i965: Move intel_region_get_tile_masks() to be a miptree function.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38 #include "intel_fbo.h"
39
40 #include "brw_blorp.h"
41 #include "brw_context.h"
42
43 #include "main/enums.h"
44 #include "main/fbobject.h"
45 #include "main/formats.h"
46 #include "main/glformats.h"
47 #include "main/texcompress_etc.h"
48 #include "main/teximage.h"
49 #include "main/streaming-load-memcpy.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 /**
54 * Determine which MSAA layout should be used by the MSAA surface being
55 * created, based on the chip generation and the surface type.
56 */
57 static enum intel_msaa_layout
58 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
59 {
60 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
61 if (brw->gen < 7)
62 return INTEL_MSAA_LAYOUT_IMS;
63
64 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
65 switch (_mesa_get_format_base_format(format)) {
66 case GL_DEPTH_COMPONENT:
67 case GL_STENCIL_INDEX:
68 case GL_DEPTH_STENCIL:
69 return INTEL_MSAA_LAYOUT_IMS;
70 default:
71 /* Disable MCS on Broadwell for now. We can enable it once things
72 * are working without it.
73 */
74 if (brw->gen >= 8) {
75 perf_debug("Missing CMS support on Broadwell.\n");
76 return INTEL_MSAA_LAYOUT_UMS;
77 }
78
79 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
80 *
81 * This field must be set to 0 for all SINT MSRTs when all RT channels
82 * are not written
83 *
84 * In practice this means that we have to disable MCS for all signed
85 * integer MSAA buffers. The alternative, to disable MCS only when one
86 * of the render target channels is disabled, is impractical because it
87 * would require converting between CMS and UMS MSAA layouts on the fly,
88 * which is expensive.
89 */
90 if (_mesa_get_format_datatype(format) == GL_INT) {
91 /* TODO: is this workaround needed for future chipsets? */
92 assert(brw->gen == 7);
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else {
95 return INTEL_MSAA_LAYOUT_CMS;
96 }
97 }
98 }
99
100
101 /**
102 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
103 * scaled-down bitfield representation of the color buffer which is capable of
104 * recording when blocks of the color buffer are equal to the clear value.
105 * This function returns the block size that will be used by the MCS buffer
106 * corresponding to a certain color miptree.
107 *
108 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
109 * beneath the "Fast Color Clear" bullet (p327):
110 *
111 * The following table describes the RT alignment
112 *
113 * Pixels Lines
114 * TiledY RT CL
115 * bpp
116 * 32 8 4
117 * 64 4 4
118 * 128 2 4
119 * TiledX RT CL
120 * bpp
121 * 32 16 2
122 * 64 8 2
123 * 128 4 2
124 *
125 * This alignment has the following uses:
126 *
127 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
128 * buffer contains 128 blocks horizontally and 256 blocks vertically.
129 *
130 * - For figuring out alignment restrictions for a fast clear operation. Fast
131 * clear operations must always clear aligned multiples of 16 blocks
132 * horizontally and 32 blocks vertically.
133 *
134 * - For scaling down the coordinates sent through the render pipeline during
135 * a fast clear. X coordinates must be scaled down by 8 times the block
136 * width, and Y coordinates by 16 times the block height.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a "Render Target Resolve" operation. X coordinates must be scaled down
140 * by half the block width, and Y coordinates by half the block height.
141 */
142 void
143 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
144 struct intel_mipmap_tree *mt,
145 unsigned *width_px, unsigned *height)
146 {
147 switch (mt->region->tiling) {
148 default:
149 assert(!"Non-MSRT MCS requires X or Y tiling");
150 /* In release builds, fall through */
151 case I915_TILING_Y:
152 *width_px = 32 / mt->cpp;
153 *height = 4;
154 break;
155 case I915_TILING_X:
156 *width_px = 64 / mt->cpp;
157 *height = 2;
158 }
159 }
160
161
162 /**
163 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
164 * can be used.
165 *
166 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
167 * beneath the "Fast Color Clear" bullet (p326):
168 *
169 * - Support is limited to tiled render targets.
170 * - Support is for non-mip-mapped and non-array surface types only.
171 *
172 * And then later, on p327:
173 *
174 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
175 * 64bpp, and 128bpp.
176 */
177 bool
178 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
179 struct intel_mipmap_tree *mt)
180 {
181 /* MCS support does not exist prior to Gen7 */
182 if (brw->gen < 7 || brw->gen >= 8)
183 return false;
184
185 /* MCS is only supported for color buffers */
186 switch (_mesa_get_format_base_format(mt->format)) {
187 case GL_DEPTH_COMPONENT:
188 case GL_DEPTH_STENCIL:
189 case GL_STENCIL_INDEX:
190 return false;
191 }
192
193 if (mt->region->tiling != I915_TILING_X &&
194 mt->region->tiling != I915_TILING_Y)
195 return false;
196 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
197 return false;
198 if (mt->first_level != 0 || mt->last_level != 0)
199 return false;
200 if (mt->physical_depth0 != 1)
201 return false;
202
203 /* There's no point in using an MCS buffer if the surface isn't in a
204 * renderable format.
205 */
206 if (!brw->format_supported_as_render_target[mt->format])
207 return false;
208
209 return true;
210 }
211
212
213 /**
214 * Determine depth format corresponding to a depth+stencil format,
215 * for separate stencil.
216 */
217 mesa_format
218 intel_depth_format_for_depthstencil_format(mesa_format format) {
219 switch (format) {
220 case MESA_FORMAT_Z24_UNORM_S8_UINT:
221 return MESA_FORMAT_Z24_UNORM_X8_UINT;
222 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
223 return MESA_FORMAT_Z_FLOAT32;
224 default:
225 return format;
226 }
227 }
228
229
230 /**
231 * @param for_bo Indicates that the caller is
232 * intel_miptree_create_for_bo(). If true, then do not create
233 * \c stencil_mt.
234 */
235 struct intel_mipmap_tree *
236 intel_miptree_create_layout(struct brw_context *brw,
237 GLenum target,
238 mesa_format format,
239 GLuint first_level,
240 GLuint last_level,
241 GLuint width0,
242 GLuint height0,
243 GLuint depth0,
244 bool for_bo,
245 GLuint num_samples)
246 {
247 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
248 if (!mt)
249 return NULL;
250
251 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
252 _mesa_lookup_enum_by_nr(target),
253 _mesa_get_format_name(format),
254 first_level, last_level, depth0, mt);
255
256 mt->target = target;
257 mt->format = format;
258 mt->first_level = first_level;
259 mt->last_level = last_level;
260 mt->logical_width0 = width0;
261 mt->logical_height0 = height0;
262 mt->logical_depth0 = depth0;
263 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
264
265 /* The cpp is bytes per (1, blockheight)-sized block for compressed
266 * textures. This is why you'll see divides by blockheight all over
267 */
268 unsigned bw, bh;
269 _mesa_get_format_block_size(format, &bw, &bh);
270 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
271 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
272
273 mt->num_samples = num_samples;
274 mt->compressed = _mesa_is_format_compressed(format);
275 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
276 mt->refcount = 1;
277
278 if (num_samples > 1) {
279 /* Adjust width/height/depth for MSAA */
280 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
281 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
282 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
283 *
284 * "Any of the other messages (sample*, LOD, load4) used with a
285 * (4x) multisampled surface will in-effect sample a surface with
286 * double the height and width as that indicated in the surface
287 * state. Each pixel position on the original-sized surface is
288 * replaced with a 2x2 of samples with the following arrangement:
289 *
290 * sample 0 sample 2
291 * sample 1 sample 3"
292 *
293 * Thus, when sampling from a multisampled texture, it behaves as
294 * though the layout in memory for (x,y,sample) is:
295 *
296 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
297 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
298 *
299 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
300 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
301 *
302 * However, the actual layout of multisampled data in memory is:
303 *
304 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
305 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
306 *
307 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
308 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
309 *
310 * This pattern repeats for each 2x2 pixel block.
311 *
312 * As a result, when calculating the size of our 4-sample buffer for
313 * an odd width or height, we have to align before scaling up because
314 * sample 3 is in that bottom right 2x2 block.
315 */
316 switch (num_samples) {
317 case 2:
318 assert(brw->gen >= 8);
319 width0 = ALIGN(width0, 2) * 2;
320 height0 = ALIGN(height0, 2);
321 break;
322 case 4:
323 width0 = ALIGN(width0, 2) * 2;
324 height0 = ALIGN(height0, 2) * 2;
325 break;
326 case 8:
327 width0 = ALIGN(width0, 2) * 4;
328 height0 = ALIGN(height0, 2) * 2;
329 break;
330 default:
331 /* num_samples should already have been quantized to 0, 1, 2, 4, or
332 * 8.
333 */
334 assert(false);
335 }
336 } else {
337 /* Non-interleaved */
338 depth0 *= num_samples;
339 }
340 }
341
342 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
343 * use it elsewhere?
344 */
345 switch (mt->msaa_layout) {
346 case INTEL_MSAA_LAYOUT_NONE:
347 case INTEL_MSAA_LAYOUT_IMS:
348 mt->array_spacing_lod0 = false;
349 break;
350 case INTEL_MSAA_LAYOUT_UMS:
351 case INTEL_MSAA_LAYOUT_CMS:
352 mt->array_spacing_lod0 = true;
353 break;
354 }
355
356 if (target == GL_TEXTURE_CUBE_MAP) {
357 assert(depth0 == 1);
358 depth0 = 6;
359 }
360
361 mt->physical_width0 = width0;
362 mt->physical_height0 = height0;
363 mt->physical_depth0 = depth0;
364
365 if (!for_bo &&
366 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
367 (brw->must_use_separate_stencil ||
368 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
369 mt->stencil_mt = intel_miptree_create(brw,
370 mt->target,
371 MESA_FORMAT_S_UINT8,
372 mt->first_level,
373 mt->last_level,
374 mt->logical_width0,
375 mt->logical_height0,
376 mt->logical_depth0,
377 true,
378 num_samples,
379 INTEL_MIPTREE_TILING_ANY);
380 if (!mt->stencil_mt) {
381 intel_miptree_release(&mt);
382 return NULL;
383 }
384
385 /* Fix up the Z miptree format for how we're splitting out separate
386 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
387 */
388 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
389 mt->cpp = 4;
390
391 if (format == mt->format) {
392 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
393 _mesa_get_format_name(mt->format));
394 }
395 }
396
397 brw_miptree_layout(brw, mt);
398
399 return mt;
400 }
401
402 /**
403 * \brief Helper function for intel_miptree_create().
404 */
405 static uint32_t
406 intel_miptree_choose_tiling(struct brw_context *brw,
407 mesa_format format,
408 uint32_t width0,
409 uint32_t num_samples,
410 enum intel_miptree_tiling_mode requested,
411 struct intel_mipmap_tree *mt)
412 {
413 if (format == MESA_FORMAT_S_UINT8) {
414 /* The stencil buffer is W tiled. However, we request from the kernel a
415 * non-tiled buffer because the GTT is incapable of W fencing.
416 */
417 return I915_TILING_NONE;
418 }
419
420 /* Some usages may want only one type of tiling, like depth miptrees (Y
421 * tiled), or temporary BOs for uploading data once (linear).
422 */
423 switch (requested) {
424 case INTEL_MIPTREE_TILING_ANY:
425 break;
426 case INTEL_MIPTREE_TILING_Y:
427 return I915_TILING_Y;
428 case INTEL_MIPTREE_TILING_NONE:
429 return I915_TILING_NONE;
430 }
431
432 if (num_samples > 1) {
433 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
434 * Surface"):
435 *
436 * [DevSNB+]: For multi-sample render targets, this field must be
437 * 1. MSRTs can only be tiled.
438 *
439 * Our usual reason for preferring X tiling (fast blits using the
440 * blitting engine) doesn't apply to MSAA, since we'll generally be
441 * downsampling or upsampling when blitting between the MSAA buffer
442 * and another buffer, and the blitting engine doesn't support that.
443 * So use Y tiling, since it makes better use of the cache.
444 */
445 return I915_TILING_Y;
446 }
447
448 GLenum base_format = _mesa_get_format_base_format(format);
449 if (base_format == GL_DEPTH_COMPONENT ||
450 base_format == GL_DEPTH_STENCIL_EXT)
451 return I915_TILING_Y;
452
453 int minimum_pitch = mt->total_width * mt->cpp;
454
455 /* If the width is much smaller than a tile, don't bother tiling. */
456 if (minimum_pitch < 64)
457 return I915_TILING_NONE;
458
459 if (ALIGN(minimum_pitch, 512) >= 32768 ||
460 mt->total_width >= 32768 || mt->total_height >= 32768) {
461 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
462 mt->total_width, mt->total_height);
463 return I915_TILING_NONE;
464 }
465
466 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
467 if (brw->gen < 6)
468 return I915_TILING_X;
469
470 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
471 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
472 * or Linear."
473 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
474 * all the way back to 965, but is explicitly permitted on Gen7.
475 */
476 if (brw->gen != 7 && mt->cpp >= 16)
477 return I915_TILING_X;
478
479 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
480 * messages), on p64, under the heading "Surface Vertical Alignment":
481 *
482 * This field must be set to VALIGN_4 for all tiled Y Render Target
483 * surfaces.
484 *
485 * So if the surface is renderable and uses a vertical alignment of 2,
486 * force it to be X tiled. This is somewhat conservative (it's possible
487 * that the client won't ever render to this surface), but it's difficult
488 * to know that ahead of time. And besides, since we use a vertical
489 * alignment of 4 as often as we can, this shouldn't happen very often.
490 */
491 if (brw->gen == 7 && mt->align_h == 2 &&
492 brw->format_supported_as_render_target[format]) {
493 return I915_TILING_X;
494 }
495
496 return I915_TILING_Y | I915_TILING_X;
497 }
498
499
500 /**
501 * Choose an appropriate uncompressed format for a requested
502 * compressed format, if unsupported.
503 */
504 mesa_format
505 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
506 {
507 /* No need to lower ETC formats on these platforms,
508 * they are supported natively.
509 */
510 if (brw->gen >= 8 || brw->is_baytrail)
511 return format;
512
513 switch (format) {
514 case MESA_FORMAT_ETC1_RGB8:
515 return MESA_FORMAT_R8G8B8X8_UNORM;
516 case MESA_FORMAT_ETC2_RGB8:
517 return MESA_FORMAT_R8G8B8X8_UNORM;
518 case MESA_FORMAT_ETC2_SRGB8:
519 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
520 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
521 return MESA_FORMAT_B8G8R8A8_SRGB;
522 case MESA_FORMAT_ETC2_RGBA8_EAC:
523 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
524 return MESA_FORMAT_R8G8B8A8_UNORM;
525 case MESA_FORMAT_ETC2_R11_EAC:
526 return MESA_FORMAT_R_UNORM16;
527 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
528 return MESA_FORMAT_R_SNORM16;
529 case MESA_FORMAT_ETC2_RG11_EAC:
530 return MESA_FORMAT_R16G16_UNORM;
531 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
532 return MESA_FORMAT_R16G16_SNORM;
533 default:
534 /* Non ETC1 / ETC2 format */
535 return format;
536 }
537 }
538
539
540 struct intel_mipmap_tree *
541 intel_miptree_create(struct brw_context *brw,
542 GLenum target,
543 mesa_format format,
544 GLuint first_level,
545 GLuint last_level,
546 GLuint width0,
547 GLuint height0,
548 GLuint depth0,
549 bool expect_accelerated_upload,
550 GLuint num_samples,
551 enum intel_miptree_tiling_mode requested_tiling)
552 {
553 struct intel_mipmap_tree *mt;
554 mesa_format tex_format = format;
555 mesa_format etc_format = MESA_FORMAT_NONE;
556 GLuint total_width, total_height;
557
558 format = intel_lower_compressed_format(brw, format);
559
560 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
561
562 mt = intel_miptree_create_layout(brw, target, format,
563 first_level, last_level, width0,
564 height0, depth0,
565 false, num_samples);
566 /*
567 * pitch == 0 || height == 0 indicates the null texture
568 */
569 if (!mt || !mt->total_width || !mt->total_height) {
570 intel_miptree_release(&mt);
571 return NULL;
572 }
573
574 total_width = mt->total_width;
575 total_height = mt->total_height;
576
577 if (format == MESA_FORMAT_S_UINT8) {
578 /* Align to size of W tile, 64x64. */
579 total_width = ALIGN(total_width, 64);
580 total_height = ALIGN(total_height, 64);
581 }
582
583 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
584 num_samples, requested_tiling,
585 mt);
586 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
587
588 mt->etc_format = etc_format;
589 mt->region = intel_region_alloc(brw->intelScreen,
590 y_or_x ? I915_TILING_Y : tiling,
591 mt->cpp,
592 total_width,
593 total_height,
594 expect_accelerated_upload);
595
596 /* If the region is too large to fit in the aperture, we need to use the
597 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
598 * so we need to fall back to X.
599 */
600 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
601 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
602 mt->total_width, mt->total_height);
603 intel_region_release(&mt->region);
604
605 mt->region = intel_region_alloc(brw->intelScreen,
606 I915_TILING_X,
607 mt->cpp,
608 total_width,
609 total_height,
610 expect_accelerated_upload);
611 }
612
613 mt->offset = 0;
614
615 if (!mt->region) {
616 intel_miptree_release(&mt);
617 return NULL;
618 }
619
620
621 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
622 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
623 intel_miptree_release(&mt);
624 return NULL;
625 }
626 }
627
628 /* If this miptree is capable of supporting fast color clears, set
629 * fast_clear_state appropriately to ensure that fast clears will occur.
630 * Allocation of the MCS miptree will be deferred until the first fast
631 * clear actually occurs.
632 */
633 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
634 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
635
636 return mt;
637 }
638
639 struct intel_mipmap_tree *
640 intel_miptree_create_for_bo(struct brw_context *brw,
641 drm_intel_bo *bo,
642 mesa_format format,
643 uint32_t offset,
644 uint32_t width,
645 uint32_t height,
646 int pitch,
647 uint32_t tiling)
648 {
649 struct intel_mipmap_tree *mt;
650
651 struct intel_region *region = calloc(1, sizeof(*region));
652 if (!region)
653 return NULL;
654
655 /* Nothing will be able to use this miptree with the BO if the offset isn't
656 * aligned.
657 */
658 if (tiling != I915_TILING_NONE)
659 assert(offset % 4096 == 0);
660
661 /* miptrees can't handle negative pitch. If you need flipping of images,
662 * that's outside of the scope of the mt.
663 */
664 assert(pitch >= 0);
665
666 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
667 0, 0,
668 width, height, 1,
669 true, 0 /* num_samples */);
670 if (!mt) {
671 free(region);
672 return mt;
673 }
674
675 region->cpp = mt->cpp;
676 region->width = width;
677 region->height = height;
678 region->pitch = pitch;
679 region->refcount = 1;
680 drm_intel_bo_reference(bo);
681 region->bo = bo;
682 region->tiling = tiling;
683
684 mt->region = region;
685 mt->offset = offset;
686
687 return mt;
688 }
689
690 /**
691 * For a singlesample image buffer, this simply wraps the given region with a miptree.
692 *
693 * For a multisample image buffer, this wraps the given region with
694 * a singlesample miptree, then creates a multisample miptree into which the
695 * singlesample miptree is embedded as a child.
696 */
697 void
698 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
699 struct intel_renderbuffer *irb,
700 struct intel_region *region)
701 {
702 struct intel_mipmap_tree *singlesample_mt = NULL;
703 struct intel_mipmap_tree *multisample_mt = NULL;
704 struct gl_renderbuffer *rb = &irb->Base.Base;
705 mesa_format format = rb->Format;
706 int num_samples = rb->NumSamples;
707
708 /* Only the front and back buffers, which are color buffers, are allocated
709 * through the image loader.
710 */
711 assert(_mesa_get_format_base_format(format) == GL_RGB ||
712 _mesa_get_format_base_format(format) == GL_RGBA);
713
714 singlesample_mt = intel_miptree_create_for_bo(intel,
715 region->bo,
716 format,
717 0,
718 region->width,
719 region->height,
720 region->pitch,
721 region->tiling);
722 if (!singlesample_mt)
723 goto fail;
724
725 singlesample_mt->region->name = region->name;
726
727 /* If this miptree is capable of supporting fast color clears, set
728 * mcs_state appropriately to ensure that fast clears will occur.
729 * Allocation of the MCS miptree will be deferred until the first fast
730 * clear actually occurs.
731 */
732 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
733 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
734
735 if (num_samples == 0) {
736 intel_miptree_release(&irb->mt);
737 irb->mt = singlesample_mt;
738
739 assert(!irb->singlesample_mt);
740 } else {
741 intel_miptree_release(&irb->singlesample_mt);
742 irb->singlesample_mt = singlesample_mt;
743
744 if (!irb->mt ||
745 irb->mt->logical_width0 != region->width ||
746 irb->mt->logical_height0 != region->height) {
747 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
748 format,
749 region->width,
750 region->height,
751 num_samples);
752 if (!multisample_mt)
753 goto fail;
754
755 irb->need_downsample = false;
756 intel_miptree_release(&irb->mt);
757 irb->mt = multisample_mt;
758 }
759 }
760 return;
761
762 fail:
763 intel_miptree_release(&irb->singlesample_mt);
764 intel_miptree_release(&irb->mt);
765 return;
766 }
767
768 struct intel_mipmap_tree*
769 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
770 mesa_format format,
771 uint32_t width,
772 uint32_t height,
773 uint32_t num_samples)
774 {
775 struct intel_mipmap_tree *mt;
776 uint32_t depth = 1;
777 bool ok;
778 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
779
780 mt = intel_miptree_create(brw, target, format, 0, 0,
781 width, height, depth, true, num_samples,
782 INTEL_MIPTREE_TILING_ANY);
783 if (!mt)
784 goto fail;
785
786 if (brw_is_hiz_depth_format(brw, format)) {
787 ok = intel_miptree_alloc_hiz(brw, mt);
788 if (!ok)
789 goto fail;
790 }
791
792 return mt;
793
794 fail:
795 intel_miptree_release(&mt);
796 return NULL;
797 }
798
799 void
800 intel_miptree_reference(struct intel_mipmap_tree **dst,
801 struct intel_mipmap_tree *src)
802 {
803 if (*dst == src)
804 return;
805
806 intel_miptree_release(dst);
807
808 if (src) {
809 src->refcount++;
810 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
811 }
812
813 *dst = src;
814 }
815
816
817 void
818 intel_miptree_release(struct intel_mipmap_tree **mt)
819 {
820 if (!*mt)
821 return;
822
823 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
824 if (--(*mt)->refcount <= 0) {
825 GLuint i;
826
827 DBG("%s deleting %p\n", __FUNCTION__, *mt);
828
829 intel_region_release(&((*mt)->region));
830 intel_miptree_release(&(*mt)->stencil_mt);
831 intel_miptree_release(&(*mt)->hiz_mt);
832 intel_miptree_release(&(*mt)->mcs_mt);
833 intel_resolve_map_clear(&(*mt)->hiz_map);
834
835 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
836 free((*mt)->level[i].slice);
837 }
838
839 free(*mt);
840 }
841 *mt = NULL;
842 }
843
844 void
845 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
846 int *width, int *height, int *depth)
847 {
848 switch (image->TexObject->Target) {
849 case GL_TEXTURE_1D_ARRAY:
850 *width = image->Width;
851 *height = 1;
852 *depth = image->Height;
853 break;
854 default:
855 *width = image->Width;
856 *height = image->Height;
857 *depth = image->Depth;
858 break;
859 }
860 }
861
862 /**
863 * Can the image be pulled into a unified mipmap tree? This mirrors
864 * the completeness test in a lot of ways.
865 *
866 * Not sure whether I want to pass gl_texture_image here.
867 */
868 bool
869 intel_miptree_match_image(struct intel_mipmap_tree *mt,
870 struct gl_texture_image *image)
871 {
872 struct intel_texture_image *intelImage = intel_texture_image(image);
873 GLuint level = intelImage->base.Base.Level;
874 int width, height, depth;
875
876 /* glTexImage* choose the texture object based on the target passed in, and
877 * objects can't change targets over their lifetimes, so this should be
878 * true.
879 */
880 assert(image->TexObject->Target == mt->target);
881
882 mesa_format mt_format = mt->format;
883 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
884 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
885 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
886 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
887 if (mt->etc_format != MESA_FORMAT_NONE)
888 mt_format = mt->etc_format;
889
890 if (image->TexFormat != mt_format)
891 return false;
892
893 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
894
895 if (mt->target == GL_TEXTURE_CUBE_MAP)
896 depth = 6;
897
898 int level_depth = mt->level[level].depth;
899 if (mt->num_samples > 1) {
900 switch (mt->msaa_layout) {
901 case INTEL_MSAA_LAYOUT_NONE:
902 case INTEL_MSAA_LAYOUT_IMS:
903 break;
904 case INTEL_MSAA_LAYOUT_UMS:
905 case INTEL_MSAA_LAYOUT_CMS:
906 level_depth /= mt->num_samples;
907 break;
908 }
909 }
910
911 /* Test image dimensions against the base level image adjusted for
912 * minification. This will also catch images not present in the
913 * tree, changed targets, etc.
914 */
915 if (width != minify(mt->logical_width0, level - mt->first_level) ||
916 height != minify(mt->logical_height0, level - mt->first_level) ||
917 depth != level_depth) {
918 return false;
919 }
920
921 if (image->NumSamples != mt->num_samples)
922 return false;
923
924 return true;
925 }
926
927
928 void
929 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
930 GLuint level,
931 GLuint x, GLuint y, GLuint d)
932 {
933 mt->level[level].depth = d;
934 mt->level[level].level_x = x;
935 mt->level[level].level_y = y;
936
937 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
938 level, d, x, y);
939
940 assert(mt->level[level].slice == NULL);
941
942 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
943 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
944 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
945 }
946
947
948 void
949 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
950 GLuint level, GLuint img,
951 GLuint x, GLuint y)
952 {
953 if (img == 0 && level == 0)
954 assert(x == 0 && y == 0);
955
956 assert(img < mt->level[level].depth);
957
958 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
959 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
960
961 DBG("%s level %d img %d pos %d,%d\n",
962 __FUNCTION__, level, img,
963 mt->level[level].slice[img].x_offset,
964 mt->level[level].slice[img].y_offset);
965 }
966
967 void
968 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
969 GLuint level, GLuint slice,
970 GLuint *x, GLuint *y)
971 {
972 assert(slice < mt->level[level].depth);
973
974 *x = mt->level[level].slice[slice].x_offset;
975 *y = mt->level[level].slice[slice].y_offset;
976 }
977
978 /**
979 * This function computes masks that may be used to select the bits of the X
980 * and Y coordinates that indicate the offset within a tile. If the region is
981 * untiled, the masks are set to 0.
982 */
983 void
984 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
985 uint32_t *mask_x, uint32_t *mask_y,
986 bool map_stencil_as_y_tiled)
987 {
988 int cpp = mt->region->cpp;
989 uint32_t tiling = mt->region->tiling;
990
991 if (map_stencil_as_y_tiled)
992 tiling = I915_TILING_Y;
993
994 switch (tiling) {
995 default:
996 assert(false);
997 case I915_TILING_NONE:
998 *mask_x = *mask_y = 0;
999 break;
1000 case I915_TILING_X:
1001 *mask_x = 512 / cpp - 1;
1002 *mask_y = 7;
1003 break;
1004 case I915_TILING_Y:
1005 *mask_x = 128 / cpp - 1;
1006 *mask_y = 31;
1007 break;
1008 }
1009 }
1010
1011 /**
1012 * Rendering with tiled buffers requires that the base address of the buffer
1013 * be aligned to a page boundary. For renderbuffers, and sometimes with
1014 * textures, we may want the surface to point at a texture image level that
1015 * isn't at a page boundary.
1016 *
1017 * This function returns an appropriately-aligned base offset
1018 * according to the tiling restrictions, plus any required x/y offset
1019 * from there.
1020 */
1021 uint32_t
1022 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1023 GLuint level, GLuint slice,
1024 uint32_t *tile_x,
1025 uint32_t *tile_y)
1026 {
1027 const struct intel_region *region = mt->region;
1028 uint32_t x, y;
1029 uint32_t mask_x, mask_y;
1030
1031 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1032 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1033
1034 *tile_x = x & mask_x;
1035 *tile_y = y & mask_y;
1036
1037 return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
1038 false);
1039 }
1040
1041 static void
1042 intel_miptree_copy_slice_sw(struct brw_context *brw,
1043 struct intel_mipmap_tree *dst_mt,
1044 struct intel_mipmap_tree *src_mt,
1045 int level,
1046 int slice,
1047 int width,
1048 int height)
1049 {
1050 void *src, *dst;
1051 int src_stride, dst_stride;
1052 int cpp = dst_mt->cpp;
1053
1054 intel_miptree_map(brw, src_mt,
1055 level, slice,
1056 0, 0,
1057 width, height,
1058 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1059 &src, &src_stride);
1060
1061 intel_miptree_map(brw, dst_mt,
1062 level, slice,
1063 0, 0,
1064 width, height,
1065 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1066 BRW_MAP_DIRECT_BIT,
1067 &dst, &dst_stride);
1068
1069 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1070 _mesa_get_format_name(src_mt->format),
1071 src_mt, src, src_stride,
1072 _mesa_get_format_name(dst_mt->format),
1073 dst_mt, dst, dst_stride,
1074 width, height);
1075
1076 int row_size = cpp * width;
1077 if (src_stride == row_size &&
1078 dst_stride == row_size) {
1079 memcpy(dst, src, row_size * height);
1080 } else {
1081 for (int i = 0; i < height; i++) {
1082 memcpy(dst, src, row_size);
1083 dst += dst_stride;
1084 src += src_stride;
1085 }
1086 }
1087
1088 intel_miptree_unmap(brw, dst_mt, level, slice);
1089 intel_miptree_unmap(brw, src_mt, level, slice);
1090
1091 /* Don't forget to copy the stencil data over, too. We could have skipped
1092 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1093 * shuffling the two data sources in/out of temporary storage instead of
1094 * the direct mapping we get this way.
1095 */
1096 if (dst_mt->stencil_mt) {
1097 assert(src_mt->stencil_mt);
1098 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1099 level, slice, width, height);
1100 }
1101 }
1102
1103 static void
1104 intel_miptree_copy_slice(struct brw_context *brw,
1105 struct intel_mipmap_tree *dst_mt,
1106 struct intel_mipmap_tree *src_mt,
1107 int level,
1108 int face,
1109 int depth)
1110
1111 {
1112 mesa_format format = src_mt->format;
1113 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1114 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1115 int slice;
1116
1117 if (face > 0)
1118 slice = face;
1119 else
1120 slice = depth;
1121
1122 assert(depth < src_mt->level[level].depth);
1123 assert(src_mt->format == dst_mt->format);
1124
1125 if (dst_mt->compressed) {
1126 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1127 width = ALIGN(width, dst_mt->align_w);
1128 }
1129
1130 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1131 * below won't apply since we can't do the depth's Y tiling or the
1132 * stencil's W tiling in the blitter.
1133 */
1134 if (src_mt->stencil_mt) {
1135 intel_miptree_copy_slice_sw(brw,
1136 dst_mt, src_mt,
1137 level, slice,
1138 width, height);
1139 return;
1140 }
1141
1142 uint32_t dst_x, dst_y, src_x, src_y;
1143 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1144 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1145
1146 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1147 _mesa_get_format_name(src_mt->format),
1148 src_mt, src_x, src_y, src_mt->region->pitch,
1149 _mesa_get_format_name(dst_mt->format),
1150 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1151 width, height);
1152
1153 if (!intel_miptree_blit(brw,
1154 src_mt, level, slice, 0, 0, false,
1155 dst_mt, level, slice, 0, 0, false,
1156 width, height, GL_COPY)) {
1157 perf_debug("miptree validate blit for %s failed\n",
1158 _mesa_get_format_name(format));
1159
1160 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1161 width, height);
1162 }
1163 }
1164
1165 /**
1166 * Copies the image's current data to the given miptree, and associates that
1167 * miptree with the image.
1168 *
1169 * If \c invalidate is true, then the actual image data does not need to be
1170 * copied, but the image still needs to be associated to the new miptree (this
1171 * is set to true if we're about to clear the image).
1172 */
1173 void
1174 intel_miptree_copy_teximage(struct brw_context *brw,
1175 struct intel_texture_image *intelImage,
1176 struct intel_mipmap_tree *dst_mt,
1177 bool invalidate)
1178 {
1179 struct intel_mipmap_tree *src_mt = intelImage->mt;
1180 struct intel_texture_object *intel_obj =
1181 intel_texture_object(intelImage->base.Base.TexObject);
1182 int level = intelImage->base.Base.Level;
1183 int face = intelImage->base.Base.Face;
1184 GLuint depth = intelImage->base.Base.Depth;
1185
1186 if (!invalidate) {
1187 for (int slice = 0; slice < depth; slice++) {
1188 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1189 }
1190 }
1191
1192 intel_miptree_reference(&intelImage->mt, dst_mt);
1193 intel_obj->needs_validate = true;
1194 }
1195
1196 bool
1197 intel_miptree_alloc_mcs(struct brw_context *brw,
1198 struct intel_mipmap_tree *mt,
1199 GLuint num_samples)
1200 {
1201 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1202 assert(mt->mcs_mt == NULL);
1203
1204 /* Choose the correct format for the MCS buffer. All that really matters
1205 * is that we allocate the right buffer size, since we'll always be
1206 * accessing this miptree using MCS-specific hardware mechanisms, which
1207 * infer the correct format based on num_samples.
1208 */
1209 mesa_format format;
1210 switch (num_samples) {
1211 case 4:
1212 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1213 * each sample).
1214 */
1215 format = MESA_FORMAT_R_UNORM8;
1216 break;
1217 case 8:
1218 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1219 * for each sample, plus 8 padding bits).
1220 */
1221 format = MESA_FORMAT_R_UINT32;
1222 break;
1223 default:
1224 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1225 return false;
1226 };
1227
1228 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1229 *
1230 * "The MCS surface must be stored as Tile Y."
1231 */
1232 mt->mcs_mt = intel_miptree_create(brw,
1233 mt->target,
1234 format,
1235 mt->first_level,
1236 mt->last_level,
1237 mt->logical_width0,
1238 mt->logical_height0,
1239 mt->logical_depth0,
1240 true,
1241 0 /* num_samples */,
1242 INTEL_MIPTREE_TILING_Y);
1243
1244 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1245 *
1246 * When MCS buffer is enabled and bound to MSRT, it is required that it
1247 * is cleared prior to any rendering.
1248 *
1249 * Since we don't use the MCS buffer for any purpose other than rendering,
1250 * it makes sense to just clear it immediately upon allocation.
1251 *
1252 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1253 */
1254 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1255 memset(data, 0xff, mt->mcs_mt->region->height * mt->mcs_mt->region->pitch);
1256 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1257 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1258
1259 return mt->mcs_mt;
1260 }
1261
1262
1263 bool
1264 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1265 struct intel_mipmap_tree *mt)
1266 {
1267 assert(mt->mcs_mt == NULL);
1268
1269 /* The format of the MCS buffer is opaque to the driver; all that matters
1270 * is that we get its size and pitch right. We'll pretend that the format
1271 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1272 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1273 * the block width and then a further factor of 4. Since an MCS tile
1274 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1275 * we'll need to scale the height down by the block height and then a
1276 * further factor of 8.
1277 */
1278 const mesa_format format = MESA_FORMAT_R_UINT32;
1279 unsigned block_width_px;
1280 unsigned block_height;
1281 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1282 unsigned width_divisor = block_width_px * 4;
1283 unsigned height_divisor = block_height * 8;
1284 unsigned mcs_width =
1285 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1286 unsigned mcs_height =
1287 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1288 assert(mt->logical_depth0 == 1);
1289 mt->mcs_mt = intel_miptree_create(brw,
1290 mt->target,
1291 format,
1292 mt->first_level,
1293 mt->last_level,
1294 mcs_width,
1295 mcs_height,
1296 mt->logical_depth0,
1297 true,
1298 0 /* num_samples */,
1299 INTEL_MIPTREE_TILING_Y);
1300
1301 return mt->mcs_mt;
1302 }
1303
1304
1305 /**
1306 * Helper for intel_miptree_alloc_hiz() that sets
1307 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1308 * \c has_hiz was set.
1309 */
1310 static bool
1311 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1312 struct intel_mipmap_tree *mt,
1313 uint32_t level,
1314 uint32_t layer)
1315 {
1316 assert(mt->hiz_mt);
1317
1318 if (brw->gen >= 8 || brw->is_haswell) {
1319 uint32_t width = minify(mt->physical_width0, level);
1320 uint32_t height = minify(mt->physical_height0, level);
1321
1322 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1323 * and the height is 4 aligned. This allows our HiZ support
1324 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1325 * we can grow the width & height to allow the HiZ op to
1326 * force the proper size alignments.
1327 */
1328 if (level > 0 && ((width & 7) || (height & 3))) {
1329 return false;
1330 }
1331 }
1332
1333 mt->level[level].slice[layer].has_hiz = true;
1334 return true;
1335 }
1336
1337
1338
1339 bool
1340 intel_miptree_alloc_hiz(struct brw_context *brw,
1341 struct intel_mipmap_tree *mt)
1342 {
1343 assert(mt->hiz_mt == NULL);
1344 mt->hiz_mt = intel_miptree_create(brw,
1345 mt->target,
1346 mt->format,
1347 mt->first_level,
1348 mt->last_level,
1349 mt->logical_width0,
1350 mt->logical_height0,
1351 mt->logical_depth0,
1352 true,
1353 mt->num_samples,
1354 INTEL_MIPTREE_TILING_ANY);
1355
1356 if (!mt->hiz_mt)
1357 return false;
1358
1359 /* Mark that all slices need a HiZ resolve. */
1360 struct intel_resolve_map *head = &mt->hiz_map;
1361 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1362 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1363 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1364 continue;
1365
1366 head->next = malloc(sizeof(*head->next));
1367 head->next->prev = head;
1368 head->next->next = NULL;
1369 head = head->next;
1370
1371 head->level = level;
1372 head->layer = layer;
1373 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1374 }
1375 }
1376
1377 return true;
1378 }
1379
1380 /**
1381 * Does the miptree slice have hiz enabled?
1382 */
1383 bool
1384 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1385 uint32_t level,
1386 uint32_t layer)
1387 {
1388 intel_miptree_check_level_layer(mt, level, layer);
1389 return mt->level[level].slice[layer].has_hiz;
1390 }
1391
1392 void
1393 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1394 uint32_t level,
1395 uint32_t layer)
1396 {
1397 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1398 return;
1399
1400 intel_resolve_map_set(&mt->hiz_map,
1401 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1402 }
1403
1404
1405 void
1406 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1407 uint32_t level,
1408 uint32_t layer)
1409 {
1410 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1411 return;
1412
1413 intel_resolve_map_set(&mt->hiz_map,
1414 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1415 }
1416
1417 void
1418 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1419 uint32_t level)
1420 {
1421 uint32_t layer;
1422 uint32_t end_layer = mt->level[level].depth;
1423
1424 for (layer = 0; layer < end_layer; layer++) {
1425 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1426 }
1427 }
1428
1429 static bool
1430 intel_miptree_slice_resolve(struct brw_context *brw,
1431 struct intel_mipmap_tree *mt,
1432 uint32_t level,
1433 uint32_t layer,
1434 enum gen6_hiz_op need)
1435 {
1436 intel_miptree_check_level_layer(mt, level, layer);
1437
1438 struct intel_resolve_map *item =
1439 intel_resolve_map_get(&mt->hiz_map, level, layer);
1440
1441 if (!item || item->need != need)
1442 return false;
1443
1444 intel_hiz_exec(brw, mt, level, layer, need);
1445 intel_resolve_map_remove(item);
1446 return true;
1447 }
1448
1449 bool
1450 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1451 struct intel_mipmap_tree *mt,
1452 uint32_t level,
1453 uint32_t layer)
1454 {
1455 return intel_miptree_slice_resolve(brw, mt, level, layer,
1456 GEN6_HIZ_OP_HIZ_RESOLVE);
1457 }
1458
1459 bool
1460 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1461 struct intel_mipmap_tree *mt,
1462 uint32_t level,
1463 uint32_t layer)
1464 {
1465 return intel_miptree_slice_resolve(brw, mt, level, layer,
1466 GEN6_HIZ_OP_DEPTH_RESOLVE);
1467 }
1468
1469 static bool
1470 intel_miptree_all_slices_resolve(struct brw_context *brw,
1471 struct intel_mipmap_tree *mt,
1472 enum gen6_hiz_op need)
1473 {
1474 bool did_resolve = false;
1475 struct intel_resolve_map *i, *next;
1476
1477 for (i = mt->hiz_map.next; i; i = next) {
1478 next = i->next;
1479 if (i->need != need)
1480 continue;
1481
1482 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1483 intel_resolve_map_remove(i);
1484 did_resolve = true;
1485 }
1486
1487 return did_resolve;
1488 }
1489
1490 bool
1491 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1492 struct intel_mipmap_tree *mt)
1493 {
1494 return intel_miptree_all_slices_resolve(brw, mt,
1495 GEN6_HIZ_OP_HIZ_RESOLVE);
1496 }
1497
1498 bool
1499 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1500 struct intel_mipmap_tree *mt)
1501 {
1502 return intel_miptree_all_slices_resolve(brw, mt,
1503 GEN6_HIZ_OP_DEPTH_RESOLVE);
1504 }
1505
1506
1507 void
1508 intel_miptree_resolve_color(struct brw_context *brw,
1509 struct intel_mipmap_tree *mt)
1510 {
1511 switch (mt->fast_clear_state) {
1512 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1513 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1514 /* No resolve needed */
1515 break;
1516 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1517 case INTEL_FAST_CLEAR_STATE_CLEAR:
1518 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1519 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1520 brw_blorp_resolve_color(brw, mt);
1521 break;
1522 }
1523 }
1524
1525
1526 /**
1527 * Make it possible to share the region backing the given miptree with another
1528 * process or another miptree.
1529 *
1530 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1531 * then discard the MCS buffer, if present. We also set the fast_clear_state
1532 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1533 * allocated in the future.
1534 */
1535 void
1536 intel_miptree_make_shareable(struct brw_context *brw,
1537 struct intel_mipmap_tree *mt)
1538 {
1539 /* MCS buffers are also used for multisample buffers, but we can't resolve
1540 * away a multisample MCS buffer because it's an integral part of how the
1541 * pixel data is stored. Fortunately this code path should never be
1542 * reached for multisample buffers.
1543 */
1544 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1545
1546 if (mt->mcs_mt) {
1547 intel_miptree_resolve_color(brw, mt);
1548 intel_miptree_release(&mt->mcs_mt);
1549 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1550 }
1551 }
1552
1553
1554 /**
1555 * \brief Get pointer offset into stencil buffer.
1556 *
1557 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1558 * must decode the tile's layout in software.
1559 *
1560 * See
1561 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1562 * Format.
1563 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1564 *
1565 * Even though the returned offset is always positive, the return type is
1566 * signed due to
1567 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1568 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1569 */
1570 static intptr_t
1571 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1572 {
1573 uint32_t tile_size = 4096;
1574 uint32_t tile_width = 64;
1575 uint32_t tile_height = 64;
1576 uint32_t row_size = 64 * stride;
1577
1578 uint32_t tile_x = x / tile_width;
1579 uint32_t tile_y = y / tile_height;
1580
1581 /* The byte's address relative to the tile's base addres. */
1582 uint32_t byte_x = x % tile_width;
1583 uint32_t byte_y = y % tile_height;
1584
1585 uintptr_t u = tile_y * row_size
1586 + tile_x * tile_size
1587 + 512 * (byte_x / 8)
1588 + 64 * (byte_y / 8)
1589 + 32 * ((byte_y / 4) % 2)
1590 + 16 * ((byte_x / 4) % 2)
1591 + 8 * ((byte_y / 2) % 2)
1592 + 4 * ((byte_x / 2) % 2)
1593 + 2 * (byte_y % 2)
1594 + 1 * (byte_x % 2);
1595
1596 if (swizzled) {
1597 /* adjust for bit6 swizzling */
1598 if (((byte_x / 8) % 2) == 1) {
1599 if (((byte_y / 8) % 2) == 0) {
1600 u += 64;
1601 } else {
1602 u -= 64;
1603 }
1604 }
1605 }
1606
1607 return u;
1608 }
1609
1610 void
1611 intel_miptree_updownsample(struct brw_context *brw,
1612 struct intel_mipmap_tree *src,
1613 struct intel_mipmap_tree *dst)
1614 {
1615 if (brw->gen < 8 || src->format == MESA_FORMAT_S_UINT8) {
1616 brw_blorp_blit_miptrees(brw,
1617 src, 0 /* level */, 0 /* layer */,
1618 dst, 0 /* level */, 0 /* layer */,
1619 0, 0,
1620 src->logical_width0, src->logical_height0,
1621 0, 0,
1622 dst->logical_width0, dst->logical_height0,
1623 GL_NEAREST, false, false /*mirror x, y*/);
1624 } else {
1625 brw_meta_updownsample(brw, src, dst);
1626 }
1627
1628 if (src->stencil_mt) {
1629 brw_blorp_blit_miptrees(brw,
1630 src->stencil_mt, 0 /* level */, 0 /* layer */,
1631 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1632 0, 0,
1633 src->logical_width0, src->logical_height0,
1634 0, 0,
1635 dst->logical_width0, dst->logical_height0,
1636 GL_NEAREST, false, false /*mirror x, y*/);
1637 }
1638 }
1639
1640 void *
1641 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1642 {
1643 /* CPU accesses to color buffers don't understand fast color clears, so
1644 * resolve any pending fast color clears before we map.
1645 */
1646 intel_miptree_resolve_color(brw, mt);
1647
1648 drm_intel_bo *bo = mt->region->bo;
1649
1650 if (drm_intel_bo_references(brw->batch.bo, bo))
1651 intel_batchbuffer_flush(brw);
1652
1653 if (mt->region->tiling != I915_TILING_NONE)
1654 brw_bo_map_gtt(brw, bo, "miptree");
1655 else
1656 brw_bo_map(brw, bo, true, "miptree");
1657
1658 return bo->virtual;
1659 }
1660
1661 void
1662 intel_miptree_unmap_raw(struct brw_context *brw,
1663 struct intel_mipmap_tree *mt)
1664 {
1665 drm_intel_bo_unmap(mt->region->bo);
1666 }
1667
1668 static void
1669 intel_miptree_map_gtt(struct brw_context *brw,
1670 struct intel_mipmap_tree *mt,
1671 struct intel_miptree_map *map,
1672 unsigned int level, unsigned int slice)
1673 {
1674 unsigned int bw, bh;
1675 void *base;
1676 unsigned int image_x, image_y;
1677 int x = map->x;
1678 int y = map->y;
1679
1680 /* For compressed formats, the stride is the number of bytes per
1681 * row of blocks. intel_miptree_get_image_offset() already does
1682 * the divide.
1683 */
1684 _mesa_get_format_block_size(mt->format, &bw, &bh);
1685 assert(y % bh == 0);
1686 y /= bh;
1687
1688 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1689
1690 if (base == NULL)
1691 map->ptr = NULL;
1692 else {
1693 /* Note that in the case of cube maps, the caller must have passed the
1694 * slice number referencing the face.
1695 */
1696 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1697 x += image_x;
1698 y += image_y;
1699
1700 map->stride = mt->region->pitch;
1701 map->ptr = base + y * map->stride + x * mt->cpp;
1702 }
1703
1704 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1705 map->x, map->y, map->w, map->h,
1706 mt, _mesa_get_format_name(mt->format),
1707 x, y, map->ptr, map->stride);
1708 }
1709
1710 static void
1711 intel_miptree_unmap_gtt(struct brw_context *brw,
1712 struct intel_mipmap_tree *mt,
1713 struct intel_miptree_map *map,
1714 unsigned int level,
1715 unsigned int slice)
1716 {
1717 intel_miptree_unmap_raw(brw, mt);
1718 }
1719
1720 static void
1721 intel_miptree_map_blit(struct brw_context *brw,
1722 struct intel_mipmap_tree *mt,
1723 struct intel_miptree_map *map,
1724 unsigned int level, unsigned int slice)
1725 {
1726 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1727 0, 0,
1728 map->w, map->h, 1,
1729 false, 0,
1730 INTEL_MIPTREE_TILING_NONE);
1731 if (!map->mt) {
1732 fprintf(stderr, "Failed to allocate blit temporary\n");
1733 goto fail;
1734 }
1735 map->stride = map->mt->region->pitch;
1736
1737 if (!intel_miptree_blit(brw,
1738 mt, level, slice,
1739 map->x, map->y, false,
1740 map->mt, 0, 0,
1741 0, 0, false,
1742 map->w, map->h, GL_COPY)) {
1743 fprintf(stderr, "Failed to blit\n");
1744 goto fail;
1745 }
1746
1747 map->ptr = intel_miptree_map_raw(brw, map->mt);
1748
1749 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1750 map->x, map->y, map->w, map->h,
1751 mt, _mesa_get_format_name(mt->format),
1752 level, slice, map->ptr, map->stride);
1753
1754 return;
1755
1756 fail:
1757 intel_miptree_release(&map->mt);
1758 map->ptr = NULL;
1759 map->stride = 0;
1760 }
1761
1762 static void
1763 intel_miptree_unmap_blit(struct brw_context *brw,
1764 struct intel_mipmap_tree *mt,
1765 struct intel_miptree_map *map,
1766 unsigned int level,
1767 unsigned int slice)
1768 {
1769 struct gl_context *ctx = &brw->ctx;
1770
1771 intel_miptree_unmap_raw(brw, map->mt);
1772
1773 if (map->mode & GL_MAP_WRITE_BIT) {
1774 bool ok = intel_miptree_blit(brw,
1775 map->mt, 0, 0,
1776 0, 0, false,
1777 mt, level, slice,
1778 map->x, map->y, false,
1779 map->w, map->h, GL_COPY);
1780 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1781 }
1782
1783 intel_miptree_release(&map->mt);
1784 }
1785
1786 #ifdef __SSE4_1__
1787 /**
1788 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1789 */
1790 static void
1791 intel_miptree_map_movntdqa(struct brw_context *brw,
1792 struct intel_mipmap_tree *mt,
1793 struct intel_miptree_map *map,
1794 unsigned int level, unsigned int slice)
1795 {
1796 assert(map->mode & GL_MAP_READ_BIT);
1797 assert(!(map->mode & GL_MAP_WRITE_BIT));
1798
1799 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1800 map->x, map->y, map->w, map->h,
1801 mt, _mesa_get_format_name(mt->format),
1802 level, slice, map->ptr, map->stride);
1803
1804 /* Map the original image */
1805 uint32_t image_x;
1806 uint32_t image_y;
1807 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1808 image_x += map->x;
1809 image_y += map->y;
1810
1811 void *src = intel_miptree_map_raw(brw, mt);
1812 if (!src)
1813 return;
1814 src += image_y * mt->region->pitch;
1815 src += image_x * mt->region->cpp;
1816
1817 /* Due to the pixel offsets for the particular image being mapped, our
1818 * src pointer may not be 16-byte aligned. However, if the pitch is
1819 * divisible by 16, then the amount by which it's misaligned will remain
1820 * consistent from row to row.
1821 */
1822 assert((mt->region->pitch % 16) == 0);
1823 const int misalignment = ((uintptr_t) src) & 15;
1824
1825 /* Create an untiled temporary buffer for the mapping. */
1826 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1827
1828 map->stride = ALIGN(misalignment + width_bytes, 16);
1829
1830 map->buffer = malloc(map->stride * map->h);
1831 /* Offset the destination so it has the same misalignment as src. */
1832 map->ptr = map->buffer + misalignment;
1833
1834 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1835
1836 for (uint32_t y = 0; y < map->h; y++) {
1837 void *dst_ptr = map->ptr + y * map->stride;
1838 void *src_ptr = src + y * mt->region->pitch;
1839
1840 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1841 }
1842
1843 intel_miptree_unmap_raw(brw, mt);
1844 }
1845
1846 static void
1847 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1848 struct intel_mipmap_tree *mt,
1849 struct intel_miptree_map *map,
1850 unsigned int level,
1851 unsigned int slice)
1852 {
1853 free(map->buffer);
1854 map->buffer = NULL;
1855 map->ptr = NULL;
1856 }
1857 #endif
1858
1859 static void
1860 intel_miptree_map_s8(struct brw_context *brw,
1861 struct intel_mipmap_tree *mt,
1862 struct intel_miptree_map *map,
1863 unsigned int level, unsigned int slice)
1864 {
1865 map->stride = map->w;
1866 map->buffer = map->ptr = malloc(map->stride * map->h);
1867 if (!map->buffer)
1868 return;
1869
1870 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1871 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1872 * invalidate is set, since we'll be writing the whole rectangle from our
1873 * temporary buffer back out.
1874 */
1875 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1876 uint8_t *untiled_s8_map = map->ptr;
1877 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1878 unsigned int image_x, image_y;
1879
1880 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1881
1882 for (uint32_t y = 0; y < map->h; y++) {
1883 for (uint32_t x = 0; x < map->w; x++) {
1884 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1885 x + image_x + map->x,
1886 y + image_y + map->y,
1887 brw->has_swizzling);
1888 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1889 }
1890 }
1891
1892 intel_miptree_unmap_raw(brw, mt);
1893
1894 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1895 map->x, map->y, map->w, map->h,
1896 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1897 } else {
1898 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1899 map->x, map->y, map->w, map->h,
1900 mt, map->ptr, map->stride);
1901 }
1902 }
1903
1904 static void
1905 intel_miptree_unmap_s8(struct brw_context *brw,
1906 struct intel_mipmap_tree *mt,
1907 struct intel_miptree_map *map,
1908 unsigned int level,
1909 unsigned int slice)
1910 {
1911 if (map->mode & GL_MAP_WRITE_BIT) {
1912 unsigned int image_x, image_y;
1913 uint8_t *untiled_s8_map = map->ptr;
1914 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1915
1916 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1917
1918 for (uint32_t y = 0; y < map->h; y++) {
1919 for (uint32_t x = 0; x < map->w; x++) {
1920 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1921 x + map->x,
1922 y + map->y,
1923 brw->has_swizzling);
1924 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1925 }
1926 }
1927
1928 intel_miptree_unmap_raw(brw, mt);
1929 }
1930
1931 free(map->buffer);
1932 }
1933
1934 static void
1935 intel_miptree_map_etc(struct brw_context *brw,
1936 struct intel_mipmap_tree *mt,
1937 struct intel_miptree_map *map,
1938 unsigned int level,
1939 unsigned int slice)
1940 {
1941 assert(mt->etc_format != MESA_FORMAT_NONE);
1942 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
1943 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
1944 }
1945
1946 assert(map->mode & GL_MAP_WRITE_BIT);
1947 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
1948
1949 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
1950 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
1951 map->w, map->h, 1));
1952 map->ptr = map->buffer;
1953 }
1954
1955 static void
1956 intel_miptree_unmap_etc(struct brw_context *brw,
1957 struct intel_mipmap_tree *mt,
1958 struct intel_miptree_map *map,
1959 unsigned int level,
1960 unsigned int slice)
1961 {
1962 uint32_t image_x;
1963 uint32_t image_y;
1964 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1965
1966 image_x += map->x;
1967 image_y += map->y;
1968
1969 uint8_t *dst = intel_miptree_map_raw(brw, mt)
1970 + image_y * mt->region->pitch
1971 + image_x * mt->region->cpp;
1972
1973 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
1974 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
1975 map->ptr, map->stride,
1976 map->w, map->h);
1977 else
1978 _mesa_unpack_etc2_format(dst, mt->region->pitch,
1979 map->ptr, map->stride,
1980 map->w, map->h, mt->etc_format);
1981
1982 intel_miptree_unmap_raw(brw, mt);
1983 free(map->buffer);
1984 }
1985
1986 /**
1987 * Mapping function for packed depth/stencil miptrees backed by real separate
1988 * miptrees for depth and stencil.
1989 *
1990 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
1991 * separate from the depth buffer. Yet at the GL API level, we have to expose
1992 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
1993 * be able to map that memory for texture storage and glReadPixels-type
1994 * operations. We give Mesa core that access by mallocing a temporary and
1995 * copying the data between the actual backing store and the temporary.
1996 */
1997 static void
1998 intel_miptree_map_depthstencil(struct brw_context *brw,
1999 struct intel_mipmap_tree *mt,
2000 struct intel_miptree_map *map,
2001 unsigned int level, unsigned int slice)
2002 {
2003 struct intel_mipmap_tree *z_mt = mt;
2004 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2005 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2006 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2007
2008 map->stride = map->w * packed_bpp;
2009 map->buffer = map->ptr = malloc(map->stride * map->h);
2010 if (!map->buffer)
2011 return;
2012
2013 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2014 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2015 * invalidate is set, since we'll be writing the whole rectangle from our
2016 * temporary buffer back out.
2017 */
2018 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2019 uint32_t *packed_map = map->ptr;
2020 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2021 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2022 unsigned int s_image_x, s_image_y;
2023 unsigned int z_image_x, z_image_y;
2024
2025 intel_miptree_get_image_offset(s_mt, level, slice,
2026 &s_image_x, &s_image_y);
2027 intel_miptree_get_image_offset(z_mt, level, slice,
2028 &z_image_x, &z_image_y);
2029
2030 for (uint32_t y = 0; y < map->h; y++) {
2031 for (uint32_t x = 0; x < map->w; x++) {
2032 int map_x = map->x + x, map_y = map->y + y;
2033 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2034 map_x + s_image_x,
2035 map_y + s_image_y,
2036 brw->has_swizzling);
2037 ptrdiff_t z_offset = ((map_y + z_image_y) *
2038 (z_mt->region->pitch / 4) +
2039 (map_x + z_image_x));
2040 uint8_t s = s_map[s_offset];
2041 uint32_t z = z_map[z_offset];
2042
2043 if (map_z32f_x24s8) {
2044 packed_map[(y * map->w + x) * 2 + 0] = z;
2045 packed_map[(y * map->w + x) * 2 + 1] = s;
2046 } else {
2047 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2048 }
2049 }
2050 }
2051
2052 intel_miptree_unmap_raw(brw, s_mt);
2053 intel_miptree_unmap_raw(brw, z_mt);
2054
2055 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2056 __FUNCTION__,
2057 map->x, map->y, map->w, map->h,
2058 z_mt, map->x + z_image_x, map->y + z_image_y,
2059 s_mt, map->x + s_image_x, map->y + s_image_y,
2060 map->ptr, map->stride);
2061 } else {
2062 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2063 map->x, map->y, map->w, map->h,
2064 mt, map->ptr, map->stride);
2065 }
2066 }
2067
2068 static void
2069 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2070 struct intel_mipmap_tree *mt,
2071 struct intel_miptree_map *map,
2072 unsigned int level,
2073 unsigned int slice)
2074 {
2075 struct intel_mipmap_tree *z_mt = mt;
2076 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2077 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2078
2079 if (map->mode & GL_MAP_WRITE_BIT) {
2080 uint32_t *packed_map = map->ptr;
2081 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2082 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2083 unsigned int s_image_x, s_image_y;
2084 unsigned int z_image_x, z_image_y;
2085
2086 intel_miptree_get_image_offset(s_mt, level, slice,
2087 &s_image_x, &s_image_y);
2088 intel_miptree_get_image_offset(z_mt, level, slice,
2089 &z_image_x, &z_image_y);
2090
2091 for (uint32_t y = 0; y < map->h; y++) {
2092 for (uint32_t x = 0; x < map->w; x++) {
2093 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2094 x + s_image_x + map->x,
2095 y + s_image_y + map->y,
2096 brw->has_swizzling);
2097 ptrdiff_t z_offset = ((y + z_image_y) *
2098 (z_mt->region->pitch / 4) +
2099 (x + z_image_x));
2100
2101 if (map_z32f_x24s8) {
2102 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2103 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2104 } else {
2105 uint32_t packed = packed_map[y * map->w + x];
2106 s_map[s_offset] = packed >> 24;
2107 z_map[z_offset] = packed;
2108 }
2109 }
2110 }
2111
2112 intel_miptree_unmap_raw(brw, s_mt);
2113 intel_miptree_unmap_raw(brw, z_mt);
2114
2115 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2116 __FUNCTION__,
2117 map->x, map->y, map->w, map->h,
2118 z_mt, _mesa_get_format_name(z_mt->format),
2119 map->x + z_image_x, map->y + z_image_y,
2120 s_mt, map->x + s_image_x, map->y + s_image_y,
2121 map->ptr, map->stride);
2122 }
2123
2124 free(map->buffer);
2125 }
2126
2127 /**
2128 * Create and attach a map to the miptree at (level, slice). Return the
2129 * attached map.
2130 */
2131 static struct intel_miptree_map*
2132 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2133 unsigned int level,
2134 unsigned int slice,
2135 unsigned int x,
2136 unsigned int y,
2137 unsigned int w,
2138 unsigned int h,
2139 GLbitfield mode)
2140 {
2141 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2142
2143 if (!map)
2144 return NULL;
2145
2146 assert(mt->level[level].slice[slice].map == NULL);
2147 mt->level[level].slice[slice].map = map;
2148
2149 map->mode = mode;
2150 map->x = x;
2151 map->y = y;
2152 map->w = w;
2153 map->h = h;
2154
2155 return map;
2156 }
2157
2158 /**
2159 * Release the map at (level, slice).
2160 */
2161 static void
2162 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2163 unsigned int level,
2164 unsigned int slice)
2165 {
2166 struct intel_miptree_map **map;
2167
2168 map = &mt->level[level].slice[slice].map;
2169 free(*map);
2170 *map = NULL;
2171 }
2172
2173 static bool
2174 can_blit_slice(struct intel_mipmap_tree *mt,
2175 unsigned int level, unsigned int slice)
2176 {
2177 uint32_t image_x;
2178 uint32_t image_y;
2179 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2180 if (image_x >= 32768 || image_y >= 32768)
2181 return false;
2182
2183 if (mt->region->pitch >= 32768)
2184 return false;
2185
2186 return true;
2187 }
2188
2189 void
2190 intel_miptree_map(struct brw_context *brw,
2191 struct intel_mipmap_tree *mt,
2192 unsigned int level,
2193 unsigned int slice,
2194 unsigned int x,
2195 unsigned int y,
2196 unsigned int w,
2197 unsigned int h,
2198 GLbitfield mode,
2199 void **out_ptr,
2200 int *out_stride)
2201 {
2202 struct intel_miptree_map *map;
2203
2204 assert(mt->num_samples <= 1);
2205
2206 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2207 if (!map){
2208 *out_ptr = NULL;
2209 *out_stride = 0;
2210 return;
2211 }
2212
2213 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2214 if (map->mode & GL_MAP_WRITE_BIT) {
2215 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2216 }
2217
2218 if (mt->format == MESA_FORMAT_S_UINT8) {
2219 intel_miptree_map_s8(brw, mt, map, level, slice);
2220 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2221 !(mode & BRW_MAP_DIRECT_BIT)) {
2222 intel_miptree_map_etc(brw, mt, map, level, slice);
2223 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2224 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2225 }
2226 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2227 else if (brw->has_llc &&
2228 !(mode & GL_MAP_WRITE_BIT) &&
2229 !mt->compressed &&
2230 (mt->region->tiling == I915_TILING_X ||
2231 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2232 can_blit_slice(mt, level, slice)) {
2233 intel_miptree_map_blit(brw, mt, map, level, slice);
2234 } else if (mt->region->tiling != I915_TILING_NONE &&
2235 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2236 assert(can_blit_slice(mt, level, slice));
2237 intel_miptree_map_blit(brw, mt, map, level, slice);
2238 #ifdef __SSE4_1__
2239 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed) {
2240 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2241 #endif
2242 } else {
2243 intel_miptree_map_gtt(brw, mt, map, level, slice);
2244 }
2245
2246 *out_ptr = map->ptr;
2247 *out_stride = map->stride;
2248
2249 if (map->ptr == NULL)
2250 intel_miptree_release_map(mt, level, slice);
2251 }
2252
2253 void
2254 intel_miptree_unmap(struct brw_context *brw,
2255 struct intel_mipmap_tree *mt,
2256 unsigned int level,
2257 unsigned int slice)
2258 {
2259 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2260
2261 assert(mt->num_samples <= 1);
2262
2263 if (!map)
2264 return;
2265
2266 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2267 mt, _mesa_get_format_name(mt->format), level, slice);
2268
2269 if (mt->format == MESA_FORMAT_S_UINT8) {
2270 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2271 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2272 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2273 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2274 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2275 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2276 } else if (map->mt) {
2277 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2278 #ifdef __SSE4_1__
2279 } else if (map->buffer) {
2280 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2281 #endif
2282 } else {
2283 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2284 }
2285
2286 intel_miptree_release_map(mt, level, slice);
2287 }