i965/miptree: Pass the offset into create_for_bo in create_for_dri_image
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_mcs(struct brw_context *brw,
59 struct intel_mipmap_tree *mt,
60 GLuint num_samples);
61
62 /**
63 * Determine which MSAA layout should be used by the MSAA surface being
64 * created, based on the chip generation and the surface type.
65 */
66 static enum intel_msaa_layout
67 compute_msaa_layout(struct brw_context *brw, mesa_format format,
68 uint32_t layout_flags)
69 {
70 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
71 if (brw->gen < 7)
72 return INTEL_MSAA_LAYOUT_IMS;
73
74 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
75 switch (_mesa_get_format_base_format(format)) {
76 case GL_DEPTH_COMPONENT:
77 case GL_STENCIL_INDEX:
78 case GL_DEPTH_STENCIL:
79 return INTEL_MSAA_LAYOUT_IMS;
80 default:
81 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
82 *
83 * This field must be set to 0 for all SINT MSRTs when all RT channels
84 * are not written
85 *
86 * In practice this means that we have to disable MCS for all signed
87 * integer MSAA buffers. The alternative, to disable MCS only when one
88 * of the render target channels is disabled, is impractical because it
89 * would require converting between CMS and UMS MSAA layouts on the fly,
90 * which is expensive.
91 */
92 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else if (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) {
95 /* We can't use the CMS layout because it uses an aux buffer, the MCS
96 * buffer. So fallback to UMS, which is identical to CMS without the
97 * MCS. */
98 return INTEL_MSAA_LAYOUT_UMS;
99 } else {
100 return INTEL_MSAA_LAYOUT_CMS;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw, unsigned tiling)
107 {
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (brw->gen >= 9)
116 return tiling == I915_TILING_Y;
117 else if (brw->gen >= 7)
118 return tiling != I915_TILING_NONE;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 /* MCS support does not exist prior to Gen7 */
149 if (brw->gen < 7)
150 return false;
151
152 /* This function applies only to non-multisampled render targets. */
153 if (mt->num_samples > 1)
154 return false;
155
156 /* MCS is only supported for color buffers */
157 switch (_mesa_get_format_base_format(mt->format)) {
158 case GL_DEPTH_COMPONENT:
159 case GL_DEPTH_STENCIL:
160 case GL_STENCIL_INDEX:
161 return false;
162 }
163
164 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
165 return false;
166
167 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
168 const bool arrayed = mt->physical_depth0 != 1;
169
170 if (arrayed) {
171 /* Multisample surfaces with the CMS layout are not layered surfaces,
172 * yet still have physical_depth0 > 1. Assert that we don't
173 * accidentally reject a multisampled surface here. We should have
174 * rejected it earlier by explicitly checking the sample count.
175 */
176 assert(mt->num_samples <= 1);
177 }
178
179 /* Handle the hardware restrictions...
180 *
181 * All GENs have the following restriction: "MCS buffer for non-MSRT is
182 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
183 *
184 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
185 * Non-MultiSampler Render Target Restrictions) Support is for
186 * non-mip-mapped and non-array surface types only.
187 *
188 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
189 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
190 * surfaces are supported with MCS buffer layout with these alignments in
191 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
192 *
193 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
194 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
195 * surfaces are supported with MCS buffer layout with these alignments in
196 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
197 */
198 if (brw->gen < 8 && (mip_mapped || arrayed))
199 return false;
200
201 /* There's no point in using an MCS buffer if the surface isn't in a
202 * renderable format.
203 */
204 if (!brw->mesa_format_supports_render[mt->format])
205 return false;
206
207 if (brw->gen >= 9) {
208 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
209 const enum isl_format isl_format =
210 brw_isl_format_for_mesa_format(linear_format);
211 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
212 } else
213 return true;
214 }
215
216 static bool
217 intel_miptree_supports_hiz(struct brw_context *brw,
218 struct intel_mipmap_tree *mt)
219 {
220 if (!brw->has_hiz)
221 return false;
222
223 switch (mt->format) {
224 case MESA_FORMAT_Z_FLOAT32:
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 case MESA_FORMAT_Z24_UNORM_X8_UINT:
227 case MESA_FORMAT_Z24_UNORM_S8_UINT:
228 case MESA_FORMAT_Z_UNORM16:
229 return true;
230 default:
231 return false;
232 }
233 }
234
235
236 /* On Gen9 support for color buffer compression was extended to single
237 * sampled surfaces. This is a helper considering both auxiliary buffer
238 * type and number of samples telling if the given miptree represents
239 * the new single sampled case - also called lossless compression.
240 */
241 bool
242 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
243 const struct intel_mipmap_tree *mt)
244 {
245 /* Only available from Gen9 onwards. */
246 if (brw->gen < 9)
247 return false;
248
249 /* Compression always requires auxiliary buffer. */
250 if (!mt->mcs_buf)
251 return false;
252
253 /* Single sample compression is represented re-using msaa compression
254 * layout type: "Compressed Multisampled Surfaces".
255 */
256 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
257 return false;
258
259 /* And finally distinguish between msaa and single sample case. */
260 return mt->num_samples <= 1;
261 }
262
263 static bool
264 intel_miptree_supports_ccs_e(struct brw_context *brw,
265 const struct intel_mipmap_tree *mt)
266 {
267 /* For now compression is only enabled for integer formats even though
268 * there exist supported floating point formats also. This is a heuristic
269 * decision based on current public benchmarks. In none of the cases these
270 * formats provided any improvement but a few cases were seen to regress.
271 * Hence these are left to to be enabled in the future when they are known
272 * to improve things.
273 */
274 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
275 return false;
276
277 if (!intel_miptree_supports_ccs(brw, mt))
278 return false;
279
280 /* Fast clear can be also used to clear srgb surfaces by using equivalent
281 * linear format. This trick, however, can't be extended to be used with
282 * lossless compression and therefore a check is needed to see if the format
283 * really is linear.
284 */
285 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
286 }
287
288 /**
289 * Determine depth format corresponding to a depth+stencil format,
290 * for separate stencil.
291 */
292 mesa_format
293 intel_depth_format_for_depthstencil_format(mesa_format format) {
294 switch (format) {
295 case MESA_FORMAT_Z24_UNORM_S8_UINT:
296 return MESA_FORMAT_Z24_UNORM_X8_UINT;
297 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
298 return MESA_FORMAT_Z_FLOAT32;
299 default:
300 return format;
301 }
302 }
303
304 static bool
305 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
306 unsigned depth0, struct intel_mipmap_level *table)
307 {
308 for (unsigned level = first_level; level <= last_level; level++) {
309 const unsigned d =
310 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
311
312 table[level].slice = calloc(d, sizeof(*table[0].slice));
313 if (!table[level].slice)
314 goto unwind;
315 }
316
317 return true;
318
319 unwind:
320 for (unsigned level = first_level; level <= last_level; level++)
321 free(table[level].slice);
322
323 return false;
324 }
325
326 /**
327 * @param for_bo Indicates that the caller is
328 * intel_miptree_create_for_bo(). If true, then do not create
329 * \c stencil_mt.
330 */
331 static struct intel_mipmap_tree *
332 intel_miptree_create_layout(struct brw_context *brw,
333 GLenum target,
334 mesa_format format,
335 GLuint first_level,
336 GLuint last_level,
337 GLuint width0,
338 GLuint height0,
339 GLuint depth0,
340 GLuint num_samples,
341 uint32_t layout_flags)
342 {
343 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
344 if (!mt)
345 return NULL;
346
347 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
348 _mesa_enum_to_string(target),
349 _mesa_get_format_name(format),
350 first_level, last_level, depth0, mt);
351
352 if (target == GL_TEXTURE_1D_ARRAY)
353 assert(height0 == 1);
354
355 mt->target = target;
356 mt->format = format;
357 mt->first_level = first_level;
358 mt->last_level = last_level;
359 mt->logical_width0 = width0;
360 mt->logical_height0 = height0;
361 mt->logical_depth0 = depth0;
362 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
363 mt->aux_usage = ISL_AUX_USAGE_NONE;
364 mt->supports_fast_clear = false;
365 mt->aux_state = NULL;
366 mt->cpp = _mesa_get_format_bytes(format);
367 mt->num_samples = num_samples;
368 mt->compressed = _mesa_is_format_compressed(format);
369 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
370 mt->refcount = 1;
371
372 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8)
373 layout_flags |= MIPTREE_LAYOUT_GEN6_HIZ_STENCIL;
374
375 int depth_multiply = 1;
376 if (num_samples > 1) {
377 /* Adjust width/height/depth for MSAA */
378 mt->msaa_layout = compute_msaa_layout(brw, format, layout_flags);
379 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
380 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
381 * "If the surface is multisampled and it is a depth or stencil
382 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
383 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
384 * proceeding:
385 *
386 * +----------------------------------------------------------------+
387 * | Num Multisamples | W_l = | H_l = |
388 * +----------------------------------------------------------------+
389 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
390 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
391 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
392 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
393 * +----------------------------------------------------------------+
394 * "
395 *
396 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
397 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
398 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
399 *
400 * Another more complicated explanation for these adjustments comes
401 * from the Sandybridge PRM, volume 4, part 1, page 31:
402 *
403 * "Any of the other messages (sample*, LOD, load4) used with a
404 * (4x) multisampled surface will in-effect sample a surface with
405 * double the height and width as that indicated in the surface
406 * state. Each pixel position on the original-sized surface is
407 * replaced with a 2x2 of samples with the following arrangement:
408 *
409 * sample 0 sample 2
410 * sample 1 sample 3"
411 *
412 * Thus, when sampling from a multisampled texture, it behaves as
413 * though the layout in memory for (x,y,sample) is:
414 *
415 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
416 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
417 *
418 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
419 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
420 *
421 * However, the actual layout of multisampled data in memory is:
422 *
423 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
424 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
425 *
426 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
427 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
428 *
429 * This pattern repeats for each 2x2 pixel block.
430 *
431 * As a result, when calculating the size of our 4-sample buffer for
432 * an odd width or height, we have to align before scaling up because
433 * sample 3 is in that bottom right 2x2 block.
434 */
435 switch (num_samples) {
436 case 2:
437 assert(brw->gen >= 8);
438 width0 = ALIGN(width0, 2) * 2;
439 height0 = ALIGN(height0, 2);
440 break;
441 case 4:
442 width0 = ALIGN(width0, 2) * 2;
443 height0 = ALIGN(height0, 2) * 2;
444 break;
445 case 8:
446 width0 = ALIGN(width0, 2) * 4;
447 height0 = ALIGN(height0, 2) * 2;
448 break;
449 case 16:
450 width0 = ALIGN(width0, 2) * 4;
451 height0 = ALIGN(height0, 2) * 4;
452 break;
453 default:
454 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
455 * or 16.
456 */
457 unreachable("not reached");
458 }
459 } else {
460 /* Non-interleaved */
461 depth_multiply = num_samples;
462 depth0 *= depth_multiply;
463 }
464 }
465
466 if (!create_mapping_table(target, first_level, last_level, depth0,
467 mt->level)) {
468 free(mt);
469 return NULL;
470 }
471
472 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
473 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
474 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
475 * used on Gen8 to make it pick a qpitch value which doesn't include space
476 * for the mipmaps. On Gen9 this is not necessary because it will
477 * automatically pick a packed qpitch value whenever mt->first_level ==
478 * mt->last_level.
479 * TODO: can we use it elsewhere?
480 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
481 */
482 if (brw->gen >= 9) {
483 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
484 } else {
485 switch (mt->msaa_layout) {
486 case INTEL_MSAA_LAYOUT_NONE:
487 case INTEL_MSAA_LAYOUT_IMS:
488 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
489 break;
490 case INTEL_MSAA_LAYOUT_UMS:
491 case INTEL_MSAA_LAYOUT_CMS:
492 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
493 break;
494 }
495 }
496
497 if (target == GL_TEXTURE_CUBE_MAP)
498 assert(depth0 == 6 * depth_multiply);
499
500 mt->physical_width0 = width0;
501 mt->physical_height0 = height0;
502 mt->physical_depth0 = depth0;
503
504 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
505 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
506 (brw->must_use_separate_stencil ||
507 (brw->has_separate_stencil && intel_miptree_supports_hiz(brw, mt)))) {
508 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
509 if (brw->gen == 6) {
510 stencil_flags |= MIPTREE_LAYOUT_TILING_ANY;
511 }
512
513 mt->stencil_mt = intel_miptree_create(brw,
514 mt->target,
515 MESA_FORMAT_S_UINT8,
516 mt->first_level,
517 mt->last_level,
518 mt->logical_width0,
519 mt->logical_height0,
520 mt->logical_depth0,
521 num_samples,
522 stencil_flags);
523
524 if (!mt->stencil_mt) {
525 intel_miptree_release(&mt);
526 return NULL;
527 }
528 mt->stencil_mt->r8stencil_needs_update = true;
529
530 /* Fix up the Z miptree format for how we're splitting out separate
531 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
532 */
533 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
534 mt->cpp = 4;
535
536 if (format == mt->format) {
537 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
538 _mesa_get_format_name(mt->format));
539 }
540 }
541
542 if (layout_flags & MIPTREE_LAYOUT_GEN6_HIZ_STENCIL)
543 mt->array_layout = GEN6_HIZ_STENCIL;
544
545 /*
546 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
547 * multisampled or have an AUX buffer attached to it.
548 *
549 * GEN | MSRT | AUX_CCS_* or AUX_MCS
550 * -------------------------------------------
551 * 9 | HALIGN_16 | HALIGN_16
552 * 8 | HALIGN_ANY | HALIGN_16
553 * 7 | ? | ?
554 * 6 | ? | ?
555 */
556 if (intel_miptree_supports_ccs(brw, mt)) {
557 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
558 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
559 } else if (brw->gen >= 9 && num_samples > 1) {
560 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
561 } else {
562 const UNUSED bool is_lossless_compressed_aux =
563 brw->gen >= 9 && num_samples == 1 &&
564 mt->format == MESA_FORMAT_R_UINT32;
565
566 /* For now, nothing else has this requirement */
567 assert(is_lossless_compressed_aux ||
568 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
569 }
570
571 if (!brw_miptree_layout(brw, mt, layout_flags)) {
572 intel_miptree_release(&mt);
573 return NULL;
574 }
575
576 return mt;
577 }
578
579
580 /**
581 * Choose the aux usage for this miptree. This function must be called fairly
582 * late in the miptree create process after we have a tiling.
583 */
584 static void
585 intel_miptree_choose_aux_usage(struct brw_context *brw,
586 struct intel_mipmap_tree *mt)
587 {
588 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
589
590 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
591 mt->aux_usage = ISL_AUX_USAGE_MCS;
592 } else if (intel_tiling_supports_ccs(brw, mt->tiling) &&
593 intel_miptree_supports_ccs(brw, mt)) {
594 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
595 brw->gen >= 9 && !mt->is_scanout &&
596 intel_miptree_supports_ccs_e(brw, mt)) {
597 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
598 } else {
599 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
600 }
601 } else if (intel_miptree_supports_hiz(brw, mt)) {
602 mt->aux_usage = ISL_AUX_USAGE_HIZ;
603 }
604
605 /* We can do fast-clear on all auxiliary surface types that are
606 * allocated through the normal texture creation paths.
607 */
608 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
609 mt->supports_fast_clear = true;
610 }
611
612
613 /**
614 * Choose an appropriate uncompressed format for a requested
615 * compressed format, if unsupported.
616 */
617 mesa_format
618 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
619 {
620 /* No need to lower ETC formats on these platforms,
621 * they are supported natively.
622 */
623 if (brw->gen >= 8 || brw->is_baytrail)
624 return format;
625
626 switch (format) {
627 case MESA_FORMAT_ETC1_RGB8:
628 return MESA_FORMAT_R8G8B8X8_UNORM;
629 case MESA_FORMAT_ETC2_RGB8:
630 return MESA_FORMAT_R8G8B8X8_UNORM;
631 case MESA_FORMAT_ETC2_SRGB8:
632 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
633 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
634 return MESA_FORMAT_B8G8R8A8_SRGB;
635 case MESA_FORMAT_ETC2_RGBA8_EAC:
636 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
637 return MESA_FORMAT_R8G8B8A8_UNORM;
638 case MESA_FORMAT_ETC2_R11_EAC:
639 return MESA_FORMAT_R_UNORM16;
640 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
641 return MESA_FORMAT_R_SNORM16;
642 case MESA_FORMAT_ETC2_RG11_EAC:
643 return MESA_FORMAT_R16G16_UNORM;
644 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
645 return MESA_FORMAT_R16G16_SNORM;
646 default:
647 /* Non ETC1 / ETC2 format */
648 return format;
649 }
650 }
651
652 /** \brief Assert that the level and layer are valid for the miptree. */
653 void
654 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
655 uint32_t level,
656 uint32_t layer)
657 {
658 (void) mt;
659 (void) level;
660 (void) layer;
661
662 assert(level >= mt->first_level);
663 assert(level <= mt->last_level);
664
665 if (mt->surf.size > 0)
666 assert(layer < (mt->surf.dim == ISL_SURF_DIM_3D ?
667 minify(mt->surf.phys_level0_sa.depth, level) :
668 mt->surf.phys_level0_sa.array_len));
669 else
670 assert(layer < mt->level[level].depth);
671 }
672
673 static enum isl_aux_state **
674 create_aux_state_map(struct intel_mipmap_tree *mt,
675 enum isl_aux_state initial)
676 {
677 const uint32_t levels = mt->last_level + 1;
678
679 uint32_t total_slices = 0;
680 for (uint32_t level = 0; level < levels; level++)
681 total_slices += mt->level[level].depth;
682
683 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
684
685 /* We're going to allocate a single chunk of data for both the per-level
686 * reference array and the arrays of aux_state. This makes cleanup
687 * significantly easier.
688 */
689 const size_t total_size = per_level_array_size +
690 total_slices * sizeof(enum isl_aux_state);
691 void *data = malloc(total_size);
692 if (data == NULL)
693 return NULL;
694
695 enum isl_aux_state **per_level_arr = data;
696 enum isl_aux_state *s = data + per_level_array_size;
697 for (uint32_t level = 0; level < levels; level++) {
698 per_level_arr[level] = s;
699 for (uint32_t a = 0; a < mt->level[level].depth; a++)
700 *(s++) = initial;
701 }
702 assert((void *)s == data + total_size);
703
704 return per_level_arr;
705 }
706
707 static void
708 free_aux_state_map(enum isl_aux_state **state)
709 {
710 free(state);
711 }
712
713 static struct intel_mipmap_tree *
714 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
715 unsigned first_level, unsigned last_level,
716 unsigned width0, unsigned height0, unsigned depth0,
717 unsigned num_samples, enum isl_tiling isl_tiling,
718 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
719 struct brw_bo *bo)
720 {
721 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
722 if (!mt)
723 return NULL;
724
725 if (!create_mapping_table(target, first_level, last_level, depth0,
726 mt->level)) {
727 free(mt);
728 return NULL;
729 }
730
731 if (target == GL_TEXTURE_CUBE_MAP ||
732 target == GL_TEXTURE_CUBE_MAP_ARRAY)
733 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
734
735 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
736 __func__,
737 _mesa_enum_to_string(target),
738 _mesa_get_format_name(format),
739 num_samples, width0, height0, depth0,
740 first_level, last_level, mt);
741
742 struct isl_surf_init_info init_info = {
743 .dim = get_isl_surf_dim(target),
744 .format = translate_tex_format(brw, format, false),
745 .width = width0,
746 .height = height0,
747 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
748 .levels = last_level - first_level + 1,
749 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
750 .samples = MAX2(num_samples, 1),
751 .usage = isl_usage_flags,
752 .tiling_flags = 1u << isl_tiling
753 };
754
755 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
756 goto fail;
757
758 assert(mt->surf.size % mt->surf.row_pitch == 0);
759
760 if (!bo) {
761 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
762 mt->surf.size,
763 isl_tiling_to_bufmgr_tiling(isl_tiling),
764 mt->surf.row_pitch, alloc_flags);
765 if (!mt->bo)
766 goto fail;
767 } else {
768 mt->bo = bo;
769 }
770
771 mt->first_level = first_level;
772 mt->last_level = last_level;
773 mt->target = target;
774 mt->format = format;
775 mt->refcount = 1;
776 mt->aux_state = NULL;
777
778 return mt;
779
780 fail:
781 intel_miptree_release(&mt);
782 return NULL;
783 }
784
785 static struct intel_mipmap_tree *
786 miptree_create(struct brw_context *brw,
787 GLenum target,
788 mesa_format format,
789 GLuint first_level,
790 GLuint last_level,
791 GLuint width0,
792 GLuint height0,
793 GLuint depth0,
794 GLuint num_samples,
795 uint32_t layout_flags)
796 {
797 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8)
798 return make_surface(brw, target, format, first_level, last_level,
799 width0, height0, depth0, num_samples, ISL_TILING_W,
800 ISL_SURF_USAGE_STENCIL_BIT |
801 ISL_SURF_USAGE_TEXTURE_BIT,
802 BO_ALLOC_FOR_RENDER, NULL);
803
804 struct intel_mipmap_tree *mt;
805 mesa_format tex_format = format;
806 mesa_format etc_format = MESA_FORMAT_NONE;
807 uint32_t alloc_flags = 0;
808
809 format = intel_lower_compressed_format(brw, format);
810
811 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
812
813 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
814 mt = intel_miptree_create_layout(brw, target, format,
815 first_level, last_level, width0,
816 height0, depth0, num_samples,
817 layout_flags);
818 if (!mt)
819 return NULL;
820
821 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
822 mt->tiling = I915_TILING_Y;
823
824 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
825 alloc_flags |= BO_ALLOC_FOR_RENDER;
826
827 mt->etc_format = etc_format;
828
829 if (format == MESA_FORMAT_S_UINT8) {
830 /* Align to size of W tile, 64x64. */
831 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
832 ALIGN(mt->total_width, 64),
833 ALIGN(mt->total_height, 64),
834 mt->cpp, mt->tiling, &mt->pitch,
835 alloc_flags);
836 } else {
837 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
838 mt->total_width, mt->total_height,
839 mt->cpp, mt->tiling, &mt->pitch,
840 alloc_flags);
841 }
842
843 if (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT)
844 mt->bo->cache_coherent = false;
845
846 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
847 intel_miptree_choose_aux_usage(brw, mt);
848
849 return mt;
850 }
851
852 struct intel_mipmap_tree *
853 intel_miptree_create(struct brw_context *brw,
854 GLenum target,
855 mesa_format format,
856 GLuint first_level,
857 GLuint last_level,
858 GLuint width0,
859 GLuint height0,
860 GLuint depth0,
861 GLuint num_samples,
862 uint32_t layout_flags)
863 {
864 struct intel_mipmap_tree *mt = miptree_create(
865 brw, target, format,
866 first_level, last_level,
867 width0, height0, depth0, num_samples,
868 layout_flags);
869
870 /* If the BO is too large to fit in the aperture, we need to use the
871 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
872 * handle Y-tiling, so we need to fall back to X.
873 */
874 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
875 mt->tiling == I915_TILING_Y) {
876 const uint32_t alloc_flags =
877 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
878 BO_ALLOC_FOR_RENDER : 0;
879 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
880 mt->total_width, mt->total_height);
881
882 mt->tiling = I915_TILING_X;
883 brw_bo_unreference(mt->bo);
884 mt->bo = brw_bo_alloc_tiled_2d(brw->bufmgr, "miptree",
885 mt->total_width, mt->total_height, mt->cpp,
886 mt->tiling, &mt->pitch, alloc_flags);
887 }
888
889 mt->offset = 0;
890
891 if (!mt->bo) {
892 intel_miptree_release(&mt);
893 return NULL;
894 }
895
896
897 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
898 assert(mt->num_samples > 1);
899 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
900 intel_miptree_release(&mt);
901 return NULL;
902 }
903 }
904
905 /* Since CCS_E can compress more than just clear color, we create the CCS
906 * for it up-front. For CCS_D which only compresses clears, we create the
907 * CCS on-demand when a clear occurs that wants one.
908 */
909 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
910 if (!intel_miptree_alloc_ccs(brw, mt)) {
911 intel_miptree_release(&mt);
912 return NULL;
913 }
914 }
915
916 return mt;
917 }
918
919 struct intel_mipmap_tree *
920 intel_miptree_create_for_bo(struct brw_context *brw,
921 struct brw_bo *bo,
922 mesa_format format,
923 uint32_t offset,
924 uint32_t width,
925 uint32_t height,
926 uint32_t depth,
927 int pitch,
928 uint32_t layout_flags)
929 {
930 struct intel_mipmap_tree *mt;
931 uint32_t tiling, swizzle;
932 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
933
934 if (brw->gen == 6 && format == MESA_FORMAT_S_UINT8) {
935 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
936 0, 0, width, height, depth, 1, ISL_TILING_W,
937 ISL_SURF_USAGE_STENCIL_BIT |
938 ISL_SURF_USAGE_TEXTURE_BIT,
939 BO_ALLOC_FOR_RENDER, bo);
940 if (!mt)
941 return NULL;
942
943 assert(bo->size >= mt->surf.size);
944
945 brw_bo_reference(bo);
946 return mt;
947 }
948
949 brw_bo_get_tiling(bo, &tiling, &swizzle);
950
951 /* Nothing will be able to use this miptree with the BO if the offset isn't
952 * aligned.
953 */
954 if (tiling != I915_TILING_NONE)
955 assert(offset % 4096 == 0);
956
957 /* miptrees can't handle negative pitch. If you need flipping of images,
958 * that's outside of the scope of the mt.
959 */
960 assert(pitch >= 0);
961
962 /* The BO already has a tiling format and we shouldn't confuse the lower
963 * layers by making it try to find a tiling format again.
964 */
965 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
966 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
967
968 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
969 mt = intel_miptree_create_layout(brw, target, format,
970 0, 0,
971 width, height, depth, 0,
972 layout_flags);
973 if (!mt)
974 return NULL;
975
976 brw_bo_reference(bo);
977 mt->bo = bo;
978 mt->pitch = pitch;
979 mt->offset = offset;
980 mt->tiling = tiling;
981
982 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX)) {
983 intel_miptree_choose_aux_usage(brw, mt);
984
985 /* Since CCS_E can compress more than just clear color, we create the
986 * CCS for it up-front. For CCS_D which only compresses clears, we
987 * create the CCS on-demand when a clear occurs that wants one.
988 */
989 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
990 if (!intel_miptree_alloc_ccs(brw, mt)) {
991 intel_miptree_release(&mt);
992 return NULL;
993 }
994 }
995 }
996
997 return mt;
998 }
999
1000 static struct intel_mipmap_tree *
1001 miptree_create_for_planar_image(struct brw_context *brw,
1002 __DRIimage *image, GLenum target)
1003 {
1004 struct intel_image_format *f = image->planar_format;
1005 struct intel_mipmap_tree *planar_mt;
1006
1007 for (int i = 0; i < f->nplanes; i++) {
1008 const int index = f->planes[i].buffer_index;
1009 const uint32_t dri_format = f->planes[i].dri_format;
1010 const mesa_format format = driImageFormatToGLFormat(dri_format);
1011 const uint32_t width = image->width >> f->planes[i].width_shift;
1012 const uint32_t height = image->height >> f->planes[i].height_shift;
1013
1014 /* Disable creation of the texture's aux buffers because the driver
1015 * exposes no EGL API to manage them. That is, there is no API for
1016 * resolving the aux buffer's content to the main buffer nor for
1017 * invalidating the aux buffer's content.
1018 */
1019 struct intel_mipmap_tree *mt =
1020 intel_miptree_create_for_bo(brw, image->bo, format,
1021 image->offsets[index],
1022 width, height, 1,
1023 image->strides[index],
1024 MIPTREE_LAYOUT_DISABLE_AUX);
1025 if (mt == NULL)
1026 return NULL;
1027
1028 mt->target = target;
1029 mt->total_width = width;
1030 mt->total_height = height;
1031
1032 if (i == 0)
1033 planar_mt = mt;
1034 else
1035 planar_mt->plane[i - 1] = mt;
1036 }
1037
1038 return planar_mt;
1039 }
1040
1041 struct intel_mipmap_tree *
1042 intel_miptree_create_for_dri_image(struct brw_context *brw,
1043 __DRIimage *image, GLenum target)
1044 {
1045 if (image->planar_format && image->planar_format->nplanes > 0)
1046 return miptree_create_for_planar_image(brw, image, target);
1047
1048 mesa_format format = image->format;
1049
1050 if (!brw->ctx.TextureFormatSupported[format]) {
1051 /* The texture storage paths in core Mesa detect if the driver does not
1052 * support the user-requested format, and then searches for a
1053 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1054 * do the fallbacks here for important formats.
1055 *
1056 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1057 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1058 * the Chrome OS compositor consumes as dma_buf EGLImages.
1059 */
1060 format = _mesa_format_fallback_rgbx_to_rgba(format);
1061 }
1062
1063 if (!brw->ctx.TextureFormatSupported[format])
1064 return NULL;
1065
1066 /* Disable creation of the texture's aux buffers because the driver exposes
1067 * no EGL API to manage them. That is, there is no API for resolving the aux
1068 * buffer's content to the main buffer nor for invalidating the aux buffer's
1069 * content.
1070 */
1071 struct intel_mipmap_tree *mt =
1072 intel_miptree_create_for_bo(brw, image->bo, format,
1073 image->offset, image->width, image->height, 1,
1074 image->pitch,
1075 MIPTREE_LAYOUT_DISABLE_AUX);
1076 if (mt == NULL)
1077 return NULL;
1078
1079 mt->target = target;
1080 mt->total_width = image->width;
1081 mt->total_height = image->height;
1082 mt->level[0].slice[0].x_offset = image->tile_x;
1083 mt->level[0].slice[0].y_offset = image->tile_y;
1084
1085 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1086 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1087 * trouble resolving back to destination image due to alignment issues.
1088 */
1089 if (!brw->has_surface_tile_offset) {
1090 uint32_t draw_x, draw_y;
1091 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1092
1093 if (draw_x != 0 || draw_y != 0) {
1094 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1095 intel_miptree_release(&mt);
1096 return NULL;
1097 }
1098 }
1099
1100 return mt;
1101 }
1102
1103 /**
1104 * For a singlesample renderbuffer, this simply wraps the given BO with a
1105 * miptree.
1106 *
1107 * For a multisample renderbuffer, this wraps the window system's
1108 * (singlesample) BO with a singlesample miptree attached to the
1109 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1110 * that will contain the actual rendering (which is lazily resolved to
1111 * irb->singlesample_mt).
1112 */
1113 void
1114 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1115 struct intel_renderbuffer *irb,
1116 struct brw_bo *bo,
1117 uint32_t width, uint32_t height,
1118 uint32_t pitch)
1119 {
1120 struct intel_mipmap_tree *singlesample_mt = NULL;
1121 struct intel_mipmap_tree *multisample_mt = NULL;
1122 struct gl_renderbuffer *rb = &irb->Base.Base;
1123 mesa_format format = rb->Format;
1124 int num_samples = rb->NumSamples;
1125
1126 /* Only the front and back buffers, which are color buffers, are allocated
1127 * through the image loader.
1128 */
1129 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1130 _mesa_get_format_base_format(format) == GL_RGBA);
1131
1132 singlesample_mt = intel_miptree_create_for_bo(intel,
1133 bo,
1134 format,
1135 0,
1136 width,
1137 height,
1138 1,
1139 pitch,
1140 MIPTREE_LAYOUT_FOR_SCANOUT);
1141 if (!singlesample_mt)
1142 goto fail;
1143
1144 if (num_samples == 0) {
1145 intel_miptree_release(&irb->mt);
1146 irb->mt = singlesample_mt;
1147
1148 assert(!irb->singlesample_mt);
1149 } else {
1150 intel_miptree_release(&irb->singlesample_mt);
1151 irb->singlesample_mt = singlesample_mt;
1152
1153 if (!irb->mt ||
1154 irb->mt->logical_width0 != width ||
1155 irb->mt->logical_height0 != height) {
1156 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1157 format,
1158 width,
1159 height,
1160 num_samples);
1161 if (!multisample_mt)
1162 goto fail;
1163
1164 irb->need_downsample = false;
1165 intel_miptree_release(&irb->mt);
1166 irb->mt = multisample_mt;
1167 }
1168 }
1169 return;
1170
1171 fail:
1172 intel_miptree_release(&irb->singlesample_mt);
1173 intel_miptree_release(&irb->mt);
1174 return;
1175 }
1176
1177 struct intel_mipmap_tree*
1178 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1179 mesa_format format,
1180 uint32_t width,
1181 uint32_t height,
1182 uint32_t num_samples)
1183 {
1184 struct intel_mipmap_tree *mt;
1185 uint32_t depth = 1;
1186 bool ok;
1187 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1188 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1189 MIPTREE_LAYOUT_TILING_ANY |
1190 MIPTREE_LAYOUT_FOR_SCANOUT;
1191
1192 mt = intel_miptree_create(brw, target, format, 0, 0,
1193 width, height, depth, num_samples,
1194 layout_flags);
1195 if (!mt)
1196 goto fail;
1197
1198 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1199 ok = intel_miptree_alloc_hiz(brw, mt);
1200 if (!ok)
1201 goto fail;
1202 }
1203
1204 return mt;
1205
1206 fail:
1207 intel_miptree_release(&mt);
1208 return NULL;
1209 }
1210
1211 void
1212 intel_miptree_reference(struct intel_mipmap_tree **dst,
1213 struct intel_mipmap_tree *src)
1214 {
1215 if (*dst == src)
1216 return;
1217
1218 intel_miptree_release(dst);
1219
1220 if (src) {
1221 src->refcount++;
1222 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1223 }
1224
1225 *dst = src;
1226 }
1227
1228 static void
1229 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1230 {
1231 if (aux_buf == NULL)
1232 return;
1233
1234 brw_bo_unreference(aux_buf->bo);
1235
1236 free(aux_buf);
1237 }
1238
1239 void
1240 intel_miptree_release(struct intel_mipmap_tree **mt)
1241 {
1242 if (!*mt)
1243 return;
1244
1245 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1246 if (--(*mt)->refcount <= 0) {
1247 GLuint i;
1248
1249 DBG("%s deleting %p\n", __func__, *mt);
1250
1251 brw_bo_unreference((*mt)->bo);
1252 intel_miptree_release(&(*mt)->stencil_mt);
1253 intel_miptree_release(&(*mt)->r8stencil_mt);
1254 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1255 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1256 free_aux_state_map((*mt)->aux_state);
1257
1258 intel_miptree_release(&(*mt)->plane[0]);
1259 intel_miptree_release(&(*mt)->plane[1]);
1260
1261 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1262 free((*mt)->level[i].slice);
1263 }
1264
1265 free(*mt);
1266 }
1267 *mt = NULL;
1268 }
1269
1270
1271 void
1272 intel_get_image_dims(struct gl_texture_image *image,
1273 int *width, int *height, int *depth)
1274 {
1275 switch (image->TexObject->Target) {
1276 case GL_TEXTURE_1D_ARRAY:
1277 /* For a 1D Array texture the OpenGL API will treat the image height as
1278 * the number of array slices. For Intel hardware, we treat the 1D array
1279 * as a 2D Array with a height of 1. So, here we want to swap image
1280 * height and depth.
1281 */
1282 assert(image->Depth == 1);
1283 *width = image->Width;
1284 *height = 1;
1285 *depth = image->Height;
1286 break;
1287 case GL_TEXTURE_CUBE_MAP:
1288 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1289 * though we really have 6 slices.
1290 */
1291 assert(image->Depth == 1);
1292 *width = image->Width;
1293 *height = image->Height;
1294 *depth = 6;
1295 break;
1296 default:
1297 *width = image->Width;
1298 *height = image->Height;
1299 *depth = image->Depth;
1300 break;
1301 }
1302 }
1303
1304 /**
1305 * Can the image be pulled into a unified mipmap tree? This mirrors
1306 * the completeness test in a lot of ways.
1307 *
1308 * Not sure whether I want to pass gl_texture_image here.
1309 */
1310 bool
1311 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1312 struct gl_texture_image *image)
1313 {
1314 struct intel_texture_image *intelImage = intel_texture_image(image);
1315 GLuint level = intelImage->base.Base.Level;
1316 int width, height, depth;
1317
1318 /* glTexImage* choose the texture object based on the target passed in, and
1319 * objects can't change targets over their lifetimes, so this should be
1320 * true.
1321 */
1322 assert(image->TexObject->Target == mt->target);
1323
1324 mesa_format mt_format = mt->format;
1325 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1326 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1327 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1328 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1329 if (mt->etc_format != MESA_FORMAT_NONE)
1330 mt_format = mt->etc_format;
1331
1332 if (image->TexFormat != mt_format)
1333 return false;
1334
1335 intel_get_image_dims(image, &width, &height, &depth);
1336
1337 if (mt->target == GL_TEXTURE_CUBE_MAP)
1338 depth = 6;
1339
1340 if (mt->surf.size > 0) {
1341 if (level >= mt->surf.levels)
1342 return false;
1343
1344 const unsigned level_depth =
1345 mt->surf.dim == ISL_SURF_DIM_3D ?
1346 minify(mt->surf.logical_level0_px.depth, level) :
1347 mt->surf.logical_level0_px.array_len;
1348
1349 return width == minify(mt->surf.logical_level0_px.width, level) &&
1350 height == minify(mt->surf.logical_level0_px.height, level) &&
1351 depth == level_depth &&
1352 MAX2(image->NumSamples, 1) == mt->surf.samples;
1353 }
1354
1355 int level_depth = mt->level[level].depth;
1356 if (mt->num_samples > 1) {
1357 switch (mt->msaa_layout) {
1358 case INTEL_MSAA_LAYOUT_NONE:
1359 case INTEL_MSAA_LAYOUT_IMS:
1360 break;
1361 case INTEL_MSAA_LAYOUT_UMS:
1362 case INTEL_MSAA_LAYOUT_CMS:
1363 level_depth /= mt->num_samples;
1364 break;
1365 }
1366 }
1367
1368 /* Test image dimensions against the base level image adjusted for
1369 * minification. This will also catch images not present in the
1370 * tree, changed targets, etc.
1371 */
1372 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1373 height != minify(mt->logical_height0, level - mt->first_level) ||
1374 depth != level_depth) {
1375 return false;
1376 }
1377
1378 if (image->NumSamples != mt->num_samples)
1379 return false;
1380
1381 return true;
1382 }
1383
1384
1385 void
1386 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1387 GLuint level,
1388 GLuint x, GLuint y, GLuint d)
1389 {
1390 mt->level[level].depth = d;
1391 mt->level[level].level_x = x;
1392 mt->level[level].level_y = y;
1393
1394 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1395 level, d, x, y);
1396
1397 assert(mt->level[level].slice);
1398
1399 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1400 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1401 }
1402
1403
1404 void
1405 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1406 GLuint level, GLuint img,
1407 GLuint x, GLuint y)
1408 {
1409 if (img == 0 && level == 0)
1410 assert(x == 0 && y == 0);
1411
1412 assert(img < mt->level[level].depth);
1413
1414 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1415 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1416
1417 DBG("%s level %d img %d pos %d,%d\n",
1418 __func__, level, img,
1419 mt->level[level].slice[img].x_offset,
1420 mt->level[level].slice[img].y_offset);
1421 }
1422
1423 void
1424 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1425 GLuint level, GLuint slice,
1426 GLuint *x, GLuint *y)
1427 {
1428 if (mt->surf.size > 0) {
1429 uint32_t x_offset_sa, y_offset_sa;
1430
1431 /* Given level is relative to level zero while the miptree may be
1432 * represent just a subset of all levels starting from 'first_level'.
1433 */
1434 assert(level >= mt->first_level);
1435 level -= mt->first_level;
1436
1437 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1438 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1439 isl_surf_get_image_offset_sa(&mt->surf, level, slice, z,
1440 &x_offset_sa, &y_offset_sa);
1441
1442 *x = x_offset_sa;
1443 *y = y_offset_sa;
1444 return;
1445 }
1446
1447 assert(slice < mt->level[level].depth);
1448
1449 *x = mt->level[level].slice[slice].x_offset;
1450 *y = mt->level[level].slice[slice].y_offset;
1451 }
1452
1453
1454 /**
1455 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1456 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1457 * and tile_h is set to 1.
1458 */
1459 void
1460 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
1461 uint32_t *tile_w, uint32_t *tile_h)
1462 {
1463 switch (tiling) {
1464 case I915_TILING_X:
1465 *tile_w = 512;
1466 *tile_h = 8;
1467 break;
1468 case I915_TILING_Y:
1469 *tile_w = 128;
1470 *tile_h = 32;
1471 break;
1472 case I915_TILING_NONE:
1473 *tile_w = cpp;
1474 *tile_h = 1;
1475 break;
1476 default:
1477 unreachable("not reached");
1478 }
1479 }
1480
1481
1482 /**
1483 * This function computes masks that may be used to select the bits of the X
1484 * and Y coordinates that indicate the offset within a tile. If the BO is
1485 * untiled, the masks are set to 0.
1486 */
1487 void
1488 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
1489 uint32_t *mask_x, uint32_t *mask_y)
1490 {
1491 uint32_t tile_w_bytes, tile_h;
1492
1493 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1494
1495 *mask_x = tile_w_bytes / cpp - 1;
1496 *mask_y = tile_h - 1;
1497 }
1498
1499 /**
1500 * Compute the offset (in bytes) from the start of the BO to the given x
1501 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1502 * multiples of the tile size.
1503 */
1504 uint32_t
1505 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1506 uint32_t x, uint32_t y)
1507 {
1508 int cpp = mt->cpp;
1509 uint32_t pitch = mt->pitch;
1510 uint32_t tiling = mt->tiling;
1511
1512 switch (tiling) {
1513 default:
1514 unreachable("not reached");
1515 case I915_TILING_NONE:
1516 return y * pitch + x * cpp;
1517 case I915_TILING_X:
1518 assert((x % (512 / cpp)) == 0);
1519 assert((y % 8) == 0);
1520 return y * pitch + x / (512 / cpp) * 4096;
1521 case I915_TILING_Y:
1522 assert((x % (128 / cpp)) == 0);
1523 assert((y % 32) == 0);
1524 return y * pitch + x / (128 / cpp) * 4096;
1525 }
1526 }
1527
1528 /**
1529 * Rendering with tiled buffers requires that the base address of the buffer
1530 * be aligned to a page boundary. For renderbuffers, and sometimes with
1531 * textures, we may want the surface to point at a texture image level that
1532 * isn't at a page boundary.
1533 *
1534 * This function returns an appropriately-aligned base offset
1535 * according to the tiling restrictions, plus any required x/y offset
1536 * from there.
1537 */
1538 uint32_t
1539 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1540 GLuint level, GLuint slice,
1541 uint32_t *tile_x,
1542 uint32_t *tile_y)
1543 {
1544 uint32_t x, y;
1545 uint32_t mask_x, mask_y;
1546
1547 intel_get_tile_masks(mt->tiling, mt->cpp, &mask_x, &mask_y);
1548 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1549
1550 *tile_x = x & mask_x;
1551 *tile_y = y & mask_y;
1552
1553 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1554 }
1555
1556 static void
1557 intel_miptree_copy_slice_sw(struct brw_context *brw,
1558 struct intel_mipmap_tree *src_mt,
1559 unsigned src_level, unsigned src_layer,
1560 struct intel_mipmap_tree *dst_mt,
1561 unsigned dst_level, unsigned dst_layer,
1562 unsigned width, unsigned height)
1563 {
1564 void *src, *dst;
1565 ptrdiff_t src_stride, dst_stride;
1566 const unsigned cpp = dst_mt->surf.size > 0 ?
1567 (isl_format_get_layout(dst_mt->surf.format)->bpb / 8) : dst_mt->cpp;
1568
1569 intel_miptree_map(brw, src_mt,
1570 src_level, src_layer,
1571 0, 0,
1572 width, height,
1573 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1574 &src, &src_stride);
1575
1576 intel_miptree_map(brw, dst_mt,
1577 dst_level, dst_layer,
1578 0, 0,
1579 width, height,
1580 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1581 BRW_MAP_DIRECT_BIT,
1582 &dst, &dst_stride);
1583
1584 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1585 _mesa_get_format_name(src_mt->format),
1586 src_mt, src, src_stride,
1587 _mesa_get_format_name(dst_mt->format),
1588 dst_mt, dst, dst_stride,
1589 width, height);
1590
1591 int row_size = cpp * width;
1592 if (src_stride == row_size &&
1593 dst_stride == row_size) {
1594 memcpy(dst, src, row_size * height);
1595 } else {
1596 for (int i = 0; i < height; i++) {
1597 memcpy(dst, src, row_size);
1598 dst += dst_stride;
1599 src += src_stride;
1600 }
1601 }
1602
1603 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1604 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1605
1606 /* Don't forget to copy the stencil data over, too. We could have skipped
1607 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1608 * shuffling the two data sources in/out of temporary storage instead of
1609 * the direct mapping we get this way.
1610 */
1611 if (dst_mt->stencil_mt) {
1612 assert(src_mt->stencil_mt);
1613 intel_miptree_copy_slice_sw(brw,
1614 src_mt->stencil_mt, src_level, src_layer,
1615 dst_mt->stencil_mt, dst_level, dst_layer,
1616 width, height);
1617 }
1618 }
1619
1620 void
1621 intel_miptree_copy_slice(struct brw_context *brw,
1622 struct intel_mipmap_tree *src_mt,
1623 unsigned src_level, unsigned src_layer,
1624 struct intel_mipmap_tree *dst_mt,
1625 unsigned dst_level, unsigned dst_layer)
1626
1627 {
1628 mesa_format format = src_mt->format;
1629 uint32_t width, height;
1630
1631 if (src_mt->surf.size > 0) {
1632 width = minify(src_mt->surf.phys_level0_sa.width,
1633 src_level - src_mt->first_level);
1634 height = minify(src_mt->surf.phys_level0_sa.height,
1635 src_level - src_mt->first_level);
1636
1637 if (src_mt->surf.dim == ISL_SURF_DIM_3D)
1638 assert(src_layer < minify(src_mt->surf.phys_level0_sa.depth,
1639 src_level - src_mt->first_level));
1640 else
1641 assert(src_layer < src_mt->surf.phys_level0_sa.array_len);
1642 } else {
1643 width = minify(src_mt->physical_width0,
1644 src_level - src_mt->first_level);
1645 height = minify(src_mt->physical_height0,
1646 src_level - src_mt->first_level);
1647 assert(src_layer < src_mt->level[src_level].depth);
1648 }
1649
1650 assert(src_mt->format == dst_mt->format);
1651
1652 if (dst_mt->compressed) {
1653 unsigned int i, j;
1654 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1655 height = ALIGN_NPOT(height, j) / j;
1656 width = ALIGN_NPOT(width, i) / i;
1657 }
1658
1659 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1660 * below won't apply since we can't do the depth's Y tiling or the
1661 * stencil's W tiling in the blitter.
1662 */
1663 if (src_mt->stencil_mt) {
1664 intel_miptree_copy_slice_sw(brw,
1665 src_mt, src_level, src_layer,
1666 dst_mt, dst_level, dst_layer,
1667 width, height);
1668 return;
1669 }
1670
1671 uint32_t dst_x, dst_y, src_x, src_y;
1672 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1673 &dst_x, &dst_y);
1674 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1675 &src_x, &src_y);
1676
1677 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1678 _mesa_get_format_name(src_mt->format),
1679 src_mt, src_x, src_y, src_mt->pitch,
1680 _mesa_get_format_name(dst_mt->format),
1681 dst_mt, dst_x, dst_y, dst_mt->pitch,
1682 width, height);
1683
1684 if (!intel_miptree_blit(brw,
1685 src_mt, src_level, src_layer, 0, 0, false,
1686 dst_mt, dst_level, dst_layer, 0, 0, false,
1687 width, height, GL_COPY)) {
1688 perf_debug("miptree validate blit for %s failed\n",
1689 _mesa_get_format_name(format));
1690
1691 intel_miptree_copy_slice_sw(brw,
1692 src_mt, src_level, src_layer,
1693 dst_mt, dst_level, dst_layer,
1694 width, height);
1695 }
1696 }
1697
1698 /**
1699 * Copies the image's current data to the given miptree, and associates that
1700 * miptree with the image.
1701 *
1702 * If \c invalidate is true, then the actual image data does not need to be
1703 * copied, but the image still needs to be associated to the new miptree (this
1704 * is set to true if we're about to clear the image).
1705 */
1706 void
1707 intel_miptree_copy_teximage(struct brw_context *brw,
1708 struct intel_texture_image *intelImage,
1709 struct intel_mipmap_tree *dst_mt,
1710 bool invalidate)
1711 {
1712 struct intel_mipmap_tree *src_mt = intelImage->mt;
1713 struct intel_texture_object *intel_obj =
1714 intel_texture_object(intelImage->base.Base.TexObject);
1715 int level = intelImage->base.Base.Level;
1716 const unsigned face = intelImage->base.Base.Face;
1717 unsigned start_layer, end_layer;
1718
1719 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1720 assert(face == 0);
1721 assert(intelImage->base.Base.Height);
1722 start_layer = 0;
1723 end_layer = intelImage->base.Base.Height - 1;
1724 } else if (face > 0) {
1725 start_layer = face;
1726 end_layer = face;
1727 } else {
1728 assert(intelImage->base.Base.Depth);
1729 start_layer = 0;
1730 end_layer = intelImage->base.Base.Depth - 1;
1731 }
1732
1733 if (!invalidate) {
1734 for (unsigned i = start_layer; i <= end_layer; i++) {
1735 intel_miptree_copy_slice(brw,
1736 src_mt, level, i,
1737 dst_mt, level, i);
1738 }
1739 }
1740
1741 intel_miptree_reference(&intelImage->mt, dst_mt);
1742 intel_obj->needs_validate = true;
1743 }
1744
1745 static void
1746 intel_miptree_init_mcs(struct brw_context *brw,
1747 struct intel_mipmap_tree *mt,
1748 int init_value)
1749 {
1750 assert(mt->mcs_buf != NULL);
1751
1752 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1753 *
1754 * When MCS buffer is enabled and bound to MSRT, it is required that it
1755 * is cleared prior to any rendering.
1756 *
1757 * Since we don't use the MCS buffer for any purpose other than rendering,
1758 * it makes sense to just clear it immediately upon allocation.
1759 *
1760 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1761 */
1762 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1763 if (unlikely(map == NULL)) {
1764 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1765 brw_bo_unreference(mt->mcs_buf->bo);
1766 free(mt->mcs_buf);
1767 return;
1768 }
1769 void *data = map;
1770 memset(data, init_value, mt->mcs_buf->size);
1771 brw_bo_unmap(mt->mcs_buf->bo);
1772 }
1773
1774 static struct intel_miptree_aux_buffer *
1775 intel_alloc_aux_buffer(struct brw_context *brw,
1776 const char *name,
1777 const struct isl_surf *aux_surf,
1778 uint32_t alloc_flags,
1779 struct intel_mipmap_tree *mt)
1780 {
1781 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1782 if (!buf)
1783 return false;
1784
1785 buf->size = aux_surf->size;
1786 buf->pitch = aux_surf->row_pitch;
1787 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1788
1789 /* ISL has stricter set of alignment rules then the drm allocator.
1790 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1791 * trying to recalculate based on different format block sizes.
1792 */
1793 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1794 I915_TILING_Y, buf->pitch, alloc_flags);
1795 if (!buf->bo) {
1796 free(buf);
1797 return NULL;
1798 }
1799
1800 buf->surf = *aux_surf;
1801
1802 return buf;
1803 }
1804
1805 static bool
1806 intel_miptree_alloc_mcs(struct brw_context *brw,
1807 struct intel_mipmap_tree *mt,
1808 GLuint num_samples)
1809 {
1810 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1811 assert(mt->mcs_buf == NULL);
1812 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1813
1814 /* Multisampled miptrees are only supported for single level. */
1815 assert(mt->first_level == 0);
1816 enum isl_aux_state **aux_state =
1817 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1818 if (!aux_state)
1819 return false;
1820
1821 struct isl_surf temp_main_surf;
1822 struct isl_surf temp_mcs_surf;
1823
1824 /* Create first an ISL presentation for the main color surface and let ISL
1825 * calculate equivalent MCS surface against it.
1826 */
1827 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1828 MAYBE_UNUSED bool ok =
1829 isl_surf_get_mcs_surf(&brw->isl_dev, &temp_main_surf, &temp_mcs_surf);
1830 assert(ok);
1831
1832 /* Buffer needs to be initialised requiring the buffer to be immediately
1833 * mapped to cpu space for writing. Therefore do not use the gpu access
1834 * flag which can cause an unnecessary delay if the backing pages happened
1835 * to be just used by the GPU.
1836 */
1837 const uint32_t alloc_flags = 0;
1838 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1839 &temp_mcs_surf, alloc_flags, mt);
1840 if (!mt->mcs_buf) {
1841 free(aux_state);
1842 return false;
1843 }
1844
1845 mt->aux_state = aux_state;
1846
1847 intel_miptree_init_mcs(brw, mt, 0xFF);
1848
1849 return true;
1850 }
1851
1852 bool
1853 intel_miptree_alloc_ccs(struct brw_context *brw,
1854 struct intel_mipmap_tree *mt)
1855 {
1856 assert(mt->mcs_buf == NULL);
1857 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1858 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1859
1860 struct isl_surf temp_main_surf;
1861 struct isl_surf temp_ccs_surf;
1862
1863 /* Create first an ISL presentation for the main color surface and let ISL
1864 * calculate equivalent CCS surface against it.
1865 */
1866 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1867 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1868 return false;
1869
1870 assert(temp_ccs_surf.size &&
1871 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1872
1873 enum isl_aux_state **aux_state =
1874 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1875 if (!aux_state)
1876 return false;
1877
1878 /* In case of compression mcs buffer needs to be initialised requiring the
1879 * buffer to be immediately mapped to cpu space for writing. Therefore do
1880 * not use the gpu access flag which can cause an unnecessary delay if the
1881 * backing pages happened to be just used by the GPU.
1882 */
1883 const uint32_t alloc_flags =
1884 mt->aux_usage == ISL_AUX_USAGE_CCS_E ? 0 : BO_ALLOC_FOR_RENDER;
1885 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1886 &temp_ccs_surf, alloc_flags, mt);
1887 if (!mt->mcs_buf) {
1888 free(aux_state);
1889 return false;
1890 }
1891
1892 mt->aux_state = aux_state;
1893
1894 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1895 * used for lossless compression which requires similar initialisation
1896 * as multi-sample compression.
1897 */
1898 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
1899 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1900 * resolve. Initialize it accordingly in case the first renderer is
1901 * cpu (or other none compression aware party).
1902 *
1903 * This is also explicitly stated in the spec (MCS Buffer for Render
1904 * Target(s)):
1905 * "If Software wants to enable Color Compression without Fast clear,
1906 * Software needs to initialize MCS with zeros."
1907 */
1908 intel_miptree_init_mcs(brw, mt, 0);
1909 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1910 }
1911
1912 return true;
1913 }
1914
1915 /**
1916 * Helper for intel_miptree_alloc_hiz() that sets
1917 * \c mt->level[level].has_hiz. Return true if and only if
1918 * \c has_hiz was set.
1919 */
1920 static bool
1921 intel_miptree_level_enable_hiz(struct brw_context *brw,
1922 struct intel_mipmap_tree *mt,
1923 uint32_t level)
1924 {
1925 assert(mt->hiz_buf);
1926
1927 if (brw->gen >= 8 || brw->is_haswell) {
1928 uint32_t width = minify(mt->physical_width0, level);
1929 uint32_t height = minify(mt->physical_height0, level);
1930
1931 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1932 * and the height is 4 aligned. This allows our HiZ support
1933 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1934 * we can grow the width & height to allow the HiZ op to
1935 * force the proper size alignments.
1936 */
1937 if (level > 0 && ((width & 7) || (height & 3))) {
1938 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1939 return false;
1940 }
1941 }
1942
1943 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1944 mt->level[level].has_hiz = true;
1945 return true;
1946 }
1947
1948 bool
1949 intel_miptree_alloc_hiz(struct brw_context *brw,
1950 struct intel_mipmap_tree *mt)
1951 {
1952 assert(mt->hiz_buf == NULL);
1953 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1954
1955 enum isl_aux_state **aux_state =
1956 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1957 if (!aux_state)
1958 return false;
1959
1960 struct isl_surf temp_main_surf;
1961 struct isl_surf temp_hiz_surf;
1962
1963 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1964 MAYBE_UNUSED bool ok =
1965 isl_surf_get_hiz_surf(&brw->isl_dev, &temp_main_surf, &temp_hiz_surf);
1966 assert(ok);
1967
1968 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1969 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1970 &temp_hiz_surf, alloc_flags, mt);
1971
1972 if (!mt->hiz_buf) {
1973 free(aux_state);
1974 return false;
1975 }
1976
1977 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1978 intel_miptree_level_enable_hiz(brw, mt, level);
1979
1980 mt->aux_state = aux_state;
1981
1982 return true;
1983 }
1984
1985 /**
1986 * Can the miptree sample using the hiz buffer?
1987 */
1988 bool
1989 intel_miptree_sample_with_hiz(struct brw_context *brw,
1990 struct intel_mipmap_tree *mt)
1991 {
1992 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1993 * so keep things conservative for now and never enable it unless we're SKL+.
1994 */
1995 if (brw->gen < 9) {
1996 return false;
1997 }
1998
1999 if (!mt->hiz_buf) {
2000 return false;
2001 }
2002
2003 /* It seems the hardware won't fallback to the depth buffer if some of the
2004 * mipmap levels aren't available in the HiZ buffer. So we need all levels
2005 * of the texture to be HiZ enabled.
2006 */
2007 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
2008 if (!intel_miptree_level_has_hiz(mt, level))
2009 return false;
2010 }
2011
2012 /* If compressed multisampling is enabled, then we use it for the auxiliary
2013 * buffer instead.
2014 *
2015 * From the BDW PRM (Volume 2d: Command Reference: Structures
2016 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2017 *
2018 * "If this field is set to AUX_HIZ, Number of Multisamples must be
2019 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2020 *
2021 * There is no such blurb for 1D textures, but there is sufficient evidence
2022 * that this is broken on SKL+.
2023 */
2024 return (mt->num_samples <= 1 &&
2025 mt->target != GL_TEXTURE_3D &&
2026 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2027 }
2028
2029 /**
2030 * Does the miptree slice have hiz enabled?
2031 */
2032 bool
2033 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
2034 {
2035 intel_miptree_check_level_layer(mt, level, 0);
2036 return mt->level[level].has_hiz;
2037 }
2038
2039 bool
2040 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2041 unsigned start_level, unsigned num_levels,
2042 unsigned start_layer, unsigned num_layers)
2043 {
2044 assert(_mesa_is_format_color_format(mt->format));
2045
2046 if (!mt->mcs_buf)
2047 return false;
2048
2049 /* Clamp the level range to fit the miptree */
2050 assert(start_level + num_levels >= start_level);
2051 const uint32_t last_level =
2052 MIN2(mt->last_level, start_level + num_levels - 1);
2053 start_level = MAX2(mt->first_level, start_level);
2054 num_levels = last_level - start_level + 1;
2055
2056 for (uint32_t level = start_level; level <= last_level; level++) {
2057 const uint32_t level_layers = MIN2(num_layers, mt->level[level].depth);
2058 for (unsigned a = 0; a < level_layers; a++) {
2059 enum isl_aux_state aux_state =
2060 intel_miptree_get_aux_state(mt, level, start_layer + a);
2061 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2062 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2063 return true;
2064 }
2065 }
2066
2067 return false;
2068 }
2069
2070 static void
2071 intel_miptree_check_color_resolve(const struct brw_context *brw,
2072 const struct intel_mipmap_tree *mt,
2073 unsigned level, unsigned layer)
2074 {
2075
2076 if (!mt->mcs_buf)
2077 return;
2078
2079 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2080 assert(brw->gen >= 8 ||
2081 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2082
2083 /* Compression of arrayed msaa surfaces is supported. */
2084 if (mt->num_samples > 1)
2085 return;
2086
2087 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2088 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2089
2090 (void)level;
2091 (void)layer;
2092 }
2093
2094 static enum blorp_fast_clear_op
2095 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2096 bool ccs_supported, bool fast_clear_supported)
2097 {
2098 assert(ccs_supported == fast_clear_supported);
2099
2100 switch (aux_state) {
2101 case ISL_AUX_STATE_CLEAR:
2102 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2103 if (!ccs_supported)
2104 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2105 else
2106 return BLORP_FAST_CLEAR_OP_NONE;
2107
2108 case ISL_AUX_STATE_PASS_THROUGH:
2109 return BLORP_FAST_CLEAR_OP_NONE;
2110
2111 case ISL_AUX_STATE_RESOLVED:
2112 case ISL_AUX_STATE_AUX_INVALID:
2113 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2114 break;
2115 }
2116
2117 unreachable("Invalid aux state for CCS_D");
2118 }
2119
2120 static enum blorp_fast_clear_op
2121 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2122 bool ccs_supported, bool fast_clear_supported)
2123 {
2124 switch (aux_state) {
2125 case ISL_AUX_STATE_CLEAR:
2126 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2127 if (!ccs_supported)
2128 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2129 else if (!fast_clear_supported)
2130 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2131 else
2132 return BLORP_FAST_CLEAR_OP_NONE;
2133
2134 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2135 if (!ccs_supported)
2136 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2137 else
2138 return BLORP_FAST_CLEAR_OP_NONE;
2139
2140 case ISL_AUX_STATE_PASS_THROUGH:
2141 return BLORP_FAST_CLEAR_OP_NONE;
2142
2143 case ISL_AUX_STATE_RESOLVED:
2144 case ISL_AUX_STATE_AUX_INVALID:
2145 break;
2146 }
2147
2148 unreachable("Invalid aux state for CCS_E");
2149 }
2150
2151 static void
2152 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2153 struct intel_mipmap_tree *mt,
2154 uint32_t level, uint32_t layer,
2155 bool aux_supported,
2156 bool fast_clear_supported)
2157 {
2158 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2159
2160 enum blorp_fast_clear_op resolve_op;
2161 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2162 resolve_op = get_ccs_e_resolve_op(aux_state, aux_supported,
2163 fast_clear_supported);
2164 } else {
2165 resolve_op = get_ccs_d_resolve_op(aux_state, aux_supported,
2166 fast_clear_supported);
2167 }
2168
2169 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2170 intel_miptree_check_color_resolve(brw, mt, level, layer);
2171 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2172
2173 switch (resolve_op) {
2174 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2175 /* The CCS full resolve operation destroys the CCS and sets it to the
2176 * pass-through state. (You can also think of this as being both a
2177 * resolve and an ambiguate in one operation.)
2178 */
2179 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2180 ISL_AUX_STATE_PASS_THROUGH);
2181 break;
2182
2183 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2184 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2185 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2186 break;
2187
2188 default:
2189 unreachable("Invalid resolve op");
2190 }
2191 }
2192 }
2193
2194 static void
2195 intel_miptree_finish_ccs_write(struct brw_context *brw,
2196 struct intel_mipmap_tree *mt,
2197 uint32_t level, uint32_t layer,
2198 bool written_with_ccs)
2199 {
2200 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2201
2202 if (intel_miptree_is_lossless_compressed(brw, mt)) {
2203 switch (aux_state) {
2204 case ISL_AUX_STATE_CLEAR:
2205 assert(written_with_ccs);
2206 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2207 ISL_AUX_STATE_COMPRESSED_CLEAR);
2208 break;
2209
2210 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2211 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2212 assert(written_with_ccs);
2213 break; /* Nothing to do */
2214
2215 case ISL_AUX_STATE_PASS_THROUGH:
2216 if (written_with_ccs) {
2217 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2218 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2219 } else {
2220 /* Nothing to do */
2221 }
2222 break;
2223
2224 case ISL_AUX_STATE_RESOLVED:
2225 case ISL_AUX_STATE_AUX_INVALID:
2226 unreachable("Invalid aux state for CCS_E");
2227 }
2228 } else {
2229 /* CCS_D is a bit simpler */
2230 switch (aux_state) {
2231 case ISL_AUX_STATE_CLEAR:
2232 assert(written_with_ccs);
2233 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2234 ISL_AUX_STATE_COMPRESSED_CLEAR);
2235 break;
2236
2237 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2238 assert(written_with_ccs);
2239 break; /* Nothing to do */
2240
2241 case ISL_AUX_STATE_PASS_THROUGH:
2242 /* Nothing to do */
2243 break;
2244
2245 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2246 case ISL_AUX_STATE_RESOLVED:
2247 case ISL_AUX_STATE_AUX_INVALID:
2248 unreachable("Invalid aux state for CCS_D");
2249 }
2250 }
2251 }
2252
2253 static void
2254 intel_miptree_finish_mcs_write(struct brw_context *brw,
2255 struct intel_mipmap_tree *mt,
2256 uint32_t level, uint32_t layer,
2257 bool written_with_aux)
2258 {
2259 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2260 case ISL_AUX_STATE_CLEAR:
2261 assert(written_with_aux);
2262 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2263 ISL_AUX_STATE_COMPRESSED_CLEAR);
2264 break;
2265
2266 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2267 assert(written_with_aux);
2268 break; /* Nothing to do */
2269
2270 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2271 case ISL_AUX_STATE_RESOLVED:
2272 case ISL_AUX_STATE_PASS_THROUGH:
2273 case ISL_AUX_STATE_AUX_INVALID:
2274 unreachable("Invalid aux state for MCS");
2275 }
2276 }
2277
2278 static void
2279 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2280 struct intel_mipmap_tree *mt,
2281 uint32_t level, uint32_t layer,
2282 bool hiz_supported, bool fast_clear_supported)
2283 {
2284 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2285 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2286 case ISL_AUX_STATE_CLEAR:
2287 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2288 if (!hiz_supported || !fast_clear_supported)
2289 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2290 break;
2291
2292 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2293 if (!hiz_supported)
2294 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2295 break;
2296
2297 case ISL_AUX_STATE_PASS_THROUGH:
2298 case ISL_AUX_STATE_RESOLVED:
2299 break;
2300
2301 case ISL_AUX_STATE_AUX_INVALID:
2302 if (hiz_supported)
2303 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2304 break;
2305 }
2306
2307 if (hiz_op != BLORP_HIZ_OP_NONE) {
2308 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2309
2310 switch (hiz_op) {
2311 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2312 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2313 ISL_AUX_STATE_RESOLVED);
2314 break;
2315
2316 case BLORP_HIZ_OP_HIZ_RESOLVE:
2317 /* The HiZ resolve operation is actually an ambiguate */
2318 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2319 ISL_AUX_STATE_PASS_THROUGH);
2320 break;
2321
2322 default:
2323 unreachable("Invalid HiZ op");
2324 }
2325 }
2326 }
2327
2328 static void
2329 intel_miptree_finish_hiz_write(struct brw_context *brw,
2330 struct intel_mipmap_tree *mt,
2331 uint32_t level, uint32_t layer,
2332 bool written_with_hiz)
2333 {
2334 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2335 case ISL_AUX_STATE_CLEAR:
2336 assert(written_with_hiz);
2337 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2338 ISL_AUX_STATE_COMPRESSED_CLEAR);
2339 break;
2340
2341 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2342 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2343 assert(written_with_hiz);
2344 break; /* Nothing to do */
2345
2346 case ISL_AUX_STATE_RESOLVED:
2347 if (written_with_hiz) {
2348 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2349 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2350 } else {
2351 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2352 ISL_AUX_STATE_AUX_INVALID);
2353 }
2354 break;
2355
2356 case ISL_AUX_STATE_PASS_THROUGH:
2357 if (written_with_hiz) {
2358 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2359 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2360 }
2361 break;
2362
2363 case ISL_AUX_STATE_AUX_INVALID:
2364 assert(!written_with_hiz);
2365 break;
2366 }
2367 }
2368
2369 static inline uint32_t
2370 miptree_level_range_length(const struct intel_mipmap_tree *mt,
2371 uint32_t start_level, uint32_t num_levels)
2372 {
2373 assert(start_level >= mt->first_level);
2374 assert(start_level <= mt->last_level);
2375
2376 if (num_levels == INTEL_REMAINING_LAYERS)
2377 num_levels = mt->last_level - start_level + 1;
2378 /* Check for overflow */
2379 assert(start_level + num_levels >= start_level);
2380 assert(start_level + num_levels <= mt->last_level + 1);
2381
2382 return num_levels;
2383 }
2384
2385 static inline uint32_t
2386 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2387 uint32_t start_layer, uint32_t num_layers)
2388 {
2389 assert(level <= mt->last_level);
2390 uint32_t total_num_layers;
2391
2392 if (mt->surf.size > 0)
2393 total_num_layers = mt->surf.dim == ISL_SURF_DIM_3D ?
2394 minify(mt->surf.phys_level0_sa.depth, level) :
2395 mt->surf.phys_level0_sa.array_len;
2396 else
2397 total_num_layers = mt->level[level].depth;
2398
2399 assert(start_layer < total_num_layers);
2400 if (num_layers == INTEL_REMAINING_LAYERS)
2401 num_layers = total_num_layers - start_layer;
2402 /* Check for overflow */
2403 assert(start_layer + num_layers >= start_layer);
2404 assert(start_layer + num_layers <= total_num_layers);
2405
2406 return num_layers;
2407 }
2408
2409 void
2410 intel_miptree_prepare_access(struct brw_context *brw,
2411 struct intel_mipmap_tree *mt,
2412 uint32_t start_level, uint32_t num_levels,
2413 uint32_t start_layer, uint32_t num_layers,
2414 bool aux_supported, bool fast_clear_supported)
2415 {
2416 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2417
2418 if (_mesa_is_format_color_format(mt->format)) {
2419 if (!mt->mcs_buf)
2420 return;
2421
2422 if (mt->num_samples > 1) {
2423 /* Nothing to do for MSAA */
2424 assert(aux_supported && fast_clear_supported);
2425 } else {
2426 for (uint32_t l = 0; l < num_levels; l++) {
2427 const uint32_t level = start_level + l;
2428 const uint32_t level_layers =
2429 miptree_layer_range_length(mt, level, start_layer, num_layers);
2430 for (uint32_t a = 0; a < level_layers; a++) {
2431 intel_miptree_prepare_ccs_access(brw, mt, level,
2432 start_layer + a, aux_supported,
2433 fast_clear_supported);
2434 }
2435 }
2436 }
2437 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2438 /* Nothing to do for stencil */
2439 } else {
2440 if (!mt->hiz_buf)
2441 return;
2442
2443 for (uint32_t l = 0; l < num_levels; l++) {
2444 const uint32_t level = start_level + l;
2445 if (!intel_miptree_level_has_hiz(mt, level))
2446 continue;
2447
2448 const uint32_t level_layers =
2449 miptree_layer_range_length(mt, level, start_layer, num_layers);
2450 for (uint32_t a = 0; a < level_layers; a++) {
2451 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2452 aux_supported,
2453 fast_clear_supported);
2454 }
2455 }
2456 }
2457 }
2458
2459 void
2460 intel_miptree_finish_write(struct brw_context *brw,
2461 struct intel_mipmap_tree *mt, uint32_t level,
2462 uint32_t start_layer, uint32_t num_layers,
2463 bool written_with_aux)
2464 {
2465 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2466
2467 if (_mesa_is_format_color_format(mt->format)) {
2468 if (!mt->mcs_buf)
2469 return;
2470
2471 if (mt->num_samples > 1) {
2472 for (uint32_t a = 0; a < num_layers; a++) {
2473 intel_miptree_finish_mcs_write(brw, mt, level, start_layer + a,
2474 written_with_aux);
2475 }
2476 } else {
2477 for (uint32_t a = 0; a < num_layers; a++) {
2478 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2479 written_with_aux);
2480 }
2481 }
2482 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2483 /* Nothing to do for stencil */
2484 } else {
2485 if (!intel_miptree_level_has_hiz(mt, level))
2486 return;
2487
2488 for (uint32_t a = 0; a < num_layers; a++) {
2489 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2490 written_with_aux);
2491 }
2492 }
2493 }
2494
2495 enum isl_aux_state
2496 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2497 uint32_t level, uint32_t layer)
2498 {
2499 intel_miptree_check_level_layer(mt, level, layer);
2500
2501 if (_mesa_is_format_color_format(mt->format)) {
2502 assert(mt->mcs_buf != NULL);
2503 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2504 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2505 unreachable("Cannot get aux state for stencil");
2506 } else {
2507 assert(intel_miptree_level_has_hiz(mt, level));
2508 }
2509
2510 return mt->aux_state[level][layer];
2511 }
2512
2513 void
2514 intel_miptree_set_aux_state(struct brw_context *brw,
2515 struct intel_mipmap_tree *mt, uint32_t level,
2516 uint32_t start_layer, uint32_t num_layers,
2517 enum isl_aux_state aux_state)
2518 {
2519 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2520
2521 if (_mesa_is_format_color_format(mt->format)) {
2522 assert(mt->mcs_buf != NULL);
2523 assert(mt->num_samples <= 1 || mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
2524 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2525 unreachable("Cannot get aux state for stencil");
2526 } else {
2527 assert(intel_miptree_level_has_hiz(mt, level));
2528 }
2529
2530 for (unsigned a = 0; a < num_layers; a++)
2531 mt->aux_state[level][start_layer + a] = aux_state;
2532 }
2533
2534 /* On Gen9 color buffers may be compressed by the hardware (lossless
2535 * compression). There are, however, format restrictions and care needs to be
2536 * taken that the sampler engine is capable for re-interpreting a buffer with
2537 * format different the buffer was originally written with.
2538 *
2539 * For example, SRGB formats are not compressible and the sampler engine isn't
2540 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2541 * color buffer needs to be resolved so that the sampling surface can be
2542 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2543 * set).
2544 */
2545 static bool
2546 can_texture_with_ccs(struct brw_context *brw,
2547 struct intel_mipmap_tree *mt,
2548 mesa_format view_format)
2549 {
2550 if (!intel_miptree_is_lossless_compressed(brw, mt))
2551 return false;
2552
2553 enum isl_format isl_mt_format = brw_isl_format_for_mesa_format(mt->format);
2554 enum isl_format isl_view_format = brw_isl_format_for_mesa_format(view_format);
2555
2556 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2557 isl_mt_format, isl_view_format)) {
2558 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2559 _mesa_get_format_name(view_format),
2560 _mesa_get_format_name(mt->format));
2561 return false;
2562 }
2563
2564 return true;
2565 }
2566
2567 static void
2568 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2569 struct intel_mipmap_tree *mt,
2570 mesa_format view_format,
2571 uint32_t start_level, uint32_t num_levels,
2572 uint32_t start_layer, uint32_t num_layers,
2573 bool *aux_supported_out)
2574 {
2575 bool aux_supported, clear_supported;
2576 if (_mesa_is_format_color_format(mt->format)) {
2577 if (mt->num_samples > 1) {
2578 aux_supported = clear_supported = true;
2579 } else {
2580 aux_supported = can_texture_with_ccs(brw, mt, view_format);
2581
2582 /* Clear color is specified as ints or floats and the conversion is
2583 * done by the sampler. If we have a texture view, we would have to
2584 * perform the clear color conversion manually. Just disable clear
2585 * color.
2586 */
2587 clear_supported = aux_supported && (mt->format == view_format);
2588 }
2589 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2590 aux_supported = clear_supported = false;
2591 } else {
2592 aux_supported = clear_supported = intel_miptree_sample_with_hiz(brw, mt);
2593 }
2594
2595 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2596 start_layer, num_layers,
2597 aux_supported, clear_supported);
2598 if (aux_supported_out)
2599 *aux_supported_out = aux_supported;
2600 }
2601
2602 void
2603 intel_miptree_prepare_texture(struct brw_context *brw,
2604 struct intel_mipmap_tree *mt,
2605 mesa_format view_format,
2606 bool *aux_supported_out)
2607 {
2608 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2609 0, INTEL_REMAINING_LEVELS,
2610 0, INTEL_REMAINING_LAYERS,
2611 aux_supported_out);
2612 }
2613
2614 void
2615 intel_miptree_prepare_image(struct brw_context *brw,
2616 struct intel_mipmap_tree *mt)
2617 {
2618 /* The data port doesn't understand any compression */
2619 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2620 0, INTEL_REMAINING_LAYERS, false, false);
2621 }
2622
2623 void
2624 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2625 struct intel_mipmap_tree *mt, uint32_t level,
2626 uint32_t start_layer, uint32_t num_layers)
2627 {
2628 intel_miptree_prepare_texture_slices(brw, mt, mt->format, level, 1,
2629 start_layer, num_layers, NULL);
2630 }
2631
2632 void
2633 intel_miptree_prepare_render(struct brw_context *brw,
2634 struct intel_mipmap_tree *mt, uint32_t level,
2635 uint32_t start_layer, uint32_t layer_count,
2636 bool srgb_enabled)
2637 {
2638 /* If FRAMEBUFFER_SRGB is used on Gen9+ then we need to resolve any of
2639 * the single-sampled color renderbuffers because the CCS buffer isn't
2640 * supported for SRGB formats. This only matters if FRAMEBUFFER_SRGB is
2641 * enabled because otherwise the surface state will be programmed with
2642 * the linear equivalent format anyway.
2643 */
2644 if (brw->gen == 9 && srgb_enabled && mt->num_samples <= 1 &&
2645 _mesa_get_srgb_format_linear(mt->format) != mt->format) {
2646
2647 /* Lossless compression is not supported for SRGB formats, it
2648 * should be impossible to get here with such surfaces.
2649 */
2650 assert(!intel_miptree_is_lossless_compressed(brw, mt));
2651 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2652 false, false);
2653 }
2654 }
2655
2656 void
2657 intel_miptree_finish_render(struct brw_context *brw,
2658 struct intel_mipmap_tree *mt, uint32_t level,
2659 uint32_t start_layer, uint32_t layer_count)
2660 {
2661 assert(_mesa_is_format_color_format(mt->format));
2662 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2663 mt->mcs_buf != NULL);
2664 }
2665
2666 void
2667 intel_miptree_prepare_depth(struct brw_context *brw,
2668 struct intel_mipmap_tree *mt, uint32_t level,
2669 uint32_t start_layer, uint32_t layer_count)
2670 {
2671 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2672 mt->hiz_buf != NULL, mt->hiz_buf != NULL);
2673 }
2674
2675 void
2676 intel_miptree_finish_depth(struct brw_context *brw,
2677 struct intel_mipmap_tree *mt, uint32_t level,
2678 uint32_t start_layer, uint32_t layer_count,
2679 bool depth_written)
2680 {
2681 if (depth_written) {
2682 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2683 mt->hiz_buf != NULL);
2684 }
2685 }
2686
2687 /**
2688 * Make it possible to share the BO backing the given miptree with another
2689 * process or another miptree.
2690 *
2691 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2692 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2693 * ensure that no MCS buffer gets allocated in the future.
2694 *
2695 * HiZ is similarly unsafe with shared buffers.
2696 */
2697 void
2698 intel_miptree_make_shareable(struct brw_context *brw,
2699 struct intel_mipmap_tree *mt)
2700 {
2701 /* MCS buffers are also used for multisample buffers, but we can't resolve
2702 * away a multisample MCS buffer because it's an integral part of how the
2703 * pixel data is stored. Fortunately this code path should never be
2704 * reached for multisample buffers.
2705 */
2706 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2707
2708 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2709 0, INTEL_REMAINING_LAYERS, false, false);
2710
2711 if (mt->mcs_buf) {
2712 brw_bo_unreference(mt->mcs_buf->bo);
2713 free(mt->mcs_buf);
2714 mt->mcs_buf = NULL;
2715
2716 /* Any pending MCS/CCS operations are no longer needed. Trying to
2717 * execute any will likely crash due to the missing aux buffer. So let's
2718 * delete all pending ops.
2719 */
2720 free(mt->aux_state);
2721 mt->aux_state = NULL;
2722 }
2723
2724 if (mt->hiz_buf) {
2725 intel_miptree_aux_buffer_free(mt->hiz_buf);
2726 mt->hiz_buf = NULL;
2727
2728 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2729 mt->level[l].has_hiz = false;
2730 }
2731
2732 /* Any pending HiZ operations are no longer needed. Trying to execute
2733 * any will likely crash due to the missing aux buffer. So let's delete
2734 * all pending ops.
2735 */
2736 free(mt->aux_state);
2737 mt->aux_state = NULL;
2738 }
2739
2740 mt->aux_usage = ISL_AUX_USAGE_NONE;
2741 }
2742
2743
2744 /**
2745 * \brief Get pointer offset into stencil buffer.
2746 *
2747 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2748 * must decode the tile's layout in software.
2749 *
2750 * See
2751 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2752 * Format.
2753 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2754 *
2755 * Even though the returned offset is always positive, the return type is
2756 * signed due to
2757 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2758 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2759 */
2760 static intptr_t
2761 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2762 {
2763 uint32_t tile_size = 4096;
2764 uint32_t tile_width = 64;
2765 uint32_t tile_height = 64;
2766 uint32_t row_size = 64 * stride;
2767
2768 uint32_t tile_x = x / tile_width;
2769 uint32_t tile_y = y / tile_height;
2770
2771 /* The byte's address relative to the tile's base addres. */
2772 uint32_t byte_x = x % tile_width;
2773 uint32_t byte_y = y % tile_height;
2774
2775 uintptr_t u = tile_y * row_size
2776 + tile_x * tile_size
2777 + 512 * (byte_x / 8)
2778 + 64 * (byte_y / 8)
2779 + 32 * ((byte_y / 4) % 2)
2780 + 16 * ((byte_x / 4) % 2)
2781 + 8 * ((byte_y / 2) % 2)
2782 + 4 * ((byte_x / 2) % 2)
2783 + 2 * (byte_y % 2)
2784 + 1 * (byte_x % 2);
2785
2786 if (swizzled) {
2787 /* adjust for bit6 swizzling */
2788 if (((byte_x / 8) % 2) == 1) {
2789 if (((byte_y / 8) % 2) == 0) {
2790 u += 64;
2791 } else {
2792 u -= 64;
2793 }
2794 }
2795 }
2796
2797 return u;
2798 }
2799
2800 void
2801 intel_miptree_updownsample(struct brw_context *brw,
2802 struct intel_mipmap_tree *src,
2803 struct intel_mipmap_tree *dst)
2804 {
2805 unsigned src_w, src_h, dst_w, dst_h;
2806
2807 if (src->surf.size > 0) {
2808 src_w = src->surf.logical_level0_px.width;
2809 src_h = src->surf.logical_level0_px.height;
2810 } else {
2811 src_w = src->logical_width0;
2812 src_h = src->logical_height0;
2813 }
2814
2815 if (dst->surf.size > 0) {
2816 dst_w = dst->surf.logical_level0_px.width;
2817 dst_h = dst->surf.logical_level0_px.height;
2818 } else {
2819 dst_w = dst->logical_width0;
2820 dst_h = dst->logical_height0;
2821 }
2822
2823 brw_blorp_blit_miptrees(brw,
2824 src, 0 /* level */, 0 /* layer */,
2825 src->format, SWIZZLE_XYZW,
2826 dst, 0 /* level */, 0 /* layer */, dst->format,
2827 0, 0, src_w, src_h,
2828 0, 0, dst_w, dst_h,
2829 GL_NEAREST, false, false /*mirror x, y*/,
2830 false, false);
2831
2832 if (src->stencil_mt) {
2833 if (src->stencil_mt->surf.size > 0) {
2834 src_w = src->stencil_mt->surf.logical_level0_px.width;
2835 src_h = src->stencil_mt->surf.logical_level0_px.height;
2836 } else {
2837 src_w = src->stencil_mt->logical_width0;
2838 src_h = src->stencil_mt->logical_height0;
2839 }
2840
2841 if (dst->stencil_mt->surf.size > 0) {
2842 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2843 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2844 } else {
2845 dst_w = dst->stencil_mt->logical_width0;
2846 dst_h = dst->stencil_mt->logical_height0;
2847 }
2848
2849 brw_blorp_blit_miptrees(brw,
2850 src->stencil_mt, 0 /* level */, 0 /* layer */,
2851 src->stencil_mt->format, SWIZZLE_XYZW,
2852 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2853 dst->stencil_mt->format,
2854 0, 0, src_w, src_h,
2855 0, 0, dst_w, dst_h,
2856 GL_NEAREST, false, false /*mirror x, y*/,
2857 false, false /* decode/encode srgb */);
2858 }
2859 }
2860
2861 void
2862 intel_update_r8stencil(struct brw_context *brw,
2863 struct intel_mipmap_tree *mt)
2864 {
2865 assert(brw->gen >= 7);
2866 struct intel_mipmap_tree *src =
2867 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2868 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2869 return;
2870
2871 if (!mt->r8stencil_mt) {
2872 const uint32_t r8stencil_flags =
2873 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2874 MIPTREE_LAYOUT_DISABLE_AUX;
2875 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2876 mt->r8stencil_mt = intel_miptree_create(brw,
2877 src->target,
2878 MESA_FORMAT_R_UINT8,
2879 src->first_level,
2880 src->last_level,
2881 src->logical_width0,
2882 src->logical_height0,
2883 src->logical_depth0,
2884 src->num_samples,
2885 r8stencil_flags);
2886 assert(mt->r8stencil_mt);
2887 }
2888
2889 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2890
2891 for (int level = src->first_level; level <= src->last_level; level++) {
2892 const unsigned depth = src->level[level].depth;
2893
2894 for (unsigned layer = 0; layer < depth; layer++) {
2895 brw_blorp_copy_miptrees(brw,
2896 src, level, layer,
2897 dst, level, layer,
2898 0, 0, 0, 0,
2899 minify(src->logical_width0, level),
2900 minify(src->logical_height0, level));
2901 }
2902 }
2903
2904 brw_render_cache_set_check_flush(brw, dst->bo);
2905 src->r8stencil_needs_update = false;
2906 }
2907
2908 static void *
2909 intel_miptree_map_raw(struct brw_context *brw,
2910 struct intel_mipmap_tree *mt,
2911 GLbitfield mode)
2912 {
2913 struct brw_bo *bo = mt->bo;
2914
2915 if (brw_batch_references(&brw->batch, bo))
2916 intel_batchbuffer_flush(brw);
2917
2918 return brw_bo_map(brw, bo, mode);
2919 }
2920
2921 static void
2922 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2923 {
2924 brw_bo_unmap(mt->bo);
2925 }
2926
2927 static void
2928 intel_miptree_map_gtt(struct brw_context *brw,
2929 struct intel_mipmap_tree *mt,
2930 struct intel_miptree_map *map,
2931 unsigned int level, unsigned int slice)
2932 {
2933 unsigned int bw, bh;
2934 void *base;
2935 unsigned int image_x, image_y;
2936 intptr_t x = map->x;
2937 intptr_t y = map->y;
2938
2939 /* For compressed formats, the stride is the number of bytes per
2940 * row of blocks. intel_miptree_get_image_offset() already does
2941 * the divide.
2942 */
2943 _mesa_get_format_block_size(mt->format, &bw, &bh);
2944 assert(y % bh == 0);
2945 assert(x % bw == 0);
2946 y /= bh;
2947 x /= bw;
2948
2949 base = intel_miptree_map_raw(brw, mt, map->mode) + mt->offset;
2950
2951 if (base == NULL)
2952 map->ptr = NULL;
2953 else {
2954 /* Note that in the case of cube maps, the caller must have passed the
2955 * slice number referencing the face.
2956 */
2957 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2958 x += image_x;
2959 y += image_y;
2960
2961 map->stride = mt->pitch;
2962 map->ptr = base + y * map->stride + x * mt->cpp;
2963 }
2964
2965 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2966 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2967 map->x, map->y, map->w, map->h,
2968 mt, _mesa_get_format_name(mt->format),
2969 x, y, map->ptr, map->stride);
2970 }
2971
2972 static void
2973 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2974 {
2975 intel_miptree_unmap_raw(mt);
2976 }
2977
2978 static void
2979 intel_miptree_map_blit(struct brw_context *brw,
2980 struct intel_mipmap_tree *mt,
2981 struct intel_miptree_map *map,
2982 unsigned int level, unsigned int slice)
2983 {
2984 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2985 /* first_level */ 0,
2986 /* last_level */ 0,
2987 map->w, map->h, 1,
2988 /* samples */ 0,
2989 MIPTREE_LAYOUT_TILING_NONE);
2990
2991 if (!map->linear_mt) {
2992 fprintf(stderr, "Failed to allocate blit temporary\n");
2993 goto fail;
2994 }
2995 map->stride = map->linear_mt->pitch;
2996
2997 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2998 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2999 * invalidate is set, since we'll be writing the whole rectangle from our
3000 * temporary buffer back out.
3001 */
3002 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3003 if (!intel_miptree_copy(brw,
3004 mt, level, slice, map->x, map->y,
3005 map->linear_mt, 0, 0, 0, 0,
3006 map->w, map->h)) {
3007 fprintf(stderr, "Failed to blit\n");
3008 goto fail;
3009 }
3010 }
3011
3012 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3013
3014 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3015 map->x, map->y, map->w, map->h,
3016 mt, _mesa_get_format_name(mt->format),
3017 level, slice, map->ptr, map->stride);
3018
3019 return;
3020
3021 fail:
3022 intel_miptree_release(&map->linear_mt);
3023 map->ptr = NULL;
3024 map->stride = 0;
3025 }
3026
3027 static void
3028 intel_miptree_unmap_blit(struct brw_context *brw,
3029 struct intel_mipmap_tree *mt,
3030 struct intel_miptree_map *map,
3031 unsigned int level,
3032 unsigned int slice)
3033 {
3034 struct gl_context *ctx = &brw->ctx;
3035
3036 intel_miptree_unmap_raw(map->linear_mt);
3037
3038 if (map->mode & GL_MAP_WRITE_BIT) {
3039 bool ok = intel_miptree_copy(brw,
3040 map->linear_mt, 0, 0, 0, 0,
3041 mt, level, slice, map->x, map->y,
3042 map->w, map->h);
3043 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3044 }
3045
3046 intel_miptree_release(&map->linear_mt);
3047 }
3048
3049 /**
3050 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3051 */
3052 #if defined(USE_SSE41)
3053 static void
3054 intel_miptree_map_movntdqa(struct brw_context *brw,
3055 struct intel_mipmap_tree *mt,
3056 struct intel_miptree_map *map,
3057 unsigned int level, unsigned int slice)
3058 {
3059 assert(map->mode & GL_MAP_READ_BIT);
3060 assert(!(map->mode & GL_MAP_WRITE_BIT));
3061
3062 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3063 map->x, map->y, map->w, map->h,
3064 mt, _mesa_get_format_name(mt->format),
3065 level, slice, map->ptr, map->stride);
3066
3067 /* Map the original image */
3068 uint32_t image_x;
3069 uint32_t image_y;
3070 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3071 image_x += map->x;
3072 image_y += map->y;
3073
3074 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3075 if (!src)
3076 return;
3077
3078 src += mt->offset;
3079
3080 src += image_y * mt->pitch;
3081 src += image_x * mt->cpp;
3082
3083 /* Due to the pixel offsets for the particular image being mapped, our
3084 * src pointer may not be 16-byte aligned. However, if the pitch is
3085 * divisible by 16, then the amount by which it's misaligned will remain
3086 * consistent from row to row.
3087 */
3088 assert((mt->pitch % 16) == 0);
3089 const int misalignment = ((uintptr_t) src) & 15;
3090
3091 /* Create an untiled temporary buffer for the mapping. */
3092 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3093
3094 map->stride = ALIGN(misalignment + width_bytes, 16);
3095
3096 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3097 /* Offset the destination so it has the same misalignment as src. */
3098 map->ptr = map->buffer + misalignment;
3099
3100 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3101
3102 for (uint32_t y = 0; y < map->h; y++) {
3103 void *dst_ptr = map->ptr + y * map->stride;
3104 void *src_ptr = src + y * mt->pitch;
3105
3106 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3107 }
3108
3109 intel_miptree_unmap_raw(mt);
3110 }
3111
3112 static void
3113 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3114 struct intel_mipmap_tree *mt,
3115 struct intel_miptree_map *map,
3116 unsigned int level,
3117 unsigned int slice)
3118 {
3119 _mesa_align_free(map->buffer);
3120 map->buffer = NULL;
3121 map->ptr = NULL;
3122 }
3123 #endif
3124
3125 static void
3126 intel_miptree_map_s8(struct brw_context *brw,
3127 struct intel_mipmap_tree *mt,
3128 struct intel_miptree_map *map,
3129 unsigned int level, unsigned int slice)
3130 {
3131 map->stride = map->w;
3132 map->buffer = map->ptr = malloc(map->stride * map->h);
3133 if (!map->buffer)
3134 return;
3135
3136 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3137 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3138 * invalidate is set, since we'll be writing the whole rectangle from our
3139 * temporary buffer back out.
3140 */
3141 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3142 /* ISL uses a stencil pitch value that is expected by hardware whereas
3143 * traditional miptree uses half of that. Below the value gets supplied
3144 * to intel_offset_S8() which expects the legacy interpretation.
3145 */
3146 const unsigned pitch = mt->surf.size > 0 ?
3147 mt->surf.row_pitch / 2 : mt->pitch;
3148 uint8_t *untiled_s8_map = map->ptr;
3149 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3150 unsigned int image_x, image_y;
3151
3152 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3153
3154 for (uint32_t y = 0; y < map->h; y++) {
3155 for (uint32_t x = 0; x < map->w; x++) {
3156 ptrdiff_t offset = intel_offset_S8(pitch,
3157 x + image_x + map->x,
3158 y + image_y + map->y,
3159 brw->has_swizzling);
3160 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3161 }
3162 }
3163
3164 intel_miptree_unmap_raw(mt);
3165
3166 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3167 map->x, map->y, map->w, map->h,
3168 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3169 } else {
3170 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3171 map->x, map->y, map->w, map->h,
3172 mt, map->ptr, map->stride);
3173 }
3174 }
3175
3176 static void
3177 intel_miptree_unmap_s8(struct brw_context *brw,
3178 struct intel_mipmap_tree *mt,
3179 struct intel_miptree_map *map,
3180 unsigned int level,
3181 unsigned int slice)
3182 {
3183 if (map->mode & GL_MAP_WRITE_BIT) {
3184 /* ISL uses a stencil pitch value that is expected by hardware whereas
3185 * traditional miptree uses half of that. Below the value gets supplied
3186 * to intel_offset_S8() which expects the legacy interpretation.
3187 */
3188 const unsigned pitch = mt->surf.size > 0 ?
3189 mt->surf.row_pitch / 2: mt->pitch;
3190 unsigned int image_x, image_y;
3191 uint8_t *untiled_s8_map = map->ptr;
3192 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3193
3194 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3195
3196 for (uint32_t y = 0; y < map->h; y++) {
3197 for (uint32_t x = 0; x < map->w; x++) {
3198 ptrdiff_t offset = intel_offset_S8(pitch,
3199 image_x + x + map->x,
3200 image_y + y + map->y,
3201 brw->has_swizzling);
3202 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3203 }
3204 }
3205
3206 intel_miptree_unmap_raw(mt);
3207 }
3208
3209 free(map->buffer);
3210 }
3211
3212 static void
3213 intel_miptree_map_etc(struct brw_context *brw,
3214 struct intel_mipmap_tree *mt,
3215 struct intel_miptree_map *map,
3216 unsigned int level,
3217 unsigned int slice)
3218 {
3219 assert(mt->etc_format != MESA_FORMAT_NONE);
3220 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3221 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3222 }
3223
3224 assert(map->mode & GL_MAP_WRITE_BIT);
3225 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3226
3227 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3228 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3229 map->w, map->h, 1));
3230 map->ptr = map->buffer;
3231 }
3232
3233 static void
3234 intel_miptree_unmap_etc(struct brw_context *brw,
3235 struct intel_mipmap_tree *mt,
3236 struct intel_miptree_map *map,
3237 unsigned int level,
3238 unsigned int slice)
3239 {
3240 uint32_t image_x;
3241 uint32_t image_y;
3242 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3243
3244 image_x += map->x;
3245 image_y += map->y;
3246
3247 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3248 + image_y * mt->pitch
3249 + image_x * mt->cpp;
3250
3251 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3252 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
3253 map->ptr, map->stride,
3254 map->w, map->h);
3255 else
3256 _mesa_unpack_etc2_format(dst, mt->pitch,
3257 map->ptr, map->stride,
3258 map->w, map->h, mt->etc_format);
3259
3260 intel_miptree_unmap_raw(mt);
3261 free(map->buffer);
3262 }
3263
3264 /**
3265 * Mapping function for packed depth/stencil miptrees backed by real separate
3266 * miptrees for depth and stencil.
3267 *
3268 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3269 * separate from the depth buffer. Yet at the GL API level, we have to expose
3270 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3271 * be able to map that memory for texture storage and glReadPixels-type
3272 * operations. We give Mesa core that access by mallocing a temporary and
3273 * copying the data between the actual backing store and the temporary.
3274 */
3275 static void
3276 intel_miptree_map_depthstencil(struct brw_context *brw,
3277 struct intel_mipmap_tree *mt,
3278 struct intel_miptree_map *map,
3279 unsigned int level, unsigned int slice)
3280 {
3281 struct intel_mipmap_tree *z_mt = mt;
3282 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3283 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3284 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3285
3286 map->stride = map->w * packed_bpp;
3287 map->buffer = map->ptr = malloc(map->stride * map->h);
3288 if (!map->buffer)
3289 return;
3290
3291 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3292 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3293 * invalidate is set, since we'll be writing the whole rectangle from our
3294 * temporary buffer back out.
3295 */
3296 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3297 /* ISL uses a stencil pitch value that is expected by hardware whereas
3298 * traditional miptree uses half of that. Below the value gets supplied
3299 * to intel_offset_S8() which expects the legacy interpretation.
3300 */
3301 const unsigned s_pitch = s_mt->surf.size > 0 ?
3302 s_mt->surf.row_pitch / 2 : s_mt->pitch;
3303 uint32_t *packed_map = map->ptr;
3304 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3305 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3306 unsigned int s_image_x, s_image_y;
3307 unsigned int z_image_x, z_image_y;
3308
3309 intel_miptree_get_image_offset(s_mt, level, slice,
3310 &s_image_x, &s_image_y);
3311 intel_miptree_get_image_offset(z_mt, level, slice,
3312 &z_image_x, &z_image_y);
3313
3314 for (uint32_t y = 0; y < map->h; y++) {
3315 for (uint32_t x = 0; x < map->w; x++) {
3316 int map_x = map->x + x, map_y = map->y + y;
3317 ptrdiff_t s_offset = intel_offset_S8(s_pitch,
3318 map_x + s_image_x,
3319 map_y + s_image_y,
3320 brw->has_swizzling);
3321 ptrdiff_t z_offset = ((map_y + z_image_y) *
3322 (z_mt->pitch / 4) +
3323 (map_x + z_image_x));
3324 uint8_t s = s_map[s_offset];
3325 uint32_t z = z_map[z_offset];
3326
3327 if (map_z32f_x24s8) {
3328 packed_map[(y * map->w + x) * 2 + 0] = z;
3329 packed_map[(y * map->w + x) * 2 + 1] = s;
3330 } else {
3331 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3332 }
3333 }
3334 }
3335
3336 intel_miptree_unmap_raw(s_mt);
3337 intel_miptree_unmap_raw(z_mt);
3338
3339 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3340 __func__,
3341 map->x, map->y, map->w, map->h,
3342 z_mt, map->x + z_image_x, map->y + z_image_y,
3343 s_mt, map->x + s_image_x, map->y + s_image_y,
3344 map->ptr, map->stride);
3345 } else {
3346 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3347 map->x, map->y, map->w, map->h,
3348 mt, map->ptr, map->stride);
3349 }
3350 }
3351
3352 static void
3353 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3354 struct intel_mipmap_tree *mt,
3355 struct intel_miptree_map *map,
3356 unsigned int level,
3357 unsigned int slice)
3358 {
3359 struct intel_mipmap_tree *z_mt = mt;
3360 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3361 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3362
3363 if (map->mode & GL_MAP_WRITE_BIT) {
3364 /* ISL uses a stencil pitch value that is expected by hardware whereas
3365 * traditional miptree uses half of that. Below the value gets supplied
3366 * to intel_offset_S8() which expects the legacy interpretation.
3367 */
3368 const unsigned s_pitch = s_mt->surf.size > 0 ?
3369 s_mt->surf.row_pitch / 2 : s_mt->pitch;
3370 uint32_t *packed_map = map->ptr;
3371 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3372 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3373 unsigned int s_image_x, s_image_y;
3374 unsigned int z_image_x, z_image_y;
3375
3376 intel_miptree_get_image_offset(s_mt, level, slice,
3377 &s_image_x, &s_image_y);
3378 intel_miptree_get_image_offset(z_mt, level, slice,
3379 &z_image_x, &z_image_y);
3380
3381 for (uint32_t y = 0; y < map->h; y++) {
3382 for (uint32_t x = 0; x < map->w; x++) {
3383 ptrdiff_t s_offset = intel_offset_S8(s_pitch,
3384 x + s_image_x + map->x,
3385 y + s_image_y + map->y,
3386 brw->has_swizzling);
3387 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3388 (z_mt->pitch / 4) +
3389 (x + z_image_x + map->x));
3390
3391 if (map_z32f_x24s8) {
3392 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3393 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3394 } else {
3395 uint32_t packed = packed_map[y * map->w + x];
3396 s_map[s_offset] = packed >> 24;
3397 z_map[z_offset] = packed;
3398 }
3399 }
3400 }
3401
3402 intel_miptree_unmap_raw(s_mt);
3403 intel_miptree_unmap_raw(z_mt);
3404
3405 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3406 __func__,
3407 map->x, map->y, map->w, map->h,
3408 z_mt, _mesa_get_format_name(z_mt->format),
3409 map->x + z_image_x, map->y + z_image_y,
3410 s_mt, map->x + s_image_x, map->y + s_image_y,
3411 map->ptr, map->stride);
3412 }
3413
3414 free(map->buffer);
3415 }
3416
3417 /**
3418 * Create and attach a map to the miptree at (level, slice). Return the
3419 * attached map.
3420 */
3421 static struct intel_miptree_map*
3422 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3423 unsigned int level,
3424 unsigned int slice,
3425 unsigned int x,
3426 unsigned int y,
3427 unsigned int w,
3428 unsigned int h,
3429 GLbitfield mode)
3430 {
3431 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3432
3433 if (!map)
3434 return NULL;
3435
3436 assert(mt->level[level].slice[slice].map == NULL);
3437 mt->level[level].slice[slice].map = map;
3438
3439 map->mode = mode;
3440 map->x = x;
3441 map->y = y;
3442 map->w = w;
3443 map->h = h;
3444
3445 return map;
3446 }
3447
3448 /**
3449 * Release the map at (level, slice).
3450 */
3451 static void
3452 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3453 unsigned int level,
3454 unsigned int slice)
3455 {
3456 struct intel_miptree_map **map;
3457
3458 map = &mt->level[level].slice[slice].map;
3459 free(*map);
3460 *map = NULL;
3461 }
3462
3463 static bool
3464 can_blit_slice(struct intel_mipmap_tree *mt,
3465 unsigned int level, unsigned int slice)
3466 {
3467 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3468 if (mt->pitch >= 32768)
3469 return false;
3470
3471 return true;
3472 }
3473
3474 static bool
3475 use_intel_mipree_map_blit(struct brw_context *brw,
3476 struct intel_mipmap_tree *mt,
3477 GLbitfield mode,
3478 unsigned int level,
3479 unsigned int slice)
3480 {
3481 if (brw->has_llc &&
3482 /* It's probably not worth swapping to the blit ring because of
3483 * all the overhead involved.
3484 */
3485 !(mode & GL_MAP_WRITE_BIT) &&
3486 !mt->compressed &&
3487 (mt->tiling == I915_TILING_X ||
3488 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3489 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3490 /* Fast copy blit on skl+ supports all tiling formats. */
3491 brw->gen >= 9) &&
3492 can_blit_slice(mt, level, slice))
3493 return true;
3494
3495 if (mt->tiling != I915_TILING_NONE &&
3496 mt->bo->size >= brw->max_gtt_map_object_size) {
3497 assert(can_blit_slice(mt, level, slice));
3498 return true;
3499 }
3500
3501 return false;
3502 }
3503
3504 /**
3505 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3506 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3507 * arithmetic overflow.
3508 *
3509 * If you call this function and use \a out_stride, then you're doing pointer
3510 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3511 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3512 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3513 * which usually have type uint32_t or GLuint.
3514 */
3515 void
3516 intel_miptree_map(struct brw_context *brw,
3517 struct intel_mipmap_tree *mt,
3518 unsigned int level,
3519 unsigned int slice,
3520 unsigned int x,
3521 unsigned int y,
3522 unsigned int w,
3523 unsigned int h,
3524 GLbitfield mode,
3525 void **out_ptr,
3526 ptrdiff_t *out_stride)
3527 {
3528 struct intel_miptree_map *map;
3529
3530 assert(mt->num_samples <= 1);
3531
3532 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3533 if (!map){
3534 *out_ptr = NULL;
3535 *out_stride = 0;
3536 return;
3537 }
3538
3539 intel_miptree_access_raw(brw, mt, level, slice,
3540 map->mode & GL_MAP_WRITE_BIT);
3541
3542 if (mt->format == MESA_FORMAT_S_UINT8) {
3543 intel_miptree_map_s8(brw, mt, map, level, slice);
3544 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3545 !(mode & BRW_MAP_DIRECT_BIT)) {
3546 intel_miptree_map_etc(brw, mt, map, level, slice);
3547 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3548 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3549 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3550 intel_miptree_map_blit(brw, mt, map, level, slice);
3551 #if defined(USE_SSE41)
3552 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3553 !mt->compressed && cpu_has_sse4_1 &&
3554 (mt->pitch % 16 == 0)) {
3555 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3556 #endif
3557 } else {
3558 intel_miptree_map_gtt(brw, mt, map, level, slice);
3559 }
3560
3561 *out_ptr = map->ptr;
3562 *out_stride = map->stride;
3563
3564 if (map->ptr == NULL)
3565 intel_miptree_release_map(mt, level, slice);
3566 }
3567
3568 void
3569 intel_miptree_unmap(struct brw_context *brw,
3570 struct intel_mipmap_tree *mt,
3571 unsigned int level,
3572 unsigned int slice)
3573 {
3574 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3575
3576 assert(mt->num_samples <= 1);
3577
3578 if (!map)
3579 return;
3580
3581 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3582 mt, _mesa_get_format_name(mt->format), level, slice);
3583
3584 if (mt->format == MESA_FORMAT_S_UINT8) {
3585 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3586 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3587 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3588 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3589 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3590 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3591 } else if (map->linear_mt) {
3592 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3593 #if defined(USE_SSE41)
3594 } else if (map->buffer && cpu_has_sse4_1) {
3595 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3596 #endif
3597 } else {
3598 intel_miptree_unmap_gtt(mt);
3599 }
3600
3601 intel_miptree_release_map(mt, level, slice);
3602 }
3603
3604 enum isl_surf_dim
3605 get_isl_surf_dim(GLenum target)
3606 {
3607 switch (target) {
3608 case GL_TEXTURE_1D:
3609 case GL_TEXTURE_1D_ARRAY:
3610 return ISL_SURF_DIM_1D;
3611
3612 case GL_TEXTURE_2D:
3613 case GL_TEXTURE_2D_ARRAY:
3614 case GL_TEXTURE_RECTANGLE:
3615 case GL_TEXTURE_CUBE_MAP:
3616 case GL_TEXTURE_CUBE_MAP_ARRAY:
3617 case GL_TEXTURE_2D_MULTISAMPLE:
3618 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3619 case GL_TEXTURE_EXTERNAL_OES:
3620 return ISL_SURF_DIM_2D;
3621
3622 case GL_TEXTURE_3D:
3623 return ISL_SURF_DIM_3D;
3624 }
3625
3626 unreachable("Invalid texture target");
3627 }
3628
3629 enum isl_dim_layout
3630 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3631 GLenum target, enum miptree_array_layout array_layout)
3632 {
3633 if (array_layout == GEN6_HIZ_STENCIL)
3634 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
3635
3636 switch (target) {
3637 case GL_TEXTURE_1D:
3638 case GL_TEXTURE_1D_ARRAY:
3639 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3640 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3641
3642 case GL_TEXTURE_2D:
3643 case GL_TEXTURE_2D_ARRAY:
3644 case GL_TEXTURE_RECTANGLE:
3645 case GL_TEXTURE_2D_MULTISAMPLE:
3646 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3647 case GL_TEXTURE_EXTERNAL_OES:
3648 return ISL_DIM_LAYOUT_GEN4_2D;
3649
3650 case GL_TEXTURE_CUBE_MAP:
3651 case GL_TEXTURE_CUBE_MAP_ARRAY:
3652 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3653 ISL_DIM_LAYOUT_GEN4_2D);
3654
3655 case GL_TEXTURE_3D:
3656 return (devinfo->gen >= 9 ?
3657 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3658 }
3659
3660 unreachable("Invalid texture target");
3661 }
3662
3663 enum isl_tiling
3664 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3665 {
3666 if (mt->format == MESA_FORMAT_S_UINT8) {
3667 return ISL_TILING_W;
3668 } else {
3669 switch (mt->tiling) {
3670 case I915_TILING_NONE:
3671 return ISL_TILING_LINEAR;
3672 case I915_TILING_X:
3673 return ISL_TILING_X;
3674 case I915_TILING_Y:
3675 return ISL_TILING_Y0;
3676 default:
3677 unreachable("Invalid tiling mode");
3678 }
3679 }
3680 }
3681
3682 void
3683 intel_miptree_get_isl_surf(struct brw_context *brw,
3684 const struct intel_mipmap_tree *mt,
3685 struct isl_surf *surf)
3686 {
3687 surf->dim = get_isl_surf_dim(mt->target);
3688 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3689 mt->tiling, mt->target,
3690 mt->array_layout);
3691
3692 if (mt->num_samples > 1) {
3693 switch (mt->msaa_layout) {
3694 case INTEL_MSAA_LAYOUT_IMS:
3695 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3696 break;
3697 case INTEL_MSAA_LAYOUT_UMS:
3698 case INTEL_MSAA_LAYOUT_CMS:
3699 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3700 break;
3701 default:
3702 unreachable("Invalid MSAA layout");
3703 }
3704 } else {
3705 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3706 }
3707
3708 surf->tiling = intel_miptree_get_isl_tiling(mt);
3709
3710 if (mt->format == MESA_FORMAT_S_UINT8) {
3711 /* The ISL definition of row_pitch matches the surface state pitch field
3712 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3713 * the factor of 2 for W-tiling in row_pitch.
3714 */
3715 surf->row_pitch = 2 * mt->pitch;
3716 } else {
3717 surf->row_pitch = mt->pitch;
3718 }
3719
3720 surf->format = translate_tex_format(brw, mt->format, false);
3721
3722 if (brw->gen >= 9) {
3723 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3724 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3725 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3726 } else {
3727 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3728 * alignment in terms of surface elements like we want.
3729 */
3730 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3731 }
3732 } else {
3733 /* On earlier gens it's stored in pixels. */
3734 unsigned bw, bh;
3735 _mesa_get_format_block_size(mt->format, &bw, &bh);
3736 surf->image_alignment_el =
3737 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3738 }
3739
3740 surf->logical_level0_px.width = mt->logical_width0;
3741 surf->logical_level0_px.height = mt->logical_height0;
3742 if (surf->dim == ISL_SURF_DIM_3D) {
3743 surf->logical_level0_px.depth = mt->logical_depth0;
3744 surf->logical_level0_px.array_len = 1;
3745 } else {
3746 surf->logical_level0_px.depth = 1;
3747 surf->logical_level0_px.array_len = mt->logical_depth0;
3748 }
3749
3750 surf->phys_level0_sa.width = mt->physical_width0;
3751 surf->phys_level0_sa.height = mt->physical_height0;
3752 if (surf->dim == ISL_SURF_DIM_3D) {
3753 surf->phys_level0_sa.depth = mt->physical_depth0;
3754 surf->phys_level0_sa.array_len = 1;
3755 } else {
3756 surf->phys_level0_sa.depth = 1;
3757 surf->phys_level0_sa.array_len = mt->physical_depth0;
3758 }
3759
3760 surf->levels = mt->last_level - mt->first_level + 1;
3761 surf->samples = MAX2(mt->num_samples, 1);
3762
3763 surf->size = 0; /* TODO */
3764 surf->alignment = 0; /* TODO */
3765
3766 switch (surf->dim_layout) {
3767 case ISL_DIM_LAYOUT_GEN4_2D:
3768 case ISL_DIM_LAYOUT_GEN4_3D:
3769 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
3770 if (brw->gen >= 9) {
3771 surf->array_pitch_el_rows = mt->qpitch;
3772 } else {
3773 unsigned bw, bh;
3774 _mesa_get_format_block_size(mt->format, &bw, &bh);
3775 assert(mt->qpitch % bh == 0);
3776 surf->array_pitch_el_rows = mt->qpitch / bh;
3777 }
3778 break;
3779 case ISL_DIM_LAYOUT_GEN9_1D:
3780 surf->array_pitch_el_rows = 1;
3781 break;
3782 }
3783
3784 switch (mt->array_layout) {
3785 case ALL_LOD_IN_EACH_SLICE:
3786 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3787 break;
3788 case ALL_SLICES_AT_EACH_LOD:
3789 case GEN6_HIZ_STENCIL:
3790 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3791 break;
3792 default:
3793 unreachable("Invalid array layout");
3794 }
3795
3796 GLenum base_format = _mesa_get_format_base_format(mt->format);
3797 switch (base_format) {
3798 case GL_DEPTH_COMPONENT:
3799 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3800 break;
3801 case GL_STENCIL_INDEX:
3802 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3803 if (brw->gen >= 8)
3804 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3805 break;
3806 case GL_DEPTH_STENCIL:
3807 /* In this case we only texture from the depth part */
3808 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3809 ISL_SURF_USAGE_TEXTURE_BIT;
3810 break;
3811 default:
3812 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3813 if (brw->mesa_format_supports_render[mt->format])
3814 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3815 break;
3816 }
3817
3818 if (_mesa_is_cube_map_texture(mt->target))
3819 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3820 }
3821
3822 enum isl_aux_usage
3823 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3824 const struct intel_mipmap_tree *mt)
3825 {
3826 if (mt->hiz_buf)
3827 return ISL_AUX_USAGE_HIZ;
3828
3829 if (!mt->mcs_buf)
3830 return ISL_AUX_USAGE_NONE;
3831
3832 return mt->aux_usage;
3833 }