i965: Provide slice details to color resolver
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 bool disable_aux_buffers)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (disable_aux_buffers) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104
105 /**
106 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
107 * scaled-down bitfield representation of the color buffer which is capable of
108 * recording when blocks of the color buffer are equal to the clear value.
109 * This function returns the block size that will be used by the MCS buffer
110 * corresponding to a certain color miptree.
111 *
112 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
113 * beneath the "Fast Color Clear" bullet (p327):
114 *
115 * The following table describes the RT alignment
116 *
117 * Pixels Lines
118 * TiledY RT CL
119 * bpp
120 * 32 8 4
121 * 64 4 4
122 * 128 2 4
123 * TiledX RT CL
124 * bpp
125 * 32 16 2
126 * 64 8 2
127 * 128 4 2
128 *
129 * This alignment has the following uses:
130 *
131 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
132 * buffer contains 128 blocks horizontally and 256 blocks vertically.
133 *
134 * - For figuring out alignment restrictions for a fast clear operation. Fast
135 * clear operations must always clear aligned multiples of 16 blocks
136 * horizontally and 32 blocks vertically.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a fast clear. X coordinates must be scaled down by 8 times the block
140 * width, and Y coordinates by 16 times the block height.
141 *
142 * - For scaling down the coordinates sent through the render pipeline during
143 * a "Render Target Resolve" operation. X coordinates must be scaled down
144 * by half the block width, and Y coordinates by half the block height.
145 */
146 void
147 intel_get_non_msrt_mcs_alignment(const struct intel_mipmap_tree *mt,
148 unsigned *width_px, unsigned *height)
149 {
150 switch (mt->tiling) {
151 default:
152 unreachable("Non-MSRT MCS requires X or Y tiling");
153 /* In release builds, fall through */
154 case I915_TILING_Y:
155 *width_px = 32 / mt->cpp;
156 *height = 4;
157 break;
158 case I915_TILING_X:
159 *width_px = 64 / mt->cpp;
160 *height = 2;
161 }
162 }
163
164 bool
165 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
166 unsigned tiling)
167 {
168 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
169 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
170 *
171 * - Support is limited to tiled render targets.
172 *
173 * Gen9 changes the restriction to Y-tile only.
174 */
175 if (brw->gen >= 9)
176 return tiling == I915_TILING_Y;
177 else if (brw->gen >= 7)
178 return tiling != I915_TILING_NONE;
179 else
180 return false;
181 }
182
183 /**
184 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
185 * can be used. This doesn't (and should not) inspect any of the properties of
186 * the miptree's BO.
187 *
188 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
189 * beneath the "Fast Color Clear" bullet (p326):
190 *
191 * - Support is for non-mip-mapped and non-array surface types only.
192 *
193 * And then later, on p327:
194 *
195 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
196 * 64bpp, and 128bpp.
197 *
198 * From the Skylake documentation, it is made clear that X-tiling is no longer
199 * supported:
200 *
201 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
202 * non-MSRTs only.
203 */
204 bool
205 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
206 const struct intel_mipmap_tree *mt)
207 {
208 /* MCS support does not exist prior to Gen7 */
209 if (brw->gen < 7)
210 return false;
211
212 if (mt->disable_aux_buffers)
213 return false;
214
215 /* This function applies only to non-multisampled render targets. */
216 if (mt->num_samples > 1)
217 return false;
218
219 /* MCS is only supported for color buffers */
220 switch (_mesa_get_format_base_format(mt->format)) {
221 case GL_DEPTH_COMPONENT:
222 case GL_DEPTH_STENCIL:
223 case GL_STENCIL_INDEX:
224 return false;
225 }
226
227 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
228 return false;
229
230 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
231 const bool arrayed = mt->physical_depth0 != 1;
232
233 if (arrayed) {
234 /* Multisample surfaces with the CMS layout are not layered surfaces,
235 * yet still have physical_depth0 > 1. Assert that we don't
236 * accidentally reject a multisampled surface here. We should have
237 * rejected it earlier by explicitly checking the sample count.
238 */
239 assert(mt->num_samples <= 1);
240 }
241
242 /* Handle the hardware restrictions...
243 *
244 * All GENs have the following restriction: "MCS buffer for non-MSRT is
245 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
246 *
247 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
248 * Non-MultiSampler Render Target Restrictions) Support is for
249 * non-mip-mapped and non-array surface types only.
250 *
251 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
252 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
253 * surfaces are supported with MCS buffer layout with these alignments in
254 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
255 *
256 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
257 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
258 * surfaces are supported with MCS buffer layout with these alignments in
259 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
260 */
261 if (brw->gen < 8 && (mip_mapped || arrayed))
262 return false;
263
264 /* Not implemented yet. */
265 if (mip_mapped) {
266 perf_debug("Multi-LOD fast clear - giving up (%dx%dx%d).\n",
267 mt->logical_width0, mt->logical_height0, mt->last_level);
268 return false;
269 }
270
271 /* Not implemented yet. */
272 if (arrayed) {
273 perf_debug("Layered fast clear - giving up. (%dx%d%d)\n",
274 mt->logical_width0, mt->logical_height0,
275 mt->physical_depth0);
276 return false;
277 }
278
279 /* There's no point in using an MCS buffer if the surface isn't in a
280 * renderable format.
281 */
282 if (!brw->format_supported_as_render_target[mt->format])
283 return false;
284
285 if (brw->gen >= 9) {
286 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
287 const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
288 return isl_format_supports_lossless_compression(&brw->screen->devinfo,
289 brw_format);
290 } else
291 return true;
292 }
293
294 /* On Gen9 support for color buffer compression was extended to single
295 * sampled surfaces. This is a helper considering both auxiliary buffer
296 * type and number of samples telling if the given miptree represents
297 * the new single sampled case - also called lossless compression.
298 */
299 bool
300 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
301 const struct intel_mipmap_tree *mt)
302 {
303 /* Only available from Gen9 onwards. */
304 if (brw->gen < 9)
305 return false;
306
307 /* Compression always requires auxiliary buffer. */
308 if (!mt->mcs_buf)
309 return false;
310
311 /* Single sample compression is represented re-using msaa compression
312 * layout type: "Compressed Multisampled Surfaces".
313 */
314 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
315 return false;
316
317 /* And finally distinguish between msaa and single sample case. */
318 return mt->num_samples <= 1;
319 }
320
321 bool
322 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
323 const struct intel_mipmap_tree *mt)
324 {
325 /* For now compression is only enabled for integer formats even though
326 * there exist supported floating point formats also. This is a heuristic
327 * decision based on current public benchmarks. In none of the cases these
328 * formats provided any improvement but a few cases were seen to regress.
329 * Hence these are left to to be enabled in the future when they are known
330 * to improve things.
331 */
332 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
333 return false;
334
335 /* Fast clear mechanism and lossless compression go hand in hand. */
336 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
337 return false;
338
339 /* Fast clear can be also used to clear srgb surfaces by using equivalent
340 * linear format. This trick, however, can't be extended to be used with
341 * lossless compression and therefore a check is needed to see if the format
342 * really is linear.
343 */
344 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
345 }
346
347 /**
348 * Determine depth format corresponding to a depth+stencil format,
349 * for separate stencil.
350 */
351 mesa_format
352 intel_depth_format_for_depthstencil_format(mesa_format format) {
353 switch (format) {
354 case MESA_FORMAT_Z24_UNORM_S8_UINT:
355 return MESA_FORMAT_Z24_UNORM_X8_UINT;
356 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
357 return MESA_FORMAT_Z_FLOAT32;
358 default:
359 return format;
360 }
361 }
362
363
364 /**
365 * @param for_bo Indicates that the caller is
366 * intel_miptree_create_for_bo(). If true, then do not create
367 * \c stencil_mt.
368 */
369 static struct intel_mipmap_tree *
370 intel_miptree_create_layout(struct brw_context *brw,
371 GLenum target,
372 mesa_format format,
373 GLuint first_level,
374 GLuint last_level,
375 GLuint width0,
376 GLuint height0,
377 GLuint depth0,
378 GLuint num_samples,
379 uint32_t layout_flags)
380 {
381 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
382 if (!mt)
383 return NULL;
384
385 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
386 _mesa_enum_to_string(target),
387 _mesa_get_format_name(format),
388 first_level, last_level, depth0, mt);
389
390 if (target == GL_TEXTURE_1D_ARRAY)
391 assert(height0 == 1);
392
393 mt->target = target;
394 mt->format = format;
395 mt->first_level = first_level;
396 mt->last_level = last_level;
397 mt->logical_width0 = width0;
398 mt->logical_height0 = height0;
399 mt->logical_depth0 = depth0;
400 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
401 mt->disable_aux_buffers = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0;
402 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
403 exec_list_make_empty(&mt->hiz_map);
404 mt->cpp = _mesa_get_format_bytes(format);
405 mt->num_samples = num_samples;
406 mt->compressed = _mesa_is_format_compressed(format);
407 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
408 mt->refcount = 1;
409
410 int depth_multiply = 1;
411 if (num_samples > 1) {
412 /* Adjust width/height/depth for MSAA */
413 mt->msaa_layout = compute_msaa_layout(brw, format,
414 mt->disable_aux_buffers);
415 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
416 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
417 * "If the surface is multisampled and it is a depth or stencil
418 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
419 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
420 * proceeding:
421 *
422 * +----------------------------------------------------------------+
423 * | Num Multisamples | W_l = | H_l = |
424 * +----------------------------------------------------------------+
425 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
426 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
427 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
428 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
429 * +----------------------------------------------------------------+
430 * "
431 *
432 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
433 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
434 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
435 *
436 * Another more complicated explanation for these adjustments comes
437 * from the Sandybridge PRM, volume 4, part 1, page 31:
438 *
439 * "Any of the other messages (sample*, LOD, load4) used with a
440 * (4x) multisampled surface will in-effect sample a surface with
441 * double the height and width as that indicated in the surface
442 * state. Each pixel position on the original-sized surface is
443 * replaced with a 2x2 of samples with the following arrangement:
444 *
445 * sample 0 sample 2
446 * sample 1 sample 3"
447 *
448 * Thus, when sampling from a multisampled texture, it behaves as
449 * though the layout in memory for (x,y,sample) is:
450 *
451 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
452 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
453 *
454 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
455 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
456 *
457 * However, the actual layout of multisampled data in memory is:
458 *
459 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
460 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
461 *
462 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
463 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
464 *
465 * This pattern repeats for each 2x2 pixel block.
466 *
467 * As a result, when calculating the size of our 4-sample buffer for
468 * an odd width or height, we have to align before scaling up because
469 * sample 3 is in that bottom right 2x2 block.
470 */
471 switch (num_samples) {
472 case 2:
473 assert(brw->gen >= 8);
474 width0 = ALIGN(width0, 2) * 2;
475 height0 = ALIGN(height0, 2);
476 break;
477 case 4:
478 width0 = ALIGN(width0, 2) * 2;
479 height0 = ALIGN(height0, 2) * 2;
480 break;
481 case 8:
482 width0 = ALIGN(width0, 2) * 4;
483 height0 = ALIGN(height0, 2) * 2;
484 break;
485 case 16:
486 width0 = ALIGN(width0, 2) * 4;
487 height0 = ALIGN(height0, 2) * 4;
488 break;
489 default:
490 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
491 * or 16.
492 */
493 unreachable("not reached");
494 }
495 } else {
496 /* Non-interleaved */
497 depth_multiply = num_samples;
498 depth0 *= depth_multiply;
499 }
500 }
501
502 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
503 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
504 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
505 * used on Gen8 to make it pick a qpitch value which doesn't include space
506 * for the mipmaps. On Gen9 this is not necessary because it will
507 * automatically pick a packed qpitch value whenever mt->first_level ==
508 * mt->last_level.
509 * TODO: can we use it elsewhere?
510 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
511 */
512 if (brw->gen >= 9) {
513 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
514 } else {
515 switch (mt->msaa_layout) {
516 case INTEL_MSAA_LAYOUT_NONE:
517 case INTEL_MSAA_LAYOUT_IMS:
518 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
519 break;
520 case INTEL_MSAA_LAYOUT_UMS:
521 case INTEL_MSAA_LAYOUT_CMS:
522 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
523 break;
524 }
525 }
526
527 if (target == GL_TEXTURE_CUBE_MAP)
528 assert(depth0 == 6 * depth_multiply);
529
530 mt->physical_width0 = width0;
531 mt->physical_height0 = height0;
532 mt->physical_depth0 = depth0;
533
534 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
535 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
536 (brw->must_use_separate_stencil ||
537 (brw->has_separate_stencil &&
538 intel_miptree_wants_hiz_buffer(brw, mt)))) {
539 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
540 if (brw->gen == 6) {
541 stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
542 MIPTREE_LAYOUT_TILING_ANY;
543 }
544
545 mt->stencil_mt = intel_miptree_create(brw,
546 mt->target,
547 MESA_FORMAT_S_UINT8,
548 mt->first_level,
549 mt->last_level,
550 mt->logical_width0,
551 mt->logical_height0,
552 mt->logical_depth0,
553 num_samples,
554 stencil_flags);
555
556 if (!mt->stencil_mt) {
557 intel_miptree_release(&mt);
558 return NULL;
559 }
560 mt->stencil_mt->r8stencil_needs_update = true;
561
562 /* Fix up the Z miptree format for how we're splitting out separate
563 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
564 */
565 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
566 mt->cpp = 4;
567
568 if (format == mt->format) {
569 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
570 _mesa_get_format_name(mt->format));
571 }
572 }
573
574 if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
575 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
576
577 /*
578 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
579 * multisampled or have an AUX buffer attached to it.
580 *
581 * GEN | MSRT | AUX_CCS_* or AUX_MCS
582 * -------------------------------------------
583 * 9 | HALIGN_16 | HALIGN_16
584 * 8 | HALIGN_ANY | HALIGN_16
585 * 7 | ? | ?
586 * 6 | ? | ?
587 */
588 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
589 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
590 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
591 } else if (brw->gen >= 9 && num_samples > 1) {
592 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
593 } else {
594 const UNUSED bool is_lossless_compressed_aux =
595 brw->gen >= 9 && num_samples == 1 &&
596 mt->format == MESA_FORMAT_R_UINT32;
597
598 /* For now, nothing else has this requirement */
599 assert(is_lossless_compressed_aux ||
600 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
601 }
602
603 brw_miptree_layout(brw, mt, layout_flags);
604
605 if (mt->disable_aux_buffers)
606 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
607
608 return mt;
609 }
610
611
612 /**
613 * Choose an appropriate uncompressed format for a requested
614 * compressed format, if unsupported.
615 */
616 mesa_format
617 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
618 {
619 /* No need to lower ETC formats on these platforms,
620 * they are supported natively.
621 */
622 if (brw->gen >= 8 || brw->is_baytrail)
623 return format;
624
625 switch (format) {
626 case MESA_FORMAT_ETC1_RGB8:
627 return MESA_FORMAT_R8G8B8X8_UNORM;
628 case MESA_FORMAT_ETC2_RGB8:
629 return MESA_FORMAT_R8G8B8X8_UNORM;
630 case MESA_FORMAT_ETC2_SRGB8:
631 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
632 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
633 return MESA_FORMAT_B8G8R8A8_SRGB;
634 case MESA_FORMAT_ETC2_RGBA8_EAC:
635 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
636 return MESA_FORMAT_R8G8B8A8_UNORM;
637 case MESA_FORMAT_ETC2_R11_EAC:
638 return MESA_FORMAT_R_UNORM16;
639 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
640 return MESA_FORMAT_R_SNORM16;
641 case MESA_FORMAT_ETC2_RG11_EAC:
642 return MESA_FORMAT_R16G16_UNORM;
643 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
644 return MESA_FORMAT_R16G16_SNORM;
645 default:
646 /* Non ETC1 / ETC2 format */
647 return format;
648 }
649 }
650
651 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
652 static unsigned long
653 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
654 unsigned long *pitch)
655 {
656 uint32_t tile_width, tile_height;
657 unsigned long stride, size, aligned_y;
658
659 assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
660 intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
661 &tile_width, &tile_height);
662
663 aligned_y = ALIGN(mt->total_height, tile_height);
664 stride = mt->total_width * mt->cpp;
665 stride = ALIGN(stride, tile_width);
666 size = stride * aligned_y;
667
668 if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
669 assert(size % 4096 == 0);
670 *alignment = 4096;
671 } else {
672 assert(size % (64 * 1024) == 0);
673 *alignment = 64 * 1024;
674 }
675 *pitch = stride;
676 return size;
677 }
678
679 static struct intel_mipmap_tree *
680 miptree_create(struct brw_context *brw,
681 GLenum target,
682 mesa_format format,
683 GLuint first_level,
684 GLuint last_level,
685 GLuint width0,
686 GLuint height0,
687 GLuint depth0,
688 GLuint num_samples,
689 uint32_t layout_flags)
690 {
691 struct intel_mipmap_tree *mt;
692 mesa_format tex_format = format;
693 mesa_format etc_format = MESA_FORMAT_NONE;
694 uint32_t alloc_flags = 0;
695
696 format = intel_lower_compressed_format(brw, format);
697
698 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
699
700 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
701 mt = intel_miptree_create_layout(brw, target, format,
702 first_level, last_level, width0,
703 height0, depth0, num_samples,
704 layout_flags);
705 /*
706 * pitch == 0 || height == 0 indicates the null texture
707 */
708 if (!mt || !mt->total_width || !mt->total_height) {
709 intel_miptree_release(&mt);
710 return NULL;
711 }
712
713 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
714 mt->tiling = I915_TILING_Y;
715
716 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
717 alloc_flags |= BO_ALLOC_FOR_RENDER;
718
719 unsigned long pitch;
720 mt->etc_format = etc_format;
721
722 if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
723 unsigned alignment = 0;
724 unsigned long size;
725 size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
726 assert(size);
727 mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
728 size, alignment);
729 } else {
730 if (format == MESA_FORMAT_S_UINT8) {
731 /* Align to size of W tile, 64x64. */
732 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
733 ALIGN(mt->total_width, 64),
734 ALIGN(mt->total_height, 64),
735 mt->cpp, &mt->tiling, &pitch,
736 alloc_flags);
737 } else {
738 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
739 mt->total_width, mt->total_height,
740 mt->cpp, &mt->tiling, &pitch,
741 alloc_flags);
742 }
743 }
744
745 mt->pitch = pitch;
746
747 return mt;
748 }
749
750 struct intel_mipmap_tree *
751 intel_miptree_create(struct brw_context *brw,
752 GLenum target,
753 mesa_format format,
754 GLuint first_level,
755 GLuint last_level,
756 GLuint width0,
757 GLuint height0,
758 GLuint depth0,
759 GLuint num_samples,
760 uint32_t layout_flags)
761 {
762 struct intel_mipmap_tree *mt = miptree_create(
763 brw, target, format,
764 first_level, last_level,
765 width0, height0, depth0, num_samples,
766 layout_flags);
767
768 /* If the BO is too large to fit in the aperture, we need to use the
769 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
770 * handle Y-tiling, so we need to fall back to X.
771 */
772 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
773 mt->tiling == I915_TILING_Y) {
774 unsigned long pitch = mt->pitch;
775 const uint32_t alloc_flags =
776 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
777 BO_ALLOC_FOR_RENDER : 0;
778 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
779 mt->total_width, mt->total_height);
780
781 mt->tiling = I915_TILING_X;
782 drm_intel_bo_unreference(mt->bo);
783 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
784 mt->total_width, mt->total_height, mt->cpp,
785 &mt->tiling, &pitch, alloc_flags);
786 mt->pitch = pitch;
787 }
788
789 mt->offset = 0;
790
791 if (!mt->bo) {
792 intel_miptree_release(&mt);
793 return NULL;
794 }
795
796
797 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
798 assert(mt->num_samples > 1);
799 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
800 intel_miptree_release(&mt);
801 return NULL;
802 }
803 }
804
805 /* If this miptree is capable of supporting fast color clears, set
806 * fast_clear_state appropriately to ensure that fast clears will occur.
807 * Allocation of the MCS miptree will be deferred until the first fast
808 * clear actually occurs or when compressed single sampled buffer is
809 * written by the GPU for the first time.
810 */
811 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
812 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
813 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
814 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
815
816 /* On Gen9+ clients are not currently capable of consuming compressed
817 * single-sampled buffers. Disabling compression allows us to skip
818 * resolves.
819 */
820 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
821 const bool is_lossless_compressed =
822 unlikely(!lossless_compression_disabled) &&
823 brw->gen >= 9 && !mt->is_scanout &&
824 intel_miptree_supports_lossless_compressed(brw, mt);
825
826 if (is_lossless_compressed) {
827 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
828 }
829 }
830
831 return mt;
832 }
833
834 struct intel_mipmap_tree *
835 intel_miptree_create_for_bo(struct brw_context *brw,
836 drm_intel_bo *bo,
837 mesa_format format,
838 uint32_t offset,
839 uint32_t width,
840 uint32_t height,
841 uint32_t depth,
842 int pitch,
843 uint32_t layout_flags)
844 {
845 struct intel_mipmap_tree *mt;
846 uint32_t tiling, swizzle;
847 GLenum target;
848
849 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
850
851 /* Nothing will be able to use this miptree with the BO if the offset isn't
852 * aligned.
853 */
854 if (tiling != I915_TILING_NONE)
855 assert(offset % 4096 == 0);
856
857 /* miptrees can't handle negative pitch. If you need flipping of images,
858 * that's outside of the scope of the mt.
859 */
860 assert(pitch >= 0);
861
862 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
863
864 /* The BO already has a tiling format and we shouldn't confuse the lower
865 * layers by making it try to find a tiling format again.
866 */
867 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
868 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
869
870 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
871 mt = intel_miptree_create_layout(brw, target, format,
872 0, 0,
873 width, height, depth, 0,
874 layout_flags);
875 if (!mt)
876 return NULL;
877
878 drm_intel_bo_reference(bo);
879 mt->bo = bo;
880 mt->pitch = pitch;
881 mt->offset = offset;
882 mt->tiling = tiling;
883
884 return mt;
885 }
886
887 /**
888 * For a singlesample renderbuffer, this simply wraps the given BO with a
889 * miptree.
890 *
891 * For a multisample renderbuffer, this wraps the window system's
892 * (singlesample) BO with a singlesample miptree attached to the
893 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
894 * that will contain the actual rendering (which is lazily resolved to
895 * irb->singlesample_mt).
896 */
897 void
898 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
899 struct intel_renderbuffer *irb,
900 drm_intel_bo *bo,
901 uint32_t width, uint32_t height,
902 uint32_t pitch)
903 {
904 struct intel_mipmap_tree *singlesample_mt = NULL;
905 struct intel_mipmap_tree *multisample_mt = NULL;
906 struct gl_renderbuffer *rb = &irb->Base.Base;
907 mesa_format format = rb->Format;
908 int num_samples = rb->NumSamples;
909
910 /* Only the front and back buffers, which are color buffers, are allocated
911 * through the image loader.
912 */
913 assert(_mesa_get_format_base_format(format) == GL_RGB ||
914 _mesa_get_format_base_format(format) == GL_RGBA);
915
916 singlesample_mt = intel_miptree_create_for_bo(intel,
917 bo,
918 format,
919 0,
920 width,
921 height,
922 1,
923 pitch,
924 MIPTREE_LAYOUT_FOR_SCANOUT);
925 if (!singlesample_mt)
926 goto fail;
927
928 /* If this miptree is capable of supporting fast color clears, set
929 * mcs_state appropriately to ensure that fast clears will occur.
930 * Allocation of the MCS miptree will be deferred until the first fast
931 * clear actually occurs.
932 */
933 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
934 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
935 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
936 }
937
938 if (num_samples == 0) {
939 intel_miptree_release(&irb->mt);
940 irb->mt = singlesample_mt;
941
942 assert(!irb->singlesample_mt);
943 } else {
944 intel_miptree_release(&irb->singlesample_mt);
945 irb->singlesample_mt = singlesample_mt;
946
947 if (!irb->mt ||
948 irb->mt->logical_width0 != width ||
949 irb->mt->logical_height0 != height) {
950 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
951 format,
952 width,
953 height,
954 num_samples);
955 if (!multisample_mt)
956 goto fail;
957
958 irb->need_downsample = false;
959 intel_miptree_release(&irb->mt);
960 irb->mt = multisample_mt;
961 }
962 }
963 return;
964
965 fail:
966 intel_miptree_release(&irb->singlesample_mt);
967 intel_miptree_release(&irb->mt);
968 return;
969 }
970
971 struct intel_mipmap_tree*
972 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
973 mesa_format format,
974 uint32_t width,
975 uint32_t height,
976 uint32_t num_samples)
977 {
978 struct intel_mipmap_tree *mt;
979 uint32_t depth = 1;
980 bool ok;
981 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
982 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
983 MIPTREE_LAYOUT_TILING_ANY |
984 MIPTREE_LAYOUT_FOR_SCANOUT;
985
986 mt = intel_miptree_create(brw, target, format, 0, 0,
987 width, height, depth, num_samples,
988 layout_flags);
989 if (!mt)
990 goto fail;
991
992 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
993 ok = intel_miptree_alloc_hiz(brw, mt);
994 if (!ok)
995 goto fail;
996 }
997
998 return mt;
999
1000 fail:
1001 intel_miptree_release(&mt);
1002 return NULL;
1003 }
1004
1005 void
1006 intel_miptree_reference(struct intel_mipmap_tree **dst,
1007 struct intel_mipmap_tree *src)
1008 {
1009 if (*dst == src)
1010 return;
1011
1012 intel_miptree_release(dst);
1013
1014 if (src) {
1015 src->refcount++;
1016 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1017 }
1018
1019 *dst = src;
1020 }
1021
1022
1023 void
1024 intel_miptree_release(struct intel_mipmap_tree **mt)
1025 {
1026 if (!*mt)
1027 return;
1028
1029 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1030 if (--(*mt)->refcount <= 0) {
1031 GLuint i;
1032
1033 DBG("%s deleting %p\n", __func__, *mt);
1034
1035 drm_intel_bo_unreference((*mt)->bo);
1036 intel_miptree_release(&(*mt)->stencil_mt);
1037 intel_miptree_release(&(*mt)->r8stencil_mt);
1038 if ((*mt)->hiz_buf) {
1039 if ((*mt)->hiz_buf->mt)
1040 intel_miptree_release(&(*mt)->hiz_buf->mt);
1041 else
1042 drm_intel_bo_unreference((*mt)->hiz_buf->aux_base.bo);
1043 free((*mt)->hiz_buf);
1044 }
1045 if ((*mt)->mcs_buf) {
1046 drm_intel_bo_unreference((*mt)->mcs_buf->bo);
1047 free((*mt)->mcs_buf);
1048 }
1049 intel_resolve_map_clear(&(*mt)->hiz_map);
1050
1051 intel_miptree_release(&(*mt)->plane[0]);
1052 intel_miptree_release(&(*mt)->plane[1]);
1053
1054 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1055 free((*mt)->level[i].slice);
1056 }
1057
1058 free(*mt);
1059 }
1060 *mt = NULL;
1061 }
1062
1063
1064 void
1065 intel_get_image_dims(struct gl_texture_image *image,
1066 int *width, int *height, int *depth)
1067 {
1068 switch (image->TexObject->Target) {
1069 case GL_TEXTURE_1D_ARRAY:
1070 /* For a 1D Array texture the OpenGL API will treat the image height as
1071 * the number of array slices. For Intel hardware, we treat the 1D array
1072 * as a 2D Array with a height of 1. So, here we want to swap image
1073 * height and depth.
1074 */
1075 assert(image->Depth == 1);
1076 *width = image->Width;
1077 *height = 1;
1078 *depth = image->Height;
1079 break;
1080 case GL_TEXTURE_CUBE_MAP:
1081 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1082 * though we really have 6 slices.
1083 */
1084 assert(image->Depth == 1);
1085 *width = image->Width;
1086 *height = image->Height;
1087 *depth = 6;
1088 break;
1089 default:
1090 *width = image->Width;
1091 *height = image->Height;
1092 *depth = image->Depth;
1093 break;
1094 }
1095 }
1096
1097 /**
1098 * Can the image be pulled into a unified mipmap tree? This mirrors
1099 * the completeness test in a lot of ways.
1100 *
1101 * Not sure whether I want to pass gl_texture_image here.
1102 */
1103 bool
1104 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1105 struct gl_texture_image *image)
1106 {
1107 struct intel_texture_image *intelImage = intel_texture_image(image);
1108 GLuint level = intelImage->base.Base.Level;
1109 int width, height, depth;
1110
1111 /* glTexImage* choose the texture object based on the target passed in, and
1112 * objects can't change targets over their lifetimes, so this should be
1113 * true.
1114 */
1115 assert(image->TexObject->Target == mt->target);
1116
1117 mesa_format mt_format = mt->format;
1118 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1119 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1120 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1121 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1122 if (mt->etc_format != MESA_FORMAT_NONE)
1123 mt_format = mt->etc_format;
1124
1125 if (image->TexFormat != mt_format)
1126 return false;
1127
1128 intel_get_image_dims(image, &width, &height, &depth);
1129
1130 if (mt->target == GL_TEXTURE_CUBE_MAP)
1131 depth = 6;
1132
1133 int level_depth = mt->level[level].depth;
1134 if (mt->num_samples > 1) {
1135 switch (mt->msaa_layout) {
1136 case INTEL_MSAA_LAYOUT_NONE:
1137 case INTEL_MSAA_LAYOUT_IMS:
1138 break;
1139 case INTEL_MSAA_LAYOUT_UMS:
1140 case INTEL_MSAA_LAYOUT_CMS:
1141 level_depth /= mt->num_samples;
1142 break;
1143 }
1144 }
1145
1146 /* Test image dimensions against the base level image adjusted for
1147 * minification. This will also catch images not present in the
1148 * tree, changed targets, etc.
1149 */
1150 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1151 height != minify(mt->logical_height0, level - mt->first_level) ||
1152 depth != level_depth) {
1153 return false;
1154 }
1155
1156 if (image->NumSamples != mt->num_samples)
1157 return false;
1158
1159 return true;
1160 }
1161
1162
1163 void
1164 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1165 GLuint level,
1166 GLuint x, GLuint y, GLuint d)
1167 {
1168 mt->level[level].depth = d;
1169 mt->level[level].level_x = x;
1170 mt->level[level].level_y = y;
1171
1172 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1173 level, d, x, y);
1174
1175 assert(mt->level[level].slice == NULL);
1176
1177 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1178 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1179 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1180 }
1181
1182
1183 void
1184 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1185 GLuint level, GLuint img,
1186 GLuint x, GLuint y)
1187 {
1188 if (img == 0 && level == 0)
1189 assert(x == 0 && y == 0);
1190
1191 assert(img < mt->level[level].depth);
1192
1193 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1194 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1195
1196 DBG("%s level %d img %d pos %d,%d\n",
1197 __func__, level, img,
1198 mt->level[level].slice[img].x_offset,
1199 mt->level[level].slice[img].y_offset);
1200 }
1201
1202 void
1203 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1204 GLuint level, GLuint slice,
1205 GLuint *x, GLuint *y)
1206 {
1207 assert(slice < mt->level[level].depth);
1208
1209 *x = mt->level[level].slice[slice].x_offset;
1210 *y = mt->level[level].slice[slice].y_offset;
1211 }
1212
1213
1214 /**
1215 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1216 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1217 * and tile_h is set to 1.
1218 */
1219 void
1220 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1221 uint32_t *tile_w, uint32_t *tile_h)
1222 {
1223 if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1224 switch (tiling) {
1225 case I915_TILING_X:
1226 *tile_w = 512;
1227 *tile_h = 8;
1228 break;
1229 case I915_TILING_Y:
1230 *tile_w = 128;
1231 *tile_h = 32;
1232 break;
1233 case I915_TILING_NONE:
1234 *tile_w = cpp;
1235 *tile_h = 1;
1236 break;
1237 default:
1238 unreachable("not reached");
1239 }
1240 } else {
1241 uint32_t aspect_ratio = 1;
1242 assert(_mesa_is_pow_two(cpp));
1243
1244 switch (cpp) {
1245 case 1:
1246 *tile_h = 64;
1247 break;
1248 case 2:
1249 case 4:
1250 *tile_h = 32;
1251 break;
1252 case 8:
1253 case 16:
1254 *tile_h = 16;
1255 break;
1256 default:
1257 unreachable("not reached");
1258 }
1259
1260 if (cpp == 2 || cpp == 8)
1261 aspect_ratio = 2;
1262
1263 if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1264 *tile_h *= 4;
1265
1266 *tile_w = *tile_h * aspect_ratio * cpp;
1267 }
1268 }
1269
1270
1271 /**
1272 * This function computes masks that may be used to select the bits of the X
1273 * and Y coordinates that indicate the offset within a tile. If the BO is
1274 * untiled, the masks are set to 0.
1275 */
1276 void
1277 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1278 uint32_t *mask_x, uint32_t *mask_y)
1279 {
1280 uint32_t tile_w_bytes, tile_h;
1281
1282 intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1283
1284 *mask_x = tile_w_bytes / cpp - 1;
1285 *mask_y = tile_h - 1;
1286 }
1287
1288 /**
1289 * Compute the offset (in bytes) from the start of the BO to the given x
1290 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1291 * multiples of the tile size.
1292 */
1293 uint32_t
1294 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1295 uint32_t x, uint32_t y)
1296 {
1297 int cpp = mt->cpp;
1298 uint32_t pitch = mt->pitch;
1299 uint32_t tiling = mt->tiling;
1300
1301 switch (tiling) {
1302 default:
1303 unreachable("not reached");
1304 case I915_TILING_NONE:
1305 return y * pitch + x * cpp;
1306 case I915_TILING_X:
1307 assert((x % (512 / cpp)) == 0);
1308 assert((y % 8) == 0);
1309 return y * pitch + x / (512 / cpp) * 4096;
1310 case I915_TILING_Y:
1311 assert((x % (128 / cpp)) == 0);
1312 assert((y % 32) == 0);
1313 return y * pitch + x / (128 / cpp) * 4096;
1314 }
1315 }
1316
1317 /**
1318 * Rendering with tiled buffers requires that the base address of the buffer
1319 * be aligned to a page boundary. For renderbuffers, and sometimes with
1320 * textures, we may want the surface to point at a texture image level that
1321 * isn't at a page boundary.
1322 *
1323 * This function returns an appropriately-aligned base offset
1324 * according to the tiling restrictions, plus any required x/y offset
1325 * from there.
1326 */
1327 uint32_t
1328 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1329 GLuint level, GLuint slice,
1330 uint32_t *tile_x,
1331 uint32_t *tile_y)
1332 {
1333 uint32_t x, y;
1334 uint32_t mask_x, mask_y;
1335
1336 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
1337 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1338
1339 *tile_x = x & mask_x;
1340 *tile_y = y & mask_y;
1341
1342 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1343 }
1344
1345 static void
1346 intel_miptree_copy_slice_sw(struct brw_context *brw,
1347 struct intel_mipmap_tree *dst_mt,
1348 struct intel_mipmap_tree *src_mt,
1349 int level,
1350 int slice,
1351 int width,
1352 int height)
1353 {
1354 void *src, *dst;
1355 ptrdiff_t src_stride, dst_stride;
1356 int cpp = dst_mt->cpp;
1357
1358 intel_miptree_map(brw, src_mt,
1359 level, slice,
1360 0, 0,
1361 width, height,
1362 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1363 &src, &src_stride);
1364
1365 intel_miptree_map(brw, dst_mt,
1366 level, slice,
1367 0, 0,
1368 width, height,
1369 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1370 BRW_MAP_DIRECT_BIT,
1371 &dst, &dst_stride);
1372
1373 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1374 _mesa_get_format_name(src_mt->format),
1375 src_mt, src, src_stride,
1376 _mesa_get_format_name(dst_mt->format),
1377 dst_mt, dst, dst_stride,
1378 width, height);
1379
1380 int row_size = cpp * width;
1381 if (src_stride == row_size &&
1382 dst_stride == row_size) {
1383 memcpy(dst, src, row_size * height);
1384 } else {
1385 for (int i = 0; i < height; i++) {
1386 memcpy(dst, src, row_size);
1387 dst += dst_stride;
1388 src += src_stride;
1389 }
1390 }
1391
1392 intel_miptree_unmap(brw, dst_mt, level, slice);
1393 intel_miptree_unmap(brw, src_mt, level, slice);
1394
1395 /* Don't forget to copy the stencil data over, too. We could have skipped
1396 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1397 * shuffling the two data sources in/out of temporary storage instead of
1398 * the direct mapping we get this way.
1399 */
1400 if (dst_mt->stencil_mt) {
1401 assert(src_mt->stencil_mt);
1402 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1403 level, slice, width, height);
1404 }
1405 }
1406
1407 static void
1408 intel_miptree_copy_slice(struct brw_context *brw,
1409 struct intel_mipmap_tree *dst_mt,
1410 struct intel_mipmap_tree *src_mt,
1411 int level,
1412 int face,
1413 int depth)
1414
1415 {
1416 mesa_format format = src_mt->format;
1417 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1418 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1419 int slice;
1420
1421 if (face > 0)
1422 slice = face;
1423 else
1424 slice = depth;
1425
1426 assert(depth < src_mt->level[level].depth);
1427 assert(src_mt->format == dst_mt->format);
1428
1429 if (dst_mt->compressed) {
1430 unsigned int i, j;
1431 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1432 height = ALIGN_NPOT(height, j) / j;
1433 width = ALIGN_NPOT(width, i) / i;
1434 }
1435
1436 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1437 * below won't apply since we can't do the depth's Y tiling or the
1438 * stencil's W tiling in the blitter.
1439 */
1440 if (src_mt->stencil_mt) {
1441 intel_miptree_copy_slice_sw(brw,
1442 dst_mt, src_mt,
1443 level, slice,
1444 width, height);
1445 return;
1446 }
1447
1448 uint32_t dst_x, dst_y, src_x, src_y;
1449 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1450 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1451
1452 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1453 _mesa_get_format_name(src_mt->format),
1454 src_mt, src_x, src_y, src_mt->pitch,
1455 _mesa_get_format_name(dst_mt->format),
1456 dst_mt, dst_x, dst_y, dst_mt->pitch,
1457 width, height);
1458
1459 if (!intel_miptree_blit(brw,
1460 src_mt, level, slice, 0, 0, false,
1461 dst_mt, level, slice, 0, 0, false,
1462 width, height, GL_COPY)) {
1463 perf_debug("miptree validate blit for %s failed\n",
1464 _mesa_get_format_name(format));
1465
1466 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1467 width, height);
1468 }
1469 }
1470
1471 /**
1472 * Copies the image's current data to the given miptree, and associates that
1473 * miptree with the image.
1474 *
1475 * If \c invalidate is true, then the actual image data does not need to be
1476 * copied, but the image still needs to be associated to the new miptree (this
1477 * is set to true if we're about to clear the image).
1478 */
1479 void
1480 intel_miptree_copy_teximage(struct brw_context *brw,
1481 struct intel_texture_image *intelImage,
1482 struct intel_mipmap_tree *dst_mt,
1483 bool invalidate)
1484 {
1485 struct intel_mipmap_tree *src_mt = intelImage->mt;
1486 struct intel_texture_object *intel_obj =
1487 intel_texture_object(intelImage->base.Base.TexObject);
1488 int level = intelImage->base.Base.Level;
1489 int face = intelImage->base.Base.Face;
1490
1491 GLuint depth;
1492 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1493 depth = intelImage->base.Base.Height;
1494 else
1495 depth = intelImage->base.Base.Depth;
1496
1497 if (!invalidate) {
1498 for (int slice = 0; slice < depth; slice++) {
1499 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1500 }
1501 }
1502
1503 intel_miptree_reference(&intelImage->mt, dst_mt);
1504 intel_obj->needs_validate = true;
1505 }
1506
1507 static void
1508 intel_miptree_init_mcs(struct brw_context *brw,
1509 struct intel_mipmap_tree *mt,
1510 int init_value)
1511 {
1512 assert(mt->mcs_buf != NULL);
1513
1514 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1515 *
1516 * When MCS buffer is enabled and bound to MSRT, it is required that it
1517 * is cleared prior to any rendering.
1518 *
1519 * Since we don't use the MCS buffer for any purpose other than rendering,
1520 * it makes sense to just clear it immediately upon allocation.
1521 *
1522 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1523 */
1524 const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
1525 if (unlikely(ret)) {
1526 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1527 drm_intel_bo_unreference(mt->mcs_buf->bo);
1528 free(mt->mcs_buf);
1529 return;
1530 }
1531 void *data = mt->mcs_buf->bo->virtual;
1532 memset(data, init_value, mt->mcs_buf->size);
1533 drm_intel_bo_unmap(mt->mcs_buf->bo);
1534 }
1535
1536 static struct intel_miptree_aux_buffer *
1537 intel_mcs_miptree_buf_create(struct brw_context *brw,
1538 struct intel_mipmap_tree *mt,
1539 mesa_format format,
1540 unsigned mcs_width,
1541 unsigned mcs_height,
1542 uint32_t layout_flags)
1543 {
1544 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1545 struct intel_mipmap_tree *temp_mt;
1546
1547 if (!buf)
1548 return NULL;
1549
1550 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1551 *
1552 * "The MCS surface must be stored as Tile Y."
1553 */
1554 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1555 temp_mt = miptree_create(brw,
1556 mt->target,
1557 format,
1558 mt->first_level,
1559 mt->last_level,
1560 mcs_width,
1561 mcs_height,
1562 mt->logical_depth0,
1563 0 /* num_samples */,
1564 layout_flags);
1565 if (!temp_mt) {
1566 free(buf);
1567 return NULL;
1568 }
1569
1570 buf->bo = temp_mt->bo;
1571 buf->offset = temp_mt->offset;
1572 buf->size = temp_mt->total_height * temp_mt->pitch;
1573 buf->pitch = temp_mt->pitch;
1574 buf->qpitch = temp_mt->qpitch;
1575
1576 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1577 * structure should go away. We use miptree create simply as a means to make
1578 * sure all the constraints for the buffer are satisfied.
1579 */
1580 drm_intel_bo_reference(temp_mt->bo);
1581 intel_miptree_release(&temp_mt);
1582
1583 return buf;
1584 }
1585
1586 static bool
1587 intel_miptree_alloc_mcs(struct brw_context *brw,
1588 struct intel_mipmap_tree *mt,
1589 GLuint num_samples)
1590 {
1591 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1592 assert(mt->mcs_buf == NULL);
1593 assert(!mt->disable_aux_buffers);
1594
1595 /* Choose the correct format for the MCS buffer. All that really matters
1596 * is that we allocate the right buffer size, since we'll always be
1597 * accessing this miptree using MCS-specific hardware mechanisms, which
1598 * infer the correct format based on num_samples.
1599 */
1600 mesa_format format;
1601 switch (num_samples) {
1602 case 2:
1603 case 4:
1604 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1605 * each sample).
1606 */
1607 format = MESA_FORMAT_R_UNORM8;
1608 break;
1609 case 8:
1610 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1611 * for each sample, plus 8 padding bits).
1612 */
1613 format = MESA_FORMAT_R_UINT32;
1614 break;
1615 case 16:
1616 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1617 * for each sample).
1618 */
1619 format = MESA_FORMAT_RG_UINT32;
1620 break;
1621 default:
1622 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1623 };
1624
1625 mt->mcs_buf =
1626 intel_mcs_miptree_buf_create(brw, mt,
1627 format,
1628 mt->logical_width0,
1629 mt->logical_height0,
1630 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1631 if (!mt->mcs_buf)
1632 return false;
1633
1634 intel_miptree_init_mcs(brw, mt, 0xFF);
1635 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1636
1637 return true;
1638 }
1639
1640
1641 bool
1642 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1643 struct intel_mipmap_tree *mt,
1644 bool is_lossless_compressed)
1645 {
1646 assert(mt->mcs_buf == NULL);
1647 assert(!mt->disable_aux_buffers);
1648
1649 /* The format of the MCS buffer is opaque to the driver; all that matters
1650 * is that we get its size and pitch right. We'll pretend that the format
1651 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1652 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1653 * the block width and then a further factor of 4. Since an MCS tile
1654 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1655 * we'll need to scale the height down by the block height and then a
1656 * further factor of 8.
1657 */
1658 const mesa_format format = MESA_FORMAT_R_UINT32;
1659 unsigned block_width_px;
1660 unsigned block_height;
1661 intel_get_non_msrt_mcs_alignment(mt, &block_width_px, &block_height);
1662 unsigned width_divisor = block_width_px * 4;
1663 unsigned height_divisor = block_height * 8;
1664
1665 /* The Skylake MCS is twice as tall as the Broadwell MCS.
1666 *
1667 * In pre-Skylake, each bit in the MCS contained the state of 2 cachelines
1668 * in the main surface. In Skylake, it's two bits. The extra bit
1669 * doubles the MCS height, not width, because in Skylake the MCS is always
1670 * Y-tiled.
1671 */
1672 if (brw->gen >= 9)
1673 height_divisor /= 2;
1674
1675 unsigned mcs_width =
1676 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1677 unsigned mcs_height =
1678 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1679 assert(mt->logical_depth0 == 1);
1680
1681 uint32_t layout_flags =
1682 (brw->gen >= 8) ? MIPTREE_LAYOUT_FORCE_HALIGN16 : 0;
1683 /* In case of compression mcs buffer needs to be initialised requiring the
1684 * buffer to be immediately mapped to cpu space for writing. Therefore do
1685 * not use the gpu access flag which can cause an unnecessary delay if the
1686 * backing pages happened to be just used by the GPU.
1687 */
1688 if (!is_lossless_compressed)
1689 layout_flags |= MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1690
1691 mt->mcs_buf = intel_mcs_miptree_buf_create(brw, mt,
1692 format,
1693 mcs_width,
1694 mcs_height,
1695 layout_flags);
1696 if (!mt->mcs_buf)
1697 return false;
1698
1699 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1700 * used for lossless compression which requires similar initialisation
1701 * as multi-sample compression.
1702 */
1703 if (is_lossless_compressed) {
1704 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1705 * resolve. Initialize it accordingly in case the first renderer is
1706 * cpu (or other none compression aware party).
1707 *
1708 * This is also explicitly stated in the spec (MCS Buffer for Render
1709 * Target(s)):
1710 * "If Software wants to enable Color Compression without Fast clear,
1711 * Software needs to initialize MCS with zeros."
1712 */
1713 intel_miptree_init_mcs(brw, mt, 0);
1714 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
1715 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1716 }
1717
1718 return true;
1719 }
1720
1721 /**
1722 * Helper for intel_miptree_alloc_hiz() that sets
1723 * \c mt->level[level].has_hiz. Return true if and only if
1724 * \c has_hiz was set.
1725 */
1726 static bool
1727 intel_miptree_level_enable_hiz(struct brw_context *brw,
1728 struct intel_mipmap_tree *mt,
1729 uint32_t level)
1730 {
1731 assert(mt->hiz_buf);
1732
1733 if (brw->gen >= 8 || brw->is_haswell) {
1734 uint32_t width = minify(mt->physical_width0, level);
1735 uint32_t height = minify(mt->physical_height0, level);
1736
1737 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1738 * and the height is 4 aligned. This allows our HiZ support
1739 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1740 * we can grow the width & height to allow the HiZ op to
1741 * force the proper size alignments.
1742 */
1743 if (level > 0 && ((width & 7) || (height & 3))) {
1744 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1745 return false;
1746 }
1747 }
1748
1749 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1750 mt->level[level].has_hiz = true;
1751 return true;
1752 }
1753
1754
1755 /**
1756 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1757 * buffer dimensions and allocates a bo for the hiz buffer.
1758 */
1759 static struct intel_miptree_hiz_buffer *
1760 intel_gen7_hiz_buf_create(struct brw_context *brw,
1761 struct intel_mipmap_tree *mt)
1762 {
1763 unsigned z_width = mt->logical_width0;
1764 unsigned z_height = mt->logical_height0;
1765 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1766 unsigned hz_width, hz_height;
1767 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1768
1769 if (!buf)
1770 return NULL;
1771
1772 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1773 * adjustments required for Z_Height and Z_Width based on multisampling.
1774 */
1775 switch (mt->num_samples) {
1776 case 0:
1777 case 1:
1778 break;
1779 case 2:
1780 case 4:
1781 z_width *= 2;
1782 z_height *= 2;
1783 break;
1784 case 8:
1785 z_width *= 4;
1786 z_height *= 2;
1787 break;
1788 default:
1789 unreachable("unsupported sample count");
1790 }
1791
1792 const unsigned vertical_align = 8; /* 'j' in the docs */
1793 const unsigned H0 = z_height;
1794 const unsigned h0 = ALIGN(H0, vertical_align);
1795 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1796 const unsigned Z0 = z_depth;
1797
1798 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1799 hz_width = ALIGN(z_width, 16);
1800
1801 if (mt->target == GL_TEXTURE_3D) {
1802 unsigned H_i = H0;
1803 unsigned Z_i = Z0;
1804 hz_height = 0;
1805 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1806 unsigned h_i = ALIGN(H_i, vertical_align);
1807 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1808 hz_height += h_i * Z_i;
1809 H_i = minify(H_i, 1);
1810 Z_i = minify(Z_i, 1);
1811 }
1812 /* HZ_Height =
1813 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1814 */
1815 hz_height = DIV_ROUND_UP(hz_height, 2);
1816 } else {
1817 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1818 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1819 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1820 }
1821
1822 unsigned long pitch;
1823 uint32_t tiling = I915_TILING_Y;
1824 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1825 hz_width, hz_height, 1,
1826 &tiling, &pitch,
1827 BO_ALLOC_FOR_RENDER);
1828 if (!buf->aux_base.bo) {
1829 free(buf);
1830 return NULL;
1831 } else if (tiling != I915_TILING_Y) {
1832 drm_intel_bo_unreference(buf->aux_base.bo);
1833 free(buf);
1834 return NULL;
1835 }
1836
1837 buf->aux_base.size = hz_width * hz_height;
1838 buf->aux_base.pitch = pitch;
1839
1840 return buf;
1841 }
1842
1843
1844 /**
1845 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1846 * buffer dimensions and allocates a bo for the hiz buffer.
1847 */
1848 static struct intel_miptree_hiz_buffer *
1849 intel_gen8_hiz_buf_create(struct brw_context *brw,
1850 struct intel_mipmap_tree *mt)
1851 {
1852 unsigned z_width = mt->logical_width0;
1853 unsigned z_height = mt->logical_height0;
1854 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1855 unsigned hz_width, hz_height;
1856 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1857
1858 if (!buf)
1859 return NULL;
1860
1861 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1862 * adjustments required for Z_Height and Z_Width based on multisampling.
1863 */
1864 if (brw->gen < 9) {
1865 switch (mt->num_samples) {
1866 case 0:
1867 case 1:
1868 break;
1869 case 2:
1870 case 4:
1871 z_width *= 2;
1872 z_height *= 2;
1873 break;
1874 case 8:
1875 z_width *= 4;
1876 z_height *= 2;
1877 break;
1878 default:
1879 unreachable("unsupported sample count");
1880 }
1881 }
1882
1883 const unsigned vertical_align = 8; /* 'j' in the docs */
1884 const unsigned H0 = z_height;
1885 const unsigned h0 = ALIGN(H0, vertical_align);
1886 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1887 const unsigned Z0 = z_depth;
1888
1889 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1890 hz_width = ALIGN(z_width, 16);
1891
1892 unsigned H_i = H0;
1893 unsigned Z_i = Z0;
1894 unsigned sum_h_i = 0;
1895 unsigned hz_height_3d_sum = 0;
1896 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1897 unsigned i = level - mt->first_level;
1898 unsigned h_i = ALIGN(H_i, vertical_align);
1899 /* sum(i=2 to m; h_i) */
1900 if (i >= 2) {
1901 sum_h_i += h_i;
1902 }
1903 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1904 hz_height_3d_sum += h_i * Z_i;
1905 H_i = minify(H_i, 1);
1906 Z_i = minify(Z_i, 1);
1907 }
1908 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1909 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1910
1911 if (mt->target == GL_TEXTURE_3D) {
1912 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1913 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1914 } else {
1915 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1916 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1917 }
1918
1919 unsigned long pitch;
1920 uint32_t tiling = I915_TILING_Y;
1921 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1922 hz_width, hz_height, 1,
1923 &tiling, &pitch,
1924 BO_ALLOC_FOR_RENDER);
1925 if (!buf->aux_base.bo) {
1926 free(buf);
1927 return NULL;
1928 } else if (tiling != I915_TILING_Y) {
1929 drm_intel_bo_unreference(buf->aux_base.bo);
1930 free(buf);
1931 return NULL;
1932 }
1933
1934 buf->aux_base.size = hz_width * hz_height;
1935 buf->aux_base.pitch = pitch;
1936
1937 return buf;
1938 }
1939
1940
1941 static struct intel_miptree_hiz_buffer *
1942 intel_hiz_miptree_buf_create(struct brw_context *brw,
1943 struct intel_mipmap_tree *mt)
1944 {
1945 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1946 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1947
1948 if (brw->gen == 6)
1949 layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1950
1951 if (!buf)
1952 return NULL;
1953
1954 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1955 buf->mt = intel_miptree_create(brw,
1956 mt->target,
1957 mt->format,
1958 mt->first_level,
1959 mt->last_level,
1960 mt->logical_width0,
1961 mt->logical_height0,
1962 mt->logical_depth0,
1963 mt->num_samples,
1964 layout_flags);
1965 if (!buf->mt) {
1966 free(buf);
1967 return NULL;
1968 }
1969
1970 buf->aux_base.bo = buf->mt->bo;
1971 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1972 buf->aux_base.pitch = buf->mt->pitch;
1973 buf->aux_base.qpitch = buf->mt->qpitch;
1974
1975 return buf;
1976 }
1977
1978 bool
1979 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1980 struct intel_mipmap_tree *mt)
1981 {
1982 if (!brw->has_hiz)
1983 return false;
1984
1985 if (mt->hiz_buf != NULL)
1986 return false;
1987
1988 if (mt->disable_aux_buffers)
1989 return false;
1990
1991 switch (mt->format) {
1992 case MESA_FORMAT_Z_FLOAT32:
1993 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1994 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1995 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1996 case MESA_FORMAT_Z_UNORM16:
1997 return true;
1998 default:
1999 return false;
2000 }
2001 }
2002
2003 bool
2004 intel_miptree_alloc_hiz(struct brw_context *brw,
2005 struct intel_mipmap_tree *mt)
2006 {
2007 assert(mt->hiz_buf == NULL);
2008 assert(!mt->disable_aux_buffers);
2009
2010 if (brw->gen == 7) {
2011 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
2012 } else if (brw->gen >= 8) {
2013 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
2014 } else {
2015 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
2016 }
2017
2018 if (!mt->hiz_buf)
2019 return false;
2020
2021 /* Mark that all slices need a HiZ resolve. */
2022 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
2023 if (!intel_miptree_level_enable_hiz(brw, mt, level))
2024 continue;
2025
2026 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
2027 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
2028 exec_node_init(&m->link);
2029 m->level = level;
2030 m->layer = layer;
2031 m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
2032
2033 exec_list_push_tail(&mt->hiz_map, &m->link);
2034 }
2035 }
2036
2037 return true;
2038 }
2039
2040 /**
2041 * Can the miptree sample using the hiz buffer?
2042 */
2043 bool
2044 intel_miptree_sample_with_hiz(struct brw_context *brw,
2045 struct intel_mipmap_tree *mt)
2046 {
2047 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
2048 * so keep things conservative for now and never enable it unless we're SKL+.
2049 */
2050 if (brw->gen < 9) {
2051 return false;
2052 }
2053
2054 if (!mt->hiz_buf) {
2055 return false;
2056 }
2057
2058 /* It seems the hardware won't fallback to the depth buffer if some of the
2059 * mipmap levels aren't available in the HiZ buffer. So we need all levels
2060 * of the texture to be HiZ enabled.
2061 */
2062 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
2063 if (!intel_miptree_level_has_hiz(mt, level))
2064 return false;
2065 }
2066
2067 /* If compressed multisampling is enabled, then we use it for the auxiliary
2068 * buffer instead.
2069 *
2070 * From the BDW PRM (Volume 2d: Command Reference: Structures
2071 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2072 *
2073 * "If this field is set to AUX_HIZ, Number of Multisamples must be
2074 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2075 *
2076 * There is no such blurb for 1D textures, but there is sufficient evidence
2077 * that this is broken on SKL+.
2078 */
2079 return (mt->num_samples <= 1 &&
2080 mt->target != GL_TEXTURE_3D &&
2081 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2082 }
2083
2084 /**
2085 * Does the miptree slice have hiz enabled?
2086 */
2087 bool
2088 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2089 {
2090 intel_miptree_check_level_layer(mt, level, 0);
2091 return mt->level[level].has_hiz;
2092 }
2093
2094 void
2095 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2096 uint32_t level,
2097 uint32_t layer)
2098 {
2099 if (!intel_miptree_level_has_hiz(mt, level))
2100 return;
2101
2102 intel_resolve_map_set(&mt->hiz_map,
2103 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
2104 }
2105
2106
2107 void
2108 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2109 uint32_t level,
2110 uint32_t layer)
2111 {
2112 if (!intel_miptree_level_has_hiz(mt, level))
2113 return;
2114
2115 intel_resolve_map_set(&mt->hiz_map,
2116 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
2117 }
2118
2119 void
2120 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2121 uint32_t level)
2122 {
2123 uint32_t layer;
2124 uint32_t end_layer = mt->level[level].depth;
2125
2126 for (layer = 0; layer < end_layer; layer++) {
2127 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2128 }
2129 }
2130
2131 static bool
2132 intel_miptree_slice_resolve(struct brw_context *brw,
2133 struct intel_mipmap_tree *mt,
2134 uint32_t level,
2135 uint32_t layer,
2136 enum blorp_hiz_op need)
2137 {
2138 intel_miptree_check_level_layer(mt, level, layer);
2139
2140 struct intel_resolve_map *item =
2141 intel_resolve_map_get(&mt->hiz_map, level, layer);
2142
2143 if (!item || item->need != need)
2144 return false;
2145
2146 intel_hiz_exec(brw, mt, level, layer, need);
2147 intel_resolve_map_remove(item);
2148 return true;
2149 }
2150
2151 bool
2152 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2153 struct intel_mipmap_tree *mt,
2154 uint32_t level,
2155 uint32_t layer)
2156 {
2157 return intel_miptree_slice_resolve(brw, mt, level, layer,
2158 BLORP_HIZ_OP_HIZ_RESOLVE);
2159 }
2160
2161 bool
2162 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2163 struct intel_mipmap_tree *mt,
2164 uint32_t level,
2165 uint32_t layer)
2166 {
2167 return intel_miptree_slice_resolve(brw, mt, level, layer,
2168 BLORP_HIZ_OP_DEPTH_RESOLVE);
2169 }
2170
2171 static bool
2172 intel_miptree_all_slices_resolve(struct brw_context *brw,
2173 struct intel_mipmap_tree *mt,
2174 enum blorp_hiz_op need)
2175 {
2176 bool did_resolve = false;
2177
2178 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2179 if (map->need != need)
2180 continue;
2181
2182 intel_hiz_exec(brw, mt, map->level, map->layer, need);
2183 intel_resolve_map_remove(map);
2184 did_resolve = true;
2185 }
2186
2187 return did_resolve;
2188 }
2189
2190 bool
2191 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2192 struct intel_mipmap_tree *mt)
2193 {
2194 return intel_miptree_all_slices_resolve(brw, mt,
2195 BLORP_HIZ_OP_HIZ_RESOLVE);
2196 }
2197
2198 bool
2199 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2200 struct intel_mipmap_tree *mt)
2201 {
2202 return intel_miptree_all_slices_resolve(brw, mt,
2203 BLORP_HIZ_OP_DEPTH_RESOLVE);
2204 }
2205
2206 static void
2207 intel_miptree_check_color_resolve(const struct intel_mipmap_tree *mt,
2208 unsigned level, unsigned layer)
2209 {
2210 if (!mt->mcs_buf)
2211 return;
2212
2213 /* Fast color clear is not supported for mipmapped surfaces. */
2214 assert(level == 0 && mt->first_level == 0 && mt->last_level == 0);
2215
2216 /* Compression of arrayed msaa surfaces is supported. */
2217 if (mt->num_samples > 1)
2218 return;
2219
2220 /* Fast color clear is not supported for non-msaa arrays. */
2221 assert(layer == 0 && mt->logical_depth0 == 1);
2222
2223 (void)level;
2224 (void)layer;
2225 }
2226
2227 bool
2228 intel_miptree_resolve_color(struct brw_context *brw,
2229 struct intel_mipmap_tree *mt, unsigned level,
2230 unsigned start_layer, unsigned num_layers,
2231 int flags)
2232 {
2233 intel_miptree_check_color_resolve(mt, level, start_layer);
2234
2235 /* From gen9 onwards there is new compression scheme for single sampled
2236 * surfaces called "lossless compressed". These don't need to be always
2237 * resolved.
2238 */
2239 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) &&
2240 intel_miptree_is_lossless_compressed(brw, mt))
2241 return false;
2242
2243 switch (mt->fast_clear_state) {
2244 case INTEL_FAST_CLEAR_STATE_NO_MCS:
2245 case INTEL_FAST_CLEAR_STATE_RESOLVED:
2246 /* No resolve needed */
2247 return false;
2248 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
2249 case INTEL_FAST_CLEAR_STATE_CLEAR:
2250 /* For now arrayed fast clear is not supported. */
2251 assert(num_layers == 1);
2252
2253 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2254 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE ||
2255 intel_miptree_is_lossless_compressed(brw, mt)) {
2256 brw_blorp_resolve_color(brw, mt, level, start_layer);
2257 return true;
2258 } else {
2259 return false;
2260 }
2261 default:
2262 unreachable("Invalid fast clear state");
2263 }
2264 }
2265
2266 void
2267 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2268 struct intel_mipmap_tree *mt,
2269 int flags)
2270 {
2271 intel_miptree_resolve_color(brw, mt, 0, 0, 1, flags);
2272 }
2273
2274 /**
2275 * Make it possible to share the BO backing the given miptree with another
2276 * process or another miptree.
2277 *
2278 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2279 * then discard the MCS buffer, if present. We also set the fast_clear_state
2280 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
2281 * allocated in the future.
2282 */
2283 void
2284 intel_miptree_make_shareable(struct brw_context *brw,
2285 struct intel_mipmap_tree *mt)
2286 {
2287 /* MCS buffers are also used for multisample buffers, but we can't resolve
2288 * away a multisample MCS buffer because it's an integral part of how the
2289 * pixel data is stored. Fortunately this code path should never be
2290 * reached for multisample buffers.
2291 */
2292 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
2293
2294 if (mt->mcs_buf) {
2295 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2296 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
2297 }
2298 }
2299
2300
2301 /**
2302 * \brief Get pointer offset into stencil buffer.
2303 *
2304 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2305 * must decode the tile's layout in software.
2306 *
2307 * See
2308 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2309 * Format.
2310 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2311 *
2312 * Even though the returned offset is always positive, the return type is
2313 * signed due to
2314 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2315 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2316 */
2317 static intptr_t
2318 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2319 {
2320 uint32_t tile_size = 4096;
2321 uint32_t tile_width = 64;
2322 uint32_t tile_height = 64;
2323 uint32_t row_size = 64 * stride;
2324
2325 uint32_t tile_x = x / tile_width;
2326 uint32_t tile_y = y / tile_height;
2327
2328 /* The byte's address relative to the tile's base addres. */
2329 uint32_t byte_x = x % tile_width;
2330 uint32_t byte_y = y % tile_height;
2331
2332 uintptr_t u = tile_y * row_size
2333 + tile_x * tile_size
2334 + 512 * (byte_x / 8)
2335 + 64 * (byte_y / 8)
2336 + 32 * ((byte_y / 4) % 2)
2337 + 16 * ((byte_x / 4) % 2)
2338 + 8 * ((byte_y / 2) % 2)
2339 + 4 * ((byte_x / 2) % 2)
2340 + 2 * (byte_y % 2)
2341 + 1 * (byte_x % 2);
2342
2343 if (swizzled) {
2344 /* adjust for bit6 swizzling */
2345 if (((byte_x / 8) % 2) == 1) {
2346 if (((byte_y / 8) % 2) == 0) {
2347 u += 64;
2348 } else {
2349 u -= 64;
2350 }
2351 }
2352 }
2353
2354 return u;
2355 }
2356
2357 void
2358 intel_miptree_updownsample(struct brw_context *brw,
2359 struct intel_mipmap_tree *src,
2360 struct intel_mipmap_tree *dst)
2361 {
2362 brw_blorp_blit_miptrees(brw,
2363 src, 0 /* level */, 0 /* layer */,
2364 src->format, SWIZZLE_XYZW,
2365 dst, 0 /* level */, 0 /* layer */, dst->format,
2366 0, 0,
2367 src->logical_width0, src->logical_height0,
2368 0, 0,
2369 dst->logical_width0, dst->logical_height0,
2370 GL_NEAREST, false, false /*mirror x, y*/,
2371 false, false);
2372
2373 if (src->stencil_mt) {
2374 brw_blorp_blit_miptrees(brw,
2375 src->stencil_mt, 0 /* level */, 0 /* layer */,
2376 src->stencil_mt->format, SWIZZLE_XYZW,
2377 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2378 dst->stencil_mt->format,
2379 0, 0,
2380 src->logical_width0, src->logical_height0,
2381 0, 0,
2382 dst->logical_width0, dst->logical_height0,
2383 GL_NEAREST, false, false /*mirror x, y*/,
2384 false, false /* decode/encode srgb */);
2385 }
2386 }
2387
2388 void
2389 intel_update_r8stencil(struct brw_context *brw,
2390 struct intel_mipmap_tree *mt)
2391 {
2392 assert(brw->gen >= 7);
2393 struct intel_mipmap_tree *src =
2394 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2395 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2396 return;
2397
2398 if (!mt->r8stencil_mt) {
2399 const uint32_t r8stencil_flags =
2400 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2401 MIPTREE_LAYOUT_DISABLE_AUX;
2402 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2403 mt->r8stencil_mt = intel_miptree_create(brw,
2404 src->target,
2405 MESA_FORMAT_R_UINT8,
2406 src->first_level,
2407 src->last_level,
2408 src->logical_width0,
2409 src->logical_height0,
2410 src->logical_depth0,
2411 src->num_samples,
2412 r8stencil_flags);
2413 assert(mt->r8stencil_mt);
2414 }
2415
2416 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2417
2418 for (int level = src->first_level; level <= src->last_level; level++) {
2419 const unsigned depth = src->level[level].depth;
2420 const int layers_per_blit =
2421 (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2422 dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2423 dst->num_samples : 1;
2424
2425 for (unsigned layer = 0; layer < depth; layer++) {
2426 brw_blorp_blit_miptrees(brw,
2427 src, level, layer,
2428 src->format, SWIZZLE_X,
2429 dst, level, layers_per_blit * layer,
2430 MESA_FORMAT_R_UNORM8,
2431 0, 0,
2432 minify(src->logical_width0, level),
2433 minify(src->logical_height0, level),
2434 0, 0,
2435 minify(dst->logical_width0, level),
2436 minify(dst->logical_height0, level),
2437 GL_NEAREST, false, false /*mirror x, y*/,
2438 false, false /* decode/encode srgb */);
2439 }
2440 }
2441
2442 brw_render_cache_set_check_flush(brw, dst->bo);
2443 src->r8stencil_needs_update = false;
2444 }
2445
2446 static void *
2447 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2448 {
2449 /* CPU accesses to color buffers don't understand fast color clears, so
2450 * resolve any pending fast color clears before we map.
2451 */
2452 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2453
2454 drm_intel_bo *bo = mt->bo;
2455
2456 if (drm_intel_bo_references(brw->batch.bo, bo))
2457 intel_batchbuffer_flush(brw);
2458
2459 if (mt->tiling != I915_TILING_NONE)
2460 brw_bo_map_gtt(brw, bo, "miptree");
2461 else
2462 brw_bo_map(brw, bo, true, "miptree");
2463
2464 return bo->virtual;
2465 }
2466
2467 static void
2468 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2469 {
2470 drm_intel_bo_unmap(mt->bo);
2471 }
2472
2473 static void
2474 intel_miptree_map_gtt(struct brw_context *brw,
2475 struct intel_mipmap_tree *mt,
2476 struct intel_miptree_map *map,
2477 unsigned int level, unsigned int slice)
2478 {
2479 unsigned int bw, bh;
2480 void *base;
2481 unsigned int image_x, image_y;
2482 intptr_t x = map->x;
2483 intptr_t y = map->y;
2484
2485 /* For compressed formats, the stride is the number of bytes per
2486 * row of blocks. intel_miptree_get_image_offset() already does
2487 * the divide.
2488 */
2489 _mesa_get_format_block_size(mt->format, &bw, &bh);
2490 assert(y % bh == 0);
2491 assert(x % bw == 0);
2492 y /= bh;
2493 x /= bw;
2494
2495 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2496
2497 if (base == NULL)
2498 map->ptr = NULL;
2499 else {
2500 /* Note that in the case of cube maps, the caller must have passed the
2501 * slice number referencing the face.
2502 */
2503 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2504 x += image_x;
2505 y += image_y;
2506
2507 map->stride = mt->pitch;
2508 map->ptr = base + y * map->stride + x * mt->cpp;
2509 }
2510
2511 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2512 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2513 map->x, map->y, map->w, map->h,
2514 mt, _mesa_get_format_name(mt->format),
2515 x, y, map->ptr, map->stride);
2516 }
2517
2518 static void
2519 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2520 {
2521 intel_miptree_unmap_raw(mt);
2522 }
2523
2524 static void
2525 intel_miptree_map_blit(struct brw_context *brw,
2526 struct intel_mipmap_tree *mt,
2527 struct intel_miptree_map *map,
2528 unsigned int level, unsigned int slice)
2529 {
2530 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2531 /* first_level */ 0,
2532 /* last_level */ 0,
2533 map->w, map->h, 1,
2534 /* samples */ 0,
2535 MIPTREE_LAYOUT_TILING_NONE);
2536
2537 if (!map->linear_mt) {
2538 fprintf(stderr, "Failed to allocate blit temporary\n");
2539 goto fail;
2540 }
2541 map->stride = map->linear_mt->pitch;
2542
2543 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2544 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2545 * invalidate is set, since we'll be writing the whole rectangle from our
2546 * temporary buffer back out.
2547 */
2548 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2549 if (!intel_miptree_blit(brw,
2550 mt, level, slice,
2551 map->x, map->y, false,
2552 map->linear_mt, 0, 0,
2553 0, 0, false,
2554 map->w, map->h, GL_COPY)) {
2555 fprintf(stderr, "Failed to blit\n");
2556 goto fail;
2557 }
2558 }
2559
2560 map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2561
2562 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2563 map->x, map->y, map->w, map->h,
2564 mt, _mesa_get_format_name(mt->format),
2565 level, slice, map->ptr, map->stride);
2566
2567 return;
2568
2569 fail:
2570 intel_miptree_release(&map->linear_mt);
2571 map->ptr = NULL;
2572 map->stride = 0;
2573 }
2574
2575 static void
2576 intel_miptree_unmap_blit(struct brw_context *brw,
2577 struct intel_mipmap_tree *mt,
2578 struct intel_miptree_map *map,
2579 unsigned int level,
2580 unsigned int slice)
2581 {
2582 struct gl_context *ctx = &brw->ctx;
2583
2584 intel_miptree_unmap_raw(map->linear_mt);
2585
2586 if (map->mode & GL_MAP_WRITE_BIT) {
2587 bool ok = intel_miptree_blit(brw,
2588 map->linear_mt, 0, 0,
2589 0, 0, false,
2590 mt, level, slice,
2591 map->x, map->y, false,
2592 map->w, map->h, GL_COPY);
2593 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2594 }
2595
2596 intel_miptree_release(&map->linear_mt);
2597 }
2598
2599 /**
2600 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2601 */
2602 #if defined(USE_SSE41)
2603 static void
2604 intel_miptree_map_movntdqa(struct brw_context *brw,
2605 struct intel_mipmap_tree *mt,
2606 struct intel_miptree_map *map,
2607 unsigned int level, unsigned int slice)
2608 {
2609 assert(map->mode & GL_MAP_READ_BIT);
2610 assert(!(map->mode & GL_MAP_WRITE_BIT));
2611
2612 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2613 map->x, map->y, map->w, map->h,
2614 mt, _mesa_get_format_name(mt->format),
2615 level, slice, map->ptr, map->stride);
2616
2617 /* Map the original image */
2618 uint32_t image_x;
2619 uint32_t image_y;
2620 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2621 image_x += map->x;
2622 image_y += map->y;
2623
2624 void *src = intel_miptree_map_raw(brw, mt);
2625 if (!src)
2626 return;
2627
2628 src += mt->offset;
2629
2630 src += image_y * mt->pitch;
2631 src += image_x * mt->cpp;
2632
2633 /* Due to the pixel offsets for the particular image being mapped, our
2634 * src pointer may not be 16-byte aligned. However, if the pitch is
2635 * divisible by 16, then the amount by which it's misaligned will remain
2636 * consistent from row to row.
2637 */
2638 assert((mt->pitch % 16) == 0);
2639 const int misalignment = ((uintptr_t) src) & 15;
2640
2641 /* Create an untiled temporary buffer for the mapping. */
2642 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2643
2644 map->stride = ALIGN(misalignment + width_bytes, 16);
2645
2646 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2647 /* Offset the destination so it has the same misalignment as src. */
2648 map->ptr = map->buffer + misalignment;
2649
2650 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2651
2652 for (uint32_t y = 0; y < map->h; y++) {
2653 void *dst_ptr = map->ptr + y * map->stride;
2654 void *src_ptr = src + y * mt->pitch;
2655
2656 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2657 }
2658
2659 intel_miptree_unmap_raw(mt);
2660 }
2661
2662 static void
2663 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2664 struct intel_mipmap_tree *mt,
2665 struct intel_miptree_map *map,
2666 unsigned int level,
2667 unsigned int slice)
2668 {
2669 _mesa_align_free(map->buffer);
2670 map->buffer = NULL;
2671 map->ptr = NULL;
2672 }
2673 #endif
2674
2675 static void
2676 intel_miptree_map_s8(struct brw_context *brw,
2677 struct intel_mipmap_tree *mt,
2678 struct intel_miptree_map *map,
2679 unsigned int level, unsigned int slice)
2680 {
2681 map->stride = map->w;
2682 map->buffer = map->ptr = malloc(map->stride * map->h);
2683 if (!map->buffer)
2684 return;
2685
2686 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2687 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2688 * invalidate is set, since we'll be writing the whole rectangle from our
2689 * temporary buffer back out.
2690 */
2691 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2692 uint8_t *untiled_s8_map = map->ptr;
2693 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2694 unsigned int image_x, image_y;
2695
2696 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2697
2698 for (uint32_t y = 0; y < map->h; y++) {
2699 for (uint32_t x = 0; x < map->w; x++) {
2700 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2701 x + image_x + map->x,
2702 y + image_y + map->y,
2703 brw->has_swizzling);
2704 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2705 }
2706 }
2707
2708 intel_miptree_unmap_raw(mt);
2709
2710 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2711 map->x, map->y, map->w, map->h,
2712 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2713 } else {
2714 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2715 map->x, map->y, map->w, map->h,
2716 mt, map->ptr, map->stride);
2717 }
2718 }
2719
2720 static void
2721 intel_miptree_unmap_s8(struct brw_context *brw,
2722 struct intel_mipmap_tree *mt,
2723 struct intel_miptree_map *map,
2724 unsigned int level,
2725 unsigned int slice)
2726 {
2727 if (map->mode & GL_MAP_WRITE_BIT) {
2728 unsigned int image_x, image_y;
2729 uint8_t *untiled_s8_map = map->ptr;
2730 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2731
2732 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2733
2734 for (uint32_t y = 0; y < map->h; y++) {
2735 for (uint32_t x = 0; x < map->w; x++) {
2736 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2737 image_x + x + map->x,
2738 image_y + y + map->y,
2739 brw->has_swizzling);
2740 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2741 }
2742 }
2743
2744 intel_miptree_unmap_raw(mt);
2745 }
2746
2747 free(map->buffer);
2748 }
2749
2750 static void
2751 intel_miptree_map_etc(struct brw_context *brw,
2752 struct intel_mipmap_tree *mt,
2753 struct intel_miptree_map *map,
2754 unsigned int level,
2755 unsigned int slice)
2756 {
2757 assert(mt->etc_format != MESA_FORMAT_NONE);
2758 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2759 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2760 }
2761
2762 assert(map->mode & GL_MAP_WRITE_BIT);
2763 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2764
2765 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2766 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2767 map->w, map->h, 1));
2768 map->ptr = map->buffer;
2769 }
2770
2771 static void
2772 intel_miptree_unmap_etc(struct brw_context *brw,
2773 struct intel_mipmap_tree *mt,
2774 struct intel_miptree_map *map,
2775 unsigned int level,
2776 unsigned int slice)
2777 {
2778 uint32_t image_x;
2779 uint32_t image_y;
2780 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2781
2782 image_x += map->x;
2783 image_y += map->y;
2784
2785 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2786 + image_y * mt->pitch
2787 + image_x * mt->cpp;
2788
2789 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2790 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2791 map->ptr, map->stride,
2792 map->w, map->h);
2793 else
2794 _mesa_unpack_etc2_format(dst, mt->pitch,
2795 map->ptr, map->stride,
2796 map->w, map->h, mt->etc_format);
2797
2798 intel_miptree_unmap_raw(mt);
2799 free(map->buffer);
2800 }
2801
2802 /**
2803 * Mapping function for packed depth/stencil miptrees backed by real separate
2804 * miptrees for depth and stencil.
2805 *
2806 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2807 * separate from the depth buffer. Yet at the GL API level, we have to expose
2808 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2809 * be able to map that memory for texture storage and glReadPixels-type
2810 * operations. We give Mesa core that access by mallocing a temporary and
2811 * copying the data between the actual backing store and the temporary.
2812 */
2813 static void
2814 intel_miptree_map_depthstencil(struct brw_context *brw,
2815 struct intel_mipmap_tree *mt,
2816 struct intel_miptree_map *map,
2817 unsigned int level, unsigned int slice)
2818 {
2819 struct intel_mipmap_tree *z_mt = mt;
2820 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2821 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2822 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2823
2824 map->stride = map->w * packed_bpp;
2825 map->buffer = map->ptr = malloc(map->stride * map->h);
2826 if (!map->buffer)
2827 return;
2828
2829 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2830 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2831 * invalidate is set, since we'll be writing the whole rectangle from our
2832 * temporary buffer back out.
2833 */
2834 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2835 uint32_t *packed_map = map->ptr;
2836 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2837 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2838 unsigned int s_image_x, s_image_y;
2839 unsigned int z_image_x, z_image_y;
2840
2841 intel_miptree_get_image_offset(s_mt, level, slice,
2842 &s_image_x, &s_image_y);
2843 intel_miptree_get_image_offset(z_mt, level, slice,
2844 &z_image_x, &z_image_y);
2845
2846 for (uint32_t y = 0; y < map->h; y++) {
2847 for (uint32_t x = 0; x < map->w; x++) {
2848 int map_x = map->x + x, map_y = map->y + y;
2849 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2850 map_x + s_image_x,
2851 map_y + s_image_y,
2852 brw->has_swizzling);
2853 ptrdiff_t z_offset = ((map_y + z_image_y) *
2854 (z_mt->pitch / 4) +
2855 (map_x + z_image_x));
2856 uint8_t s = s_map[s_offset];
2857 uint32_t z = z_map[z_offset];
2858
2859 if (map_z32f_x24s8) {
2860 packed_map[(y * map->w + x) * 2 + 0] = z;
2861 packed_map[(y * map->w + x) * 2 + 1] = s;
2862 } else {
2863 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2864 }
2865 }
2866 }
2867
2868 intel_miptree_unmap_raw(s_mt);
2869 intel_miptree_unmap_raw(z_mt);
2870
2871 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2872 __func__,
2873 map->x, map->y, map->w, map->h,
2874 z_mt, map->x + z_image_x, map->y + z_image_y,
2875 s_mt, map->x + s_image_x, map->y + s_image_y,
2876 map->ptr, map->stride);
2877 } else {
2878 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2879 map->x, map->y, map->w, map->h,
2880 mt, map->ptr, map->stride);
2881 }
2882 }
2883
2884 static void
2885 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2886 struct intel_mipmap_tree *mt,
2887 struct intel_miptree_map *map,
2888 unsigned int level,
2889 unsigned int slice)
2890 {
2891 struct intel_mipmap_tree *z_mt = mt;
2892 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2893 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2894
2895 if (map->mode & GL_MAP_WRITE_BIT) {
2896 uint32_t *packed_map = map->ptr;
2897 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2898 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2899 unsigned int s_image_x, s_image_y;
2900 unsigned int z_image_x, z_image_y;
2901
2902 intel_miptree_get_image_offset(s_mt, level, slice,
2903 &s_image_x, &s_image_y);
2904 intel_miptree_get_image_offset(z_mt, level, slice,
2905 &z_image_x, &z_image_y);
2906
2907 for (uint32_t y = 0; y < map->h; y++) {
2908 for (uint32_t x = 0; x < map->w; x++) {
2909 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2910 x + s_image_x + map->x,
2911 y + s_image_y + map->y,
2912 brw->has_swizzling);
2913 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2914 (z_mt->pitch / 4) +
2915 (x + z_image_x + map->x));
2916
2917 if (map_z32f_x24s8) {
2918 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2919 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2920 } else {
2921 uint32_t packed = packed_map[y * map->w + x];
2922 s_map[s_offset] = packed >> 24;
2923 z_map[z_offset] = packed;
2924 }
2925 }
2926 }
2927
2928 intel_miptree_unmap_raw(s_mt);
2929 intel_miptree_unmap_raw(z_mt);
2930
2931 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2932 __func__,
2933 map->x, map->y, map->w, map->h,
2934 z_mt, _mesa_get_format_name(z_mt->format),
2935 map->x + z_image_x, map->y + z_image_y,
2936 s_mt, map->x + s_image_x, map->y + s_image_y,
2937 map->ptr, map->stride);
2938 }
2939
2940 free(map->buffer);
2941 }
2942
2943 /**
2944 * Create and attach a map to the miptree at (level, slice). Return the
2945 * attached map.
2946 */
2947 static struct intel_miptree_map*
2948 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2949 unsigned int level,
2950 unsigned int slice,
2951 unsigned int x,
2952 unsigned int y,
2953 unsigned int w,
2954 unsigned int h,
2955 GLbitfield mode)
2956 {
2957 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2958
2959 if (!map)
2960 return NULL;
2961
2962 assert(mt->level[level].slice[slice].map == NULL);
2963 mt->level[level].slice[slice].map = map;
2964
2965 map->mode = mode;
2966 map->x = x;
2967 map->y = y;
2968 map->w = w;
2969 map->h = h;
2970
2971 return map;
2972 }
2973
2974 /**
2975 * Release the map at (level, slice).
2976 */
2977 static void
2978 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2979 unsigned int level,
2980 unsigned int slice)
2981 {
2982 struct intel_miptree_map **map;
2983
2984 map = &mt->level[level].slice[slice].map;
2985 free(*map);
2986 *map = NULL;
2987 }
2988
2989 static bool
2990 can_blit_slice(struct intel_mipmap_tree *mt,
2991 unsigned int level, unsigned int slice)
2992 {
2993 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2994 if (mt->pitch >= 32768)
2995 return false;
2996
2997 return true;
2998 }
2999
3000 static bool
3001 use_intel_mipree_map_blit(struct brw_context *brw,
3002 struct intel_mipmap_tree *mt,
3003 GLbitfield mode,
3004 unsigned int level,
3005 unsigned int slice)
3006 {
3007 if (brw->has_llc &&
3008 /* It's probably not worth swapping to the blit ring because of
3009 * all the overhead involved. But, we must use blitter for the
3010 * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
3011 */
3012 (!(mode & GL_MAP_WRITE_BIT) ||
3013 mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
3014 !mt->compressed &&
3015 (mt->tiling == I915_TILING_X ||
3016 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3017 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3018 /* Fast copy blit on skl+ supports all tiling formats. */
3019 brw->gen >= 9) &&
3020 can_blit_slice(mt, level, slice))
3021 return true;
3022
3023 if (mt->tiling != I915_TILING_NONE &&
3024 mt->bo->size >= brw->max_gtt_map_object_size) {
3025 assert(can_blit_slice(mt, level, slice));
3026 return true;
3027 }
3028
3029 return false;
3030 }
3031
3032 /**
3033 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3034 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3035 * arithmetic overflow.
3036 *
3037 * If you call this function and use \a out_stride, then you're doing pointer
3038 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3039 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3040 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3041 * which usually have type uint32_t or GLuint.
3042 */
3043 void
3044 intel_miptree_map(struct brw_context *brw,
3045 struct intel_mipmap_tree *mt,
3046 unsigned int level,
3047 unsigned int slice,
3048 unsigned int x,
3049 unsigned int y,
3050 unsigned int w,
3051 unsigned int h,
3052 GLbitfield mode,
3053 void **out_ptr,
3054 ptrdiff_t *out_stride)
3055 {
3056 struct intel_miptree_map *map;
3057
3058 assert(mt->num_samples <= 1);
3059
3060 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3061 if (!map){
3062 *out_ptr = NULL;
3063 *out_stride = 0;
3064 return;
3065 }
3066
3067 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3068 if (map->mode & GL_MAP_WRITE_BIT) {
3069 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3070 }
3071
3072 if (mt->format == MESA_FORMAT_S_UINT8) {
3073 intel_miptree_map_s8(brw, mt, map, level, slice);
3074 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3075 !(mode & BRW_MAP_DIRECT_BIT)) {
3076 intel_miptree_map_etc(brw, mt, map, level, slice);
3077 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3078 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3079 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3080 intel_miptree_map_blit(brw, mt, map, level, slice);
3081 #if defined(USE_SSE41)
3082 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3083 !mt->compressed && cpu_has_sse4_1 &&
3084 (mt->pitch % 16 == 0)) {
3085 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3086 #endif
3087 } else {
3088 /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
3089 assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
3090 intel_miptree_map_gtt(brw, mt, map, level, slice);
3091 }
3092
3093 *out_ptr = map->ptr;
3094 *out_stride = map->stride;
3095
3096 if (map->ptr == NULL)
3097 intel_miptree_release_map(mt, level, slice);
3098 }
3099
3100 void
3101 intel_miptree_unmap(struct brw_context *brw,
3102 struct intel_mipmap_tree *mt,
3103 unsigned int level,
3104 unsigned int slice)
3105 {
3106 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3107
3108 assert(mt->num_samples <= 1);
3109
3110 if (!map)
3111 return;
3112
3113 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3114 mt, _mesa_get_format_name(mt->format), level, slice);
3115
3116 if (mt->format == MESA_FORMAT_S_UINT8) {
3117 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3118 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3119 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3120 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3121 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3122 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3123 } else if (map->linear_mt) {
3124 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3125 #if defined(USE_SSE41)
3126 } else if (map->buffer && cpu_has_sse4_1) {
3127 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3128 #endif
3129 } else {
3130 intel_miptree_unmap_gtt(mt);
3131 }
3132
3133 intel_miptree_release_map(mt, level, slice);
3134 }
3135
3136 enum isl_surf_dim
3137 get_isl_surf_dim(GLenum target)
3138 {
3139 switch (target) {
3140 case GL_TEXTURE_1D:
3141 case GL_TEXTURE_1D_ARRAY:
3142 return ISL_SURF_DIM_1D;
3143
3144 case GL_TEXTURE_2D:
3145 case GL_TEXTURE_2D_ARRAY:
3146 case GL_TEXTURE_RECTANGLE:
3147 case GL_TEXTURE_CUBE_MAP:
3148 case GL_TEXTURE_CUBE_MAP_ARRAY:
3149 case GL_TEXTURE_2D_MULTISAMPLE:
3150 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3151 case GL_TEXTURE_EXTERNAL_OES:
3152 return ISL_SURF_DIM_2D;
3153
3154 case GL_TEXTURE_3D:
3155 return ISL_SURF_DIM_3D;
3156 }
3157
3158 unreachable("Invalid texture target");
3159 }
3160
3161 enum isl_dim_layout
3162 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3163 GLenum target)
3164 {
3165 switch (target) {
3166 case GL_TEXTURE_1D:
3167 case GL_TEXTURE_1D_ARRAY:
3168 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3169 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3170
3171 case GL_TEXTURE_2D:
3172 case GL_TEXTURE_2D_ARRAY:
3173 case GL_TEXTURE_RECTANGLE:
3174 case GL_TEXTURE_2D_MULTISAMPLE:
3175 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3176 case GL_TEXTURE_EXTERNAL_OES:
3177 return ISL_DIM_LAYOUT_GEN4_2D;
3178
3179 case GL_TEXTURE_CUBE_MAP:
3180 case GL_TEXTURE_CUBE_MAP_ARRAY:
3181 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3182 ISL_DIM_LAYOUT_GEN4_2D);
3183
3184 case GL_TEXTURE_3D:
3185 return (devinfo->gen >= 9 ?
3186 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3187 }
3188
3189 unreachable("Invalid texture target");
3190 }
3191
3192 enum isl_tiling
3193 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3194 {
3195 if (mt->format == MESA_FORMAT_S_UINT8) {
3196 return ISL_TILING_W;
3197 } else {
3198 switch (mt->tiling) {
3199 case I915_TILING_NONE:
3200 return ISL_TILING_LINEAR;
3201 case I915_TILING_X:
3202 return ISL_TILING_X;
3203 case I915_TILING_Y:
3204 switch (mt->tr_mode) {
3205 case INTEL_MIPTREE_TRMODE_NONE:
3206 return ISL_TILING_Y0;
3207 case INTEL_MIPTREE_TRMODE_YF:
3208 return ISL_TILING_Yf;
3209 case INTEL_MIPTREE_TRMODE_YS:
3210 return ISL_TILING_Ys;
3211 default:
3212 unreachable("Invalid tiled resource mode");
3213 }
3214 default:
3215 unreachable("Invalid tiling mode");
3216 }
3217 }
3218 }
3219
3220 void
3221 intel_miptree_get_isl_surf(struct brw_context *brw,
3222 const struct intel_mipmap_tree *mt,
3223 struct isl_surf *surf)
3224 {
3225 surf->dim = get_isl_surf_dim(mt->target);
3226 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3227 mt->tiling, mt->target);
3228
3229 if (mt->num_samples > 1) {
3230 switch (mt->msaa_layout) {
3231 case INTEL_MSAA_LAYOUT_IMS:
3232 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3233 break;
3234 case INTEL_MSAA_LAYOUT_UMS:
3235 case INTEL_MSAA_LAYOUT_CMS:
3236 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3237 break;
3238 default:
3239 unreachable("Invalid MSAA layout");
3240 }
3241 } else {
3242 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3243 }
3244
3245 surf->tiling = intel_miptree_get_isl_tiling(mt);
3246
3247 if (mt->format == MESA_FORMAT_S_UINT8) {
3248 /* The ISL definition of row_pitch matches the surface state pitch field
3249 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3250 * the factor of 2 for W-tiling in row_pitch.
3251 */
3252 surf->row_pitch = 2 * mt->pitch;
3253 } else {
3254 surf->row_pitch = mt->pitch;
3255 }
3256
3257 surf->format = translate_tex_format(brw, mt->format, false);
3258
3259 if (brw->gen >= 9) {
3260 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3261 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3262 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3263 } else {
3264 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3265 * alignment in terms of surface elements like we want.
3266 */
3267 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3268 }
3269 } else {
3270 /* On earlier gens it's stored in pixels. */
3271 unsigned bw, bh;
3272 _mesa_get_format_block_size(mt->format, &bw, &bh);
3273 surf->image_alignment_el =
3274 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3275 }
3276
3277 surf->logical_level0_px.width = mt->logical_width0;
3278 surf->logical_level0_px.height = mt->logical_height0;
3279 if (surf->dim == ISL_SURF_DIM_3D) {
3280 surf->logical_level0_px.depth = mt->logical_depth0;
3281 surf->logical_level0_px.array_len = 1;
3282 } else {
3283 surf->logical_level0_px.depth = 1;
3284 surf->logical_level0_px.array_len = mt->logical_depth0;
3285 }
3286
3287 surf->phys_level0_sa.width = mt->physical_width0;
3288 surf->phys_level0_sa.height = mt->physical_height0;
3289 if (surf->dim == ISL_SURF_DIM_3D) {
3290 surf->phys_level0_sa.depth = mt->physical_depth0;
3291 surf->phys_level0_sa.array_len = 1;
3292 } else {
3293 surf->phys_level0_sa.depth = 1;
3294 surf->phys_level0_sa.array_len = mt->physical_depth0;
3295 }
3296
3297 surf->levels = mt->last_level + 1;
3298 surf->samples = MAX2(mt->num_samples, 1);
3299
3300 surf->size = 0; /* TODO */
3301 surf->alignment = 0; /* TODO */
3302
3303 switch (surf->dim_layout) {
3304 case ISL_DIM_LAYOUT_GEN4_2D:
3305 case ISL_DIM_LAYOUT_GEN4_3D:
3306 if (brw->gen >= 9) {
3307 surf->array_pitch_el_rows = mt->qpitch;
3308 } else {
3309 unsigned bw, bh;
3310 _mesa_get_format_block_size(mt->format, &bw, &bh);
3311 assert(mt->qpitch % bh == 0);
3312 surf->array_pitch_el_rows = mt->qpitch / bh;
3313 }
3314 break;
3315 case ISL_DIM_LAYOUT_GEN9_1D:
3316 surf->array_pitch_el_rows = 1;
3317 break;
3318 }
3319
3320 switch (mt->array_layout) {
3321 case ALL_LOD_IN_EACH_SLICE:
3322 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3323 break;
3324 case ALL_SLICES_AT_EACH_LOD:
3325 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3326 break;
3327 default:
3328 unreachable("Invalid array layout");
3329 }
3330
3331 GLenum base_format = _mesa_get_format_base_format(mt->format);
3332 switch (base_format) {
3333 case GL_DEPTH_COMPONENT:
3334 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3335 break;
3336 case GL_STENCIL_INDEX:
3337 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3338 if (brw->gen >= 8)
3339 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3340 break;
3341 case GL_DEPTH_STENCIL:
3342 /* In this case we only texture from the depth part */
3343 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3344 ISL_SURF_USAGE_TEXTURE_BIT;
3345 break;
3346 default:
3347 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3348 if (brw->format_supported_as_render_target[mt->format])
3349 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3350 break;
3351 }
3352
3353 if (_mesa_is_cube_map_texture(mt->target))
3354 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3355 }
3356
3357 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3358 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3359 * PASS IT INTO isl_surf_fill_state.
3360 */
3361 void
3362 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3363 const struct intel_mipmap_tree *mt,
3364 struct isl_surf *surf,
3365 enum isl_aux_usage *usage)
3366 {
3367 uint32_t aux_pitch, aux_qpitch;
3368 if (mt->mcs_buf) {
3369 aux_pitch = mt->mcs_buf->pitch;
3370 aux_qpitch = mt->mcs_buf->qpitch;
3371
3372 if (mt->num_samples > 1) {
3373 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3374 *usage = ISL_AUX_USAGE_MCS;
3375 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3376 assert(brw->gen >= 9);
3377 *usage = ISL_AUX_USAGE_CCS_E;
3378 } else if (mt->fast_clear_state != INTEL_FAST_CLEAR_STATE_NO_MCS) {
3379 *usage = ISL_AUX_USAGE_CCS_D;
3380 } else {
3381 unreachable("Invalid MCS miptree");
3382 }
3383 } else if (mt->hiz_buf) {
3384 if (mt->hiz_buf->mt) {
3385 aux_pitch = mt->hiz_buf->mt->pitch;
3386 aux_qpitch = mt->hiz_buf->mt->qpitch;
3387 } else {
3388 aux_pitch = mt->hiz_buf->aux_base.pitch;
3389 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3390 }
3391
3392 *usage = ISL_AUX_USAGE_HIZ;
3393 } else {
3394 *usage = ISL_AUX_USAGE_NONE;
3395 return;
3396 }
3397
3398 /* Start with a copy of the original surface. */
3399 intel_miptree_get_isl_surf(brw, mt, surf);
3400
3401 /* Figure out the format and tiling of the auxiliary surface */
3402 switch (*usage) {
3403 case ISL_AUX_USAGE_NONE:
3404 unreachable("Invalid auxiliary usage");
3405
3406 case ISL_AUX_USAGE_HIZ:
3407 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3408 break;
3409
3410 case ISL_AUX_USAGE_MCS:
3411 /*
3412 * From the SKL PRM:
3413 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3414 * HALIGN 16 must be used."
3415 */
3416 if (brw->gen >= 9)
3417 assert(mt->halign == 16);
3418
3419 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3420 break;
3421
3422 case ISL_AUX_USAGE_CCS_D:
3423 case ISL_AUX_USAGE_CCS_E:
3424 /*
3425 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3426 *
3427 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3428 *
3429 * From the hardware spec for GEN9:
3430 *
3431 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3432 * HALIGN 16 must be used."
3433 */
3434 assert(mt->num_samples <= 1);
3435 if (brw->gen >= 8)
3436 assert(mt->halign == 16);
3437
3438 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3439 break;
3440 }
3441
3442 /* We want the pitch of the actual aux buffer. */
3443 surf->row_pitch = aux_pitch;
3444
3445 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3446 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3447 * in elements of the primary color surface so we have to divide by the
3448 * compression block height.
3449 */
3450 surf->array_pitch_el_rows =
3451 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3452 }
3453
3454 union isl_color_value
3455 intel_miptree_get_isl_clear_color(struct brw_context *brw,
3456 const struct intel_mipmap_tree *mt)
3457 {
3458 union isl_color_value clear_color;
3459
3460 if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3461 clear_color.i32[0] = mt->depth_clear_value;
3462 clear_color.i32[1] = 0;
3463 clear_color.i32[2] = 0;
3464 clear_color.i32[3] = 0;
3465 } else if (brw->gen >= 9) {
3466 clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3467 clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3468 clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3469 clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3470 } else if (_mesa_is_format_integer(mt->format)) {
3471 clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3472 clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3473 clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3474 clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3475 } else {
3476 clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3477 clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3478 clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3479 clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3480 }
3481
3482 return clear_color;
3483 }