level) :
2854 src->surf.phys_level0_sa.array_len;
2855
2856 for (unsigned layer = 0; layer < depth; layer++) {
2857 brw_blorp_copy_miptrees(brw,
2858 src, level, layer,
2859 dst, level, layer,
2860 0, 0, 0, 0,
2861 minify(src->surf.logical_level0_px.width,
2862 level),
2863 minify(src->surf.logical_level0_px.height,
2864 level));
2865 }
2866 }
2867
2868 brw_render_cache_set_check_flush(brw, dst->bo);
2869 src->r8stencil_needs_update = false;
2870 }
2871
2872 static void *
2873 intel_miptree_map_raw(struct brw_context *brw,
2874 struct intel_mipmap_tree *mt,
2875 GLbitfield mode)
2876 {
2877 struct brw_bo *bo = mt->bo;
2878
2879 if (brw_batch_references(&brw->batch, bo))
2880 intel_batchbuffer_flush(brw);
2881
2882 return brw_bo_map(brw, bo, mode);
2883 }
2884
2885 static void
2886 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2887 {
2888 brw_bo_unmap(mt->bo);
2889 }
2890
2891 static void
2892 intel_miptree_map_gtt(struct brw_context *brw,
2893 struct intel_mipmap_tree *mt,
2894 struct intel_miptree_map *map,
2895 unsigned int level, unsigned int slice)
2896 {
2897 unsigned int bw, bh;
2898 void *base;
2899 unsigned int image_x, image_y;
2900 intptr_t x = map->x;
2901 intptr_t y = map->y;
2902
2903 /* For compressed formats, the stride is the number of bytes per
2904 * row of blocks. intel_miptree_get_image_offset() already does
2905 * the divide.
2906 */
2907 _mesa_get_format_block_size(mt->format, &bw, &bh);
2908 assert(y % bh == 0);
2909 assert(x % bw == 0);
2910 y /= bh;
2911 x /= bw;
2912
2913 base = intel_miptree_map_raw(brw, mt, map->mode);
2914
2915 if (base == NULL)
2916 map->ptr = NULL;
2917 else {
2918 base += mt->offset;
2919
2920 /* Note that in the case of cube maps, the caller must have passed the
2921 * slice number referencing the face.
2922 */
2923 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2924 x += image_x;
2925 y += image_y;
2926
2927 map->stride = mt->surf.row_pitch;
2928 map->ptr = base + y * map->stride + x * mt->cpp;
2929 }
2930
2931 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2932 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2933 map->x, map->y, map->w, map->h,
2934 mt, _mesa_get_format_name(mt->format),
2935 x, y, map->ptr, map->stride);
2936 }
2937
2938 static void
2939 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2940 {
2941 intel_miptree_unmap_raw(mt);
2942 }
2943
2944 static void
2945 intel_miptree_map_blit(struct brw_context *brw,
2946 struct intel_mipmap_tree *mt,
2947 struct intel_miptree_map *map,
2948 unsigned int level, unsigned int slice)
2949 {
2950 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2951 /* first_level */ 0,
2952 /* last_level */ 0,
2953 map->w, map->h, 1,
2954 /* samples */ 1,
2955 MIPTREE_LAYOUT_TILING_NONE);
2956
2957 if (!map->linear_mt) {
2958 fprintf(stderr, "Failed to allocate blit temporary\n");
2959 goto fail;
2960 }
2961 map->stride = map->linear_mt->surf.row_pitch;
2962
2963 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2964 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2965 * invalidate is set, since we'll be writing the whole rectangle from our
2966 * temporary buffer back out.
2967 */
2968 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2969 if (!intel_miptree_copy(brw,
2970 mt, level, slice, map->x, map->y,
2971 map->linear_mt, 0, 0, 0, 0,
2972 map->w, map->h)) {
2973 fprintf(stderr, "Failed to blit\n");
2974 goto fail;
2975 }
2976 }
2977
2978 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2979
2980 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2981 map->x, map->y, map->w, map->h,
2982 mt, _mesa_get_format_name(mt->format),
2983 level, slice, map->ptr, map->stride);
2984
2985 return;
2986
2987 fail:
2988 intel_miptree_release(&map->linear_mt);
2989 map->ptr = NULL;
2990 map->stride = 0;
2991 }
2992
2993 static void
2994 intel_miptree_unmap_blit(struct brw_context *brw,
2995 struct intel_mipmap_tree *mt,
2996 struct intel_miptree_map *map,
2997 unsigned int level,
2998 unsigned int slice)
2999 {
3000 struct gl_context *ctx = &brw->ctx;
3001
3002 intel_miptree_unmap_raw(map->linear_mt);
3003
3004 if (map->mode & GL_MAP_WRITE_BIT) {
3005 bool ok = intel_miptree_copy(brw,
3006 map->linear_mt, 0, 0, 0, 0,
3007 mt, level, slice, map->x, map->y,
3008 map->w, map->h);
3009 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3010 }
3011
3012 intel_miptree_release(&map->linear_mt);
3013 }
3014
3015 /**
3016 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3017 */
3018 #if defined(USE_SSE41)
3019 static void
3020 intel_miptree_map_movntdqa(struct brw_context *brw,
3021 struct intel_mipmap_tree *mt,
3022 struct intel_miptree_map *map,
3023 unsigned int level, unsigned int slice)
3024 {
3025 assert(map->mode & GL_MAP_READ_BIT);
3026 assert(!(map->mode & GL_MAP_WRITE_BIT));
3027
3028 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3029 map->x, map->y, map->w, map->h,
3030 mt, _mesa_get_format_name(mt->format),
3031 level, slice, map->ptr, map->stride);
3032
3033 /* Map the original image */
3034 uint32_t image_x;
3035 uint32_t image_y;
3036 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3037 image_x += map->x;
3038 image_y += map->y;
3039
3040 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3041 if (!src)
3042 return;
3043
3044 src += mt->offset;
3045
3046 src += image_y * mt->surf.row_pitch;
3047 src += image_x * mt->cpp;
3048
3049 /* Due to the pixel offsets for the particular image being mapped, our
3050 * src pointer may not be 16-byte aligned. However, if the pitch is
3051 * divisible by 16, then the amount by which it's misaligned will remain
3052 * consistent from row to row.
3053 */
3054 assert((mt->surf.row_pitch % 16) == 0);
3055 const int misalignment = ((uintptr_t) src) & 15;
3056
3057 /* Create an untiled temporary buffer for the mapping. */
3058 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3059
3060 map->stride = ALIGN(misalignment + width_bytes, 16);
3061
3062 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3063 /* Offset the destination so it has the same misalignment as src. */
3064 map->ptr = map->buffer + misalignment;
3065
3066 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3067
3068 for (uint32_t y = 0; y < map->h; y++) {
3069 void *dst_ptr = map->ptr + y * map->stride;
3070 void *src_ptr = src + y * mt->surf.row_pitch;
3071
3072 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3073 }
3074
3075 intel_miptree_unmap_raw(mt);
3076 }
3077
3078 static void
3079 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3080 struct intel_mipmap_tree *mt,
3081 struct intel_miptree_map *map,
3082 unsigned int level,
3083 unsigned int slice)
3084 {
3085 _mesa_align_free(map->buffer);
3086 map->buffer = NULL;
3087 map->ptr = NULL;
3088 }
3089 #endif
3090
3091 static void
3092 intel_miptree_map_s8(struct brw_context *brw,
3093 struct intel_mipmap_tree *mt,
3094 struct intel_miptree_map *map,
3095 unsigned int level, unsigned int slice)
3096 {
3097 map->stride = map->w;
3098 map->buffer = map->ptr = malloc(map->stride * map->h);
3099 if (!map->buffer)
3100 return;
3101
3102 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3103 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3104 * invalidate is set, since we'll be writing the whole rectangle from our
3105 * temporary buffer back out.
3106 */
3107 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3108 uint8_t *untiled_s8_map = map->ptr;
3109 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3110 unsigned int image_x, image_y;
3111
3112 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3113
3114 for (uint32_t y = 0; y < map->h; y++) {
3115 for (uint32_t x = 0; x < map->w; x++) {
3116 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3117 x + image_x + map->x,
3118 y + image_y + map->y,
3119 brw->has_swizzling);
3120 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3121 }
3122 }
3123
3124 intel_miptree_unmap_raw(mt);
3125
3126 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3127 map->x, map->y, map->w, map->h,
3128 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3129 } else {
3130 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3131 map->x, map->y, map->w, map->h,
3132 mt, map->ptr, map->stride);
3133 }
3134 }
3135
3136 static void
3137 intel_miptree_unmap_s8(struct brw_context *brw,
3138 struct intel_mipmap_tree *mt,
3139 struct intel_miptree_map *map,
3140 unsigned int level,
3141 unsigned int slice)
3142 {
3143 if (map->mode & GL_MAP_WRITE_BIT) {
3144 unsigned int image_x, image_y;
3145 uint8_t *untiled_s8_map = map->ptr;
3146 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3147
3148 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3149
3150 for (uint32_t y = 0; y < map->h; y++) {
3151 for (uint32_t x = 0; x < map->w; x++) {
3152 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3153 image_x + x + map->x,
3154 image_y + y + map->y,
3155 brw->has_swizzling);
3156 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3157 }
3158 }
3159
3160 intel_miptree_unmap_raw(mt);
3161 }
3162
3163 free(map->buffer);
3164 }
3165
3166 static void
3167 intel_miptree_map_etc(struct brw_context *brw,
3168 struct intel_mipmap_tree *mt,
3169 struct intel_miptree_map *map,
3170 unsigned int level,
3171 unsigned int slice)
3172 {
3173 assert(mt->etc_format != MESA_FORMAT_NONE);
3174 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3175 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3176 }
3177
3178 assert(map->mode & GL_MAP_WRITE_BIT);
3179 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3180
3181 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3182 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3183 map->w, map->h, 1));
3184 map->ptr = map->buffer;
3185 }
3186
3187 static void
3188 intel_miptree_unmap_etc(struct brw_context *brw,
3189 struct intel_mipmap_tree *mt,
3190 struct intel_miptree_map *map,
3191 unsigned int level,
3192 unsigned int slice)
3193 {
3194 uint32_t image_x;
3195 uint32_t image_y;
3196 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3197
3198 image_x += map->x;
3199 image_y += map->y;
3200
3201 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3202 + image_y * mt->surf.row_pitch
3203 + image_x * mt->cpp;
3204
3205 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3206 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3207 map->ptr, map->stride,
3208 map->w, map->h);
3209 else
3210 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3211 map->ptr, map->stride,
3212 map->w, map->h, mt->etc_format);
3213
3214 intel_miptree_unmap_raw(mt);
3215 free(map->buffer);
3216 }
3217
3218 /**
3219 * Mapping function for packed depth/stencil miptrees backed by real separate
3220 * miptrees for depth and stencil.
3221 *
3222 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3223 * separate from the depth buffer. Yet at the GL API level, we have to expose
3224 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3225 * be able to map that memory for texture storage and glReadPixels-type
3226 * operations. We give Mesa core that access by mallocing a temporary and
3227 * copying the data between the actual backing store and the temporary.
3228 */
3229 static void
3230 intel_miptree_map_depthstencil(struct brw_context *brw,
3231 struct intel_mipmap_tree *mt,
3232 struct intel_miptree_map *map,
3233 unsigned int level, unsigned int slice)
3234 {
3235 struct intel_mipmap_tree *z_mt = mt;
3236 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3237 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3238 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3239
3240 map->stride = map->w * packed_bpp;
3241 map->buffer = map->ptr = malloc(map->stride * map->h);
3242 if (!map->buffer)
3243 return;
3244
3245 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3246 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3247 * invalidate is set, since we'll be writing the whole rectangle from our
3248 * temporary buffer back out.
3249 */
3250 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3251 uint32_t *packed_map = map->ptr;
3252 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3253 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3254 unsigned int s_image_x, s_image_y;
3255 unsigned int z_image_x, z_image_y;
3256
3257 intel_miptree_get_image_offset(s_mt, level, slice,
3258 &s_image_x, &s_image_y);
3259 intel_miptree_get_image_offset(z_mt, level, slice,
3260 &z_image_x, &z_image_y);
3261
3262 for (uint32_t y = 0; y < map->h; y++) {
3263 for (uint32_t x = 0; x < map->w; x++) {
3264 int map_x = map->x + x, map_y = map->y + y;
3265 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3266 map_x + s_image_x,
3267 map_y + s_image_y,
3268 brw->has_swizzling);
3269 ptrdiff_t z_offset = ((map_y + z_image_y) *
3270 (z_mt->surf.row_pitch / 4) +
3271 (map_x + z_image_x));
3272 uint8_t s = s_map[s_offset];
3273 uint32_t z = z_map[z_offset];
3274
3275 if (map_z32f_x24s8) {
3276 packed_map[(y * map->w + x) * 2 + 0] = z;
3277 packed_map[(y * map->w + x) * 2 + 1] = s;
3278 } else {
3279 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3280 }
3281 }
3282 }
3283
3284 intel_miptree_unmap_raw(s_mt);
3285 intel_miptree_unmap_raw(z_mt);
3286
3287 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3288 __func__,
3289 map->x, map->y, map->w, map->h,
3290 z_mt, map->x + z_image_x, map->y + z_image_y,
3291 s_mt, map->x + s_image_x, map->y + s_image_y,
3292 map->ptr, map->stride);
3293 } else {
3294 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3295 map->x, map->y, map->w, map->h,
3296 mt, map->ptr, map->stride);
3297 }
3298 }
3299
3300 static void
3301 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3302 struct intel_mipmap_tree *mt,
3303 struct intel_miptree_map *map,
3304 unsigned int level,
3305 unsigned int slice)
3306 {
3307 struct intel_mipmap_tree *z_mt = mt;
3308 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3309 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3310
3311 if (map->mode & GL_MAP_WRITE_BIT) {
3312 uint32_t *packed_map = map->ptr;
3313 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3314 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3315 unsigned int s_image_x, s_image_y;
3316 unsigned int z_image_x, z_image_y;
3317
3318 intel_miptree_get_image_offset(s_mt, level, slice,
3319 &s_image_x, &s_image_y);
3320 intel_miptree_get_image_offset(z_mt, level, slice,
3321 &z_image_x, &z_image_y);
3322
3323 for (uint32_t y = 0; y < map->h; y++) {
3324 for (uint32_t x = 0; x < map->w; x++) {
3325 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3326 x + s_image_x + map->x,
3327 y + s_image_y + map->y,
3328 brw->has_swizzling);
3329 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3330 (z_mt->surf.row_pitch / 4) +
3331 (x + z_image_x + map->x));
3332
3333 if (map_z32f_x24s8) {
3334 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3335 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3336 } else {
3337 uint32_t packed = packed_map[y * map->w + x];
3338 s_map[s_offset] = packed >> 24;
3339 z_map[z_offset] = packed;
3340 }
3341 }
3342 }
3343
3344 intel_miptree_unmap_raw(s_mt);
3345 intel_miptree_unmap_raw(z_mt);
3346
3347 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3348 __func__,
3349 map->x, map->y, map->w, map->h,
3350 z_mt, _mesa_get_format_name(z_mt->format),
3351 map->x + z_image_x, map->y + z_image_y,
3352 s_mt, map->x + s_image_x, map->y + s_image_y,
3353 map->ptr, map->stride);
3354 }
3355
3356 free(map->buffer);
3357 }
3358
3359 /**
3360 * Create and attach a map to the miptree at (level, slice). Return the
3361 * attached map.
3362 */
3363 static struct intel_miptree_map*
3364 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3365 unsigned int level,
3366 unsigned int slice,
3367 unsigned int x,
3368 unsigned int y,
3369 unsigned int w,
3370 unsigned int h,
3371 GLbitfield mode)
3372 {
3373 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3374
3375 if (!map)
3376 return NULL;
3377
3378 assert(mt->level[level].slice[slice].map == NULL);
3379 mt->level[level].slice[slice].map = map;
3380
3381 map->mode = mode;
3382 map->x = x;
3383 map->y = y;
3384 map->w = w;
3385 map->h = h;
3386
3387 return map;
3388 }
3389
3390 /**
3391 * Release the map at (level, slice).
3392 */
3393 static void
3394 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3395 unsigned int level,
3396 unsigned int slice)
3397 {
3398 struct intel_miptree_map **map;
3399
3400 map = &mt->level[level].slice[slice].map;
3401 free(*map);
3402 *map = NULL;
3403 }
3404
3405 static bool
3406 can_blit_slice(struct intel_mipmap_tree *mt,
3407 unsigned int level, unsigned int slice)
3408 {
3409 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3410 if (mt->surf.row_pitch >= 32768)
3411 return false;
3412
3413 return true;
3414 }
3415
3416 static bool
3417 use_intel_mipree_map_blit(struct brw_context *brw,
3418 struct intel_mipmap_tree *mt,
3419 GLbitfield mode,
3420 unsigned int level,
3421 unsigned int slice)
3422 {
3423 if (brw->has_llc &&
3424 /* It's probably not worth swapping to the blit ring because of
3425 * all the overhead involved.
3426 */
3427 !(mode & GL_MAP_WRITE_BIT) &&
3428 !mt->compressed &&
3429 (mt->surf.tiling == ISL_TILING_X ||
3430 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3431 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3432 /* Fast copy blit on skl+ supports all tiling formats. */
3433 brw->gen >= 9) &&
3434 can_blit_slice(mt, level, slice))
3435 return true;
3436
3437 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3438 mt->bo->size >= brw->max_gtt_map_object_size) {
3439 assert(can_blit_slice(mt, level, slice));
3440 return true;
3441 }
3442
3443 return false;
3444 }
3445
3446 /**
3447 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3448 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3449 * arithmetic overflow.
3450 *
3451 * If you call this function and use \a out_stride, then you're doing pointer
3452 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3453 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3454 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3455 * which usually have type uint32_t or GLuint.
3456 */
3457 void
3458 intel_miptree_map(struct brw_context *brw,
3459 struct intel_mipmap_tree *mt,
3460 unsigned int level,
3461 unsigned int slice,
3462 unsigned int x,
3463 unsigned int y,
3464 unsigned int w,
3465 unsigned int h,
3466 GLbitfield mode,
3467 void **out_ptr,
3468 ptrdiff_t *out_stride)
3469 {
3470 struct intel_miptree_map *map;
3471
3472 assert(mt->surf.samples == 1);
3473
3474 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3475 if (!map){
3476 *out_ptr = NULL;
3477 *out_stride = 0;
3478 return;
3479 }
3480
3481 intel_miptree_access_raw(brw, mt, level, slice,
3482 map->mode & GL_MAP_WRITE_BIT);
3483
3484 if (mt->format == MESA_FORMAT_S_UINT8) {
3485 intel_miptree_map_s8(brw, mt, map, level, slice);
3486 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3487 !(mode & BRW_MAP_DIRECT_BIT)) {
3488 intel_miptree_map_etc(brw, mt, map, level, slice);
3489 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3490 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3491 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3492 intel_miptree_map_blit(brw, mt, map, level, slice);
3493 #if defined(USE_SSE41)
3494 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3495 !mt->compressed && cpu_has_sse4_1 &&
3496 (mt->surf.row_pitch % 16 == 0)) {
3497 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3498 #endif
3499 } else {
3500 intel_miptree_map_gtt(brw, mt, map, level, slice);
3501 }
3502
3503 *out_ptr = map->ptr;
3504 *out_stride = map->stride;
3505
3506 if (map->ptr == NULL)
3507 intel_miptree_release_map(mt, level, slice);
3508 }
3509
3510 void
3511 intel_miptree_unmap(struct brw_context *brw,
3512 struct intel_mipmap_tree *mt,
3513 unsigned int level,
3514 unsigned int slice)
3515 {
3516 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3517
3518 assert(mt->surf.samples == 1);
3519
3520 if (!map)
3521 return;
3522
3523 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3524 mt, _mesa_get_format_name(mt->format), level, slice);
3525
3526 if (mt->format == MESA_FORMAT_S_UINT8) {
3527 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3528 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3529 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3530 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3531 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3532 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3533 } else if (map->linear_mt) {
3534 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3535 #if defined(USE_SSE41)
3536 } else if (map->buffer && cpu_has_sse4_1) {
3537 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3538 #endif
3539 } else {
3540 intel_miptree_unmap_gtt(mt);
3541 }
3542
3543 intel_miptree_release_map(mt, level, slice);
3544 }
3545
3546 enum isl_surf_dim
3547 get_isl_surf_dim(GLenum target)
3548 {
3549 switch (target) {
3550 case GL_TEXTURE_1D:
3551 case GL_TEXTURE_1D_ARRAY:
3552 return ISL_SURF_DIM_1D;
3553
3554 case GL_TEXTURE_2D:
3555 case GL_TEXTURE_2D_ARRAY:
3556 case GL_TEXTURE_RECTANGLE:
3557 case GL_TEXTURE_CUBE_MAP:
3558 case GL_TEXTURE_CUBE_MAP_ARRAY:
3559 case GL_TEXTURE_2D_MULTISAMPLE:
3560 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3561 case GL_TEXTURE_EXTERNAL_OES:
3562 return ISL_SURF_DIM_2D;
3563
3564 case GL_TEXTURE_3D:
3565 return ISL_SURF_DIM_3D;
3566 }
3567
3568 unreachable("Invalid texture target");
3569 }
3570
3571 enum isl_dim_layout
3572 get_isl_dim_layout(const struct gen_device_info *devinfo,
3573 enum isl_tiling tiling, GLenum target)
3574 {
3575 switch (target) {
3576 case GL_TEXTURE_1D:
3577 case GL_TEXTURE_1D_ARRAY:
3578 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3579 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3580
3581 case GL_TEXTURE_2D:
3582 case GL_TEXTURE_2D_ARRAY:
3583 case GL_TEXTURE_RECTANGLE:
3584 case GL_TEXTURE_2D_MULTISAMPLE:
3585 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3586 case GL_TEXTURE_EXTERNAL_OES:
3587 return ISL_DIM_LAYOUT_GEN4_2D;
3588
3589 case GL_TEXTURE_CUBE_MAP:
3590 case GL_TEXTURE_CUBE_MAP_ARRAY:
3591 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3592 ISL_DIM_LAYOUT_GEN4_2D);
3593
3594 case GL_TEXTURE_3D:
3595 return (devinfo->gen >= 9 ?
3596 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3597 }
3598
3599 unreachable("Invalid texture target");
3600 }
3601
3602 enum isl_aux_usage
3603 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3604 const struct intel_mipmap_tree *mt)
3605 {
3606 if (mt->hiz_buf)
3607 return ISL_AUX_USAGE_HIZ;
3608
3609 if (!mt->mcs_buf)
3610 return ISL_AUX_USAGE_NONE;
3611
3612 return mt->aux_usage;
3613 }