Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include "drm-uapi/drm_fourcc.h"
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50 #include "util/u_memory.h"
51
52 #include "x86/common_x86_asm.h"
53
54 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
55
56 static void *intel_miptree_map_raw(struct brw_context *brw,
57 struct intel_mipmap_tree *mt,
58 GLbitfield mode);
59
60 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
61
62 /**
63 * Return true if the format that will be used to access the miptree is
64 * CCS_E-compatible with the miptree's linear/non-sRGB format.
65 *
66 * Why use the linear format? Well, although the miptree may be specified with
67 * an sRGB format, the usage of that color space/format can be toggled. Since
68 * our HW tends to support more linear formats than sRGB ones, we use this
69 * format variant for check for CCS_E compatibility.
70 */
71 static bool
72 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
73 const struct intel_mipmap_tree *mt,
74 enum isl_format access_format)
75 {
76 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
77
78 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
79 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
80 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
81 }
82
83 /* Determine if CCS_E is supported for a given platform and mesa format. */
84 static bool
85 format_supports_ccs_e(const struct brw_context *brw, mesa_format format)
86 {
87 /* For now compression is only enabled for integer formats even though
88 * there exist supported floating point formats also. This is a heuristic
89 * decision based on current public benchmarks. In none of the cases these
90 * formats provided any improvement but a few cases were seen to regress.
91 * Hence these are left to to be enabled in the future when they are known
92 * to improve things.
93 */
94 if (_mesa_get_format_datatype(format) == GL_FLOAT)
95 return false;
96
97 /* Many window system buffers are sRGB even if they are never rendered as
98 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
99 * surface is used as sRGB, we fall back to CCS_D.
100 */
101 mesa_format linear_format = _mesa_get_srgb_format_linear(format);
102 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
103 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
104 }
105
106 /**
107 * Determine depth format corresponding to a depth+stencil format,
108 * for separate stencil.
109 */
110 mesa_format
111 intel_depth_format_for_depthstencil_format(mesa_format format) {
112 switch (format) {
113 case MESA_FORMAT_Z24_UNORM_S8_UINT:
114 return MESA_FORMAT_Z24_UNORM_X8_UINT;
115 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
116 return MESA_FORMAT_Z_FLOAT32;
117 default:
118 return format;
119 }
120 }
121
122 static bool
123 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
124 unsigned depth0, struct intel_mipmap_level *table)
125 {
126 for (unsigned level = first_level; level <= last_level; level++) {
127 const unsigned d =
128 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
129
130 table[level].slice = calloc(d, sizeof(*table[0].slice));
131 if (!table[level].slice)
132 goto unwind;
133 }
134
135 return true;
136
137 unwind:
138 for (unsigned level = first_level; level <= last_level; level++)
139 free(table[level].slice);
140
141 return false;
142 }
143
144 static bool
145 needs_separate_stencil(const struct brw_context *brw,
146 struct intel_mipmap_tree *mt,
147 mesa_format format)
148 {
149 const struct gen_device_info *devinfo = &brw->screen->devinfo;
150
151 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
152 return false;
153
154 if (devinfo->must_use_separate_stencil)
155 return true;
156
157 return brw->has_separate_stencil && brw->has_hiz;
158 }
159
160 /**
161 * Choose the aux usage for this miptree. This function must be called fairly
162 * late in the miptree create process after we have a tiling.
163 */
164 static void
165 intel_miptree_choose_aux_usage(struct brw_context *brw,
166 struct intel_mipmap_tree *mt)
167 {
168 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
169
170 if (_mesa_is_format_color_format(mt->format)) {
171 if (mt->surf.samples > 1) {
172 mt->aux_usage = ISL_AUX_USAGE_MCS;
173 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
174 format_supports_ccs_e(brw, mt->format)) {
175 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
176 } else if (brw->mesa_format_supports_render[mt->format]) {
177 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
178 }
179 } else if (isl_surf_usage_is_depth(mt->surf.usage) && brw->has_hiz) {
180 mt->aux_usage = ISL_AUX_USAGE_HIZ;
181 }
182
183 /* We can do fast-clear on all auxiliary surface types that are
184 * allocated through the normal texture creation paths.
185 */
186 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
187 mt->supports_fast_clear = true;
188 }
189
190
191 /**
192 * Choose an appropriate uncompressed format for a requested
193 * compressed format, if unsupported.
194 */
195 mesa_format
196 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
197 {
198 const struct gen_device_info *devinfo = &brw->screen->devinfo;
199
200 /* No need to lower ETC formats on these platforms,
201 * they are supported natively.
202 */
203 if (devinfo->gen >= 8 || devinfo->is_baytrail)
204 return format;
205
206 switch (format) {
207 case MESA_FORMAT_ETC1_RGB8:
208 return MESA_FORMAT_R8G8B8X8_UNORM;
209 case MESA_FORMAT_ETC2_RGB8:
210 return MESA_FORMAT_R8G8B8X8_UNORM;
211 case MESA_FORMAT_ETC2_SRGB8:
212 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
213 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
214 return MESA_FORMAT_B8G8R8A8_SRGB;
215 case MESA_FORMAT_ETC2_RGBA8_EAC:
216 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
217 return MESA_FORMAT_R8G8B8A8_UNORM;
218 case MESA_FORMAT_ETC2_R11_EAC:
219 return MESA_FORMAT_R_UNORM16;
220 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
221 return MESA_FORMAT_R_SNORM16;
222 case MESA_FORMAT_ETC2_RG11_EAC:
223 return MESA_FORMAT_RG_UNORM16;
224 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
225 return MESA_FORMAT_RG_SNORM16;
226 default:
227 /* Non ETC1 / ETC2 format */
228 return format;
229 }
230 }
231
232 unsigned
233 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
234 {
235 if (mt->surf.dim == ISL_SURF_DIM_3D)
236 return minify(mt->surf.logical_level0_px.depth, level);
237 else
238 return mt->surf.logical_level0_px.array_len;
239 }
240
241 UNUSED static unsigned
242 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
243 {
244 /* In case of physical dimensions one needs to consider also the layout.
245 * See isl_calc_phys_level0_extent_sa().
246 */
247 if (surf->dim != ISL_SURF_DIM_3D)
248 return surf->phys_level0_sa.array_len;
249
250 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
251 return minify(surf->phys_level0_sa.array_len, level);
252
253 return minify(surf->phys_level0_sa.depth, level);
254 }
255
256 /** \brief Assert that the level and layer are valid for the miptree. */
257 void
258 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
259 uint32_t level,
260 uint32_t layer)
261 {
262 (void) mt;
263 (void) level;
264 (void) layer;
265
266 assert(level >= mt->first_level);
267 assert(level <= mt->last_level);
268 assert(layer < get_num_phys_layers(&mt->surf, level));
269 }
270
271 static enum isl_aux_state **
272 create_aux_state_map(struct intel_mipmap_tree *mt,
273 enum isl_aux_state initial)
274 {
275 const uint32_t levels = mt->last_level + 1;
276
277 uint32_t total_slices = 0;
278 for (uint32_t level = 0; level < levels; level++)
279 total_slices += brw_get_num_logical_layers(mt, level);
280
281 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
282
283 /* We're going to allocate a single chunk of data for both the per-level
284 * reference array and the arrays of aux_state. This makes cleanup
285 * significantly easier.
286 */
287 const size_t total_size = per_level_array_size +
288 total_slices * sizeof(enum isl_aux_state);
289 void *data = malloc(total_size);
290 if (data == NULL)
291 return NULL;
292
293 enum isl_aux_state **per_level_arr = data;
294 enum isl_aux_state *s = data + per_level_array_size;
295 for (uint32_t level = 0; level < levels; level++) {
296 per_level_arr[level] = s;
297 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
298 for (uint32_t a = 0; a < level_layers; a++)
299 *(s++) = initial;
300 }
301 assert((void *)s == data + total_size);
302
303 return per_level_arr;
304 }
305
306 static void
307 free_aux_state_map(enum isl_aux_state **state)
308 {
309 free(state);
310 }
311
312 static bool
313 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
314 enum isl_tiling tiling, unsigned samples)
315 {
316 if (samples > 1)
317 return false;
318
319 if (tiling == ISL_TILING_LINEAR)
320 return false;
321
322 if (blt_pitch >= 32768) {
323 perf_debug("blt pitch %u too large to blit, falling back to untiled",
324 blt_pitch);
325 return true;
326 }
327
328 return false;
329 }
330
331 static bool
332 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
333 enum isl_tiling tiling)
334 {
335 const struct gen_device_info *devinfo = &brw->screen->devinfo;
336
337 /* If the BO is too large to fit in the aperture, we need to use the
338 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
339 * handle Y-tiling, so we need to fall back to X.
340 */
341 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
342 tiling == ISL_TILING_Y0)
343 return true;
344
345 return false;
346 }
347
348 static struct intel_mipmap_tree *
349 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
350 unsigned first_level, unsigned last_level,
351 unsigned width0, unsigned height0, unsigned depth0,
352 unsigned num_samples, isl_tiling_flags_t tiling_flags,
353 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
354 unsigned row_pitch_B, struct brw_bo *bo)
355 {
356 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
357 if (!mt)
358 return NULL;
359
360 if (!create_mapping_table(target, first_level, last_level, depth0,
361 mt->level)) {
362 free(mt);
363 return NULL;
364 }
365
366 mt->refcount = 1;
367
368 if (target == GL_TEXTURE_CUBE_MAP ||
369 target == GL_TEXTURE_CUBE_MAP_ARRAY)
370 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
371
372 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
373 __func__,
374 _mesa_enum_to_string(target),
375 _mesa_get_format_name(format),
376 num_samples, width0, height0, depth0,
377 first_level, last_level, mt);
378
379 struct isl_surf_init_info init_info = {
380 .dim = get_isl_surf_dim(target),
381 .format = translate_tex_format(brw, format, false),
382 .width = width0,
383 .height = height0,
384 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
385 .levels = last_level - first_level + 1,
386 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
387 .samples = num_samples,
388 .row_pitch_B = row_pitch_B,
389 .usage = isl_usage_flags,
390 .tiling_flags = tiling_flags,
391 };
392
393 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
394 goto fail;
395
396 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
397 * on gen7 platforms we also need to create Y-tiled copies of stencil for
398 * texturing since the hardware can't sample from W-tiled surfaces. For
399 * everything else, check for corner cases needing special treatment.
400 */
401 bool is_depth_stencil =
402 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
403 if (!is_depth_stencil) {
404 if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
405 mt->surf.tiling, mt->surf.samples)) {
406 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
407 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
408 goto fail;
409 } else if (need_to_retile_as_x(brw, mt->surf.size_B, mt->surf.tiling)) {
410 init_info.tiling_flags = 1u << ISL_TILING_X;
411 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
412 goto fail;
413 }
414 }
415
416 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
417 * the size may not be multiple of row_pitch.
418 * See isl_apply_surface_padding().
419 */
420 if (mt->surf.tiling != ISL_TILING_LINEAR)
421 assert(mt->surf.size_B % mt->surf.row_pitch_B == 0);
422
423 if (!bo) {
424 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
425 mt->surf.size_B,
426 BRW_MEMZONE_OTHER,
427 isl_tiling_to_i915_tiling(
428 mt->surf.tiling),
429 mt->surf.row_pitch_B, alloc_flags);
430 if (!mt->bo)
431 goto fail;
432 } else {
433 mt->bo = bo;
434 }
435
436 mt->first_level = first_level;
437 mt->last_level = last_level;
438 mt->target = target;
439 mt->format = format;
440 mt->aux_state = NULL;
441 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
442 mt->compressed = _mesa_is_format_compressed(format);
443 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
444
445 return mt;
446
447 fail:
448 intel_miptree_release(&mt);
449 return NULL;
450 }
451
452 /* Return the usual surface usage flags for the given format. */
453 static isl_surf_usage_flags_t
454 mt_surf_usage(mesa_format format)
455 {
456 switch(_mesa_get_format_base_format(format)) {
457 case GL_DEPTH_COMPONENT:
458 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
459 case GL_DEPTH_STENCIL:
460 return ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
461 ISL_SURF_USAGE_TEXTURE_BIT;
462 case GL_STENCIL_INDEX:
463 return ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
464 default:
465 return ISL_SURF_USAGE_RENDER_TARGET_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
466 }
467 }
468
469 static struct intel_mipmap_tree *
470 miptree_create(struct brw_context *brw,
471 GLenum target,
472 mesa_format format,
473 GLuint first_level,
474 GLuint last_level,
475 GLuint width0,
476 GLuint height0,
477 GLuint depth0,
478 GLuint num_samples,
479 enum intel_miptree_create_flags flags)
480 {
481 const struct gen_device_info *devinfo = &brw->screen->devinfo;
482 const uint32_t alloc_flags =
483 (flags & MIPTREE_CREATE_BUSY || num_samples > 1) ? BO_ALLOC_BUSY : 0;
484 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
485
486 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
487 if (devinfo->gen < 6 && _mesa_is_format_color_format(format))
488 tiling_flags &= ~ISL_TILING_Y0_BIT;
489
490 mesa_format mt_fmt = format;
491 if (!_mesa_is_format_color_format(format) && devinfo->gen >= 6) {
492 /* Fix up the Z miptree format for how we're splitting out separate
493 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
494 */
495 mt_fmt = intel_depth_format_for_depthstencil_format(format);
496 }
497
498 struct intel_mipmap_tree *mt =
499 make_surface(brw, target, mt_fmt, first_level, last_level,
500 width0, height0, depth0, num_samples,
501 tiling_flags, mt_surf_usage(mt_fmt),
502 alloc_flags, 0, NULL);
503
504 if (mt == NULL)
505 return NULL;
506
507 if (intel_miptree_needs_fake_etc(brw, mt)) {
508 mesa_format decomp_format = intel_lower_compressed_format(brw, format);
509 mt->shadow_mt = make_surface(brw, target, decomp_format, first_level,
510 last_level, width0, height0, depth0,
511 num_samples, tiling_flags,
512 mt_surf_usage(decomp_format),
513 alloc_flags, 0, NULL);
514
515 if (mt->shadow_mt == NULL) {
516 intel_miptree_release(&mt);
517 return NULL;
518 }
519 }
520
521 if (needs_separate_stencil(brw, mt, format)) {
522 mt->stencil_mt =
523 make_surface(brw, target, MESA_FORMAT_S_UINT8, first_level, last_level,
524 width0, height0, depth0, num_samples,
525 ISL_TILING_W_BIT, mt_surf_usage(MESA_FORMAT_S_UINT8),
526 alloc_flags, 0, NULL);
527 if (mt->stencil_mt == NULL) {
528 intel_miptree_release(&mt);
529 return NULL;
530 }
531 }
532
533 if (!(flags & MIPTREE_CREATE_NO_AUX))
534 intel_miptree_choose_aux_usage(brw, mt);
535
536 return mt;
537 }
538
539 struct intel_mipmap_tree *
540 intel_miptree_create(struct brw_context *brw,
541 GLenum target,
542 mesa_format format,
543 GLuint first_level,
544 GLuint last_level,
545 GLuint width0,
546 GLuint height0,
547 GLuint depth0,
548 GLuint num_samples,
549 enum intel_miptree_create_flags flags)
550 {
551 assert(num_samples > 0);
552
553 struct intel_mipmap_tree *mt = miptree_create(
554 brw, target, format,
555 first_level, last_level,
556 width0, height0, depth0, num_samples,
557 flags);
558 if (!mt)
559 return NULL;
560
561 mt->offset = 0;
562
563 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
564 * compress clear color so we wait until an actual fast-clear to allocate
565 * it.
566 */
567 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
568 !intel_miptree_alloc_aux(brw, mt)) {
569 mt->aux_usage = ISL_AUX_USAGE_NONE;
570 mt->supports_fast_clear = false;
571 }
572
573 return mt;
574 }
575
576 struct intel_mipmap_tree *
577 intel_miptree_create_for_bo(struct brw_context *brw,
578 struct brw_bo *bo,
579 mesa_format format,
580 uint32_t offset,
581 uint32_t width,
582 uint32_t height,
583 uint32_t depth,
584 int pitch,
585 enum isl_tiling tiling,
586 enum intel_miptree_create_flags flags)
587 {
588 const struct gen_device_info *devinfo = &brw->screen->devinfo;
589 struct intel_mipmap_tree *mt;
590 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
591 const GLenum base_format = _mesa_get_format_base_format(format);
592
593 if ((base_format == GL_DEPTH_COMPONENT ||
594 base_format == GL_DEPTH_STENCIL)) {
595 const mesa_format mt_fmt = (devinfo->gen < 6) ? format :
596 intel_depth_format_for_depthstencil_format(format);
597 mt = make_surface(brw, target, mt_fmt,
598 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
599 mt_surf_usage(mt_fmt),
600 0, pitch, bo);
601 if (!mt)
602 return NULL;
603
604 brw_bo_reference(bo);
605
606 if (!(flags & MIPTREE_CREATE_NO_AUX))
607 intel_miptree_choose_aux_usage(brw, mt);
608
609 return mt;
610 } else if (format == MESA_FORMAT_S_UINT8) {
611 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
612 0, 0, width, height, depth, 1,
613 ISL_TILING_W_BIT,
614 mt_surf_usage(MESA_FORMAT_S_UINT8),
615 0, pitch, bo);
616 if (!mt)
617 return NULL;
618
619 assert(bo->size >= mt->surf.size_B);
620
621 brw_bo_reference(bo);
622 return mt;
623 }
624
625 /* Nothing will be able to use this miptree with the BO if the offset isn't
626 * aligned.
627 */
628 if (tiling != ISL_TILING_LINEAR)
629 assert(offset % 4096 == 0);
630
631 /* miptrees can't handle negative pitch. If you need flipping of images,
632 * that's outside of the scope of the mt.
633 */
634 assert(pitch >= 0);
635
636 mt = make_surface(brw, target, format,
637 0, 0, width, height, depth, 1,
638 1lu << tiling,
639 mt_surf_usage(format),
640 0, pitch, bo);
641 if (!mt)
642 return NULL;
643
644 brw_bo_reference(bo);
645 mt->bo = bo;
646 mt->offset = offset;
647
648 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
649 intel_miptree_choose_aux_usage(brw, mt);
650
651 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
652 * only compress clear color so we wait until an actual fast-clear to
653 * allocate it.
654 */
655 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
656 !intel_miptree_alloc_aux(brw, mt)) {
657 mt->aux_usage = ISL_AUX_USAGE_NONE;
658 mt->supports_fast_clear = false;
659 }
660 }
661
662 return mt;
663 }
664
665 static struct intel_mipmap_tree *
666 miptree_create_for_planar_image(struct brw_context *brw,
667 __DRIimage *image, GLenum target,
668 enum isl_tiling tiling)
669 {
670 const struct intel_image_format *f = image->planar_format;
671 struct intel_mipmap_tree *planar_mt = NULL;
672
673 for (int i = 0; i < f->nplanes; i++) {
674 const int index = f->planes[i].buffer_index;
675 const uint32_t dri_format = f->planes[i].dri_format;
676 const mesa_format format = driImageFormatToGLFormat(dri_format);
677 const uint32_t width = image->width >> f->planes[i].width_shift;
678 const uint32_t height = image->height >> f->planes[i].height_shift;
679
680 /* Disable creation of the texture's aux buffers because the driver
681 * exposes no EGL API to manage them. That is, there is no API for
682 * resolving the aux buffer's content to the main buffer nor for
683 * invalidating the aux buffer's content.
684 */
685 struct intel_mipmap_tree *mt =
686 intel_miptree_create_for_bo(brw, image->bo, format,
687 image->offsets[index],
688 width, height, 1,
689 image->strides[index],
690 tiling,
691 MIPTREE_CREATE_NO_AUX);
692 if (mt == NULL) {
693 intel_miptree_release(&planar_mt);
694 return NULL;
695 }
696
697 mt->target = target;
698
699 if (i == 0)
700 planar_mt = mt;
701 else
702 planar_mt->plane[i - 1] = mt;
703 }
704
705 planar_mt->drm_modifier = image->modifier;
706
707 return planar_mt;
708 }
709
710 static bool
711 create_ccs_buf_for_image(struct brw_context *brw,
712 __DRIimage *image,
713 struct intel_mipmap_tree *mt,
714 enum isl_aux_state initial_state)
715 {
716 struct isl_surf temp_ccs_surf = {0,};
717
718 /* CCS is only supported for very simple miptrees */
719 assert(image->aux_offset != 0 && image->aux_pitch != 0);
720 assert(image->tile_x == 0 && image->tile_y == 0);
721 assert(mt->surf.samples == 1);
722 assert(mt->surf.levels == 1);
723 assert(mt->surf.logical_level0_px.depth == 1);
724 assert(mt->surf.logical_level0_px.array_len == 1);
725 assert(mt->first_level == 0);
726 assert(mt->last_level == 0);
727
728 /* We shouldn't already have a CCS */
729 assert(!mt->aux_buf);
730
731 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, NULL,
732 image->aux_pitch))
733 return false;
734
735 assert(image->aux_offset < image->bo->size);
736 assert(temp_ccs_surf.size_B <= image->bo->size - image->aux_offset);
737
738 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
739 if (mt->aux_buf == NULL)
740 return false;
741
742 mt->aux_state = create_aux_state_map(mt, initial_state);
743 if (!mt->aux_state) {
744 free(mt->aux_buf);
745 mt->aux_buf = NULL;
746 return false;
747 }
748
749 /* On gen10+ we start using an extra space in the aux buffer to store the
750 * indirect clear color. However, if we imported an image from the window
751 * system with CCS, we don't have the extra space at the end of the aux
752 * buffer. So create a new bo here that will store that clear color.
753 */
754 if (brw->isl_dev.ss.clear_color_state_size > 0) {
755 mt->aux_buf->clear_color_bo =
756 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
757 brw->isl_dev.ss.clear_color_state_size,
758 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
759 BO_ALLOC_ZEROED);
760 if (!mt->aux_buf->clear_color_bo) {
761 free(mt->aux_buf);
762 mt->aux_buf = NULL;
763 return false;
764 }
765 }
766
767 mt->aux_buf->bo = image->bo;
768 brw_bo_reference(image->bo);
769
770 mt->aux_buf->offset = image->aux_offset;
771 mt->aux_buf->surf = temp_ccs_surf;
772
773 return true;
774 }
775
776 struct intel_mipmap_tree *
777 intel_miptree_create_for_dri_image(struct brw_context *brw,
778 __DRIimage *image, GLenum target,
779 mesa_format format,
780 bool allow_internal_aux)
781 {
782 uint32_t bo_tiling, bo_swizzle;
783 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
784
785 const struct isl_drm_modifier_info *mod_info =
786 isl_drm_modifier_get_info(image->modifier);
787
788 const enum isl_tiling tiling =
789 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
790
791 if (image->planar_format && image->planar_format->nplanes > 1)
792 return miptree_create_for_planar_image(brw, image, target, tiling);
793
794 if (image->planar_format)
795 assert(image->planar_format->planes[0].dri_format == image->dri_format);
796
797 if (!brw->ctx.TextureFormatSupported[format]) {
798 /* The texture storage paths in core Mesa detect if the driver does not
799 * support the user-requested format, and then searches for a
800 * fallback format. The DRIimage code bypasses core Mesa, though. So we
801 * do the fallbacks here for important formats.
802 *
803 * We must support DRM_FOURCC_XBGR8888 textures because the Android
804 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
805 * the Chrome OS compositor consumes as dma_buf EGLImages.
806 */
807 format = _mesa_format_fallback_rgbx_to_rgba(format);
808 }
809
810 if (!brw->ctx.TextureFormatSupported[format])
811 return NULL;
812
813 enum intel_miptree_create_flags mt_create_flags = 0;
814
815 /* If this image comes in from a window system, we have different
816 * requirements than if it comes in via an EGL import operation. Window
817 * system images can use any form of auxiliary compression we wish because
818 * they get "flushed" before being handed off to the window system and we
819 * have the opportunity to do resolves. Non window-system images, on the
820 * other hand, have no resolve point so we can't have aux without a
821 * modifier.
822 */
823 if (!allow_internal_aux)
824 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
825
826 /* If we have a modifier which specifies aux, don't create one yet */
827 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
828 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
829
830 /* Disable creation of the texture's aux buffers because the driver exposes
831 * no EGL API to manage them. That is, there is no API for resolving the aux
832 * buffer's content to the main buffer nor for invalidating the aux buffer's
833 * content.
834 */
835 struct intel_mipmap_tree *mt =
836 intel_miptree_create_for_bo(brw, image->bo, format,
837 image->offset, image->width, image->height, 1,
838 image->pitch, tiling, mt_create_flags);
839 if (mt == NULL)
840 return NULL;
841
842 mt->target = target;
843 mt->level[0].level_x = image->tile_x;
844 mt->level[0].level_y = image->tile_y;
845 mt->drm_modifier = image->modifier;
846
847 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
848 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
849 * trouble resolving back to destination image due to alignment issues.
850 */
851 const struct gen_device_info *devinfo = &brw->screen->devinfo;
852 if (!devinfo->has_surface_tile_offset) {
853 uint32_t draw_x, draw_y;
854 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
855
856 if (draw_x != 0 || draw_y != 0) {
857 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
858 intel_miptree_release(&mt);
859 return NULL;
860 }
861 }
862
863 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
864 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
865
866 mt->aux_usage = mod_info->aux_usage;
867 /* If we are a window system buffer, then we can support fast-clears
868 * even if the modifier doesn't support them by doing a partial resolve
869 * as part of the flush operation.
870 */
871 mt->supports_fast_clear =
872 allow_internal_aux || mod_info->supports_clear_color;
873
874 /* We don't know the actual state of the surface when we get it but we
875 * can make a pretty good guess based on the modifier. What we do know
876 * for sure is that it isn't in the AUX_INVALID state, so we just assume
877 * a worst case of compression.
878 */
879 enum isl_aux_state initial_state =
880 isl_drm_modifier_get_default_aux_state(image->modifier);
881
882 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
883 intel_miptree_release(&mt);
884 return NULL;
885 }
886 }
887
888 /* Don't assume coherency for imported EGLimages. We don't know what
889 * external clients are going to do with it. They may scan it out.
890 */
891 image->bo->cache_coherent = false;
892
893 return mt;
894 }
895
896 /**
897 * For a singlesample renderbuffer, this simply wraps the given BO with a
898 * miptree.
899 *
900 * For a multisample renderbuffer, this wraps the window system's
901 * (singlesample) BO with a singlesample miptree attached to the
902 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
903 * that will contain the actual rendering (which is lazily resolved to
904 * irb->singlesample_mt).
905 */
906 bool
907 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
908 struct intel_renderbuffer *irb,
909 struct intel_mipmap_tree *singlesample_mt,
910 uint32_t width, uint32_t height,
911 uint32_t pitch)
912 {
913 struct intel_mipmap_tree *multisample_mt = NULL;
914 struct gl_renderbuffer *rb = &irb->Base.Base;
915 mesa_format format = rb->Format;
916 const unsigned num_samples = MAX2(rb->NumSamples, 1);
917
918 /* Only the front and back buffers, which are color buffers, are allocated
919 * through the image loader.
920 */
921 assert(_mesa_get_format_base_format(format) == GL_RGB ||
922 _mesa_get_format_base_format(format) == GL_RGBA);
923
924 assert(singlesample_mt);
925
926 if (num_samples == 1) {
927 intel_miptree_release(&irb->mt);
928 irb->mt = singlesample_mt;
929
930 assert(!irb->singlesample_mt);
931 } else {
932 intel_miptree_release(&irb->singlesample_mt);
933 irb->singlesample_mt = singlesample_mt;
934
935 if (!irb->mt ||
936 irb->mt->surf.logical_level0_px.width != width ||
937 irb->mt->surf.logical_level0_px.height != height) {
938 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
939 format,
940 width,
941 height,
942 num_samples);
943 if (!multisample_mt)
944 goto fail;
945
946 irb->need_downsample = false;
947 intel_miptree_release(&irb->mt);
948 irb->mt = multisample_mt;
949 }
950 }
951 return true;
952
953 fail:
954 intel_miptree_release(&irb->mt);
955 return false;
956 }
957
958 struct intel_mipmap_tree*
959 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
960 mesa_format format,
961 uint32_t width,
962 uint32_t height,
963 uint32_t num_samples)
964 {
965 struct intel_mipmap_tree *mt;
966 uint32_t depth = 1;
967 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
968
969 mt = intel_miptree_create(brw, target, format, 0, 0,
970 width, height, depth, num_samples,
971 MIPTREE_CREATE_BUSY);
972 if (!mt)
973 goto fail;
974
975 return mt;
976
977 fail:
978 intel_miptree_release(&mt);
979 return NULL;
980 }
981
982 void
983 intel_miptree_reference(struct intel_mipmap_tree **dst,
984 struct intel_mipmap_tree *src)
985 {
986 if (*dst == src)
987 return;
988
989 intel_miptree_release(dst);
990
991 if (src) {
992 src->refcount++;
993 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
994 }
995
996 *dst = src;
997 }
998
999 static void
1000 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1001 {
1002 if (aux_buf == NULL)
1003 return;
1004
1005 brw_bo_unreference(aux_buf->bo);
1006 brw_bo_unreference(aux_buf->clear_color_bo);
1007
1008 free(aux_buf);
1009 }
1010
1011 void
1012 intel_miptree_release(struct intel_mipmap_tree **mt)
1013 {
1014 if (!*mt)
1015 return;
1016
1017 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1018 if (--(*mt)->refcount <= 0) {
1019 GLuint i;
1020
1021 DBG("%s deleting %p\n", __func__, *mt);
1022
1023 brw_bo_unreference((*mt)->bo);
1024 intel_miptree_release(&(*mt)->stencil_mt);
1025 intel_miptree_release(&(*mt)->shadow_mt);
1026 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1027 free_aux_state_map((*mt)->aux_state);
1028
1029 intel_miptree_release(&(*mt)->plane[0]);
1030 intel_miptree_release(&(*mt)->plane[1]);
1031
1032 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1033 free((*mt)->level[i].slice);
1034 }
1035
1036 free(*mt);
1037 }
1038 *mt = NULL;
1039 }
1040
1041
1042 void
1043 intel_get_image_dims(struct gl_texture_image *image,
1044 int *width, int *height, int *depth)
1045 {
1046 switch (image->TexObject->Target) {
1047 case GL_TEXTURE_1D_ARRAY:
1048 /* For a 1D Array texture the OpenGL API will treat the image height as
1049 * the number of array slices. For Intel hardware, we treat the 1D array
1050 * as a 2D Array with a height of 1. So, here we want to swap image
1051 * height and depth.
1052 */
1053 assert(image->Depth == 1);
1054 *width = image->Width;
1055 *height = 1;
1056 *depth = image->Height;
1057 break;
1058 case GL_TEXTURE_CUBE_MAP:
1059 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1060 * though we really have 6 slices.
1061 */
1062 assert(image->Depth == 1);
1063 *width = image->Width;
1064 *height = image->Height;
1065 *depth = 6;
1066 break;
1067 default:
1068 *width = image->Width;
1069 *height = image->Height;
1070 *depth = image->Depth;
1071 break;
1072 }
1073 }
1074
1075 /**
1076 * Can the image be pulled into a unified mipmap tree? This mirrors
1077 * the completeness test in a lot of ways.
1078 *
1079 * Not sure whether I want to pass gl_texture_image here.
1080 */
1081 bool
1082 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1083 struct gl_texture_image *image)
1084 {
1085 struct intel_texture_image *intelImage = intel_texture_image(image);
1086 GLuint level = intelImage->base.Base.Level;
1087 int width, height, depth;
1088
1089 /* glTexImage* choose the texture object based on the target passed in, and
1090 * objects can't change targets over their lifetimes, so this should be
1091 * true.
1092 */
1093 assert(image->TexObject->Target == mt->target);
1094
1095 mesa_format mt_format = mt->format;
1096 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1097 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1098 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1099 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1100
1101 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1102 _mesa_get_srgb_format_linear(mt_format))
1103 return false;
1104
1105 intel_get_image_dims(image, &width, &height, &depth);
1106
1107 if (mt->target == GL_TEXTURE_CUBE_MAP)
1108 depth = 6;
1109
1110 if (level >= mt->surf.levels)
1111 return false;
1112
1113 const unsigned level_depth =
1114 mt->surf.dim == ISL_SURF_DIM_3D ?
1115 minify(mt->surf.logical_level0_px.depth, level) :
1116 mt->surf.logical_level0_px.array_len;
1117
1118 return width == minify(mt->surf.logical_level0_px.width, level) &&
1119 height == minify(mt->surf.logical_level0_px.height, level) &&
1120 depth == level_depth &&
1121 MAX2(image->NumSamples, 1) == mt->surf.samples;
1122 }
1123
1124 void
1125 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1126 GLuint level, GLuint slice,
1127 GLuint *x, GLuint *y)
1128 {
1129 if (level == 0 && slice == 0) {
1130 *x = mt->level[0].level_x;
1131 *y = mt->level[0].level_y;
1132 return;
1133 }
1134
1135 uint32_t x_offset_sa, y_offset_sa;
1136
1137 /* Miptree itself can have an offset only if it represents a single
1138 * slice in an imported buffer object.
1139 * See intel_miptree_create_for_dri_image().
1140 */
1141 assert(mt->level[0].level_x == 0);
1142 assert(mt->level[0].level_y == 0);
1143
1144 /* Given level is relative to level zero while the miptree may be
1145 * represent just a subset of all levels starting from 'first_level'.
1146 */
1147 assert(level >= mt->first_level);
1148 level -= mt->first_level;
1149
1150 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1151 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1152 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1153 &x_offset_sa, &y_offset_sa);
1154
1155 *x = x_offset_sa;
1156 *y = y_offset_sa;
1157 }
1158
1159
1160 /**
1161 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1162 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1163 * and tile_h is set to 1.
1164 */
1165 void
1166 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1167 uint32_t *tile_w, uint32_t *tile_h)
1168 {
1169 switch (tiling) {
1170 case ISL_TILING_X:
1171 *tile_w = 512;
1172 *tile_h = 8;
1173 break;
1174 case ISL_TILING_Y0:
1175 *tile_w = 128;
1176 *tile_h = 32;
1177 break;
1178 case ISL_TILING_LINEAR:
1179 *tile_w = cpp;
1180 *tile_h = 1;
1181 break;
1182 default:
1183 unreachable("not reached");
1184 }
1185 }
1186
1187
1188 /**
1189 * This function computes masks that may be used to select the bits of the X
1190 * and Y coordinates that indicate the offset within a tile. If the BO is
1191 * untiled, the masks are set to 0.
1192 */
1193 void
1194 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1195 uint32_t *mask_x, uint32_t *mask_y)
1196 {
1197 uint32_t tile_w_bytes, tile_h;
1198
1199 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1200
1201 *mask_x = tile_w_bytes / cpp - 1;
1202 *mask_y = tile_h - 1;
1203 }
1204
1205 /**
1206 * Compute the offset (in bytes) from the start of the BO to the given x
1207 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1208 * multiples of the tile size.
1209 */
1210 uint32_t
1211 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1212 uint32_t x, uint32_t y)
1213 {
1214 int cpp = mt->cpp;
1215 uint32_t pitch = mt->surf.row_pitch_B;
1216
1217 switch (mt->surf.tiling) {
1218 default:
1219 unreachable("not reached");
1220 case ISL_TILING_LINEAR:
1221 return y * pitch + x * cpp;
1222 case ISL_TILING_X:
1223 assert((x % (512 / cpp)) == 0);
1224 assert((y % 8) == 0);
1225 return y * pitch + x / (512 / cpp) * 4096;
1226 case ISL_TILING_Y0:
1227 assert((x % (128 / cpp)) == 0);
1228 assert((y % 32) == 0);
1229 return y * pitch + x / (128 / cpp) * 4096;
1230 }
1231 }
1232
1233 /**
1234 * Rendering with tiled buffers requires that the base address of the buffer
1235 * be aligned to a page boundary. For renderbuffers, and sometimes with
1236 * textures, we may want the surface to point at a texture image level that
1237 * isn't at a page boundary.
1238 *
1239 * This function returns an appropriately-aligned base offset
1240 * according to the tiling restrictions, plus any required x/y offset
1241 * from there.
1242 */
1243 uint32_t
1244 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1245 GLuint level, GLuint slice,
1246 uint32_t *tile_x,
1247 uint32_t *tile_y)
1248 {
1249 uint32_t x, y;
1250 uint32_t mask_x, mask_y;
1251
1252 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1253 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1254
1255 *tile_x = x & mask_x;
1256 *tile_y = y & mask_y;
1257
1258 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1259 }
1260
1261 static void
1262 intel_miptree_copy_slice_sw(struct brw_context *brw,
1263 struct intel_mipmap_tree *src_mt,
1264 unsigned src_level, unsigned src_layer,
1265 struct intel_mipmap_tree *dst_mt,
1266 unsigned dst_level, unsigned dst_layer,
1267 unsigned width, unsigned height)
1268 {
1269 void *src, *dst;
1270 ptrdiff_t src_stride, dst_stride;
1271 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1272
1273 intel_miptree_map(brw, src_mt,
1274 src_level, src_layer,
1275 0, 0,
1276 width, height,
1277 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1278 &src, &src_stride);
1279
1280 intel_miptree_map(brw, dst_mt,
1281 dst_level, dst_layer,
1282 0, 0,
1283 width, height,
1284 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1285 BRW_MAP_DIRECT_BIT,
1286 &dst, &dst_stride);
1287
1288 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1289 _mesa_get_format_name(src_mt->format),
1290 src_mt, src, src_stride,
1291 _mesa_get_format_name(dst_mt->format),
1292 dst_mt, dst, dst_stride,
1293 width, height);
1294
1295 int row_size = cpp * width;
1296 if (src_stride == row_size &&
1297 dst_stride == row_size) {
1298 memcpy(dst, src, row_size * height);
1299 } else {
1300 for (int i = 0; i < height; i++) {
1301 memcpy(dst, src, row_size);
1302 dst += dst_stride;
1303 src += src_stride;
1304 }
1305 }
1306
1307 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1308 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1309
1310 /* Don't forget to copy the stencil data over, too. We could have skipped
1311 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1312 * shuffling the two data sources in/out of temporary storage instead of
1313 * the direct mapping we get this way.
1314 */
1315 if (dst_mt->stencil_mt) {
1316 assert(src_mt->stencil_mt);
1317 intel_miptree_copy_slice_sw(brw,
1318 src_mt->stencil_mt, src_level, src_layer,
1319 dst_mt->stencil_mt, dst_level, dst_layer,
1320 width, height);
1321 }
1322 }
1323
1324 void
1325 intel_miptree_copy_slice(struct brw_context *brw,
1326 struct intel_mipmap_tree *src_mt,
1327 unsigned src_level, unsigned src_layer,
1328 struct intel_mipmap_tree *dst_mt,
1329 unsigned dst_level, unsigned dst_layer)
1330
1331 {
1332 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1333 mesa_format format = src_mt->format;
1334 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1335 src_level - src_mt->first_level);
1336 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1337 src_level - src_mt->first_level);
1338
1339 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1340 src_level - src_mt->first_level));
1341
1342 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1343 _mesa_get_srgb_format_linear(dst_mt->format));
1344
1345 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1346 _mesa_get_format_name(src_mt->format),
1347 src_mt, src_level, src_layer,
1348 _mesa_get_format_name(dst_mt->format),
1349 dst_mt, dst_level, dst_layer,
1350 width, height);
1351
1352 if (devinfo->gen >= 6) {
1353 /* On gen6 and above, we just use blorp. It's faster than the blitter
1354 * and can handle everything without software fallbacks.
1355 */
1356 brw_blorp_copy_miptrees(brw,
1357 src_mt, src_level, src_layer,
1358 dst_mt, dst_level, dst_layer,
1359 0, 0, 0, 0, width, height);
1360
1361 if (src_mt->stencil_mt) {
1362 assert(dst_mt->stencil_mt);
1363 brw_blorp_copy_miptrees(brw,
1364 src_mt->stencil_mt, src_level, src_layer,
1365 dst_mt->stencil_mt, dst_level, dst_layer,
1366 0, 0, 0, 0, width, height);
1367 }
1368 return;
1369 }
1370
1371 if (dst_mt->compressed) {
1372 unsigned int i, j;
1373 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1374 height = ALIGN_NPOT(height, j) / j;
1375 width = ALIGN_NPOT(width, i) / i;
1376 }
1377
1378 /* Gen4-5 doesn't support separate stencil */
1379 assert(!src_mt->stencil_mt);
1380
1381 uint32_t dst_x, dst_y, src_x, src_y;
1382 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1383 &dst_x, &dst_y);
1384 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1385 &src_x, &src_y);
1386
1387 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1388 _mesa_get_format_name(src_mt->format),
1389 src_mt, src_x, src_y, src_mt->surf.row_pitch_B,
1390 _mesa_get_format_name(dst_mt->format),
1391 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch_B,
1392 width, height);
1393
1394 if (!intel_miptree_blit(brw,
1395 src_mt, src_level, src_layer, 0, 0, false,
1396 dst_mt, dst_level, dst_layer, 0, 0, false,
1397 width, height, COLOR_LOGICOP_COPY)) {
1398 perf_debug("miptree validate blit for %s failed\n",
1399 _mesa_get_format_name(format));
1400
1401 intel_miptree_copy_slice_sw(brw,
1402 src_mt, src_level, src_layer,
1403 dst_mt, dst_level, dst_layer,
1404 width, height);
1405 }
1406 }
1407
1408 /**
1409 * Copies the image's current data to the given miptree, and associates that
1410 * miptree with the image.
1411 */
1412 void
1413 intel_miptree_copy_teximage(struct brw_context *brw,
1414 struct intel_texture_image *intelImage,
1415 struct intel_mipmap_tree *dst_mt)
1416 {
1417 struct intel_mipmap_tree *src_mt = intelImage->mt;
1418 struct intel_texture_object *intel_obj =
1419 intel_texture_object(intelImage->base.Base.TexObject);
1420 int level = intelImage->base.Base.Level;
1421 const unsigned face = intelImage->base.Base.Face;
1422 unsigned start_layer, end_layer;
1423
1424 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1425 assert(face == 0);
1426 assert(intelImage->base.Base.Height);
1427 start_layer = 0;
1428 end_layer = intelImage->base.Base.Height - 1;
1429 } else if (face > 0) {
1430 start_layer = face;
1431 end_layer = face;
1432 } else {
1433 assert(intelImage->base.Base.Depth);
1434 start_layer = 0;
1435 end_layer = intelImage->base.Base.Depth - 1;
1436 }
1437
1438 for (unsigned i = start_layer; i <= end_layer; i++) {
1439 intel_miptree_copy_slice(brw,
1440 src_mt, level, i,
1441 dst_mt, level, i);
1442 }
1443
1444 intel_miptree_reference(&intelImage->mt, dst_mt);
1445 intel_obj->needs_validate = true;
1446 }
1447
1448 static struct intel_miptree_aux_buffer *
1449 intel_alloc_aux_buffer(struct brw_context *brw,
1450 const struct isl_surf *aux_surf,
1451 bool wants_memset,
1452 uint8_t memset_value)
1453 {
1454 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1455 if (!buf)
1456 return false;
1457
1458 uint64_t size = aux_surf->size_B;
1459
1460 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1461 if (has_indirect_clear) {
1462 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1463 * will set a pointer to a dword somewhere that contains the color. So,
1464 * allocate the space for the clear color value here on the aux buffer.
1465 */
1466 buf->clear_color_offset = size;
1467 size += brw->isl_dev.ss.clear_color_state_size;
1468 }
1469
1470 /* If the buffer needs to be initialised (requiring the buffer to be
1471 * immediately mapped to cpu space for writing), do not use the gpu access
1472 * flag which can cause an unnecessary delay if the backing pages happened
1473 * to be just used by the GPU.
1474 */
1475 const bool alloc_zeroed = wants_memset && memset_value == 0;
1476 const bool needs_memset =
1477 !alloc_zeroed && (wants_memset || has_indirect_clear);
1478 const uint32_t alloc_flags =
1479 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1480
1481 /* ISL has stricter set of alignment rules then the drm allocator.
1482 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1483 * trying to recalculate based on different format block sizes.
1484 */
1485 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1486 BRW_MEMZONE_OTHER, I915_TILING_Y,
1487 aux_surf->row_pitch_B, alloc_flags);
1488 if (!buf->bo) {
1489 free(buf);
1490 return NULL;
1491 }
1492
1493 /* Initialize the bo to the desired value */
1494 if (needs_memset) {
1495 assert(!(alloc_flags & BO_ALLOC_BUSY));
1496
1497 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1498 if (map == NULL) {
1499 intel_miptree_aux_buffer_free(buf);
1500 return NULL;
1501 }
1502
1503 /* Memset the aux_surf portion of the BO. */
1504 if (wants_memset)
1505 memset(map, memset_value, aux_surf->size_B);
1506
1507 /* Zero the indirect clear color to match ::fast_clear_color. */
1508 if (has_indirect_clear) {
1509 memset((char *)map + buf->clear_color_offset, 0,
1510 brw->isl_dev.ss.clear_color_state_size);
1511 }
1512
1513 brw_bo_unmap(buf->bo);
1514 }
1515
1516 if (has_indirect_clear) {
1517 buf->clear_color_bo = buf->bo;
1518 brw_bo_reference(buf->clear_color_bo);
1519 }
1520
1521 buf->surf = *aux_surf;
1522
1523 return buf;
1524 }
1525
1526
1527 /**
1528 * Helper for intel_miptree_alloc_aux() that sets
1529 * \c mt->level[level].has_hiz. Return true if and only if
1530 * \c has_hiz was set.
1531 */
1532 static bool
1533 intel_miptree_level_enable_hiz(struct brw_context *brw,
1534 struct intel_mipmap_tree *mt,
1535 uint32_t level)
1536 {
1537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1538
1539 assert(mt->aux_buf);
1540 assert(mt->surf.size_B > 0);
1541
1542 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1543 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1544 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1545
1546 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1547 * and the height is 4 aligned. This allows our HiZ support
1548 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1549 * we can grow the width & height to allow the HiZ op to
1550 * force the proper size alignments.
1551 */
1552 if (level > 0 && ((width & 7) || (height & 3))) {
1553 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1554 return false;
1555 }
1556 }
1557
1558 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1559 mt->level[level].has_hiz = true;
1560 return true;
1561 }
1562
1563
1564 /**
1565 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1566 *
1567 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1568 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1569 * compress clear color so we wait until an actual fast-clear to allocate it.
1570 */
1571 bool
1572 intel_miptree_alloc_aux(struct brw_context *brw,
1573 struct intel_mipmap_tree *mt)
1574 {
1575 assert(mt->aux_buf == NULL);
1576
1577 /* Get the aux buf allocation parameters for this miptree. */
1578 enum isl_aux_state initial_state;
1579 uint8_t memset_value;
1580 struct isl_surf aux_surf = {0,};
1581 bool aux_surf_ok = false;
1582
1583 switch (mt->aux_usage) {
1584 case ISL_AUX_USAGE_NONE:
1585 aux_surf.size_B = 0;
1586 aux_surf_ok = true;
1587 break;
1588 case ISL_AUX_USAGE_HIZ:
1589 initial_state = ISL_AUX_STATE_AUX_INVALID;
1590 memset_value = 0;
1591 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1592 break;
1593 case ISL_AUX_USAGE_MCS:
1594 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1595 *
1596 * When MCS buffer is enabled and bound to MSRT, it is required that
1597 * it is cleared prior to any rendering.
1598 *
1599 * Since we don't use the MCS buffer for any purpose other than
1600 * rendering, it makes sense to just clear it immediately upon
1601 * allocation.
1602 *
1603 * Note: the clear value for MCS buffers is all 1's, so we memset to
1604 * 0xff.
1605 */
1606 initial_state = ISL_AUX_STATE_CLEAR;
1607 memset_value = 0xFF;
1608 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1609 break;
1610 case ISL_AUX_USAGE_CCS_D:
1611 case ISL_AUX_USAGE_CCS_E:
1612 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1613 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1614 * Target(s)":
1615 *
1616 * "If Software wants to enable Color Compression without Fast
1617 * clear, Software needs to initialize MCS with zeros."
1618 *
1619 * A CCS value of 0 indicates that the corresponding block is in the
1620 * pass-through state which is what we want.
1621 *
1622 * For CCS_D, do the same thing. On gen9+, this avoids having any
1623 * undefined bits in the aux buffer.
1624 */
1625 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1626 memset_value = 0;
1627 aux_surf_ok =
1628 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, NULL, 0);
1629 break;
1630
1631 default:
1632 unreachable("Invalid aux usage");
1633 }
1634
1635 /* We should have a valid aux_surf. */
1636 if (!aux_surf_ok)
1637 return false;
1638
1639 /* No work is needed for a zero-sized auxiliary buffer. */
1640 if (aux_surf.size_B == 0)
1641 return true;
1642
1643 /* Create the aux_state for the auxiliary buffer. */
1644 mt->aux_state = create_aux_state_map(mt, initial_state);
1645 if (mt->aux_state == NULL)
1646 return false;
1647
1648 /* Allocate the auxiliary buffer. */
1649 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1650 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1651 memset_value);
1652 if (mt->aux_buf == NULL) {
1653 free_aux_state_map(mt->aux_state);
1654 mt->aux_state = NULL;
1655 return false;
1656 }
1657
1658 /* Perform aux_usage-specific initialization. */
1659 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1660 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1661 intel_miptree_level_enable_hiz(brw, mt, level);
1662 }
1663
1664 return true;
1665 }
1666
1667
1668 /**
1669 * Can the miptree sample using the hiz buffer?
1670 */
1671 bool
1672 intel_miptree_sample_with_hiz(struct brw_context *brw,
1673 struct intel_mipmap_tree *mt)
1674 {
1675 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1676
1677 if (!devinfo->has_sample_with_hiz) {
1678 return false;
1679 }
1680
1681 if (!mt->aux_buf) {
1682 return false;
1683 }
1684
1685 /* It seems the hardware won't fallback to the depth buffer if some of the
1686 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1687 * of the texture to be HiZ enabled.
1688 */
1689 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1690 if (!intel_miptree_level_has_hiz(mt, level))
1691 return false;
1692 }
1693
1694 /* If compressed multisampling is enabled, then we use it for the auxiliary
1695 * buffer instead.
1696 *
1697 * From the BDW PRM (Volume 2d: Command Reference: Structures
1698 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1699 *
1700 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1701 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1702 *
1703 * There is no such blurb for 1D textures, but there is sufficient evidence
1704 * that this is broken on SKL+.
1705 */
1706 return (mt->surf.samples == 1 &&
1707 mt->target != GL_TEXTURE_3D &&
1708 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1709 }
1710
1711 static bool
1712 level_has_aux(const struct intel_mipmap_tree *mt, uint32_t level)
1713 {
1714 return isl_aux_usage_has_hiz(mt->aux_usage) ?
1715 intel_miptree_level_has_hiz(mt, level) :
1716 mt->aux_usage != ISL_AUX_USAGE_NONE && mt->aux_buf;
1717 }
1718
1719 /**
1720 * Does the miptree slice have hiz enabled?
1721 */
1722 bool
1723 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1724 {
1725 intel_miptree_check_level_layer(mt, level, 0);
1726 return mt->level[level].has_hiz;
1727 }
1728
1729 static inline uint32_t
1730 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1731 uint32_t start_level, uint32_t num_levels)
1732 {
1733 assert(start_level >= mt->first_level);
1734 assert(start_level <= mt->last_level);
1735
1736 if (num_levels == INTEL_REMAINING_LAYERS)
1737 num_levels = mt->last_level - start_level + 1;
1738 /* Check for overflow */
1739 assert(start_level + num_levels >= start_level);
1740 assert(start_level + num_levels <= mt->last_level + 1);
1741
1742 return num_levels;
1743 }
1744
1745 static inline uint32_t
1746 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1747 uint32_t start_layer, uint32_t num_layers)
1748 {
1749 assert(level <= mt->last_level);
1750
1751 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1752 assert(start_layer < total_num_layers);
1753 if (num_layers == INTEL_REMAINING_LAYERS)
1754 num_layers = total_num_layers - start_layer;
1755 /* Check for overflow */
1756 assert(start_layer + num_layers >= start_layer);
1757 assert(start_layer + num_layers <= total_num_layers);
1758
1759 return num_layers;
1760 }
1761
1762 bool
1763 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1764 unsigned start_level, unsigned num_levels,
1765 unsigned start_layer, unsigned num_layers)
1766 {
1767 assert(_mesa_is_format_color_format(mt->format));
1768
1769 if (!mt->aux_buf)
1770 return false;
1771
1772 /* Clamp the level range to fit the miptree */
1773 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1774
1775 for (uint32_t l = 0; l < num_levels; l++) {
1776 const uint32_t level = start_level + l;
1777 const uint32_t level_layers =
1778 miptree_layer_range_length(mt, level, start_layer, num_layers);
1779 for (unsigned a = 0; a < level_layers; a++) {
1780 enum isl_aux_state aux_state =
1781 intel_miptree_get_aux_state(mt, level, start_layer + a);
1782 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1783 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1784 return true;
1785 }
1786 }
1787
1788 return false;
1789 }
1790
1791 static void
1792 intel_miptree_check_color_resolve(const struct brw_context *brw,
1793 const struct intel_mipmap_tree *mt,
1794 unsigned level, unsigned layer)
1795 {
1796 if (!mt->aux_buf)
1797 return;
1798
1799 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1800 assert(brw->screen->devinfo.gen >= 8 ||
1801 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1802
1803 /* Compression of arrayed msaa surfaces is supported. */
1804 if (mt->surf.samples > 1)
1805 return;
1806
1807 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1808 assert(brw->screen->devinfo.gen >= 8 ||
1809 (layer == 0 &&
1810 mt->surf.logical_level0_px.depth == 1 &&
1811 mt->surf.logical_level0_px.array_len == 1));
1812
1813 (void)level;
1814 (void)layer;
1815 }
1816
1817 void
1818 intel_miptree_prepare_access(struct brw_context *brw,
1819 struct intel_mipmap_tree *mt,
1820 uint32_t start_level, uint32_t num_levels,
1821 uint32_t start_layer, uint32_t num_layers,
1822 enum isl_aux_usage aux_usage,
1823 bool fast_clear_supported)
1824 {
1825 const uint32_t clamped_levels =
1826 miptree_level_range_length(mt, start_level, num_levels);
1827 for (uint32_t l = 0; l < clamped_levels; l++) {
1828 const uint32_t level = start_level + l;
1829 if (!level_has_aux(mt, level))
1830 continue;
1831
1832 const uint32_t level_layers =
1833 miptree_layer_range_length(mt, level, start_layer, num_layers);
1834 for (uint32_t a = 0; a < level_layers; a++) {
1835 const uint32_t layer = start_layer + a;
1836 const enum isl_aux_state aux_state =
1837 intel_miptree_get_aux_state(mt, level, layer);
1838 const enum isl_aux_op aux_op =
1839 isl_aux_prepare_access(aux_state, aux_usage, fast_clear_supported);
1840
1841 if (aux_op == ISL_AUX_OP_NONE) {
1842 /* Nothing to do here. */
1843 } else if (isl_aux_usage_has_mcs(mt->aux_usage)) {
1844 assert(aux_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1845 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
1846 } else if (isl_aux_usage_has_hiz(mt->aux_usage)) {
1847 intel_hiz_exec(brw, mt, level, layer, 1, aux_op);
1848 } else {
1849 assert(isl_aux_usage_has_ccs(mt->aux_usage));
1850 intel_miptree_check_color_resolve(brw, mt, level, layer);
1851 brw_blorp_resolve_color(brw, mt, level, layer, aux_op);
1852 }
1853
1854 const enum isl_aux_state new_state =
1855 isl_aux_state_transition_aux_op(aux_state, mt->aux_usage, aux_op);
1856 intel_miptree_set_aux_state(brw, mt, level, layer, 1, new_state);
1857 }
1858 }
1859 }
1860
1861 void
1862 intel_miptree_finish_write(struct brw_context *brw,
1863 struct intel_mipmap_tree *mt, uint32_t level,
1864 uint32_t start_layer, uint32_t num_layers,
1865 enum isl_aux_usage aux_usage)
1866 {
1867 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1868
1869 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->gen <= 7) {
1870 mt->shadow_needs_update = true;
1871 } else if (intel_miptree_has_etc_shadow(brw, mt)) {
1872 mt->shadow_needs_update = true;
1873 }
1874
1875 if (!level_has_aux(mt, level))
1876 return;
1877
1878 const uint32_t level_layers =
1879 miptree_layer_range_length(mt, level, start_layer, num_layers);
1880
1881 for (uint32_t a = 0; a < level_layers; a++) {
1882 const uint32_t layer = start_layer + a;
1883 const enum isl_aux_state aux_state =
1884 intel_miptree_get_aux_state(mt, level, layer);
1885 const enum isl_aux_state new_aux_state =
1886 isl_aux_state_transition_write(aux_state, aux_usage, false);
1887 intel_miptree_set_aux_state(brw, mt, level, layer, 1, new_aux_state);
1888 }
1889 }
1890
1891 enum isl_aux_state
1892 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
1893 uint32_t level, uint32_t layer)
1894 {
1895 intel_miptree_check_level_layer(mt, level, layer);
1896
1897 if (_mesa_is_format_color_format(mt->format)) {
1898 assert(mt->aux_buf != NULL);
1899 assert(mt->surf.samples == 1 ||
1900 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1901 } else if (mt->format == MESA_FORMAT_S_UINT8) {
1902 unreachable("Cannot get aux state for stencil");
1903 } else {
1904 assert(intel_miptree_level_has_hiz(mt, level));
1905 }
1906
1907 return mt->aux_state[level][layer];
1908 }
1909
1910 void
1911 intel_miptree_set_aux_state(struct brw_context *brw,
1912 struct intel_mipmap_tree *mt, uint32_t level,
1913 uint32_t start_layer, uint32_t num_layers,
1914 enum isl_aux_state aux_state)
1915 {
1916 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
1917
1918 if (_mesa_is_format_color_format(mt->format)) {
1919 assert(mt->aux_buf != NULL);
1920 assert(mt->surf.samples == 1 ||
1921 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1922 } else if (mt->format == MESA_FORMAT_S_UINT8) {
1923 unreachable("Cannot get aux state for stencil");
1924 } else {
1925 assert(intel_miptree_level_has_hiz(mt, level));
1926 }
1927
1928 for (unsigned a = 0; a < num_layers; a++) {
1929 if (mt->aux_state[level][start_layer + a] != aux_state) {
1930 mt->aux_state[level][start_layer + a] = aux_state;
1931 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
1932 }
1933 }
1934 }
1935
1936 /* On Gen9 color buffers may be compressed by the hardware (lossless
1937 * compression). There are, however, format restrictions and care needs to be
1938 * taken that the sampler engine is capable for re-interpreting a buffer with
1939 * format different the buffer was originally written with.
1940 *
1941 * For example, SRGB formats are not compressible and the sampler engine isn't
1942 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
1943 * color buffer needs to be resolved so that the sampling surface can be
1944 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
1945 * set).
1946 */
1947 static bool
1948 can_texture_with_ccs(struct brw_context *brw,
1949 struct intel_mipmap_tree *mt,
1950 enum isl_format view_format)
1951 {
1952 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
1953 return false;
1954
1955 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
1956 mt, view_format)) {
1957 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
1958 isl_format_get_layout(view_format)->name,
1959 _mesa_get_format_name(mt->format));
1960 return false;
1961 }
1962
1963 return true;
1964 }
1965
1966 enum isl_aux_usage
1967 intel_miptree_texture_aux_usage(struct brw_context *brw,
1968 struct intel_mipmap_tree *mt,
1969 enum isl_format view_format,
1970 enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits)
1971 {
1972 assert(brw->screen->devinfo.gen == 9 || astc5x5_wa_bits == 0);
1973
1974 /* On gen9, ASTC 5x5 textures cannot live in the sampler cache along side
1975 * CCS or HiZ compressed textures. See gen9_apply_astc5x5_wa_flush() for
1976 * details.
1977 */
1978 if ((astc5x5_wa_bits & GEN9_ASTC5X5_WA_TEX_TYPE_ASTC5x5) &&
1979 mt->aux_usage != ISL_AUX_USAGE_MCS)
1980 return ISL_AUX_USAGE_NONE;
1981
1982 switch (mt->aux_usage) {
1983 case ISL_AUX_USAGE_HIZ:
1984 if (intel_miptree_sample_with_hiz(brw, mt))
1985 return ISL_AUX_USAGE_HIZ;
1986 break;
1987
1988 case ISL_AUX_USAGE_MCS:
1989 return ISL_AUX_USAGE_MCS;
1990
1991 case ISL_AUX_USAGE_CCS_D:
1992 case ISL_AUX_USAGE_CCS_E:
1993 if (!mt->aux_buf) {
1994 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1995 return ISL_AUX_USAGE_NONE;
1996 }
1997
1998 /* If we don't have any unresolved color, report an aux usage of
1999 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2000 * aux surface and we can save some bandwidth.
2001 */
2002 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2003 0, INTEL_REMAINING_LAYERS))
2004 return ISL_AUX_USAGE_NONE;
2005
2006 if (can_texture_with_ccs(brw, mt, view_format))
2007 return ISL_AUX_USAGE_CCS_E;
2008 break;
2009
2010 default:
2011 break;
2012 }
2013
2014 return ISL_AUX_USAGE_NONE;
2015 }
2016
2017 static bool
2018 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2019 {
2020 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2021 * values so sRGB curve application was a no-op for all fast-clearable
2022 * formats.
2023 *
2024 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2025 * values, the hardware interprets the floats, not as what would be
2026 * returned from the sampler (or written by the shader), but as being
2027 * between format conversion and sRGB curve application. This means that
2028 * we can switch between sRGB and UNORM without having to whack the clear
2029 * color.
2030 */
2031 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2032 }
2033
2034 void
2035 intel_miptree_prepare_texture(struct brw_context *brw,
2036 struct intel_mipmap_tree *mt,
2037 enum isl_format view_format,
2038 uint32_t start_level, uint32_t num_levels,
2039 uint32_t start_layer, uint32_t num_layers,
2040 enum gen9_astc5x5_wa_tex_type astc5x5_wa_bits)
2041 {
2042 enum isl_aux_usage aux_usage =
2043 intel_miptree_texture_aux_usage(brw, mt, view_format, astc5x5_wa_bits);
2044
2045 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2046
2047 /* Clear color is specified as ints or floats and the conversion is done by
2048 * the sampler. If we have a texture view, we would have to perform the
2049 * clear color conversion manually. Just disable clear color.
2050 */
2051 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2052 clear_supported = false;
2053
2054 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2055 start_layer, num_layers,
2056 aux_usage, clear_supported);
2057 }
2058
2059 void
2060 intel_miptree_prepare_image(struct brw_context *brw,
2061 struct intel_mipmap_tree *mt)
2062 {
2063 /* The data port doesn't understand any compression */
2064 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2065 0, INTEL_REMAINING_LAYERS,
2066 ISL_AUX_USAGE_NONE, false);
2067 }
2068
2069 enum isl_aux_usage
2070 intel_miptree_render_aux_usage(struct brw_context *brw,
2071 struct intel_mipmap_tree *mt,
2072 enum isl_format render_format,
2073 bool blend_enabled,
2074 bool draw_aux_disabled)
2075 {
2076 struct gen_device_info *devinfo = &brw->screen->devinfo;
2077
2078 if (draw_aux_disabled)
2079 return ISL_AUX_USAGE_NONE;
2080
2081 switch (mt->aux_usage) {
2082 case ISL_AUX_USAGE_MCS:
2083 assert(mt->aux_buf);
2084 return ISL_AUX_USAGE_MCS;
2085
2086 case ISL_AUX_USAGE_CCS_D:
2087 case ISL_AUX_USAGE_CCS_E:
2088 if (!mt->aux_buf) {
2089 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2090 return ISL_AUX_USAGE_NONE;
2091 }
2092
2093 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2094 * formats. However, there are issues with blending where it doesn't
2095 * properly apply the sRGB curve to the clear color when blending.
2096 */
2097 if (devinfo->gen >= 9 && blend_enabled &&
2098 isl_format_is_srgb(render_format) &&
2099 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2100 return ISL_AUX_USAGE_NONE;
2101
2102 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2103 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2104 mt, render_format))
2105 return ISL_AUX_USAGE_CCS_E;
2106
2107 /* Otherwise, we have to fall back to CCS_D */
2108 return ISL_AUX_USAGE_CCS_D;
2109
2110 default:
2111 return ISL_AUX_USAGE_NONE;
2112 }
2113 }
2114
2115 void
2116 intel_miptree_prepare_render(struct brw_context *brw,
2117 struct intel_mipmap_tree *mt, uint32_t level,
2118 uint32_t start_layer, uint32_t layer_count,
2119 enum isl_aux_usage aux_usage)
2120 {
2121 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2122 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2123 }
2124
2125 void
2126 intel_miptree_finish_render(struct brw_context *brw,
2127 struct intel_mipmap_tree *mt, uint32_t level,
2128 uint32_t start_layer, uint32_t layer_count,
2129 enum isl_aux_usage aux_usage)
2130 {
2131 assert(_mesa_is_format_color_format(mt->format));
2132
2133 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2134 aux_usage);
2135 }
2136
2137 void
2138 intel_miptree_prepare_depth(struct brw_context *brw,
2139 struct intel_mipmap_tree *mt, uint32_t level,
2140 uint32_t start_layer, uint32_t layer_count)
2141 {
2142 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2143 mt->aux_usage, mt->aux_buf != NULL);
2144 }
2145
2146 void
2147 intel_miptree_finish_depth(struct brw_context *brw,
2148 struct intel_mipmap_tree *mt, uint32_t level,
2149 uint32_t start_layer, uint32_t layer_count,
2150 bool depth_written)
2151 {
2152 if (depth_written) {
2153 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2154 mt->aux_usage);
2155 }
2156 }
2157
2158 void
2159 intel_miptree_prepare_external(struct brw_context *brw,
2160 struct intel_mipmap_tree *mt)
2161 {
2162 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2163 bool supports_fast_clear = false;
2164
2165 const struct isl_drm_modifier_info *mod_info =
2166 isl_drm_modifier_get_info(mt->drm_modifier);
2167
2168 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2169 /* CCS_E is the only supported aux for external images and it's only
2170 * supported on very simple images.
2171 */
2172 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2173 assert(_mesa_is_format_color_format(mt->format));
2174 assert(mt->first_level == 0 && mt->last_level == 0);
2175 assert(mt->surf.logical_level0_px.depth == 1);
2176 assert(mt->surf.logical_level0_px.array_len == 1);
2177 assert(mt->surf.samples == 1);
2178 assert(mt->aux_buf != NULL);
2179
2180 aux_usage = mod_info->aux_usage;
2181 supports_fast_clear = mod_info->supports_clear_color;
2182 }
2183
2184 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2185 0, INTEL_REMAINING_LAYERS,
2186 aux_usage, supports_fast_clear);
2187 }
2188
2189 void
2190 intel_miptree_finish_external(struct brw_context *brw,
2191 struct intel_mipmap_tree *mt)
2192 {
2193 if (!mt->aux_buf)
2194 return;
2195
2196 /* We don't know the actual aux state of the aux surface. The previous
2197 * owner could have given it to us in a number of different states.
2198 * Because we don't know the aux state, we reset the aux state to the
2199 * least common denominator of possible valid states.
2200 */
2201 enum isl_aux_state default_aux_state =
2202 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2203 assert(mt->last_level == mt->first_level);
2204 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2205 default_aux_state);
2206 }
2207
2208 /**
2209 * Make it possible to share the BO backing the given miptree with another
2210 * process or another miptree.
2211 *
2212 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2213 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2214 * ensure that no MCS buffer gets allocated in the future.
2215 *
2216 * HiZ is similarly unsafe with shared buffers.
2217 */
2218 void
2219 intel_miptree_make_shareable(struct brw_context *brw,
2220 struct intel_mipmap_tree *mt)
2221 {
2222 /* MCS buffers are also used for multisample buffers, but we can't resolve
2223 * away a multisample MCS buffer because it's an integral part of how the
2224 * pixel data is stored. Fortunately this code path should never be
2225 * reached for multisample buffers.
2226 */
2227 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2228 mt->surf.samples == 1);
2229
2230 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2231 0, INTEL_REMAINING_LAYERS,
2232 ISL_AUX_USAGE_NONE, false);
2233
2234 if (mt->aux_buf) {
2235 intel_miptree_aux_buffer_free(mt->aux_buf);
2236 mt->aux_buf = NULL;
2237
2238 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2239 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2240 mt->level[l].has_hiz = false;
2241 }
2242
2243 free(mt->aux_state);
2244 mt->aux_state = NULL;
2245 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2246 }
2247
2248 mt->aux_usage = ISL_AUX_USAGE_NONE;
2249 mt->supports_fast_clear = false;
2250 }
2251
2252
2253 /**
2254 * \brief Get pointer offset into stencil buffer.
2255 *
2256 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2257 * must decode the tile's layout in software.
2258 *
2259 * See
2260 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2261 * Format.
2262 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2263 *
2264 * Even though the returned offset is always positive, the return type is
2265 * signed due to
2266 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2267 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2268 */
2269 static intptr_t
2270 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2271 {
2272 uint32_t tile_size = 4096;
2273 uint32_t tile_width = 64;
2274 uint32_t tile_height = 64;
2275 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2276
2277 uint32_t tile_x = x / tile_width;
2278 uint32_t tile_y = y / tile_height;
2279
2280 /* The byte's address relative to the tile's base addres. */
2281 uint32_t byte_x = x % tile_width;
2282 uint32_t byte_y = y % tile_height;
2283
2284 uintptr_t u = tile_y * row_size
2285 + tile_x * tile_size
2286 + 512 * (byte_x / 8)
2287 + 64 * (byte_y / 8)
2288 + 32 * ((byte_y / 4) % 2)
2289 + 16 * ((byte_x / 4) % 2)
2290 + 8 * ((byte_y / 2) % 2)
2291 + 4 * ((byte_x / 2) % 2)
2292 + 2 * (byte_y % 2)
2293 + 1 * (byte_x % 2);
2294
2295 if (swizzled) {
2296 /* adjust for bit6 swizzling */
2297 if (((byte_x / 8) % 2) == 1) {
2298 if (((byte_y / 8) % 2) == 0) {
2299 u += 64;
2300 } else {
2301 u -= 64;
2302 }
2303 }
2304 }
2305
2306 return u;
2307 }
2308
2309 void
2310 intel_miptree_updownsample(struct brw_context *brw,
2311 struct intel_mipmap_tree *src,
2312 struct intel_mipmap_tree *dst)
2313 {
2314 unsigned src_w = src->surf.logical_level0_px.width;
2315 unsigned src_h = src->surf.logical_level0_px.height;
2316 unsigned dst_w = dst->surf.logical_level0_px.width;
2317 unsigned dst_h = dst->surf.logical_level0_px.height;
2318
2319 brw_blorp_blit_miptrees(brw,
2320 src, 0 /* level */, 0 /* layer */,
2321 src->format, SWIZZLE_XYZW,
2322 dst, 0 /* level */, 0 /* layer */, dst->format,
2323 0, 0, src_w, src_h,
2324 0, 0, dst_w, dst_h,
2325 GL_NEAREST, false, false /*mirror x, y*/,
2326 false, false);
2327
2328 if (src->stencil_mt) {
2329 src_w = src->stencil_mt->surf.logical_level0_px.width;
2330 src_h = src->stencil_mt->surf.logical_level0_px.height;
2331 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2332 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2333
2334 brw_blorp_blit_miptrees(brw,
2335 src->stencil_mt, 0 /* level */, 0 /* layer */,
2336 src->stencil_mt->format, SWIZZLE_XYZW,
2337 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2338 dst->stencil_mt->format,
2339 0, 0, src_w, src_h,
2340 0, 0, dst_w, dst_h,
2341 GL_NEAREST, false, false /*mirror x, y*/,
2342 false, false /* decode/encode srgb */);
2343 }
2344 }
2345
2346 void
2347 intel_update_r8stencil(struct brw_context *brw,
2348 struct intel_mipmap_tree *mt)
2349 {
2350 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2351
2352 assert(devinfo->gen >= 7);
2353 struct intel_mipmap_tree *src =
2354 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2355 if (!src || devinfo->gen >= 8)
2356 return;
2357
2358 assert(src->surf.size_B > 0);
2359
2360 if (!mt->shadow_mt) {
2361 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2362 mt->shadow_mt = make_surface(
2363 brw,
2364 src->target,
2365 MESA_FORMAT_R_UINT8,
2366 src->first_level, src->last_level,
2367 src->surf.logical_level0_px.width,
2368 src->surf.logical_level0_px.height,
2369 src->surf.dim == ISL_SURF_DIM_3D ?
2370 src->surf.logical_level0_px.depth :
2371 src->surf.logical_level0_px.array_len,
2372 src->surf.samples,
2373 ISL_TILING_Y0_BIT,
2374 ISL_SURF_USAGE_TEXTURE_BIT,
2375 BO_ALLOC_BUSY, 0, NULL);
2376 assert(mt->shadow_mt);
2377 }
2378
2379 if (src->shadow_needs_update == false)
2380 return;
2381
2382 struct intel_mipmap_tree *dst = mt->shadow_mt;
2383
2384 for (int level = src->first_level; level <= src->last_level; level++) {
2385 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2386 minify(src->surf.phys_level0_sa.depth, level) :
2387 src->surf.phys_level0_sa.array_len;
2388
2389 for (unsigned layer = 0; layer < depth; layer++) {
2390 brw_blorp_copy_miptrees(brw,
2391 src, level, layer,
2392 dst, level, layer,
2393 0, 0, 0, 0,
2394 minify(src->surf.logical_level0_px.width,
2395 level),
2396 minify(src->surf.logical_level0_px.height,
2397 level));
2398 }
2399 }
2400
2401 brw_cache_flush_for_read(brw, dst->bo);
2402 src->shadow_needs_update = false;
2403 }
2404
2405 static void *
2406 intel_miptree_map_raw(struct brw_context *brw,
2407 struct intel_mipmap_tree *mt,
2408 GLbitfield mode)
2409 {
2410 struct brw_bo *bo = mt->bo;
2411
2412 if (brw_batch_references(&brw->batch, bo))
2413 intel_batchbuffer_flush(brw);
2414
2415 return brw_bo_map(brw, bo, mode);
2416 }
2417
2418 static void
2419 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2420 {
2421 brw_bo_unmap(mt->bo);
2422 }
2423
2424 static void
2425 intel_miptree_unmap_map(struct brw_context *brw,
2426 struct intel_mipmap_tree *mt,
2427 struct intel_miptree_map *map,
2428 unsigned int level, unsigned int slice)
2429 {
2430 intel_miptree_unmap_raw(mt);
2431 }
2432
2433 static void
2434 intel_miptree_map_map(struct brw_context *brw,
2435 struct intel_mipmap_tree *mt,
2436 struct intel_miptree_map *map,
2437 unsigned int level, unsigned int slice)
2438 {
2439 unsigned int bw, bh;
2440 void *base;
2441 unsigned int image_x, image_y;
2442 intptr_t x = map->x;
2443 intptr_t y = map->y;
2444
2445 /* For compressed formats, the stride is the number of bytes per
2446 * row of blocks. intel_miptree_get_image_offset() already does
2447 * the divide.
2448 */
2449 _mesa_get_format_block_size(mt->format, &bw, &bh);
2450 assert(y % bh == 0);
2451 assert(x % bw == 0);
2452 y /= bh;
2453 x /= bw;
2454
2455 intel_miptree_access_raw(brw, mt, level, slice,
2456 map->mode & GL_MAP_WRITE_BIT);
2457
2458 base = intel_miptree_map_raw(brw, mt, map->mode);
2459
2460 if (base == NULL)
2461 map->ptr = NULL;
2462 else {
2463 base += mt->offset;
2464
2465 /* Note that in the case of cube maps, the caller must have passed the
2466 * slice number referencing the face.
2467 */
2468 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2469 x += image_x;
2470 y += image_y;
2471
2472 map->stride = mt->surf.row_pitch_B;
2473 map->ptr = base + y * map->stride + x * mt->cpp;
2474 }
2475
2476 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2477 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2478 map->x, map->y, map->w, map->h,
2479 mt, _mesa_get_format_name(mt->format),
2480 x, y, map->ptr, map->stride);
2481
2482 map->unmap = intel_miptree_unmap_map;
2483 }
2484
2485 static void
2486 intel_miptree_unmap_blit(struct brw_context *brw,
2487 struct intel_mipmap_tree *mt,
2488 struct intel_miptree_map *map,
2489 unsigned int level,
2490 unsigned int slice)
2491 {
2492 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2493 struct gl_context *ctx = &brw->ctx;
2494
2495 intel_miptree_unmap_raw(map->linear_mt);
2496
2497 if (map->mode & GL_MAP_WRITE_BIT) {
2498 if (devinfo->gen >= 6) {
2499 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
2500 mt, level, slice,
2501 0, 0, map->x, map->y, map->w, map->h);
2502 } else {
2503 bool ok = intel_miptree_copy(brw,
2504 map->linear_mt, 0, 0, 0, 0,
2505 mt, level, slice, map->x, map->y,
2506 map->w, map->h);
2507 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2508 }
2509 }
2510
2511 intel_miptree_release(&map->linear_mt);
2512 }
2513
2514 /* Compute extent parameters for use with tiled_memcpy functions.
2515 * xs are in units of bytes and ys are in units of strides.
2516 */
2517 static inline void
2518 tile_extents(struct intel_mipmap_tree *mt, struct intel_miptree_map *map,
2519 unsigned int level, unsigned int slice, unsigned int *x1_B,
2520 unsigned int *x2_B, unsigned int *y1_el, unsigned int *y2_el)
2521 {
2522 unsigned int block_width, block_height;
2523 unsigned int x0_el, y0_el;
2524
2525 _mesa_get_format_block_size(mt->format, &block_width, &block_height);
2526
2527 assert(map->x % block_width == 0);
2528 assert(map->y % block_height == 0);
2529
2530 intel_miptree_get_image_offset(mt, level, slice, &x0_el, &y0_el);
2531 *x1_B = (map->x / block_width + x0_el) * mt->cpp;
2532 *y1_el = map->y / block_height + y0_el;
2533 *x2_B = (DIV_ROUND_UP(map->x + map->w, block_width) + x0_el) * mt->cpp;
2534 *y2_el = DIV_ROUND_UP(map->y + map->h, block_height) + y0_el;
2535 }
2536
2537 static void
2538 intel_miptree_unmap_tiled_memcpy(struct brw_context *brw,
2539 struct intel_mipmap_tree *mt,
2540 struct intel_miptree_map *map,
2541 unsigned int level,
2542 unsigned int slice)
2543 {
2544 if (map->mode & GL_MAP_WRITE_BIT) {
2545 unsigned int x1, x2, y1, y2;
2546 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
2547
2548 char *dst = intel_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
2549 dst += mt->offset;
2550
2551 isl_memcpy_linear_to_tiled(
2552 x1, x2, y1, y2, dst, map->ptr, mt->surf.row_pitch_B, map->stride,
2553 brw->has_swizzling, mt->surf.tiling, ISL_MEMCPY);
2554
2555 intel_miptree_unmap_raw(mt);
2556 }
2557 align_free(map->buffer);
2558 map->buffer = map->ptr = NULL;
2559 }
2560
2561 /**
2562 * Determine which copy function to use for the given format combination
2563 *
2564 * The only two possible copy functions which are ever returned are a
2565 * direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
2566 * BGRA -> RGBA are exactly the same operation (and memcpy is obviously
2567 * symmetric), it doesn't matter whether the copy is from the tiled image
2568 * to the untiled or vice versa. The copy function required is the same in
2569 * either case so this function can be used.
2570 *
2571 * \param[in] tiledFormat The format of the tiled image
2572 * \param[in] format The GL format of the client data
2573 * \param[in] type The GL type of the client data
2574 * \param[out] mem_copy Will be set to one of either the standard
2575 * library's memcpy or a different copy function
2576 * that performs an RGBA to BGRA conversion
2577 * \param[out] cpp Number of bytes per channel
2578 *
2579 * \return true if the format and type combination are valid
2580 */
2581 isl_memcpy_type
2582 intel_miptree_get_memcpy_type(mesa_format tiledFormat, GLenum format, GLenum type,
2583 uint32_t *cpp)
2584 {
2585 if (type == GL_UNSIGNED_INT_8_8_8_8_REV &&
2586 !(format == GL_RGBA || format == GL_BGRA))
2587 return ISL_MEMCPY_INVALID; /* Invalid type/format combination */
2588
2589 if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) ||
2590 (tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) {
2591 *cpp = 1;
2592 return ISL_MEMCPY;
2593 } else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) ||
2594 (tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM) ||
2595 (tiledFormat == MESA_FORMAT_B8G8R8A8_SRGB) ||
2596 (tiledFormat == MESA_FORMAT_B8G8R8X8_SRGB)) {
2597 *cpp = 4;
2598 if (format == GL_BGRA) {
2599 return ISL_MEMCPY;
2600 } else if (format == GL_RGBA) {
2601 return ISL_MEMCPY_BGRA8;
2602 }
2603 } else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) ||
2604 (tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM) ||
2605 (tiledFormat == MESA_FORMAT_R8G8B8A8_SRGB) ||
2606 (tiledFormat == MESA_FORMAT_R8G8B8X8_SRGB)) {
2607 *cpp = 4;
2608 if (format == GL_BGRA) {
2609 /* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can
2610 * use the same function.
2611 */
2612 return ISL_MEMCPY_BGRA8;
2613 } else if (format == GL_RGBA) {
2614 return ISL_MEMCPY;
2615 }
2616 }
2617
2618 return ISL_MEMCPY_INVALID;
2619 }
2620
2621 static void
2622 intel_miptree_map_tiled_memcpy(struct brw_context *brw,
2623 struct intel_mipmap_tree *mt,
2624 struct intel_miptree_map *map,
2625 unsigned int level, unsigned int slice)
2626 {
2627 intel_miptree_access_raw(brw, mt, level, slice,
2628 map->mode & GL_MAP_WRITE_BIT);
2629
2630 unsigned int x1, x2, y1, y2;
2631 tile_extents(mt, map, level, slice, &x1, &x2, &y1, &y2);
2632 map->stride = ALIGN(_mesa_format_row_stride(mt->format, map->w), 16);
2633
2634 /* The tiling and detiling functions require that the linear buffer
2635 * has proper 16-byte alignment (that is, its `x0` is 16-byte
2636 * aligned). Here we over-allocate the linear buffer by enough
2637 * bytes to get the proper alignment.
2638 */
2639 map->buffer = align_malloc(map->stride * (y2 - y1) + (x1 & 0xf), 16);
2640 map->ptr = (char *)map->buffer + (x1 & 0xf);
2641 assert(map->buffer);
2642
2643 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2644 char *src = intel_miptree_map_raw(brw, mt, map->mode | MAP_RAW);
2645 src += mt->offset;
2646
2647 const isl_memcpy_type copy_type =
2648 #if defined(USE_SSE41)
2649 cpu_has_sse4_1 ? ISL_MEMCPY_STREAMING_LOAD :
2650 #endif
2651 ISL_MEMCPY;
2652
2653 isl_memcpy_tiled_to_linear(
2654 x1, x2, y1, y2, map->ptr, src, map->stride,
2655 mt->surf.row_pitch_B, brw->has_swizzling, mt->surf.tiling,
2656 copy_type);
2657
2658 intel_miptree_unmap_raw(mt);
2659 }
2660
2661 map->unmap = intel_miptree_unmap_tiled_memcpy;
2662 }
2663
2664 static void
2665 intel_miptree_map_blit(struct brw_context *brw,
2666 struct intel_mipmap_tree *mt,
2667 struct intel_miptree_map *map,
2668 unsigned int level, unsigned int slice)
2669 {
2670 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2671 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
2672 0, 0, map->w, map->h, 1, 1,
2673 ISL_TILING_LINEAR_BIT,
2674 ISL_SURF_USAGE_RENDER_TARGET_BIT |
2675 ISL_SURF_USAGE_TEXTURE_BIT,
2676 0, 0, NULL);
2677
2678 if (!map->linear_mt) {
2679 fprintf(stderr, "Failed to allocate blit temporary\n");
2680 goto fail;
2681 }
2682 map->stride = map->linear_mt->surf.row_pitch_B;
2683
2684 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2685 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2686 * invalidate is set, since we'll be writing the whole rectangle from our
2687 * temporary buffer back out.
2688 */
2689 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2690 if (devinfo->gen >= 6) {
2691 brw_blorp_copy_miptrees(brw, mt, level, slice,
2692 map->linear_mt, 0, 0,
2693 map->x, map->y, 0, 0, map->w, map->h);
2694 } else {
2695 if (!intel_miptree_copy(brw,
2696 mt, level, slice, map->x, map->y,
2697 map->linear_mt, 0, 0, 0, 0,
2698 map->w, map->h)) {
2699 fprintf(stderr, "Failed to blit\n");
2700 goto fail;
2701 }
2702 }
2703 }
2704
2705 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2706
2707 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2708 map->x, map->y, map->w, map->h,
2709 mt, _mesa_get_format_name(mt->format),
2710 level, slice, map->ptr, map->stride);
2711
2712 map->unmap = intel_miptree_unmap_blit;
2713 return;
2714
2715 fail:
2716 intel_miptree_release(&map->linear_mt);
2717 map->ptr = NULL;
2718 map->stride = 0;
2719 }
2720
2721 /**
2722 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2723 */
2724 #if defined(USE_SSE41)
2725 static void
2726 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2727 struct intel_mipmap_tree *mt,
2728 struct intel_miptree_map *map,
2729 unsigned int level,
2730 unsigned int slice)
2731 {
2732 align_free(map->buffer);
2733 map->buffer = NULL;
2734 map->ptr = NULL;
2735 }
2736
2737 static void
2738 intel_miptree_map_movntdqa(struct brw_context *brw,
2739 struct intel_mipmap_tree *mt,
2740 struct intel_miptree_map *map,
2741 unsigned int level, unsigned int slice)
2742 {
2743 assert(map->mode & GL_MAP_READ_BIT);
2744 assert(!(map->mode & GL_MAP_WRITE_BIT));
2745
2746 intel_miptree_access_raw(brw, mt, level, slice, false);
2747
2748 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2749 map->x, map->y, map->w, map->h,
2750 mt, _mesa_get_format_name(mt->format),
2751 level, slice, map->ptr, map->stride);
2752
2753 /* Map the original image */
2754 uint32_t image_x;
2755 uint32_t image_y;
2756 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2757 image_x += map->x;
2758 image_y += map->y;
2759
2760 void *src = intel_miptree_map_raw(brw, mt, map->mode);
2761 if (!src)
2762 return;
2763
2764 src += mt->offset;
2765
2766 src += image_y * mt->surf.row_pitch_B;
2767 src += image_x * mt->cpp;
2768
2769 /* Due to the pixel offsets for the particular image being mapped, our
2770 * src pointer may not be 16-byte aligned. However, if the pitch is
2771 * divisible by 16, then the amount by which it's misaligned will remain
2772 * consistent from row to row.
2773 */
2774 assert((mt->surf.row_pitch_B % 16) == 0);
2775 const int misalignment = ((uintptr_t) src) & 15;
2776
2777 /* Create an untiled temporary buffer for the mapping. */
2778 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2779
2780 map->stride = ALIGN(misalignment + width_bytes, 16);
2781
2782 map->buffer = align_malloc(map->stride * map->h, 16);
2783 /* Offset the destination so it has the same misalignment as src. */
2784 map->ptr = map->buffer + misalignment;
2785
2786 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2787
2788 for (uint32_t y = 0; y < map->h; y++) {
2789 void *dst_ptr = map->ptr + y * map->stride;
2790 void *src_ptr = src + y * mt->surf.row_pitch_B;
2791
2792 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2793 }
2794
2795 intel_miptree_unmap_raw(mt);
2796
2797 map->unmap = intel_miptree_unmap_movntdqa;
2798 }
2799 #endif
2800
2801 static void
2802 intel_miptree_unmap_s8(struct brw_context *brw,
2803 struct intel_mipmap_tree *mt,
2804 struct intel_miptree_map *map,
2805 unsigned int level,
2806 unsigned int slice)
2807 {
2808 if (map->mode & GL_MAP_WRITE_BIT) {
2809 unsigned int image_x, image_y;
2810 uint8_t *untiled_s8_map = map->ptr;
2811 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
2812
2813 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2814
2815 for (uint32_t y = 0; y < map->h; y++) {
2816 for (uint32_t x = 0; x < map->w; x++) {
2817 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch_B,
2818 image_x + x + map->x,
2819 image_y + y + map->y,
2820 brw->has_swizzling);
2821 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2822 }
2823 }
2824
2825 intel_miptree_unmap_raw(mt);
2826 }
2827
2828 free(map->buffer);
2829 }
2830
2831 static void
2832 intel_miptree_map_s8(struct brw_context *brw,
2833 struct intel_mipmap_tree *mt,
2834 struct intel_miptree_map *map,
2835 unsigned int level, unsigned int slice)
2836 {
2837 map->stride = map->w;
2838 map->buffer = map->ptr = malloc(map->stride * map->h);
2839 if (!map->buffer)
2840 return;
2841
2842 intel_miptree_access_raw(brw, mt, level, slice,
2843 map->mode & GL_MAP_WRITE_BIT);
2844
2845 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2846 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2847 * invalidate is set, since we'll be writing the whole rectangle from our
2848 * temporary buffer back out.
2849 */
2850 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2851 uint8_t *untiled_s8_map = map->ptr;
2852 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
2853 unsigned int image_x, image_y;
2854
2855 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2856
2857 for (uint32_t y = 0; y < map->h; y++) {
2858 for (uint32_t x = 0; x < map->w; x++) {
2859 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch_B,
2860 x + image_x + map->x,
2861 y + image_y + map->y,
2862 brw->has_swizzling);
2863 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2864 }
2865 }
2866
2867 intel_miptree_unmap_raw(mt);
2868
2869 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2870 map->x, map->y, map->w, map->h,
2871 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2872 } else {
2873 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2874 map->x, map->y, map->w, map->h,
2875 mt, map->ptr, map->stride);
2876 }
2877
2878 map->unmap = intel_miptree_unmap_s8;
2879 }
2880
2881 /**
2882 * Mapping functions for packed depth/stencil miptrees backed by real separate
2883 * miptrees for depth and stencil.
2884 *
2885 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2886 * separate from the depth buffer. Yet at the GL API level, we have to expose
2887 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2888 * be able to map that memory for texture storage and glReadPixels-type
2889 * operations. We give Mesa core that access by mallocing a temporary and
2890 * copying the data between the actual backing store and the temporary.
2891 */
2892 static void
2893 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2894 struct intel_mipmap_tree *mt,
2895 struct intel_miptree_map *map,
2896 unsigned int level,
2897 unsigned int slice)
2898 {
2899 struct intel_mipmap_tree *z_mt = mt;
2900 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2901 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2902
2903 if (map->mode & GL_MAP_WRITE_BIT) {
2904 uint32_t *packed_map = map->ptr;
2905 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
2906 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
2907 unsigned int s_image_x, s_image_y;
2908 unsigned int z_image_x, z_image_y;
2909
2910 intel_miptree_get_image_offset(s_mt, level, slice,
2911 &s_image_x, &s_image_y);
2912 intel_miptree_get_image_offset(z_mt, level, slice,
2913 &z_image_x, &z_image_y);
2914
2915 for (uint32_t y = 0; y < map->h; y++) {
2916 for (uint32_t x = 0; x < map->w; x++) {
2917 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch_B,
2918 x + s_image_x + map->x,
2919 y + s_image_y + map->y,
2920 brw->has_swizzling);
2921 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2922 (z_mt->surf.row_pitch_B / 4) +
2923 (x + z_image_x + map->x));
2924
2925 if (map_z32f_x24s8) {
2926 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2927 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2928 } else {
2929 uint32_t packed = packed_map[y * map->w + x];
2930 s_map[s_offset] = packed >> 24;
2931 z_map[z_offset] = packed;
2932 }
2933 }
2934 }
2935
2936 intel_miptree_unmap_raw(s_mt);
2937 intel_miptree_unmap_raw(z_mt);
2938
2939 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2940 __func__,
2941 map->x, map->y, map->w, map->h,
2942 z_mt, _mesa_get_format_name(z_mt->format),
2943 map->x + z_image_x, map->y + z_image_y,
2944 s_mt, map->x + s_image_x, map->y + s_image_y,
2945 map->ptr, map->stride);
2946 }
2947
2948 free(map->buffer);
2949 }
2950
2951 static void
2952 intel_miptree_map_depthstencil(struct brw_context *brw,
2953 struct intel_mipmap_tree *mt,
2954 struct intel_miptree_map *map,
2955 unsigned int level, unsigned int slice)
2956 {
2957 struct intel_mipmap_tree *z_mt = mt;
2958 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2959 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2960 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2961
2962 map->stride = map->w * packed_bpp;
2963 map->buffer = map->ptr = malloc(map->stride * map->h);
2964 if (!map->buffer)
2965 return;
2966
2967 intel_miptree_access_raw(brw, z_mt, level, slice,
2968 map->mode & GL_MAP_WRITE_BIT);
2969 intel_miptree_access_raw(brw, s_mt, level, slice,
2970 map->mode & GL_MAP_WRITE_BIT);
2971
2972 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2973 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2974 * invalidate is set, since we'll be writing the whole rectangle from our
2975 * temporary buffer back out.
2976 */
2977 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2978 uint32_t *packed_map = map->ptr;
2979 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
2980 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
2981 unsigned int s_image_x, s_image_y;
2982 unsigned int z_image_x, z_image_y;
2983
2984 intel_miptree_get_image_offset(s_mt, level, slice,
2985 &s_image_x, &s_image_y);
2986 intel_miptree_get_image_offset(z_mt, level, slice,
2987 &z_image_x, &z_image_y);
2988
2989 for (uint32_t y = 0; y < map->h; y++) {
2990 for (uint32_t x = 0; x < map->w; x++) {
2991 int map_x = map->x + x, map_y = map->y + y;
2992 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch_B,
2993 map_x + s_image_x,
2994 map_y + s_image_y,
2995 brw->has_swizzling);
2996 ptrdiff_t z_offset = ((map_y + z_image_y) *
2997 (z_mt->surf.row_pitch_B / 4) +
2998 (map_x + z_image_x));
2999 uint8_t s = s_map[s_offset];
3000 uint32_t z = z_map[z_offset];
3001
3002 if (map_z32f_x24s8) {
3003 packed_map[(y * map->w + x) * 2 + 0] = z;
3004 packed_map[(y * map->w + x) * 2 + 1] = s;
3005 } else {
3006 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3007 }
3008 }
3009 }
3010
3011 intel_miptree_unmap_raw(s_mt);
3012 intel_miptree_unmap_raw(z_mt);
3013
3014 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3015 __func__,
3016 map->x, map->y, map->w, map->h,
3017 z_mt, map->x + z_image_x, map->y + z_image_y,
3018 s_mt, map->x + s_image_x, map->y + s_image_y,
3019 map->ptr, map->stride);
3020 } else {
3021 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3022 map->x, map->y, map->w, map->h,
3023 mt, map->ptr, map->stride);
3024 }
3025
3026 map->unmap = intel_miptree_unmap_depthstencil;
3027 }
3028
3029 /**
3030 * Create and attach a map to the miptree at (level, slice). Return the
3031 * attached map.
3032 */
3033 static struct intel_miptree_map*
3034 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3035 unsigned int level,
3036 unsigned int slice,
3037 unsigned int x,
3038 unsigned int y,
3039 unsigned int w,
3040 unsigned int h,
3041 GLbitfield mode)
3042 {
3043 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3044
3045 if (!map)
3046 return NULL;
3047
3048 assert(mt->level[level].slice[slice].map == NULL);
3049 mt->level[level].slice[slice].map = map;
3050
3051 map->mode = mode;
3052 map->x = x;
3053 map->y = y;
3054 map->w = w;
3055 map->h = h;
3056
3057 return map;
3058 }
3059
3060 /**
3061 * Release the map at (level, slice).
3062 */
3063 static void
3064 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3065 unsigned int level,
3066 unsigned int slice)
3067 {
3068 struct intel_miptree_map **map;
3069
3070 map = &mt->level[level].slice[slice].map;
3071 free(*map);
3072 *map = NULL;
3073 }
3074
3075 static bool
3076 can_blit_slice(struct intel_mipmap_tree *mt,
3077 const struct intel_miptree_map *map)
3078 {
3079 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3080 const unsigned src_blt_pitch = intel_miptree_blt_pitch(mt);
3081 const unsigned dst_blt_pitch = ALIGN(map->w * mt->cpp, 64);
3082 return src_blt_pitch < 32768 && dst_blt_pitch < 32768;
3083 }
3084
3085 static bool
3086 use_intel_mipree_map_blit(struct brw_context *brw,
3087 struct intel_mipmap_tree *mt,
3088 const struct intel_miptree_map *map)
3089 {
3090 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3091
3092 if (devinfo->has_llc &&
3093 /* It's probably not worth swapping to the blit ring because of
3094 * all the overhead involved.
3095 */
3096 !(map->mode & GL_MAP_WRITE_BIT) &&
3097 !mt->compressed &&
3098 (mt->surf.tiling == ISL_TILING_X ||
3099 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3100 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3101 /* Fast copy blit on skl+ supports all tiling formats. */
3102 devinfo->gen >= 9) &&
3103 can_blit_slice(mt, map))
3104 return true;
3105
3106 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3107 mt->bo->size >= brw->max_gtt_map_object_size) {
3108 assert(can_blit_slice(mt, map));
3109 return true;
3110 }
3111
3112 return false;
3113 }
3114
3115 /**
3116 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3117 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3118 * arithmetic overflow.
3119 *
3120 * If you call this function and use \a out_stride, then you're doing pointer
3121 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3122 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3123 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3124 * which usually have type uint32_t or GLuint.
3125 */
3126 void
3127 intel_miptree_map(struct brw_context *brw,
3128 struct intel_mipmap_tree *mt,
3129 unsigned int level,
3130 unsigned int slice,
3131 unsigned int x,
3132 unsigned int y,
3133 unsigned int w,
3134 unsigned int h,
3135 GLbitfield mode,
3136 void **out_ptr,
3137 ptrdiff_t *out_stride)
3138 {
3139 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3140 struct intel_miptree_map *map;
3141
3142 assert(mt->surf.samples == 1);
3143
3144 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3145 if (!map){
3146 *out_ptr = NULL;
3147 *out_stride = 0;
3148 return;
3149 }
3150
3151 if (mt->format == MESA_FORMAT_S_UINT8) {
3152 intel_miptree_map_s8(brw, mt, map, level, slice);
3153 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3154 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3155 } else if (use_intel_mipree_map_blit(brw, mt, map)) {
3156 intel_miptree_map_blit(brw, mt, map, level, slice);
3157 } else if (mt->surf.tiling != ISL_TILING_LINEAR && devinfo->gen > 4) {
3158 intel_miptree_map_tiled_memcpy(brw, mt, map, level, slice);
3159 #if defined(USE_SSE41)
3160 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3161 !mt->compressed && cpu_has_sse4_1 &&
3162 (mt->surf.row_pitch_B % 16 == 0)) {
3163 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3164 #endif
3165 } else {
3166 if (mt->surf.tiling != ISL_TILING_LINEAR)
3167 perf_debug("intel_miptree_map: mapping via gtt");
3168 intel_miptree_map_map(brw, mt, map, level, slice);
3169 }
3170
3171 *out_ptr = map->ptr;
3172 *out_stride = map->stride;
3173
3174 if (map->ptr == NULL)
3175 intel_miptree_release_map(mt, level, slice);
3176 }
3177
3178 void
3179 intel_miptree_unmap(struct brw_context *brw,
3180 struct intel_mipmap_tree *mt,
3181 unsigned int level,
3182 unsigned int slice)
3183 {
3184 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3185
3186 assert(mt->surf.samples == 1);
3187
3188 if (!map)
3189 return;
3190
3191 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3192 mt, _mesa_get_format_name(mt->format), level, slice);
3193
3194 if (map->unmap)
3195 map->unmap(brw, mt, map, level, slice);
3196
3197 intel_miptree_release_map(mt, level, slice);
3198 }
3199
3200 enum isl_surf_dim
3201 get_isl_surf_dim(GLenum target)
3202 {
3203 switch (target) {
3204 case GL_TEXTURE_1D:
3205 case GL_TEXTURE_1D_ARRAY:
3206 return ISL_SURF_DIM_1D;
3207
3208 case GL_TEXTURE_2D:
3209 case GL_TEXTURE_2D_ARRAY:
3210 case GL_TEXTURE_RECTANGLE:
3211 case GL_TEXTURE_CUBE_MAP:
3212 case GL_TEXTURE_CUBE_MAP_ARRAY:
3213 case GL_TEXTURE_2D_MULTISAMPLE:
3214 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3215 case GL_TEXTURE_EXTERNAL_OES:
3216 return ISL_SURF_DIM_2D;
3217
3218 case GL_TEXTURE_3D:
3219 return ISL_SURF_DIM_3D;
3220 }
3221
3222 unreachable("Invalid texture target");
3223 }
3224
3225 enum isl_dim_layout
3226 get_isl_dim_layout(const struct gen_device_info *devinfo,
3227 enum isl_tiling tiling, GLenum target)
3228 {
3229 switch (target) {
3230 case GL_TEXTURE_1D:
3231 case GL_TEXTURE_1D_ARRAY:
3232 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3233 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3234
3235 case GL_TEXTURE_2D:
3236 case GL_TEXTURE_2D_ARRAY:
3237 case GL_TEXTURE_RECTANGLE:
3238 case GL_TEXTURE_2D_MULTISAMPLE:
3239 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3240 case GL_TEXTURE_EXTERNAL_OES:
3241 return ISL_DIM_LAYOUT_GEN4_2D;
3242
3243 case GL_TEXTURE_CUBE_MAP:
3244 case GL_TEXTURE_CUBE_MAP_ARRAY:
3245 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3246 ISL_DIM_LAYOUT_GEN4_2D);
3247
3248 case GL_TEXTURE_3D:
3249 return (devinfo->gen >= 9 ?
3250 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3251 }
3252
3253 unreachable("Invalid texture target");
3254 }
3255
3256 bool
3257 intel_miptree_set_clear_color(struct brw_context *brw,
3258 struct intel_mipmap_tree *mt,
3259 union isl_color_value clear_color)
3260 {
3261 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3262 mt->fast_clear_color = clear_color;
3263 if (mt->aux_buf->clear_color_bo) {
3264 /* We can't update the clear color while the hardware is still using
3265 * the previous one for a resolve or sampling from it. Make sure that
3266 * there are no pending commands at this point.
3267 */
3268 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3269 for (int i = 0; i < 4; i++) {
3270 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3271 mt->aux_buf->clear_color_offset + i * 4,
3272 mt->fast_clear_color.u32[i]);
3273 }
3274 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3275 }
3276 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3277 return true;
3278 }
3279 return false;
3280 }
3281
3282 union isl_color_value
3283 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3284 const struct intel_mipmap_tree *mt,
3285 enum isl_format view_format, bool sampling,
3286 struct brw_bo **clear_color_bo,
3287 uint64_t *clear_color_offset)
3288 {
3289 assert(mt->aux_buf);
3290
3291 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3292 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3293 * we switch to using the inline clear color and do the sRGB color
3294 * conversion process defined in the OpenGL spec. The red, green, and
3295 * blue channels take part in gamma correction, while the alpha channel
3296 * is unchanged.
3297 */
3298 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3299 for (unsigned i = 0; i < 3; i++) {
3300 srgb_decoded_value.f32[i] =
3301 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3302 }
3303 *clear_color_bo = 0;
3304 *clear_color_offset = 0;
3305 return srgb_decoded_value;
3306 } else {
3307 *clear_color_bo = mt->aux_buf->clear_color_bo;
3308 *clear_color_offset = mt->aux_buf->clear_color_offset;
3309 return mt->fast_clear_color;
3310 }
3311 }
3312
3313 static void
3314 intel_miptree_update_etc_shadow(struct brw_context *brw,
3315 struct intel_mipmap_tree *mt,
3316 unsigned int level,
3317 unsigned int slice,
3318 int level_w,
3319 int level_h)
3320 {
3321 ptrdiff_t etc_stride, shadow_stride;
3322 void *mptr, *sptr;
3323 struct intel_mipmap_tree *smt = mt->shadow_mt;
3324
3325 assert(intel_miptree_has_etc_shadow(brw, mt));
3326
3327 intel_miptree_map(brw, mt, level, slice, 0, 0, level_w, level_h,
3328 GL_MAP_READ_BIT, &mptr, &etc_stride);
3329 intel_miptree_map(brw, smt, level, slice, 0, 0, level_w, level_h,
3330 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT,
3331 &sptr, &shadow_stride);
3332
3333 if (mt->format == MESA_FORMAT_ETC1_RGB8) {
3334 _mesa_etc1_unpack_rgba8888(sptr, shadow_stride, mptr, etc_stride,
3335 level_w, level_h);
3336 } else {
3337 /* destination and source images must have the same swizzle */
3338 bool is_bgra = (smt->format == MESA_FORMAT_B8G8R8A8_SRGB);
3339 _mesa_unpack_etc2_format(sptr, shadow_stride, mptr, etc_stride,
3340 level_w, level_h, mt->format, is_bgra);
3341 }
3342
3343 intel_miptree_unmap(brw, mt, level, slice);
3344 intel_miptree_unmap(brw, smt, level, slice);
3345 }
3346
3347 void
3348 intel_miptree_update_etc_shadow_levels(struct brw_context *brw,
3349 struct intel_mipmap_tree *mt)
3350 {
3351 struct intel_mipmap_tree *smt;
3352 int num_slices;
3353
3354 assert(mt);
3355 assert(mt->surf.size_B > 0);
3356 assert(intel_miptree_has_etc_shadow(brw, mt));
3357
3358 smt = mt->shadow_mt;
3359 num_slices = smt->surf.logical_level0_px.array_len;
3360
3361 for (int level = smt->first_level; level <= smt->last_level; level++) {
3362 int level_w = minify(smt->surf.logical_level0_px.width,
3363 level - smt->first_level);
3364 int level_h = minify(smt->surf.logical_level0_px.height,
3365 level - smt->first_level);
3366
3367 for (unsigned int slice = 0; slice < num_slices; slice++) {
3368 intel_miptree_update_etc_shadow(brw, mt, level, slice, level_w,
3369 level_h);
3370 }
3371 }
3372
3373 mt->shadow_needs_update = false;
3374 }