i965: refactor format selection for unsupported ETC* formats
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_chipset.h"
33 #include "intel_mipmap_tree.h"
34 #include "intel_regions.h"
35 #include "intel_resolve_map.h"
36 #include "intel_tex.h"
37 #include "intel_blit.h"
38 #include "intel_fbo.h"
39
40 #include "brw_blorp.h"
41 #include "brw_context.h"
42
43 #include "main/enums.h"
44 #include "main/fbobject.h"
45 #include "main/formats.h"
46 #include "main/glformats.h"
47 #include "main/texcompress_etc.h"
48 #include "main/teximage.h"
49 #include "main/streaming-load-memcpy.h"
50
51 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
52
53 /**
54 * Determine which MSAA layout should be used by the MSAA surface being
55 * created, based on the chip generation and the surface type.
56 */
57 static enum intel_msaa_layout
58 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
59 {
60 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
61 if (brw->gen < 7)
62 return INTEL_MSAA_LAYOUT_IMS;
63
64 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
65 switch (_mesa_get_format_base_format(format)) {
66 case GL_DEPTH_COMPONENT:
67 case GL_STENCIL_INDEX:
68 case GL_DEPTH_STENCIL:
69 return INTEL_MSAA_LAYOUT_IMS;
70 default:
71 /* Disable MCS on Broadwell for now. We can enable it once things
72 * are working without it.
73 */
74 if (brw->gen >= 8) {
75 perf_debug("Missing CMS support on Broadwell.\n");
76 return INTEL_MSAA_LAYOUT_UMS;
77 }
78
79 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
80 *
81 * This field must be set to 0 for all SINT MSRTs when all RT channels
82 * are not written
83 *
84 * In practice this means that we have to disable MCS for all signed
85 * integer MSAA buffers. The alternative, to disable MCS only when one
86 * of the render target channels is disabled, is impractical because it
87 * would require converting between CMS and UMS MSAA layouts on the fly,
88 * which is expensive.
89 */
90 if (_mesa_get_format_datatype(format) == GL_INT) {
91 /* TODO: is this workaround needed for future chipsets? */
92 assert(brw->gen == 7);
93 return INTEL_MSAA_LAYOUT_UMS;
94 } else {
95 return INTEL_MSAA_LAYOUT_CMS;
96 }
97 }
98 }
99
100
101 /**
102 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
103 * scaled-down bitfield representation of the color buffer which is capable of
104 * recording when blocks of the color buffer are equal to the clear value.
105 * This function returns the block size that will be used by the MCS buffer
106 * corresponding to a certain color miptree.
107 *
108 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
109 * beneath the "Fast Color Clear" bullet (p327):
110 *
111 * The following table describes the RT alignment
112 *
113 * Pixels Lines
114 * TiledY RT CL
115 * bpp
116 * 32 8 4
117 * 64 4 4
118 * 128 2 4
119 * TiledX RT CL
120 * bpp
121 * 32 16 2
122 * 64 8 2
123 * 128 4 2
124 *
125 * This alignment has the following uses:
126 *
127 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
128 * buffer contains 128 blocks horizontally and 256 blocks vertically.
129 *
130 * - For figuring out alignment restrictions for a fast clear operation. Fast
131 * clear operations must always clear aligned multiples of 16 blocks
132 * horizontally and 32 blocks vertically.
133 *
134 * - For scaling down the coordinates sent through the render pipeline during
135 * a fast clear. X coordinates must be scaled down by 8 times the block
136 * width, and Y coordinates by 16 times the block height.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a "Render Target Resolve" operation. X coordinates must be scaled down
140 * by half the block width, and Y coordinates by half the block height.
141 */
142 void
143 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
144 struct intel_mipmap_tree *mt,
145 unsigned *width_px, unsigned *height)
146 {
147 switch (mt->region->tiling) {
148 default:
149 assert(!"Non-MSRT MCS requires X or Y tiling");
150 /* In release builds, fall through */
151 case I915_TILING_Y:
152 *width_px = 32 / mt->cpp;
153 *height = 4;
154 break;
155 case I915_TILING_X:
156 *width_px = 64 / mt->cpp;
157 *height = 2;
158 }
159 }
160
161
162 /**
163 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
164 * can be used.
165 *
166 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
167 * beneath the "Fast Color Clear" bullet (p326):
168 *
169 * - Support is limited to tiled render targets.
170 * - Support is for non-mip-mapped and non-array surface types only.
171 *
172 * And then later, on p327:
173 *
174 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
175 * 64bpp, and 128bpp.
176 */
177 bool
178 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
179 struct intel_mipmap_tree *mt)
180 {
181 /* MCS support does not exist prior to Gen7 */
182 if (brw->gen < 7 || brw->gen >= 8)
183 return false;
184
185 /* MCS is only supported for color buffers */
186 switch (_mesa_get_format_base_format(mt->format)) {
187 case GL_DEPTH_COMPONENT:
188 case GL_DEPTH_STENCIL:
189 case GL_STENCIL_INDEX:
190 return false;
191 }
192
193 if (mt->region->tiling != I915_TILING_X &&
194 mt->region->tiling != I915_TILING_Y)
195 return false;
196 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
197 return false;
198 if (mt->first_level != 0 || mt->last_level != 0)
199 return false;
200 if (mt->physical_depth0 != 1)
201 return false;
202
203 /* There's no point in using an MCS buffer if the surface isn't in a
204 * renderable format.
205 */
206 if (!brw->format_supported_as_render_target[mt->format])
207 return false;
208
209 return true;
210 }
211
212
213 /**
214 * Determine depth format corresponding to a depth+stencil format,
215 * for separate stencil.
216 */
217 mesa_format
218 intel_depth_format_for_depthstencil_format(mesa_format format) {
219 switch (format) {
220 case MESA_FORMAT_Z24_UNORM_S8_UINT:
221 return MESA_FORMAT_Z24_UNORM_X8_UINT;
222 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
223 return MESA_FORMAT_Z_FLOAT32;
224 default:
225 return format;
226 }
227 }
228
229
230 /**
231 * @param for_bo Indicates that the caller is
232 * intel_miptree_create_for_bo(). If true, then do not create
233 * \c stencil_mt.
234 */
235 struct intel_mipmap_tree *
236 intel_miptree_create_layout(struct brw_context *brw,
237 GLenum target,
238 mesa_format format,
239 GLuint first_level,
240 GLuint last_level,
241 GLuint width0,
242 GLuint height0,
243 GLuint depth0,
244 bool for_bo,
245 GLuint num_samples)
246 {
247 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
248 if (!mt)
249 return NULL;
250
251 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
252 _mesa_lookup_enum_by_nr(target),
253 _mesa_get_format_name(format),
254 first_level, last_level, depth0, mt);
255
256 mt->target = target;
257 mt->format = format;
258 mt->first_level = first_level;
259 mt->last_level = last_level;
260 mt->logical_width0 = width0;
261 mt->logical_height0 = height0;
262 mt->logical_depth0 = depth0;
263 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
264
265 /* The cpp is bytes per (1, blockheight)-sized block for compressed
266 * textures. This is why you'll see divides by blockheight all over
267 */
268 unsigned bw, bh;
269 _mesa_get_format_block_size(format, &bw, &bh);
270 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
271 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
272
273 mt->num_samples = num_samples;
274 mt->compressed = _mesa_is_format_compressed(format);
275 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
276 mt->refcount = 1;
277
278 if (num_samples > 1) {
279 /* Adjust width/height/depth for MSAA */
280 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
281 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
282 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says:
283 *
284 * "Any of the other messages (sample*, LOD, load4) used with a
285 * (4x) multisampled surface will in-effect sample a surface with
286 * double the height and width as that indicated in the surface
287 * state. Each pixel position on the original-sized surface is
288 * replaced with a 2x2 of samples with the following arrangement:
289 *
290 * sample 0 sample 2
291 * sample 1 sample 3"
292 *
293 * Thus, when sampling from a multisampled texture, it behaves as
294 * though the layout in memory for (x,y,sample) is:
295 *
296 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
297 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
298 *
299 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
300 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
301 *
302 * However, the actual layout of multisampled data in memory is:
303 *
304 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
305 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
306 *
307 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
308 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
309 *
310 * This pattern repeats for each 2x2 pixel block.
311 *
312 * As a result, when calculating the size of our 4-sample buffer for
313 * an odd width or height, we have to align before scaling up because
314 * sample 3 is in that bottom right 2x2 block.
315 */
316 switch (num_samples) {
317 case 2:
318 assert(brw->gen >= 8);
319 width0 = ALIGN(width0, 2) * 2;
320 height0 = ALIGN(height0, 2);
321 break;
322 case 4:
323 width0 = ALIGN(width0, 2) * 2;
324 height0 = ALIGN(height0, 2) * 2;
325 break;
326 case 8:
327 width0 = ALIGN(width0, 2) * 4;
328 height0 = ALIGN(height0, 2) * 2;
329 break;
330 default:
331 /* num_samples should already have been quantized to 0, 1, 2, 4, or
332 * 8.
333 */
334 assert(false);
335 }
336 } else {
337 /* Non-interleaved */
338 depth0 *= num_samples;
339 }
340 }
341
342 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we
343 * use it elsewhere?
344 */
345 switch (mt->msaa_layout) {
346 case INTEL_MSAA_LAYOUT_NONE:
347 case INTEL_MSAA_LAYOUT_IMS:
348 mt->array_spacing_lod0 = false;
349 break;
350 case INTEL_MSAA_LAYOUT_UMS:
351 case INTEL_MSAA_LAYOUT_CMS:
352 mt->array_spacing_lod0 = true;
353 break;
354 }
355
356 if (target == GL_TEXTURE_CUBE_MAP) {
357 assert(depth0 == 1);
358 depth0 = 6;
359 }
360
361 mt->physical_width0 = width0;
362 mt->physical_height0 = height0;
363 mt->physical_depth0 = depth0;
364
365 if (!for_bo &&
366 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
367 (brw->must_use_separate_stencil ||
368 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
369 mt->stencil_mt = intel_miptree_create(brw,
370 mt->target,
371 MESA_FORMAT_S_UINT8,
372 mt->first_level,
373 mt->last_level,
374 mt->logical_width0,
375 mt->logical_height0,
376 mt->logical_depth0,
377 true,
378 num_samples,
379 INTEL_MIPTREE_TILING_ANY);
380 if (!mt->stencil_mt) {
381 intel_miptree_release(&mt);
382 return NULL;
383 }
384
385 /* Fix up the Z miptree format for how we're splitting out separate
386 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
387 */
388 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
389 mt->cpp = 4;
390
391 if (format == mt->format) {
392 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
393 _mesa_get_format_name(mt->format));
394 }
395 }
396
397 brw_miptree_layout(brw, mt);
398
399 return mt;
400 }
401
402 /**
403 * \brief Helper function for intel_miptree_create().
404 */
405 static uint32_t
406 intel_miptree_choose_tiling(struct brw_context *brw,
407 mesa_format format,
408 uint32_t width0,
409 uint32_t num_samples,
410 enum intel_miptree_tiling_mode requested,
411 struct intel_mipmap_tree *mt)
412 {
413 if (format == MESA_FORMAT_S_UINT8) {
414 /* The stencil buffer is W tiled. However, we request from the kernel a
415 * non-tiled buffer because the GTT is incapable of W fencing.
416 */
417 return I915_TILING_NONE;
418 }
419
420 /* Some usages may want only one type of tiling, like depth miptrees (Y
421 * tiled), or temporary BOs for uploading data once (linear).
422 */
423 switch (requested) {
424 case INTEL_MIPTREE_TILING_ANY:
425 break;
426 case INTEL_MIPTREE_TILING_Y:
427 return I915_TILING_Y;
428 case INTEL_MIPTREE_TILING_NONE:
429 return I915_TILING_NONE;
430 }
431
432 if (num_samples > 1) {
433 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
434 * Surface"):
435 *
436 * [DevSNB+]: For multi-sample render targets, this field must be
437 * 1. MSRTs can only be tiled.
438 *
439 * Our usual reason for preferring X tiling (fast blits using the
440 * blitting engine) doesn't apply to MSAA, since we'll generally be
441 * downsampling or upsampling when blitting between the MSAA buffer
442 * and another buffer, and the blitting engine doesn't support that.
443 * So use Y tiling, since it makes better use of the cache.
444 */
445 return I915_TILING_Y;
446 }
447
448 GLenum base_format = _mesa_get_format_base_format(format);
449 if (base_format == GL_DEPTH_COMPONENT ||
450 base_format == GL_DEPTH_STENCIL_EXT)
451 return I915_TILING_Y;
452
453 int minimum_pitch = mt->total_width * mt->cpp;
454
455 /* If the width is much smaller than a tile, don't bother tiling. */
456 if (minimum_pitch < 64)
457 return I915_TILING_NONE;
458
459 if (ALIGN(minimum_pitch, 512) >= 32768 ||
460 mt->total_width >= 32768 || mt->total_height >= 32768) {
461 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
462 mt->total_width, mt->total_height);
463 return I915_TILING_NONE;
464 }
465
466 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
467 if (brw->gen < 6)
468 return I915_TILING_X;
469
470 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
471 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
472 * or Linear."
473 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
474 * all the way back to 965, but is explicitly permitted on Gen7.
475 */
476 if (brw->gen != 7 && mt->cpp >= 16)
477 return I915_TILING_X;
478
479 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
480 * messages), on p64, under the heading "Surface Vertical Alignment":
481 *
482 * This field must be set to VALIGN_4 for all tiled Y Render Target
483 * surfaces.
484 *
485 * So if the surface is renderable and uses a vertical alignment of 2,
486 * force it to be X tiled. This is somewhat conservative (it's possible
487 * that the client won't ever render to this surface), but it's difficult
488 * to know that ahead of time. And besides, since we use a vertical
489 * alignment of 4 as often as we can, this shouldn't happen very often.
490 */
491 if (brw->gen == 7 && mt->align_h == 2 &&
492 brw->format_supported_as_render_target[format]) {
493 return I915_TILING_X;
494 }
495
496 return I915_TILING_Y | I915_TILING_X;
497 }
498
499
500 /**
501 * Choose an appropriate uncompressed format for a requested
502 * compressed format, if unsupported.
503 */
504 mesa_format
505 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
506 {
507 /* No need to lower ETC formats on these platforms,
508 * they are supported natively.
509 */
510 if (brw->gen >= 8 || brw->is_baytrail)
511 return format;
512
513 switch (format) {
514 case MESA_FORMAT_ETC1_RGB8:
515 return MESA_FORMAT_R8G8B8X8_UNORM;
516 case MESA_FORMAT_ETC2_RGB8:
517 return MESA_FORMAT_R8G8B8X8_UNORM;
518 case MESA_FORMAT_ETC2_SRGB8:
519 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
520 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
521 return MESA_FORMAT_B8G8R8A8_SRGB;
522 case MESA_FORMAT_ETC2_RGBA8_EAC:
523 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
524 return MESA_FORMAT_R8G8B8A8_UNORM;
525 case MESA_FORMAT_ETC2_R11_EAC:
526 return MESA_FORMAT_R_UNORM16;
527 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
528 return MESA_FORMAT_R_SNORM16;
529 case MESA_FORMAT_ETC2_RG11_EAC:
530 return MESA_FORMAT_R16G16_UNORM;
531 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
532 return MESA_FORMAT_R16G16_SNORM;
533 default:
534 /* Non ETC1 / ETC2 format */
535 return format;
536 }
537 }
538
539
540 struct intel_mipmap_tree *
541 intel_miptree_create(struct brw_context *brw,
542 GLenum target,
543 mesa_format format,
544 GLuint first_level,
545 GLuint last_level,
546 GLuint width0,
547 GLuint height0,
548 GLuint depth0,
549 bool expect_accelerated_upload,
550 GLuint num_samples,
551 enum intel_miptree_tiling_mode requested_tiling)
552 {
553 struct intel_mipmap_tree *mt;
554 mesa_format tex_format = format;
555 mesa_format etc_format = MESA_FORMAT_NONE;
556 GLuint total_width, total_height;
557
558 format = intel_lower_compressed_format(brw, format);
559
560 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
561
562 mt = intel_miptree_create_layout(brw, target, format,
563 first_level, last_level, width0,
564 height0, depth0,
565 false, num_samples);
566 /*
567 * pitch == 0 || height == 0 indicates the null texture
568 */
569 if (!mt || !mt->total_width || !mt->total_height) {
570 intel_miptree_release(&mt);
571 return NULL;
572 }
573
574 total_width = mt->total_width;
575 total_height = mt->total_height;
576
577 if (format == MESA_FORMAT_S_UINT8) {
578 /* Align to size of W tile, 64x64. */
579 total_width = ALIGN(total_width, 64);
580 total_height = ALIGN(total_height, 64);
581 }
582
583 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
584 num_samples, requested_tiling,
585 mt);
586 bool y_or_x = tiling == (I915_TILING_Y | I915_TILING_X);
587
588 mt->etc_format = etc_format;
589 mt->region = intel_region_alloc(brw->intelScreen,
590 y_or_x ? I915_TILING_Y : tiling,
591 mt->cpp,
592 total_width,
593 total_height,
594 expect_accelerated_upload);
595
596 /* If the region is too large to fit in the aperture, we need to use the
597 * BLT engine to support it. The BLT paths can't currently handle Y-tiling,
598 * so we need to fall back to X.
599 */
600 if (y_or_x && mt->region->bo->size >= brw->max_gtt_map_object_size) {
601 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
602 mt->total_width, mt->total_height);
603 intel_region_release(&mt->region);
604
605 mt->region = intel_region_alloc(brw->intelScreen,
606 I915_TILING_X,
607 mt->cpp,
608 total_width,
609 total_height,
610 expect_accelerated_upload);
611 }
612
613 mt->offset = 0;
614
615 if (!mt->region) {
616 intel_miptree_release(&mt);
617 return NULL;
618 }
619
620
621 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
622 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
623 intel_miptree_release(&mt);
624 return NULL;
625 }
626 }
627
628 /* If this miptree is capable of supporting fast color clears, set
629 * fast_clear_state appropriately to ensure that fast clears will occur.
630 * Allocation of the MCS miptree will be deferred until the first fast
631 * clear actually occurs.
632 */
633 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
634 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
635
636 return mt;
637 }
638
639 struct intel_mipmap_tree *
640 intel_miptree_create_for_bo(struct brw_context *brw,
641 drm_intel_bo *bo,
642 mesa_format format,
643 uint32_t offset,
644 uint32_t width,
645 uint32_t height,
646 int pitch,
647 uint32_t tiling)
648 {
649 struct intel_mipmap_tree *mt;
650
651 struct intel_region *region = calloc(1, sizeof(*region));
652 if (!region)
653 return NULL;
654
655 /* Nothing will be able to use this miptree with the BO if the offset isn't
656 * aligned.
657 */
658 if (tiling != I915_TILING_NONE)
659 assert(offset % 4096 == 0);
660
661 /* miptrees can't handle negative pitch. If you need flipping of images,
662 * that's outside of the scope of the mt.
663 */
664 assert(pitch >= 0);
665
666 mt = intel_miptree_create_layout(brw, GL_TEXTURE_2D, format,
667 0, 0,
668 width, height, 1,
669 true, 0 /* num_samples */);
670 if (!mt) {
671 free(region);
672 return mt;
673 }
674
675 region->cpp = mt->cpp;
676 region->width = width;
677 region->height = height;
678 region->pitch = pitch;
679 region->refcount = 1;
680 drm_intel_bo_reference(bo);
681 region->bo = bo;
682 region->tiling = tiling;
683
684 mt->region = region;
685 mt->offset = offset;
686
687 return mt;
688 }
689
690 /**
691 * For a singlesample image buffer, this simply wraps the given region with a miptree.
692 *
693 * For a multisample image buffer, this wraps the given region with
694 * a singlesample miptree, then creates a multisample miptree into which the
695 * singlesample miptree is embedded as a child.
696 */
697 void
698 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
699 struct intel_renderbuffer *irb,
700 struct intel_region *region)
701 {
702 struct intel_mipmap_tree *singlesample_mt = NULL;
703 struct intel_mipmap_tree *multisample_mt = NULL;
704 struct gl_renderbuffer *rb = &irb->Base.Base;
705 mesa_format format = rb->Format;
706 int num_samples = rb->NumSamples;
707
708 /* Only the front and back buffers, which are color buffers, are allocated
709 * through the image loader.
710 */
711 assert(_mesa_get_format_base_format(format) == GL_RGB ||
712 _mesa_get_format_base_format(format) == GL_RGBA);
713
714 singlesample_mt = intel_miptree_create_for_bo(intel,
715 region->bo,
716 format,
717 0,
718 region->width,
719 region->height,
720 region->pitch,
721 region->tiling);
722 if (!singlesample_mt)
723 goto fail;
724
725 singlesample_mt->region->name = region->name;
726
727 /* If this miptree is capable of supporting fast color clears, set
728 * mcs_state appropriately to ensure that fast clears will occur.
729 * Allocation of the MCS miptree will be deferred until the first fast
730 * clear actually occurs.
731 */
732 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
733 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
734
735 if (num_samples == 0) {
736 intel_miptree_release(&irb->mt);
737 irb->mt = singlesample_mt;
738
739 assert(!irb->singlesample_mt);
740 } else {
741 intel_miptree_release(&irb->singlesample_mt);
742 irb->singlesample_mt = singlesample_mt;
743
744 if (!irb->mt ||
745 irb->mt->logical_width0 != region->width ||
746 irb->mt->logical_height0 != region->height) {
747 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
748 format,
749 region->width,
750 region->height,
751 num_samples);
752 if (!multisample_mt)
753 goto fail;
754
755 irb->need_downsample = false;
756 intel_miptree_release(&irb->mt);
757 irb->mt = multisample_mt;
758 }
759 }
760 return;
761
762 fail:
763 intel_miptree_release(&irb->singlesample_mt);
764 intel_miptree_release(&irb->mt);
765 return;
766 }
767
768 struct intel_mipmap_tree*
769 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
770 mesa_format format,
771 uint32_t width,
772 uint32_t height,
773 uint32_t num_samples)
774 {
775 struct intel_mipmap_tree *mt;
776 uint32_t depth = 1;
777 bool ok;
778 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
779
780 mt = intel_miptree_create(brw, target, format, 0, 0,
781 width, height, depth, true, num_samples,
782 INTEL_MIPTREE_TILING_ANY);
783 if (!mt)
784 goto fail;
785
786 if (brw_is_hiz_depth_format(brw, format)) {
787 ok = intel_miptree_alloc_hiz(brw, mt);
788 if (!ok)
789 goto fail;
790 }
791
792 return mt;
793
794 fail:
795 intel_miptree_release(&mt);
796 return NULL;
797 }
798
799 void
800 intel_miptree_reference(struct intel_mipmap_tree **dst,
801 struct intel_mipmap_tree *src)
802 {
803 if (*dst == src)
804 return;
805
806 intel_miptree_release(dst);
807
808 if (src) {
809 src->refcount++;
810 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
811 }
812
813 *dst = src;
814 }
815
816
817 void
818 intel_miptree_release(struct intel_mipmap_tree **mt)
819 {
820 if (!*mt)
821 return;
822
823 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
824 if (--(*mt)->refcount <= 0) {
825 GLuint i;
826
827 DBG("%s deleting %p\n", __FUNCTION__, *mt);
828
829 intel_region_release(&((*mt)->region));
830 intel_miptree_release(&(*mt)->stencil_mt);
831 intel_miptree_release(&(*mt)->hiz_mt);
832 intel_miptree_release(&(*mt)->mcs_mt);
833 intel_resolve_map_clear(&(*mt)->hiz_map);
834
835 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
836 free((*mt)->level[i].slice);
837 }
838
839 free(*mt);
840 }
841 *mt = NULL;
842 }
843
844 void
845 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
846 int *width, int *height, int *depth)
847 {
848 switch (image->TexObject->Target) {
849 case GL_TEXTURE_1D_ARRAY:
850 *width = image->Width;
851 *height = 1;
852 *depth = image->Height;
853 break;
854 default:
855 *width = image->Width;
856 *height = image->Height;
857 *depth = image->Depth;
858 break;
859 }
860 }
861
862 /**
863 * Can the image be pulled into a unified mipmap tree? This mirrors
864 * the completeness test in a lot of ways.
865 *
866 * Not sure whether I want to pass gl_texture_image here.
867 */
868 bool
869 intel_miptree_match_image(struct intel_mipmap_tree *mt,
870 struct gl_texture_image *image)
871 {
872 struct intel_texture_image *intelImage = intel_texture_image(image);
873 GLuint level = intelImage->base.Base.Level;
874 int width, height, depth;
875
876 /* glTexImage* choose the texture object based on the target passed in, and
877 * objects can't change targets over their lifetimes, so this should be
878 * true.
879 */
880 assert(image->TexObject->Target == mt->target);
881
882 mesa_format mt_format = mt->format;
883 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
884 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
885 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
886 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
887 if (mt->etc_format != MESA_FORMAT_NONE)
888 mt_format = mt->etc_format;
889
890 if (image->TexFormat != mt_format)
891 return false;
892
893 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
894
895 if (mt->target == GL_TEXTURE_CUBE_MAP)
896 depth = 6;
897
898 int level_depth = mt->level[level].depth;
899 if (mt->num_samples > 1) {
900 switch (mt->msaa_layout) {
901 case INTEL_MSAA_LAYOUT_NONE:
902 case INTEL_MSAA_LAYOUT_IMS:
903 break;
904 case INTEL_MSAA_LAYOUT_UMS:
905 case INTEL_MSAA_LAYOUT_CMS:
906 level_depth /= mt->num_samples;
907 break;
908 }
909 }
910
911 /* Test image dimensions against the base level image adjusted for
912 * minification. This will also catch images not present in the
913 * tree, changed targets, etc.
914 */
915 if (width != minify(mt->logical_width0, level - mt->first_level) ||
916 height != minify(mt->logical_height0, level - mt->first_level) ||
917 depth != level_depth) {
918 return false;
919 }
920
921 if (image->NumSamples != mt->num_samples)
922 return false;
923
924 return true;
925 }
926
927
928 void
929 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
930 GLuint level,
931 GLuint x, GLuint y, GLuint d)
932 {
933 mt->level[level].depth = d;
934 mt->level[level].level_x = x;
935 mt->level[level].level_y = y;
936
937 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
938 level, d, x, y);
939
940 assert(mt->level[level].slice == NULL);
941
942 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
943 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
944 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
945 }
946
947
948 void
949 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
950 GLuint level, GLuint img,
951 GLuint x, GLuint y)
952 {
953 if (img == 0 && level == 0)
954 assert(x == 0 && y == 0);
955
956 assert(img < mt->level[level].depth);
957
958 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
959 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
960
961 DBG("%s level %d img %d pos %d,%d\n",
962 __FUNCTION__, level, img,
963 mt->level[level].slice[img].x_offset,
964 mt->level[level].slice[img].y_offset);
965 }
966
967 void
968 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
969 GLuint level, GLuint slice,
970 GLuint *x, GLuint *y)
971 {
972 assert(slice < mt->level[level].depth);
973
974 *x = mt->level[level].slice[slice].x_offset;
975 *y = mt->level[level].slice[slice].y_offset;
976 }
977
978 /**
979 * Rendering with tiled buffers requires that the base address of the buffer
980 * be aligned to a page boundary. For renderbuffers, and sometimes with
981 * textures, we may want the surface to point at a texture image level that
982 * isn't at a page boundary.
983 *
984 * This function returns an appropriately-aligned base offset
985 * according to the tiling restrictions, plus any required x/y offset
986 * from there.
987 */
988 uint32_t
989 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
990 GLuint level, GLuint slice,
991 uint32_t *tile_x,
992 uint32_t *tile_y)
993 {
994 const struct intel_region *region = mt->region;
995 uint32_t x, y;
996 uint32_t mask_x, mask_y;
997
998 intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
999 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1000
1001 *tile_x = x & mask_x;
1002 *tile_y = y & mask_y;
1003
1004 return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
1005 false);
1006 }
1007
1008 static void
1009 intel_miptree_copy_slice_sw(struct brw_context *brw,
1010 struct intel_mipmap_tree *dst_mt,
1011 struct intel_mipmap_tree *src_mt,
1012 int level,
1013 int slice,
1014 int width,
1015 int height)
1016 {
1017 void *src, *dst;
1018 int src_stride, dst_stride;
1019 int cpp = dst_mt->cpp;
1020
1021 intel_miptree_map(brw, src_mt,
1022 level, slice,
1023 0, 0,
1024 width, height,
1025 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1026 &src, &src_stride);
1027
1028 intel_miptree_map(brw, dst_mt,
1029 level, slice,
1030 0, 0,
1031 width, height,
1032 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1033 BRW_MAP_DIRECT_BIT,
1034 &dst, &dst_stride);
1035
1036 DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n",
1037 _mesa_get_format_name(src_mt->format),
1038 src_mt, src, src_stride,
1039 _mesa_get_format_name(dst_mt->format),
1040 dst_mt, dst, dst_stride,
1041 width, height);
1042
1043 int row_size = cpp * width;
1044 if (src_stride == row_size &&
1045 dst_stride == row_size) {
1046 memcpy(dst, src, row_size * height);
1047 } else {
1048 for (int i = 0; i < height; i++) {
1049 memcpy(dst, src, row_size);
1050 dst += dst_stride;
1051 src += src_stride;
1052 }
1053 }
1054
1055 intel_miptree_unmap(brw, dst_mt, level, slice);
1056 intel_miptree_unmap(brw, src_mt, level, slice);
1057
1058 /* Don't forget to copy the stencil data over, too. We could have skipped
1059 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1060 * shuffling the two data sources in/out of temporary storage instead of
1061 * the direct mapping we get this way.
1062 */
1063 if (dst_mt->stencil_mt) {
1064 assert(src_mt->stencil_mt);
1065 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1066 level, slice, width, height);
1067 }
1068 }
1069
1070 static void
1071 intel_miptree_copy_slice(struct brw_context *brw,
1072 struct intel_mipmap_tree *dst_mt,
1073 struct intel_mipmap_tree *src_mt,
1074 int level,
1075 int face,
1076 int depth)
1077
1078 {
1079 mesa_format format = src_mt->format;
1080 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1081 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1082 int slice;
1083
1084 if (face > 0)
1085 slice = face;
1086 else
1087 slice = depth;
1088
1089 assert(depth < src_mt->level[level].depth);
1090 assert(src_mt->format == dst_mt->format);
1091
1092 if (dst_mt->compressed) {
1093 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1094 width = ALIGN(width, dst_mt->align_w);
1095 }
1096
1097 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1098 * below won't apply since we can't do the depth's Y tiling or the
1099 * stencil's W tiling in the blitter.
1100 */
1101 if (src_mt->stencil_mt) {
1102 intel_miptree_copy_slice_sw(brw,
1103 dst_mt, src_mt,
1104 level, slice,
1105 width, height);
1106 return;
1107 }
1108
1109 uint32_t dst_x, dst_y, src_x, src_y;
1110 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1111 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1112
1113 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1114 _mesa_get_format_name(src_mt->format),
1115 src_mt, src_x, src_y, src_mt->region->pitch,
1116 _mesa_get_format_name(dst_mt->format),
1117 dst_mt, dst_x, dst_y, dst_mt->region->pitch,
1118 width, height);
1119
1120 if (!intel_miptree_blit(brw,
1121 src_mt, level, slice, 0, 0, false,
1122 dst_mt, level, slice, 0, 0, false,
1123 width, height, GL_COPY)) {
1124 perf_debug("miptree validate blit for %s failed\n",
1125 _mesa_get_format_name(format));
1126
1127 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1128 width, height);
1129 }
1130 }
1131
1132 /**
1133 * Copies the image's current data to the given miptree, and associates that
1134 * miptree with the image.
1135 *
1136 * If \c invalidate is true, then the actual image data does not need to be
1137 * copied, but the image still needs to be associated to the new miptree (this
1138 * is set to true if we're about to clear the image).
1139 */
1140 void
1141 intel_miptree_copy_teximage(struct brw_context *brw,
1142 struct intel_texture_image *intelImage,
1143 struct intel_mipmap_tree *dst_mt,
1144 bool invalidate)
1145 {
1146 struct intel_mipmap_tree *src_mt = intelImage->mt;
1147 struct intel_texture_object *intel_obj =
1148 intel_texture_object(intelImage->base.Base.TexObject);
1149 int level = intelImage->base.Base.Level;
1150 int face = intelImage->base.Base.Face;
1151 GLuint depth = intelImage->base.Base.Depth;
1152
1153 if (!invalidate) {
1154 for (int slice = 0; slice < depth; slice++) {
1155 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1156 }
1157 }
1158
1159 intel_miptree_reference(&intelImage->mt, dst_mt);
1160 intel_obj->needs_validate = true;
1161 }
1162
1163 bool
1164 intel_miptree_alloc_mcs(struct brw_context *brw,
1165 struct intel_mipmap_tree *mt,
1166 GLuint num_samples)
1167 {
1168 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1169 assert(mt->mcs_mt == NULL);
1170
1171 /* Choose the correct format for the MCS buffer. All that really matters
1172 * is that we allocate the right buffer size, since we'll always be
1173 * accessing this miptree using MCS-specific hardware mechanisms, which
1174 * infer the correct format based on num_samples.
1175 */
1176 mesa_format format;
1177 switch (num_samples) {
1178 case 4:
1179 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1180 * each sample).
1181 */
1182 format = MESA_FORMAT_R_UNORM8;
1183 break;
1184 case 8:
1185 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1186 * for each sample, plus 8 padding bits).
1187 */
1188 format = MESA_FORMAT_R_UINT32;
1189 break;
1190 default:
1191 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs");
1192 return false;
1193 };
1194
1195 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1196 *
1197 * "The MCS surface must be stored as Tile Y."
1198 */
1199 mt->mcs_mt = intel_miptree_create(brw,
1200 mt->target,
1201 format,
1202 mt->first_level,
1203 mt->last_level,
1204 mt->logical_width0,
1205 mt->logical_height0,
1206 mt->logical_depth0,
1207 true,
1208 0 /* num_samples */,
1209 INTEL_MIPTREE_TILING_Y);
1210
1211 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1212 *
1213 * When MCS buffer is enabled and bound to MSRT, it is required that it
1214 * is cleared prior to any rendering.
1215 *
1216 * Since we don't use the MCS buffer for any purpose other than rendering,
1217 * it makes sense to just clear it immediately upon allocation.
1218 *
1219 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1220 */
1221 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1222 memset(data, 0xff, mt->mcs_mt->region->bo->size);
1223 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1224 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1225
1226 return mt->mcs_mt;
1227 }
1228
1229
1230 bool
1231 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1232 struct intel_mipmap_tree *mt)
1233 {
1234 assert(mt->mcs_mt == NULL);
1235
1236 /* The format of the MCS buffer is opaque to the driver; all that matters
1237 * is that we get its size and pitch right. We'll pretend that the format
1238 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1239 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1240 * the block width and then a further factor of 4. Since an MCS tile
1241 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1242 * we'll need to scale the height down by the block height and then a
1243 * further factor of 8.
1244 */
1245 const mesa_format format = MESA_FORMAT_R_UINT32;
1246 unsigned block_width_px;
1247 unsigned block_height;
1248 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1249 unsigned width_divisor = block_width_px * 4;
1250 unsigned height_divisor = block_height * 8;
1251 unsigned mcs_width =
1252 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1253 unsigned mcs_height =
1254 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1255 assert(mt->logical_depth0 == 1);
1256 mt->mcs_mt = intel_miptree_create(brw,
1257 mt->target,
1258 format,
1259 mt->first_level,
1260 mt->last_level,
1261 mcs_width,
1262 mcs_height,
1263 mt->logical_depth0,
1264 true,
1265 0 /* num_samples */,
1266 INTEL_MIPTREE_TILING_Y);
1267
1268 return mt->mcs_mt;
1269 }
1270
1271
1272 /**
1273 * Helper for intel_miptree_alloc_hiz() that sets
1274 * \c mt->level[level].slice[layer].has_hiz. Return true if and only if
1275 * \c has_hiz was set.
1276 */
1277 static bool
1278 intel_miptree_slice_enable_hiz(struct brw_context *brw,
1279 struct intel_mipmap_tree *mt,
1280 uint32_t level,
1281 uint32_t layer)
1282 {
1283 assert(mt->hiz_mt);
1284
1285 if (brw->gen >= 8 || brw->is_haswell) {
1286 uint32_t width = minify(mt->physical_width0, level);
1287 uint32_t height = minify(mt->physical_height0, level);
1288
1289 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1290 * and the height is 4 aligned. This allows our HiZ support
1291 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1292 * we can grow the width & height to allow the HiZ op to
1293 * force the proper size alignments.
1294 */
1295 if (level > 0 && ((width & 7) || (height & 3))) {
1296 return false;
1297 }
1298 }
1299
1300 mt->level[level].slice[layer].has_hiz = true;
1301 return true;
1302 }
1303
1304
1305
1306 bool
1307 intel_miptree_alloc_hiz(struct brw_context *brw,
1308 struct intel_mipmap_tree *mt)
1309 {
1310 assert(mt->hiz_mt == NULL);
1311 mt->hiz_mt = intel_miptree_create(brw,
1312 mt->target,
1313 mt->format,
1314 mt->first_level,
1315 mt->last_level,
1316 mt->logical_width0,
1317 mt->logical_height0,
1318 mt->logical_depth0,
1319 true,
1320 mt->num_samples,
1321 INTEL_MIPTREE_TILING_ANY);
1322
1323 if (!mt->hiz_mt)
1324 return false;
1325
1326 /* Mark that all slices need a HiZ resolve. */
1327 struct intel_resolve_map *head = &mt->hiz_map;
1328 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1329 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1330 if (!intel_miptree_slice_enable_hiz(brw, mt, level, layer))
1331 continue;
1332
1333 head->next = malloc(sizeof(*head->next));
1334 head->next->prev = head;
1335 head->next->next = NULL;
1336 head = head->next;
1337
1338 head->level = level;
1339 head->layer = layer;
1340 head->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1341 }
1342 }
1343
1344 return true;
1345 }
1346
1347 /**
1348 * Does the miptree slice have hiz enabled?
1349 */
1350 bool
1351 intel_miptree_slice_has_hiz(struct intel_mipmap_tree *mt,
1352 uint32_t level,
1353 uint32_t layer)
1354 {
1355 intel_miptree_check_level_layer(mt, level, layer);
1356 return mt->level[level].slice[layer].has_hiz;
1357 }
1358
1359 void
1360 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1361 uint32_t level,
1362 uint32_t layer)
1363 {
1364 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1365 return;
1366
1367 intel_resolve_map_set(&mt->hiz_map,
1368 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1369 }
1370
1371
1372 void
1373 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1374 uint32_t level,
1375 uint32_t layer)
1376 {
1377 if (!intel_miptree_slice_has_hiz(mt, level, layer))
1378 return;
1379
1380 intel_resolve_map_set(&mt->hiz_map,
1381 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1382 }
1383
1384 void
1385 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1386 uint32_t level)
1387 {
1388 uint32_t layer;
1389 uint32_t end_layer = mt->level[level].depth;
1390
1391 for (layer = 0; layer < end_layer; layer++) {
1392 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1393 }
1394 }
1395
1396 static bool
1397 intel_miptree_slice_resolve(struct brw_context *brw,
1398 struct intel_mipmap_tree *mt,
1399 uint32_t level,
1400 uint32_t layer,
1401 enum gen6_hiz_op need)
1402 {
1403 intel_miptree_check_level_layer(mt, level, layer);
1404
1405 struct intel_resolve_map *item =
1406 intel_resolve_map_get(&mt->hiz_map, level, layer);
1407
1408 if (!item || item->need != need)
1409 return false;
1410
1411 intel_hiz_exec(brw, mt, level, layer, need);
1412 intel_resolve_map_remove(item);
1413 return true;
1414 }
1415
1416 bool
1417 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1418 struct intel_mipmap_tree *mt,
1419 uint32_t level,
1420 uint32_t layer)
1421 {
1422 return intel_miptree_slice_resolve(brw, mt, level, layer,
1423 GEN6_HIZ_OP_HIZ_RESOLVE);
1424 }
1425
1426 bool
1427 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1428 struct intel_mipmap_tree *mt,
1429 uint32_t level,
1430 uint32_t layer)
1431 {
1432 return intel_miptree_slice_resolve(brw, mt, level, layer,
1433 GEN6_HIZ_OP_DEPTH_RESOLVE);
1434 }
1435
1436 static bool
1437 intel_miptree_all_slices_resolve(struct brw_context *brw,
1438 struct intel_mipmap_tree *mt,
1439 enum gen6_hiz_op need)
1440 {
1441 bool did_resolve = false;
1442 struct intel_resolve_map *i, *next;
1443
1444 for (i = mt->hiz_map.next; i; i = next) {
1445 next = i->next;
1446 if (i->need != need)
1447 continue;
1448
1449 intel_hiz_exec(brw, mt, i->level, i->layer, need);
1450 intel_resolve_map_remove(i);
1451 did_resolve = true;
1452 }
1453
1454 return did_resolve;
1455 }
1456
1457 bool
1458 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1459 struct intel_mipmap_tree *mt)
1460 {
1461 return intel_miptree_all_slices_resolve(brw, mt,
1462 GEN6_HIZ_OP_HIZ_RESOLVE);
1463 }
1464
1465 bool
1466 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1467 struct intel_mipmap_tree *mt)
1468 {
1469 return intel_miptree_all_slices_resolve(brw, mt,
1470 GEN6_HIZ_OP_DEPTH_RESOLVE);
1471 }
1472
1473
1474 void
1475 intel_miptree_resolve_color(struct brw_context *brw,
1476 struct intel_mipmap_tree *mt)
1477 {
1478 switch (mt->fast_clear_state) {
1479 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1480 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1481 /* No resolve needed */
1482 break;
1483 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1484 case INTEL_FAST_CLEAR_STATE_CLEAR:
1485 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1486 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1487 brw_blorp_resolve_color(brw, mt);
1488 break;
1489 }
1490 }
1491
1492
1493 /**
1494 * Make it possible to share the region backing the given miptree with another
1495 * process or another miptree.
1496 *
1497 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1498 * then discard the MCS buffer, if present. We also set the fast_clear_state
1499 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1500 * allocated in the future.
1501 */
1502 void
1503 intel_miptree_make_shareable(struct brw_context *brw,
1504 struct intel_mipmap_tree *mt)
1505 {
1506 /* MCS buffers are also used for multisample buffers, but we can't resolve
1507 * away a multisample MCS buffer because it's an integral part of how the
1508 * pixel data is stored. Fortunately this code path should never be
1509 * reached for multisample buffers.
1510 */
1511 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1512
1513 if (mt->mcs_mt) {
1514 intel_miptree_resolve_color(brw, mt);
1515 intel_miptree_release(&mt->mcs_mt);
1516 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1517 }
1518 }
1519
1520
1521 /**
1522 * \brief Get pointer offset into stencil buffer.
1523 *
1524 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1525 * must decode the tile's layout in software.
1526 *
1527 * See
1528 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1529 * Format.
1530 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1531 *
1532 * Even though the returned offset is always positive, the return type is
1533 * signed due to
1534 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1535 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1536 */
1537 static intptr_t
1538 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1539 {
1540 uint32_t tile_size = 4096;
1541 uint32_t tile_width = 64;
1542 uint32_t tile_height = 64;
1543 uint32_t row_size = 64 * stride;
1544
1545 uint32_t tile_x = x / tile_width;
1546 uint32_t tile_y = y / tile_height;
1547
1548 /* The byte's address relative to the tile's base addres. */
1549 uint32_t byte_x = x % tile_width;
1550 uint32_t byte_y = y % tile_height;
1551
1552 uintptr_t u = tile_y * row_size
1553 + tile_x * tile_size
1554 + 512 * (byte_x / 8)
1555 + 64 * (byte_y / 8)
1556 + 32 * ((byte_y / 4) % 2)
1557 + 16 * ((byte_x / 4) % 2)
1558 + 8 * ((byte_y / 2) % 2)
1559 + 4 * ((byte_x / 2) % 2)
1560 + 2 * (byte_y % 2)
1561 + 1 * (byte_x % 2);
1562
1563 if (swizzled) {
1564 /* adjust for bit6 swizzling */
1565 if (((byte_x / 8) % 2) == 1) {
1566 if (((byte_y / 8) % 2) == 0) {
1567 u += 64;
1568 } else {
1569 u -= 64;
1570 }
1571 }
1572 }
1573
1574 return u;
1575 }
1576
1577 void
1578 intel_miptree_updownsample(struct brw_context *brw,
1579 struct intel_mipmap_tree *src,
1580 struct intel_mipmap_tree *dst)
1581 {
1582 if (brw->gen < 8 || src->format == MESA_FORMAT_S_UINT8) {
1583 brw_blorp_blit_miptrees(brw,
1584 src, 0 /* level */, 0 /* layer */,
1585 dst, 0 /* level */, 0 /* layer */,
1586 0, 0,
1587 src->logical_width0, src->logical_height0,
1588 0, 0,
1589 dst->logical_width0, dst->logical_height0,
1590 GL_NEAREST, false, false /*mirror x, y*/);
1591 } else {
1592 brw_meta_updownsample(brw, src, dst);
1593 }
1594
1595 if (src->stencil_mt) {
1596 brw_blorp_blit_miptrees(brw,
1597 src->stencil_mt, 0 /* level */, 0 /* layer */,
1598 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1599 0, 0,
1600 src->logical_width0, src->logical_height0,
1601 0, 0,
1602 dst->logical_width0, dst->logical_height0,
1603 GL_NEAREST, false, false /*mirror x, y*/);
1604 }
1605 }
1606
1607 void *
1608 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1609 {
1610 /* CPU accesses to color buffers don't understand fast color clears, so
1611 * resolve any pending fast color clears before we map.
1612 */
1613 intel_miptree_resolve_color(brw, mt);
1614
1615 drm_intel_bo *bo = mt->region->bo;
1616
1617 intel_batchbuffer_flush(brw);
1618
1619 if (mt->region->tiling != I915_TILING_NONE)
1620 brw_bo_map_gtt(brw, bo, "miptree");
1621 else
1622 brw_bo_map(brw, bo, true, "miptree");
1623
1624 return bo->virtual;
1625 }
1626
1627 void
1628 intel_miptree_unmap_raw(struct brw_context *brw,
1629 struct intel_mipmap_tree *mt)
1630 {
1631 drm_intel_bo_unmap(mt->region->bo);
1632 }
1633
1634 static void
1635 intel_miptree_map_gtt(struct brw_context *brw,
1636 struct intel_mipmap_tree *mt,
1637 struct intel_miptree_map *map,
1638 unsigned int level, unsigned int slice)
1639 {
1640 unsigned int bw, bh;
1641 void *base;
1642 unsigned int image_x, image_y;
1643 int x = map->x;
1644 int y = map->y;
1645
1646 /* For compressed formats, the stride is the number of bytes per
1647 * row of blocks. intel_miptree_get_image_offset() already does
1648 * the divide.
1649 */
1650 _mesa_get_format_block_size(mt->format, &bw, &bh);
1651 assert(y % bh == 0);
1652 y /= bh;
1653
1654 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1655
1656 if (base == NULL)
1657 map->ptr = NULL;
1658 else {
1659 /* Note that in the case of cube maps, the caller must have passed the
1660 * slice number referencing the face.
1661 */
1662 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1663 x += image_x;
1664 y += image_y;
1665
1666 map->stride = mt->region->pitch;
1667 map->ptr = base + y * map->stride + x * mt->cpp;
1668 }
1669
1670 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1671 map->x, map->y, map->w, map->h,
1672 mt, _mesa_get_format_name(mt->format),
1673 x, y, map->ptr, map->stride);
1674 }
1675
1676 static void
1677 intel_miptree_unmap_gtt(struct brw_context *brw,
1678 struct intel_mipmap_tree *mt,
1679 struct intel_miptree_map *map,
1680 unsigned int level,
1681 unsigned int slice)
1682 {
1683 intel_miptree_unmap_raw(brw, mt);
1684 }
1685
1686 static void
1687 intel_miptree_map_blit(struct brw_context *brw,
1688 struct intel_mipmap_tree *mt,
1689 struct intel_miptree_map *map,
1690 unsigned int level, unsigned int slice)
1691 {
1692 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1693 0, 0,
1694 map->w, map->h, 1,
1695 false, 0,
1696 INTEL_MIPTREE_TILING_NONE);
1697 if (!map->mt) {
1698 fprintf(stderr, "Failed to allocate blit temporary\n");
1699 goto fail;
1700 }
1701 map->stride = map->mt->region->pitch;
1702
1703 if (!intel_miptree_blit(brw,
1704 mt, level, slice,
1705 map->x, map->y, false,
1706 map->mt, 0, 0,
1707 0, 0, false,
1708 map->w, map->h, GL_COPY)) {
1709 fprintf(stderr, "Failed to blit\n");
1710 goto fail;
1711 }
1712
1713 map->ptr = intel_miptree_map_raw(brw, map->mt);
1714
1715 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1716 map->x, map->y, map->w, map->h,
1717 mt, _mesa_get_format_name(mt->format),
1718 level, slice, map->ptr, map->stride);
1719
1720 return;
1721
1722 fail:
1723 intel_miptree_release(&map->mt);
1724 map->ptr = NULL;
1725 map->stride = 0;
1726 }
1727
1728 static void
1729 intel_miptree_unmap_blit(struct brw_context *brw,
1730 struct intel_mipmap_tree *mt,
1731 struct intel_miptree_map *map,
1732 unsigned int level,
1733 unsigned int slice)
1734 {
1735 struct gl_context *ctx = &brw->ctx;
1736
1737 intel_miptree_unmap_raw(brw, map->mt);
1738
1739 if (map->mode & GL_MAP_WRITE_BIT) {
1740 bool ok = intel_miptree_blit(brw,
1741 map->mt, 0, 0,
1742 0, 0, false,
1743 mt, level, slice,
1744 map->x, map->y, false,
1745 map->w, map->h, GL_COPY);
1746 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1747 }
1748
1749 intel_miptree_release(&map->mt);
1750 }
1751
1752 #ifdef __SSE4_1__
1753 /**
1754 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1755 */
1756 static void
1757 intel_miptree_map_movntdqa(struct brw_context *brw,
1758 struct intel_mipmap_tree *mt,
1759 struct intel_miptree_map *map,
1760 unsigned int level, unsigned int slice)
1761 {
1762 assert(map->mode & GL_MAP_READ_BIT);
1763 assert(!(map->mode & GL_MAP_WRITE_BIT));
1764
1765 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1766 map->x, map->y, map->w, map->h,
1767 mt, _mesa_get_format_name(mt->format),
1768 level, slice, map->ptr, map->stride);
1769
1770 /* Map the original image */
1771 uint32_t image_x;
1772 uint32_t image_y;
1773 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1774 image_x += map->x;
1775 image_y += map->y;
1776
1777 void *src = intel_miptree_map_raw(brw, mt);
1778 if (!src)
1779 return;
1780 src += image_y * mt->region->pitch;
1781 src += image_x * mt->region->cpp;
1782
1783 /* Due to the pixel offsets for the particular image being mapped, our
1784 * src pointer may not be 16-byte aligned. However, if the pitch is
1785 * divisible by 16, then the amount by which it's misaligned will remain
1786 * consistent from row to row.
1787 */
1788 assert((mt->region->pitch % 16) == 0);
1789 const int misalignment = ((uintptr_t) src) & 15;
1790
1791 /* Create an untiled temporary buffer for the mapping. */
1792 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1793
1794 map->stride = ALIGN(misalignment + width_bytes, 16);
1795
1796 map->buffer = malloc(map->stride * map->h);
1797 /* Offset the destination so it has the same misalignment as src. */
1798 map->ptr = map->buffer + misalignment;
1799
1800 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1801
1802 for (uint32_t y = 0; y < map->h; y++) {
1803 void *dst_ptr = map->ptr + y * map->stride;
1804 void *src_ptr = src + y * mt->region->pitch;
1805
1806 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1807 }
1808
1809 intel_miptree_unmap_raw(brw, mt);
1810 }
1811
1812 static void
1813 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1814 struct intel_mipmap_tree *mt,
1815 struct intel_miptree_map *map,
1816 unsigned int level,
1817 unsigned int slice)
1818 {
1819 free(map->buffer);
1820 map->buffer = NULL;
1821 map->ptr = NULL;
1822 }
1823 #endif
1824
1825 static void
1826 intel_miptree_map_s8(struct brw_context *brw,
1827 struct intel_mipmap_tree *mt,
1828 struct intel_miptree_map *map,
1829 unsigned int level, unsigned int slice)
1830 {
1831 map->stride = map->w;
1832 map->buffer = map->ptr = malloc(map->stride * map->h);
1833 if (!map->buffer)
1834 return;
1835
1836 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1837 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1838 * invalidate is set, since we'll be writing the whole rectangle from our
1839 * temporary buffer back out.
1840 */
1841 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1842 uint8_t *untiled_s8_map = map->ptr;
1843 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1844 unsigned int image_x, image_y;
1845
1846 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1847
1848 for (uint32_t y = 0; y < map->h; y++) {
1849 for (uint32_t x = 0; x < map->w; x++) {
1850 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1851 x + image_x + map->x,
1852 y + image_y + map->y,
1853 brw->has_swizzling);
1854 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
1855 }
1856 }
1857
1858 intel_miptree_unmap_raw(brw, mt);
1859
1860 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
1861 map->x, map->y, map->w, map->h,
1862 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
1863 } else {
1864 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
1865 map->x, map->y, map->w, map->h,
1866 mt, map->ptr, map->stride);
1867 }
1868 }
1869
1870 static void
1871 intel_miptree_unmap_s8(struct brw_context *brw,
1872 struct intel_mipmap_tree *mt,
1873 struct intel_miptree_map *map,
1874 unsigned int level,
1875 unsigned int slice)
1876 {
1877 if (map->mode & GL_MAP_WRITE_BIT) {
1878 unsigned int image_x, image_y;
1879 uint8_t *untiled_s8_map = map->ptr;
1880 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
1881
1882 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1883
1884 for (uint32_t y = 0; y < map->h; y++) {
1885 for (uint32_t x = 0; x < map->w; x++) {
1886 ptrdiff_t offset = intel_offset_S8(mt->region->pitch,
1887 x + map->x,
1888 y + map->y,
1889 brw->has_swizzling);
1890 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
1891 }
1892 }
1893
1894 intel_miptree_unmap_raw(brw, mt);
1895 }
1896
1897 free(map->buffer);
1898 }
1899
1900 static void
1901 intel_miptree_map_etc(struct brw_context *brw,
1902 struct intel_mipmap_tree *mt,
1903 struct intel_miptree_map *map,
1904 unsigned int level,
1905 unsigned int slice)
1906 {
1907 assert(mt->etc_format != MESA_FORMAT_NONE);
1908 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
1909 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
1910 }
1911
1912 assert(map->mode & GL_MAP_WRITE_BIT);
1913 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
1914
1915 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
1916 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
1917 map->w, map->h, 1));
1918 map->ptr = map->buffer;
1919 }
1920
1921 static void
1922 intel_miptree_unmap_etc(struct brw_context *brw,
1923 struct intel_mipmap_tree *mt,
1924 struct intel_miptree_map *map,
1925 unsigned int level,
1926 unsigned int slice)
1927 {
1928 uint32_t image_x;
1929 uint32_t image_y;
1930 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1931
1932 image_x += map->x;
1933 image_y += map->y;
1934
1935 uint8_t *dst = intel_miptree_map_raw(brw, mt)
1936 + image_y * mt->region->pitch
1937 + image_x * mt->region->cpp;
1938
1939 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
1940 _mesa_etc1_unpack_rgba8888(dst, mt->region->pitch,
1941 map->ptr, map->stride,
1942 map->w, map->h);
1943 else
1944 _mesa_unpack_etc2_format(dst, mt->region->pitch,
1945 map->ptr, map->stride,
1946 map->w, map->h, mt->etc_format);
1947
1948 intel_miptree_unmap_raw(brw, mt);
1949 free(map->buffer);
1950 }
1951
1952 /**
1953 * Mapping function for packed depth/stencil miptrees backed by real separate
1954 * miptrees for depth and stencil.
1955 *
1956 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
1957 * separate from the depth buffer. Yet at the GL API level, we have to expose
1958 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
1959 * be able to map that memory for texture storage and glReadPixels-type
1960 * operations. We give Mesa core that access by mallocing a temporary and
1961 * copying the data between the actual backing store and the temporary.
1962 */
1963 static void
1964 intel_miptree_map_depthstencil(struct brw_context *brw,
1965 struct intel_mipmap_tree *mt,
1966 struct intel_miptree_map *map,
1967 unsigned int level, unsigned int slice)
1968 {
1969 struct intel_mipmap_tree *z_mt = mt;
1970 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
1971 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
1972 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
1973
1974 map->stride = map->w * packed_bpp;
1975 map->buffer = map->ptr = malloc(map->stride * map->h);
1976 if (!map->buffer)
1977 return;
1978
1979 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1980 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1981 * invalidate is set, since we'll be writing the whole rectangle from our
1982 * temporary buffer back out.
1983 */
1984 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1985 uint32_t *packed_map = map->ptr;
1986 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
1987 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
1988 unsigned int s_image_x, s_image_y;
1989 unsigned int z_image_x, z_image_y;
1990
1991 intel_miptree_get_image_offset(s_mt, level, slice,
1992 &s_image_x, &s_image_y);
1993 intel_miptree_get_image_offset(z_mt, level, slice,
1994 &z_image_x, &z_image_y);
1995
1996 for (uint32_t y = 0; y < map->h; y++) {
1997 for (uint32_t x = 0; x < map->w; x++) {
1998 int map_x = map->x + x, map_y = map->y + y;
1999 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2000 map_x + s_image_x,
2001 map_y + s_image_y,
2002 brw->has_swizzling);
2003 ptrdiff_t z_offset = ((map_y + z_image_y) *
2004 (z_mt->region->pitch / 4) +
2005 (map_x + z_image_x));
2006 uint8_t s = s_map[s_offset];
2007 uint32_t z = z_map[z_offset];
2008
2009 if (map_z32f_x24s8) {
2010 packed_map[(y * map->w + x) * 2 + 0] = z;
2011 packed_map[(y * map->w + x) * 2 + 1] = s;
2012 } else {
2013 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2014 }
2015 }
2016 }
2017
2018 intel_miptree_unmap_raw(brw, s_mt);
2019 intel_miptree_unmap_raw(brw, z_mt);
2020
2021 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2022 __FUNCTION__,
2023 map->x, map->y, map->w, map->h,
2024 z_mt, map->x + z_image_x, map->y + z_image_y,
2025 s_mt, map->x + s_image_x, map->y + s_image_y,
2026 map->ptr, map->stride);
2027 } else {
2028 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2029 map->x, map->y, map->w, map->h,
2030 mt, map->ptr, map->stride);
2031 }
2032 }
2033
2034 static void
2035 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2036 struct intel_mipmap_tree *mt,
2037 struct intel_miptree_map *map,
2038 unsigned int level,
2039 unsigned int slice)
2040 {
2041 struct intel_mipmap_tree *z_mt = mt;
2042 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2043 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2044
2045 if (map->mode & GL_MAP_WRITE_BIT) {
2046 uint32_t *packed_map = map->ptr;
2047 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2048 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2049 unsigned int s_image_x, s_image_y;
2050 unsigned int z_image_x, z_image_y;
2051
2052 intel_miptree_get_image_offset(s_mt, level, slice,
2053 &s_image_x, &s_image_y);
2054 intel_miptree_get_image_offset(z_mt, level, slice,
2055 &z_image_x, &z_image_y);
2056
2057 for (uint32_t y = 0; y < map->h; y++) {
2058 for (uint32_t x = 0; x < map->w; x++) {
2059 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch,
2060 x + s_image_x + map->x,
2061 y + s_image_y + map->y,
2062 brw->has_swizzling);
2063 ptrdiff_t z_offset = ((y + z_image_y) *
2064 (z_mt->region->pitch / 4) +
2065 (x + z_image_x));
2066
2067 if (map_z32f_x24s8) {
2068 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2069 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2070 } else {
2071 uint32_t packed = packed_map[y * map->w + x];
2072 s_map[s_offset] = packed >> 24;
2073 z_map[z_offset] = packed;
2074 }
2075 }
2076 }
2077
2078 intel_miptree_unmap_raw(brw, s_mt);
2079 intel_miptree_unmap_raw(brw, z_mt);
2080
2081 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2082 __FUNCTION__,
2083 map->x, map->y, map->w, map->h,
2084 z_mt, _mesa_get_format_name(z_mt->format),
2085 map->x + z_image_x, map->y + z_image_y,
2086 s_mt, map->x + s_image_x, map->y + s_image_y,
2087 map->ptr, map->stride);
2088 }
2089
2090 free(map->buffer);
2091 }
2092
2093 /**
2094 * Create and attach a map to the miptree at (level, slice). Return the
2095 * attached map.
2096 */
2097 static struct intel_miptree_map*
2098 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2099 unsigned int level,
2100 unsigned int slice,
2101 unsigned int x,
2102 unsigned int y,
2103 unsigned int w,
2104 unsigned int h,
2105 GLbitfield mode)
2106 {
2107 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2108
2109 if (!map)
2110 return NULL;
2111
2112 assert(mt->level[level].slice[slice].map == NULL);
2113 mt->level[level].slice[slice].map = map;
2114
2115 map->mode = mode;
2116 map->x = x;
2117 map->y = y;
2118 map->w = w;
2119 map->h = h;
2120
2121 return map;
2122 }
2123
2124 /**
2125 * Release the map at (level, slice).
2126 */
2127 static void
2128 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2129 unsigned int level,
2130 unsigned int slice)
2131 {
2132 struct intel_miptree_map **map;
2133
2134 map = &mt->level[level].slice[slice].map;
2135 free(*map);
2136 *map = NULL;
2137 }
2138
2139 static bool
2140 can_blit_slice(struct intel_mipmap_tree *mt,
2141 unsigned int level, unsigned int slice)
2142 {
2143 uint32_t image_x;
2144 uint32_t image_y;
2145 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2146 if (image_x >= 32768 || image_y >= 32768)
2147 return false;
2148
2149 if (mt->region->pitch >= 32768)
2150 return false;
2151
2152 return true;
2153 }
2154
2155 void
2156 intel_miptree_map(struct brw_context *brw,
2157 struct intel_mipmap_tree *mt,
2158 unsigned int level,
2159 unsigned int slice,
2160 unsigned int x,
2161 unsigned int y,
2162 unsigned int w,
2163 unsigned int h,
2164 GLbitfield mode,
2165 void **out_ptr,
2166 int *out_stride)
2167 {
2168 struct intel_miptree_map *map;
2169
2170 assert(mt->num_samples <= 1);
2171
2172 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2173 if (!map){
2174 *out_ptr = NULL;
2175 *out_stride = 0;
2176 return;
2177 }
2178
2179 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2180 if (map->mode & GL_MAP_WRITE_BIT) {
2181 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2182 }
2183
2184 if (mt->format == MESA_FORMAT_S_UINT8) {
2185 intel_miptree_map_s8(brw, mt, map, level, slice);
2186 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2187 !(mode & BRW_MAP_DIRECT_BIT)) {
2188 intel_miptree_map_etc(brw, mt, map, level, slice);
2189 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2190 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2191 }
2192 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2193 else if (brw->has_llc &&
2194 !(mode & GL_MAP_WRITE_BIT) &&
2195 !mt->compressed &&
2196 (mt->region->tiling == I915_TILING_X ||
2197 (brw->gen >= 6 && mt->region->tiling == I915_TILING_Y)) &&
2198 can_blit_slice(mt, level, slice)) {
2199 intel_miptree_map_blit(brw, mt, map, level, slice);
2200 } else if (mt->region->tiling != I915_TILING_NONE &&
2201 mt->region->bo->size >= brw->max_gtt_map_object_size) {
2202 assert(can_blit_slice(mt, level, slice));
2203 intel_miptree_map_blit(brw, mt, map, level, slice);
2204 #ifdef __SSE4_1__
2205 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed) {
2206 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2207 #endif
2208 } else {
2209 intel_miptree_map_gtt(brw, mt, map, level, slice);
2210 }
2211
2212 *out_ptr = map->ptr;
2213 *out_stride = map->stride;
2214
2215 if (map->ptr == NULL)
2216 intel_miptree_release_map(mt, level, slice);
2217 }
2218
2219 void
2220 intel_miptree_unmap(struct brw_context *brw,
2221 struct intel_mipmap_tree *mt,
2222 unsigned int level,
2223 unsigned int slice)
2224 {
2225 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2226
2227 assert(mt->num_samples <= 1);
2228
2229 if (!map)
2230 return;
2231
2232 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2233 mt, _mesa_get_format_name(mt->format), level, slice);
2234
2235 if (mt->format == MESA_FORMAT_S_UINT8) {
2236 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2237 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2238 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2239 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2240 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2241 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2242 } else if (map->mt) {
2243 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2244 #ifdef __SSE4_1__
2245 } else if (map->buffer) {
2246 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2247 #endif
2248 } else {
2249 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2250 }
2251
2252 intel_miptree_release_map(mt, level, slice);
2253 }