i965/miptree: Add space to store the clear value in the aux surface.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* See isl_surf_get_mcs_surf for details. */
77 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
78 return false;
79
80 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
81 switch (_mesa_get_format_base_format(mt->format)) {
82 case GL_DEPTH_COMPONENT:
83 case GL_STENCIL_INDEX:
84 case GL_DEPTH_STENCIL:
85 return false;
86 default:
87 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
88 *
89 * This field must be set to 0 for all SINT MSRTs when all RT channels
90 * are not written
91 *
92 * In practice this means that we have to disable MCS for all signed
93 * integer MSAA buffers. The alternative, to disable MCS only when one
94 * of the render target channels is disabled, is impractical because it
95 * would require converting between CMS and UMS MSAA layouts on the fly,
96 * which is expensive.
97 */
98 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
99 return false;
100 } else {
101 return true;
102 }
103 }
104 }
105
106 static bool
107 intel_tiling_supports_ccs(const struct brw_context *brw,
108 enum isl_tiling tiling)
109 {
110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
111
112 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
113 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
114 *
115 * - Support is limited to tiled render targets.
116 *
117 * Gen9 changes the restriction to Y-tile only.
118 */
119 if (devinfo->gen >= 9)
120 return tiling == ISL_TILING_Y0;
121 else if (devinfo->gen >= 7)
122 return tiling != ISL_TILING_LINEAR;
123 else
124 return false;
125 }
126
127 /**
128 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
129 * can be used. This doesn't (and should not) inspect any of the properties of
130 * the miptree's BO.
131 *
132 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
133 * beneath the "Fast Color Clear" bullet (p326):
134 *
135 * - Support is for non-mip-mapped and non-array surface types only.
136 *
137 * And then later, on p327:
138 *
139 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
140 * 64bpp, and 128bpp.
141 *
142 * From the Skylake documentation, it is made clear that X-tiling is no longer
143 * supported:
144 *
145 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
146 * non-MSRTs only.
147 */
148 static bool
149 intel_miptree_supports_ccs(struct brw_context *brw,
150 const struct intel_mipmap_tree *mt)
151 {
152 const struct gen_device_info *devinfo = &brw->screen->devinfo;
153
154 /* MCS support does not exist prior to Gen7 */
155 if (devinfo->gen < 7)
156 return false;
157
158 /* This function applies only to non-multisampled render targets. */
159 if (mt->surf.samples > 1)
160 return false;
161
162 /* MCS is only supported for color buffers */
163 switch (_mesa_get_format_base_format(mt->format)) {
164 case GL_DEPTH_COMPONENT:
165 case GL_DEPTH_STENCIL:
166 case GL_STENCIL_INDEX:
167 return false;
168 }
169
170 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
171 return false;
172
173 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
174 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
175 mt->surf.logical_level0_px.depth > 1;
176
177 if (arrayed) {
178 /* Multisample surfaces with the CMS layout are not layered surfaces,
179 * yet still have physical_depth0 > 1. Assert that we don't
180 * accidentally reject a multisampled surface here. We should have
181 * rejected it earlier by explicitly checking the sample count.
182 */
183 assert(mt->surf.samples == 1);
184 }
185
186 /* Handle the hardware restrictions...
187 *
188 * All GENs have the following restriction: "MCS buffer for non-MSRT is
189 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
190 *
191 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
192 * Non-MultiSampler Render Target Restrictions) Support is for
193 * non-mip-mapped and non-array surface types only.
194 *
195 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
199 *
200 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
201 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
202 * surfaces are supported with MCS buffer layout with these alignments in
203 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
204 */
205 if (devinfo->gen < 8 && (mip_mapped || arrayed))
206 return false;
207
208 /* There's no point in using an MCS buffer if the surface isn't in a
209 * renderable format.
210 */
211 if (!brw->mesa_format_supports_render[mt->format])
212 return false;
213
214 return true;
215 }
216
217 static bool
218 intel_tiling_supports_hiz(const struct brw_context *brw,
219 enum isl_tiling tiling)
220 {
221 const struct gen_device_info *devinfo = &brw->screen->devinfo;
222
223 if (devinfo->gen < 6)
224 return false;
225
226 return tiling == ISL_TILING_Y0;
227 }
228
229 static bool
230 intel_miptree_supports_hiz(const struct brw_context *brw,
231 const struct intel_mipmap_tree *mt)
232 {
233 if (!brw->has_hiz)
234 return false;
235
236 switch (mt->format) {
237 case MESA_FORMAT_Z_FLOAT32:
238 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
239 case MESA_FORMAT_Z24_UNORM_X8_UINT:
240 case MESA_FORMAT_Z24_UNORM_S8_UINT:
241 case MESA_FORMAT_Z_UNORM16:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /**
249 * Return true if the format that will be used to access the miptree is
250 * CCS_E-compatible with the miptree's linear/non-sRGB format.
251 *
252 * Why use the linear format? Well, although the miptree may be specified with
253 * an sRGB format, the usage of that color space/format can be toggled. Since
254 * our HW tends to support more linear formats than sRGB ones, we use this
255 * format variant for check for CCS_E compatibility.
256 */
257 static bool
258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
259 const struct intel_mipmap_tree *mt,
260 enum isl_format access_format)
261 {
262 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
263
264 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
265 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
266 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
267 }
268
269 static bool
270 intel_miptree_supports_ccs_e(struct brw_context *brw,
271 const struct intel_mipmap_tree *mt)
272 {
273 const struct gen_device_info *devinfo = &brw->screen->devinfo;
274
275 if (devinfo->gen < 9)
276 return false;
277
278 /* For now compression is only enabled for integer formats even though
279 * there exist supported floating point formats also. This is a heuristic
280 * decision based on current public benchmarks. In none of the cases these
281 * formats provided any improvement but a few cases were seen to regress.
282 * Hence these are left to to be enabled in the future when they are known
283 * to improve things.
284 */
285 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
286 return false;
287
288 if (!intel_miptree_supports_ccs(brw, mt))
289 return false;
290
291 /* Many window system buffers are sRGB even if they are never rendered as
292 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
293 * surface is used as sRGB, we fall back to CCS_D.
294 */
295 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
296 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
297 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
298 }
299
300 /**
301 * Determine depth format corresponding to a depth+stencil format,
302 * for separate stencil.
303 */
304 mesa_format
305 intel_depth_format_for_depthstencil_format(mesa_format format) {
306 switch (format) {
307 case MESA_FORMAT_Z24_UNORM_S8_UINT:
308 return MESA_FORMAT_Z24_UNORM_X8_UINT;
309 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
310 return MESA_FORMAT_Z_FLOAT32;
311 default:
312 return format;
313 }
314 }
315
316 static bool
317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
318 unsigned depth0, struct intel_mipmap_level *table)
319 {
320 for (unsigned level = first_level; level <= last_level; level++) {
321 const unsigned d =
322 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
323
324 table[level].slice = calloc(d, sizeof(*table[0].slice));
325 if (!table[level].slice)
326 goto unwind;
327 }
328
329 return true;
330
331 unwind:
332 for (unsigned level = first_level; level <= last_level; level++)
333 free(table[level].slice);
334
335 return false;
336 }
337
338 static bool
339 needs_separate_stencil(const struct brw_context *brw,
340 struct intel_mipmap_tree *mt,
341 mesa_format format)
342 {
343 const struct gen_device_info *devinfo = &brw->screen->devinfo;
344
345 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
346 return false;
347
348 if (devinfo->must_use_separate_stencil)
349 return true;
350
351 return brw->has_separate_stencil &&
352 intel_miptree_supports_hiz(brw, mt);
353 }
354
355 /**
356 * Choose the aux usage for this miptree. This function must be called fairly
357 * late in the miptree create process after we have a tiling.
358 */
359 static void
360 intel_miptree_choose_aux_usage(struct brw_context *brw,
361 struct intel_mipmap_tree *mt)
362 {
363 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
364
365 if (intel_miptree_supports_mcs(brw, mt)) {
366 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
367 mt->aux_usage = ISL_AUX_USAGE_MCS;
368 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
369 intel_miptree_supports_ccs(brw, mt)) {
370 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
371 intel_miptree_supports_ccs_e(brw, mt)) {
372 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
373 } else {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
375 }
376 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
377 intel_miptree_supports_hiz(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_HIZ;
379 }
380
381 /* We can do fast-clear on all auxiliary surface types that are
382 * allocated through the normal texture creation paths.
383 */
384 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
385 mt->supports_fast_clear = true;
386 }
387
388
389 /**
390 * Choose an appropriate uncompressed format for a requested
391 * compressed format, if unsupported.
392 */
393 mesa_format
394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
395 {
396 const struct gen_device_info *devinfo = &brw->screen->devinfo;
397
398 /* No need to lower ETC formats on these platforms,
399 * they are supported natively.
400 */
401 if (devinfo->gen >= 8 || devinfo->is_baytrail)
402 return format;
403
404 switch (format) {
405 case MESA_FORMAT_ETC1_RGB8:
406 return MESA_FORMAT_R8G8B8X8_UNORM;
407 case MESA_FORMAT_ETC2_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_SRGB8:
410 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
411 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
412 return MESA_FORMAT_B8G8R8A8_SRGB;
413 case MESA_FORMAT_ETC2_RGBA8_EAC:
414 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
415 return MESA_FORMAT_R8G8B8A8_UNORM;
416 case MESA_FORMAT_ETC2_R11_EAC:
417 return MESA_FORMAT_R_UNORM16;
418 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
419 return MESA_FORMAT_R_SNORM16;
420 case MESA_FORMAT_ETC2_RG11_EAC:
421 return MESA_FORMAT_R16G16_UNORM;
422 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
423 return MESA_FORMAT_R16G16_SNORM;
424 default:
425 /* Non ETC1 / ETC2 format */
426 return format;
427 }
428 }
429
430 unsigned
431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
432 {
433 if (mt->surf.dim == ISL_SURF_DIM_3D)
434 return minify(mt->surf.logical_level0_px.depth, level);
435 else
436 return mt->surf.logical_level0_px.array_len;
437 }
438
439 UNUSED static unsigned
440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
441 {
442 /* In case of physical dimensions one needs to consider also the layout.
443 * See isl_calc_phys_level0_extent_sa().
444 */
445 if (surf->dim != ISL_SURF_DIM_3D)
446 return surf->phys_level0_sa.array_len;
447
448 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
449 return minify(surf->phys_level0_sa.array_len, level);
450
451 return minify(surf->phys_level0_sa.depth, level);
452 }
453
454 /** \brief Assert that the level and layer are valid for the miptree. */
455 void
456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
457 uint32_t level,
458 uint32_t layer)
459 {
460 (void) mt;
461 (void) level;
462 (void) layer;
463
464 assert(level >= mt->first_level);
465 assert(level <= mt->last_level);
466 assert(layer < get_num_phys_layers(&mt->surf, level));
467 }
468
469 static enum isl_aux_state **
470 create_aux_state_map(struct intel_mipmap_tree *mt,
471 enum isl_aux_state initial)
472 {
473 const uint32_t levels = mt->last_level + 1;
474
475 uint32_t total_slices = 0;
476 for (uint32_t level = 0; level < levels; level++)
477 total_slices += brw_get_num_logical_layers(mt, level);
478
479 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
480
481 /* We're going to allocate a single chunk of data for both the per-level
482 * reference array and the arrays of aux_state. This makes cleanup
483 * significantly easier.
484 */
485 const size_t total_size = per_level_array_size +
486 total_slices * sizeof(enum isl_aux_state);
487 void *data = malloc(total_size);
488 if (data == NULL)
489 return NULL;
490
491 enum isl_aux_state **per_level_arr = data;
492 enum isl_aux_state *s = data + per_level_array_size;
493 for (uint32_t level = 0; level < levels; level++) {
494 per_level_arr[level] = s;
495 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
496 for (uint32_t a = 0; a < level_layers; a++)
497 *(s++) = initial;
498 }
499 assert((void *)s == data + total_size);
500
501 return per_level_arr;
502 }
503
504 static void
505 free_aux_state_map(enum isl_aux_state **state)
506 {
507 free(state);
508 }
509
510 static bool
511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
512 enum isl_tiling tiling, unsigned samples)
513 {
514 if (samples > 1)
515 return false;
516
517 if (tiling == ISL_TILING_LINEAR)
518 return false;
519
520 /* If the width is much smaller than a tile, don't bother tiling. */
521 if (row_pitch < 64)
522 return true;
523
524 if (ALIGN(row_pitch, 512) >= 32768) {
525 perf_debug("row pitch %u too large to blit, falling back to untiled",
526 row_pitch);
527 return true;
528 }
529
530 return false;
531 }
532
533 static bool
534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
535 enum isl_tiling tiling)
536 {
537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
538
539 /* If the BO is too large to fit in the aperture, we need to use the
540 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
541 * handle Y-tiling, so we need to fall back to X.
542 */
543 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
544 tiling == ISL_TILING_Y0)
545 return true;
546
547 return false;
548 }
549
550 static struct intel_mipmap_tree *
551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
552 unsigned first_level, unsigned last_level,
553 unsigned width0, unsigned height0, unsigned depth0,
554 unsigned num_samples, isl_tiling_flags_t tiling_flags,
555 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
556 unsigned row_pitch, struct brw_bo *bo)
557 {
558 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
559 if (!mt)
560 return NULL;
561
562 if (!create_mapping_table(target, first_level, last_level, depth0,
563 mt->level)) {
564 free(mt);
565 return NULL;
566 }
567
568 mt->refcount = 1;
569
570 if (target == GL_TEXTURE_CUBE_MAP ||
571 target == GL_TEXTURE_CUBE_MAP_ARRAY)
572 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
573
574 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
575 __func__,
576 _mesa_enum_to_string(target),
577 _mesa_get_format_name(format),
578 num_samples, width0, height0, depth0,
579 first_level, last_level, mt);
580
581 struct isl_surf_init_info init_info = {
582 .dim = get_isl_surf_dim(target),
583 .format = translate_tex_format(brw, format, false),
584 .width = width0,
585 .height = height0,
586 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
587 .levels = last_level - first_level + 1,
588 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
589 .samples = num_samples,
590 .row_pitch = row_pitch,
591 .usage = isl_usage_flags,
592 .tiling_flags = tiling_flags,
593 };
594
595 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
596 goto fail;
597
598 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
599 * on gen7 platforms we also need to create Y-tiled copies of stencil for
600 * texturing since the hardware can't sample from W-tiled surfaces. For
601 * everything else, check for corner cases needing special treatment.
602 */
603 bool is_depth_stencil =
604 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
605 if (!is_depth_stencil) {
606 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
607 mt->surf.tiling, mt->surf.samples)) {
608 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
612 init_info.tiling_flags = 1u << ISL_TILING_X;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 }
616 }
617
618 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
619 * the size may not be multiple of row_pitch.
620 * See isl_apply_surface_padding().
621 */
622 if (mt->surf.tiling != ISL_TILING_LINEAR)
623 assert(mt->surf.size % mt->surf.row_pitch == 0);
624
625 if (!bo) {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
627 mt->surf.size,
628 isl_tiling_to_i915_tiling(
629 mt->surf.tiling),
630 mt->surf.row_pitch, alloc_flags);
631 if (!mt->bo)
632 goto fail;
633 } else {
634 mt->bo = bo;
635 }
636
637 mt->first_level = first_level;
638 mt->last_level = last_level;
639 mt->target = target;
640 mt->format = format;
641 mt->aux_state = NULL;
642 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
643 mt->compressed = _mesa_is_format_compressed(format);
644 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
645
646 return mt;
647
648 fail:
649 intel_miptree_release(&mt);
650 return NULL;
651 }
652
653 static bool
654 make_separate_stencil_surface(struct brw_context *brw,
655 struct intel_mipmap_tree *mt)
656 {
657 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
658 0, mt->surf.levels - 1,
659 mt->surf.logical_level0_px.width,
660 mt->surf.logical_level0_px.height,
661 mt->surf.dim == ISL_SURF_DIM_3D ?
662 mt->surf.logical_level0_px.depth :
663 mt->surf.logical_level0_px.array_len,
664 mt->surf.samples, ISL_TILING_W_BIT,
665 ISL_SURF_USAGE_STENCIL_BIT |
666 ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_BUSY, 0, NULL);
668
669 if (!mt->stencil_mt)
670 return false;
671
672 mt->stencil_mt->r8stencil_needs_update = true;
673
674 return true;
675 }
676
677 static struct intel_mipmap_tree *
678 miptree_create(struct brw_context *brw,
679 GLenum target,
680 mesa_format format,
681 GLuint first_level,
682 GLuint last_level,
683 GLuint width0,
684 GLuint height0,
685 GLuint depth0,
686 GLuint num_samples,
687 enum intel_miptree_create_flags flags)
688 {
689 const struct gen_device_info *devinfo = &brw->screen->devinfo;
690
691 if (format == MESA_FORMAT_S_UINT8)
692 return make_surface(brw, target, format, first_level, last_level,
693 width0, height0, depth0, num_samples,
694 ISL_TILING_W_BIT,
695 ISL_SURF_USAGE_STENCIL_BIT |
696 ISL_SURF_USAGE_TEXTURE_BIT,
697 BO_ALLOC_BUSY,
698 0,
699 NULL);
700
701 const GLenum base_format = _mesa_get_format_base_format(format);
702 if ((base_format == GL_DEPTH_COMPONENT ||
703 base_format == GL_DEPTH_STENCIL) &&
704 !(flags & MIPTREE_CREATE_LINEAR)) {
705 /* Fix up the Z miptree format for how we're splitting out separate
706 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
707 */
708 const mesa_format depth_only_format =
709 intel_depth_format_for_depthstencil_format(format);
710 struct intel_mipmap_tree *mt = make_surface(
711 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
712 first_level, last_level,
713 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
714 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
715 BO_ALLOC_BUSY, 0, NULL);
716
717 if (needs_separate_stencil(brw, mt, format) &&
718 !make_separate_stencil_surface(brw, mt)) {
719 intel_miptree_release(&mt);
720 return NULL;
721 }
722
723 if (!(flags & MIPTREE_CREATE_NO_AUX))
724 intel_miptree_choose_aux_usage(brw, mt);
725
726 return mt;
727 }
728
729 mesa_format tex_format = format;
730 mesa_format etc_format = MESA_FORMAT_NONE;
731 uint32_t alloc_flags = 0;
732
733 format = intel_lower_compressed_format(brw, format);
734
735 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
736
737 if (flags & MIPTREE_CREATE_BUSY)
738 alloc_flags |= BO_ALLOC_BUSY;
739
740 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
741 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
742
743 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
744 if (devinfo->gen < 6)
745 tiling_flags &= ~ISL_TILING_Y0_BIT;
746
747 struct intel_mipmap_tree *mt = make_surface(
748 brw, target, format,
749 first_level, last_level,
750 width0, height0, depth0,
751 num_samples, tiling_flags,
752 ISL_SURF_USAGE_RENDER_TARGET_BIT |
753 ISL_SURF_USAGE_TEXTURE_BIT,
754 alloc_flags, 0, NULL);
755 if (!mt)
756 return NULL;
757
758 mt->etc_format = etc_format;
759
760 if (!(flags & MIPTREE_CREATE_NO_AUX))
761 intel_miptree_choose_aux_usage(brw, mt);
762
763 return mt;
764 }
765
766 struct intel_mipmap_tree *
767 intel_miptree_create(struct brw_context *brw,
768 GLenum target,
769 mesa_format format,
770 GLuint first_level,
771 GLuint last_level,
772 GLuint width0,
773 GLuint height0,
774 GLuint depth0,
775 GLuint num_samples,
776 enum intel_miptree_create_flags flags)
777 {
778 assert(num_samples > 0);
779
780 struct intel_mipmap_tree *mt = miptree_create(
781 brw, target, format,
782 first_level, last_level,
783 width0, height0, depth0, num_samples,
784 flags);
785 if (!mt)
786 return NULL;
787
788 mt->offset = 0;
789
790 if (!intel_miptree_alloc_aux(brw, mt)) {
791 intel_miptree_release(&mt);
792 return NULL;
793 }
794
795 return mt;
796 }
797
798 struct intel_mipmap_tree *
799 intel_miptree_create_for_bo(struct brw_context *brw,
800 struct brw_bo *bo,
801 mesa_format format,
802 uint32_t offset,
803 uint32_t width,
804 uint32_t height,
805 uint32_t depth,
806 int pitch,
807 enum isl_tiling tiling,
808 enum intel_miptree_create_flags flags)
809 {
810 const struct gen_device_info *devinfo = &brw->screen->devinfo;
811 struct intel_mipmap_tree *mt;
812 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
813 const GLenum base_format = _mesa_get_format_base_format(format);
814
815 if ((base_format == GL_DEPTH_COMPONENT ||
816 base_format == GL_DEPTH_STENCIL)) {
817 const mesa_format depth_only_format =
818 intel_depth_format_for_depthstencil_format(format);
819 mt = make_surface(brw, target,
820 devinfo->gen >= 6 ? depth_only_format : format,
821 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
822 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
823 0, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828
829 if (!(flags & MIPTREE_CREATE_NO_AUX))
830 intel_miptree_choose_aux_usage(brw, mt);
831
832 return mt;
833 } else if (format == MESA_FORMAT_S_UINT8) {
834 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
835 0, 0, width, height, depth, 1,
836 ISL_TILING_W_BIT,
837 ISL_SURF_USAGE_STENCIL_BIT |
838 ISL_SURF_USAGE_TEXTURE_BIT,
839 0, pitch, bo);
840 if (!mt)
841 return NULL;
842
843 assert(bo->size >= mt->surf.size);
844
845 brw_bo_reference(bo);
846 return mt;
847 }
848
849 /* Nothing will be able to use this miptree with the BO if the offset isn't
850 * aligned.
851 */
852 if (tiling != ISL_TILING_LINEAR)
853 assert(offset % 4096 == 0);
854
855 /* miptrees can't handle negative pitch. If you need flipping of images,
856 * that's outside of the scope of the mt.
857 */
858 assert(pitch >= 0);
859
860 /* The BO already has a tiling format and we shouldn't confuse the lower
861 * layers by making it try to find a tiling format again.
862 */
863 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
864
865 mt = make_surface(brw, target, format,
866 0, 0, width, height, depth, 1,
867 1lu << tiling,
868 ISL_SURF_USAGE_RENDER_TARGET_BIT |
869 ISL_SURF_USAGE_TEXTURE_BIT,
870 0, pitch, bo);
871 if (!mt)
872 return NULL;
873
874 brw_bo_reference(bo);
875 mt->bo = bo;
876 mt->offset = offset;
877
878 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
879 intel_miptree_choose_aux_usage(brw, mt);
880
881 if (!intel_miptree_alloc_aux(brw, mt)) {
882 intel_miptree_release(&mt);
883 return NULL;
884 }
885 }
886
887 return mt;
888 }
889
890 static struct intel_mipmap_tree *
891 miptree_create_for_planar_image(struct brw_context *brw,
892 __DRIimage *image, GLenum target,
893 enum isl_tiling tiling)
894 {
895 const struct intel_image_format *f = image->planar_format;
896 struct intel_mipmap_tree *planar_mt = NULL;
897
898 for (int i = 0; i < f->nplanes; i++) {
899 const int index = f->planes[i].buffer_index;
900 const uint32_t dri_format = f->planes[i].dri_format;
901 const mesa_format format = driImageFormatToGLFormat(dri_format);
902 const uint32_t width = image->width >> f->planes[i].width_shift;
903 const uint32_t height = image->height >> f->planes[i].height_shift;
904
905 /* Disable creation of the texture's aux buffers because the driver
906 * exposes no EGL API to manage them. That is, there is no API for
907 * resolving the aux buffer's content to the main buffer nor for
908 * invalidating the aux buffer's content.
909 */
910 struct intel_mipmap_tree *mt =
911 intel_miptree_create_for_bo(brw, image->bo, format,
912 image->offsets[index],
913 width, height, 1,
914 image->strides[index],
915 tiling,
916 MIPTREE_CREATE_NO_AUX);
917 if (mt == NULL)
918 return NULL;
919
920 mt->target = target;
921
922 if (i == 0)
923 planar_mt = mt;
924 else
925 planar_mt->plane[i - 1] = mt;
926 }
927
928 planar_mt->drm_modifier = image->modifier;
929
930 return planar_mt;
931 }
932
933 static bool
934 create_ccs_buf_for_image(struct brw_context *brw,
935 __DRIimage *image,
936 struct intel_mipmap_tree *mt,
937 enum isl_aux_state initial_state)
938 {
939 struct isl_surf temp_ccs_surf;
940
941 /* CCS is only supported for very simple miptrees */
942 assert(image->aux_offset != 0 && image->aux_pitch != 0);
943 assert(image->tile_x == 0 && image->tile_y == 0);
944 assert(mt->surf.samples == 1);
945 assert(mt->surf.levels == 1);
946 assert(mt->surf.logical_level0_px.depth == 1);
947 assert(mt->surf.logical_level0_px.array_len == 1);
948 assert(mt->first_level == 0);
949 assert(mt->last_level == 0);
950
951 /* We shouldn't already have a CCS */
952 assert(!mt->mcs_buf);
953
954 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
955 image->aux_pitch))
956 return false;
957
958 assert(image->aux_offset < image->bo->size);
959 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
960
961 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
962 if (mt->mcs_buf == NULL)
963 return false;
964
965 mt->aux_state = create_aux_state_map(mt, initial_state);
966 if (!mt->aux_state) {
967 free(mt->mcs_buf);
968 mt->mcs_buf = NULL;
969 return false;
970 }
971
972 mt->mcs_buf->bo = image->bo;
973 brw_bo_reference(image->bo);
974
975 mt->mcs_buf->offset = image->aux_offset;
976 mt->mcs_buf->size = image->bo->size - image->aux_offset;
977 mt->mcs_buf->pitch = image->aux_pitch;
978 mt->mcs_buf->qpitch = 0;
979 mt->mcs_buf->surf = temp_ccs_surf;
980
981 return true;
982 }
983
984 struct intel_mipmap_tree *
985 intel_miptree_create_for_dri_image(struct brw_context *brw,
986 __DRIimage *image, GLenum target,
987 mesa_format format,
988 bool is_winsys_image)
989 {
990 uint32_t bo_tiling, bo_swizzle;
991 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
992
993 const struct isl_drm_modifier_info *mod_info =
994 isl_drm_modifier_get_info(image->modifier);
995
996 const enum isl_tiling tiling =
997 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
998
999 if (image->planar_format && image->planar_format->nplanes > 1)
1000 return miptree_create_for_planar_image(brw, image, target, tiling);
1001
1002 if (image->planar_format)
1003 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1004
1005 if (!brw->ctx.TextureFormatSupported[format]) {
1006 /* The texture storage paths in core Mesa detect if the driver does not
1007 * support the user-requested format, and then searches for a
1008 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1009 * do the fallbacks here for important formats.
1010 *
1011 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1012 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1013 * the Chrome OS compositor consumes as dma_buf EGLImages.
1014 */
1015 format = _mesa_format_fallback_rgbx_to_rgba(format);
1016 }
1017
1018 if (!brw->ctx.TextureFormatSupported[format])
1019 return NULL;
1020
1021 enum intel_miptree_create_flags mt_create_flags = 0;
1022
1023 /* If this image comes in from a window system, we have different
1024 * requirements than if it comes in via an EGL import operation. Window
1025 * system images can use any form of auxiliary compression we wish because
1026 * they get "flushed" before being handed off to the window system and we
1027 * have the opportunity to do resolves. Non window-system images, on the
1028 * other hand, have no resolve point so we can't have aux without a
1029 * modifier.
1030 */
1031 if (!is_winsys_image)
1032 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1033
1034 /* If we have a modifier which specifies aux, don't create one yet */
1035 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1036 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1037
1038 /* Disable creation of the texture's aux buffers because the driver exposes
1039 * no EGL API to manage them. That is, there is no API for resolving the aux
1040 * buffer's content to the main buffer nor for invalidating the aux buffer's
1041 * content.
1042 */
1043 struct intel_mipmap_tree *mt =
1044 intel_miptree_create_for_bo(brw, image->bo, format,
1045 image->offset, image->width, image->height, 1,
1046 image->pitch, tiling, mt_create_flags);
1047 if (mt == NULL)
1048 return NULL;
1049
1050 mt->target = target;
1051 mt->level[0].level_x = image->tile_x;
1052 mt->level[0].level_y = image->tile_y;
1053 mt->drm_modifier = image->modifier;
1054
1055 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1056 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1057 * trouble resolving back to destination image due to alignment issues.
1058 */
1059 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1060 if (!devinfo->has_surface_tile_offset) {
1061 uint32_t draw_x, draw_y;
1062 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1063
1064 if (draw_x != 0 || draw_y != 0) {
1065 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1066 intel_miptree_release(&mt);
1067 return NULL;
1068 }
1069 }
1070
1071 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1072 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1073
1074 mt->aux_usage = mod_info->aux_usage;
1075 /* If we are a window system buffer, then we can support fast-clears
1076 * even if the modifier doesn't support them by doing a partial resolve
1077 * as part of the flush operation.
1078 */
1079 mt->supports_fast_clear =
1080 is_winsys_image || mod_info->supports_clear_color;
1081
1082 /* We don't know the actual state of the surface when we get it but we
1083 * can make a pretty good guess based on the modifier. What we do know
1084 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1085 * a worst case of compression.
1086 */
1087 enum isl_aux_state initial_state =
1088 isl_drm_modifier_get_default_aux_state(image->modifier);
1089
1090 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1091 intel_miptree_release(&mt);
1092 return NULL;
1093 }
1094 }
1095
1096 /* Don't assume coherency for imported EGLimages. We don't know what
1097 * external clients are going to do with it. They may scan it out.
1098 */
1099 image->bo->cache_coherent = false;
1100
1101 return mt;
1102 }
1103
1104 /**
1105 * For a singlesample renderbuffer, this simply wraps the given BO with a
1106 * miptree.
1107 *
1108 * For a multisample renderbuffer, this wraps the window system's
1109 * (singlesample) BO with a singlesample miptree attached to the
1110 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1111 * that will contain the actual rendering (which is lazily resolved to
1112 * irb->singlesample_mt).
1113 */
1114 bool
1115 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1116 struct intel_renderbuffer *irb,
1117 struct intel_mipmap_tree *singlesample_mt,
1118 uint32_t width, uint32_t height,
1119 uint32_t pitch)
1120 {
1121 struct intel_mipmap_tree *multisample_mt = NULL;
1122 struct gl_renderbuffer *rb = &irb->Base.Base;
1123 mesa_format format = rb->Format;
1124 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1125
1126 /* Only the front and back buffers, which are color buffers, are allocated
1127 * through the image loader.
1128 */
1129 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1130 _mesa_get_format_base_format(format) == GL_RGBA);
1131
1132 assert(singlesample_mt);
1133
1134 if (num_samples == 1) {
1135 intel_miptree_release(&irb->mt);
1136 irb->mt = singlesample_mt;
1137
1138 assert(!irb->singlesample_mt);
1139 } else {
1140 intel_miptree_release(&irb->singlesample_mt);
1141 irb->singlesample_mt = singlesample_mt;
1142
1143 if (!irb->mt ||
1144 irb->mt->surf.logical_level0_px.width != width ||
1145 irb->mt->surf.logical_level0_px.height != height) {
1146 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1147 format,
1148 width,
1149 height,
1150 num_samples);
1151 if (!multisample_mt)
1152 goto fail;
1153
1154 irb->need_downsample = false;
1155 intel_miptree_release(&irb->mt);
1156 irb->mt = multisample_mt;
1157 }
1158 }
1159 return true;
1160
1161 fail:
1162 intel_miptree_release(&irb->mt);
1163 return false;
1164 }
1165
1166 struct intel_mipmap_tree*
1167 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1168 mesa_format format,
1169 uint32_t width,
1170 uint32_t height,
1171 uint32_t num_samples)
1172 {
1173 struct intel_mipmap_tree *mt;
1174 uint32_t depth = 1;
1175 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1176
1177 mt = intel_miptree_create(brw, target, format, 0, 0,
1178 width, height, depth, num_samples,
1179 MIPTREE_CREATE_BUSY);
1180 if (!mt)
1181 goto fail;
1182
1183 return mt;
1184
1185 fail:
1186 intel_miptree_release(&mt);
1187 return NULL;
1188 }
1189
1190 void
1191 intel_miptree_reference(struct intel_mipmap_tree **dst,
1192 struct intel_mipmap_tree *src)
1193 {
1194 if (*dst == src)
1195 return;
1196
1197 intel_miptree_release(dst);
1198
1199 if (src) {
1200 src->refcount++;
1201 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1202 }
1203
1204 *dst = src;
1205 }
1206
1207 static void
1208 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1209 {
1210 if (aux_buf == NULL)
1211 return;
1212
1213 brw_bo_unreference(aux_buf->bo);
1214 brw_bo_unreference(aux_buf->clear_color_bo);
1215
1216 free(aux_buf);
1217 }
1218
1219 void
1220 intel_miptree_release(struct intel_mipmap_tree **mt)
1221 {
1222 if (!*mt)
1223 return;
1224
1225 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1226 if (--(*mt)->refcount <= 0) {
1227 GLuint i;
1228
1229 DBG("%s deleting %p\n", __func__, *mt);
1230
1231 brw_bo_unreference((*mt)->bo);
1232 intel_miptree_release(&(*mt)->stencil_mt);
1233 intel_miptree_release(&(*mt)->r8stencil_mt);
1234 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1235 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1236 free_aux_state_map((*mt)->aux_state);
1237
1238 intel_miptree_release(&(*mt)->plane[0]);
1239 intel_miptree_release(&(*mt)->plane[1]);
1240
1241 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1242 free((*mt)->level[i].slice);
1243 }
1244
1245 free(*mt);
1246 }
1247 *mt = NULL;
1248 }
1249
1250
1251 void
1252 intel_get_image_dims(struct gl_texture_image *image,
1253 int *width, int *height, int *depth)
1254 {
1255 switch (image->TexObject->Target) {
1256 case GL_TEXTURE_1D_ARRAY:
1257 /* For a 1D Array texture the OpenGL API will treat the image height as
1258 * the number of array slices. For Intel hardware, we treat the 1D array
1259 * as a 2D Array with a height of 1. So, here we want to swap image
1260 * height and depth.
1261 */
1262 assert(image->Depth == 1);
1263 *width = image->Width;
1264 *height = 1;
1265 *depth = image->Height;
1266 break;
1267 case GL_TEXTURE_CUBE_MAP:
1268 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1269 * though we really have 6 slices.
1270 */
1271 assert(image->Depth == 1);
1272 *width = image->Width;
1273 *height = image->Height;
1274 *depth = 6;
1275 break;
1276 default:
1277 *width = image->Width;
1278 *height = image->Height;
1279 *depth = image->Depth;
1280 break;
1281 }
1282 }
1283
1284 /**
1285 * Can the image be pulled into a unified mipmap tree? This mirrors
1286 * the completeness test in a lot of ways.
1287 *
1288 * Not sure whether I want to pass gl_texture_image here.
1289 */
1290 bool
1291 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1292 struct gl_texture_image *image)
1293 {
1294 struct intel_texture_image *intelImage = intel_texture_image(image);
1295 GLuint level = intelImage->base.Base.Level;
1296 int width, height, depth;
1297
1298 /* glTexImage* choose the texture object based on the target passed in, and
1299 * objects can't change targets over their lifetimes, so this should be
1300 * true.
1301 */
1302 assert(image->TexObject->Target == mt->target);
1303
1304 mesa_format mt_format = mt->format;
1305 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1306 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1307 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1308 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1309 if (mt->etc_format != MESA_FORMAT_NONE)
1310 mt_format = mt->etc_format;
1311
1312 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1313 _mesa_get_srgb_format_linear(mt_format))
1314 return false;
1315
1316 intel_get_image_dims(image, &width, &height, &depth);
1317
1318 if (mt->target == GL_TEXTURE_CUBE_MAP)
1319 depth = 6;
1320
1321 if (level >= mt->surf.levels)
1322 return false;
1323
1324 const unsigned level_depth =
1325 mt->surf.dim == ISL_SURF_DIM_3D ?
1326 minify(mt->surf.logical_level0_px.depth, level) :
1327 mt->surf.logical_level0_px.array_len;
1328
1329 return width == minify(mt->surf.logical_level0_px.width, level) &&
1330 height == minify(mt->surf.logical_level0_px.height, level) &&
1331 depth == level_depth &&
1332 MAX2(image->NumSamples, 1) == mt->surf.samples;
1333 }
1334
1335 void
1336 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1337 GLuint level, GLuint slice,
1338 GLuint *x, GLuint *y)
1339 {
1340 if (level == 0 && slice == 0) {
1341 *x = mt->level[0].level_x;
1342 *y = mt->level[0].level_y;
1343 return;
1344 }
1345
1346 uint32_t x_offset_sa, y_offset_sa;
1347
1348 /* Miptree itself can have an offset only if it represents a single
1349 * slice in an imported buffer object.
1350 * See intel_miptree_create_for_dri_image().
1351 */
1352 assert(mt->level[0].level_x == 0);
1353 assert(mt->level[0].level_y == 0);
1354
1355 /* Given level is relative to level zero while the miptree may be
1356 * represent just a subset of all levels starting from 'first_level'.
1357 */
1358 assert(level >= mt->first_level);
1359 level -= mt->first_level;
1360
1361 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1362 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1363 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1364 &x_offset_sa, &y_offset_sa);
1365
1366 *x = x_offset_sa;
1367 *y = y_offset_sa;
1368 }
1369
1370
1371 /**
1372 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1373 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1374 * and tile_h is set to 1.
1375 */
1376 void
1377 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1378 uint32_t *tile_w, uint32_t *tile_h)
1379 {
1380 switch (tiling) {
1381 case ISL_TILING_X:
1382 *tile_w = 512;
1383 *tile_h = 8;
1384 break;
1385 case ISL_TILING_Y0:
1386 *tile_w = 128;
1387 *tile_h = 32;
1388 break;
1389 case ISL_TILING_LINEAR:
1390 *tile_w = cpp;
1391 *tile_h = 1;
1392 break;
1393 default:
1394 unreachable("not reached");
1395 }
1396 }
1397
1398
1399 /**
1400 * This function computes masks that may be used to select the bits of the X
1401 * and Y coordinates that indicate the offset within a tile. If the BO is
1402 * untiled, the masks are set to 0.
1403 */
1404 void
1405 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1406 uint32_t *mask_x, uint32_t *mask_y)
1407 {
1408 uint32_t tile_w_bytes, tile_h;
1409
1410 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1411
1412 *mask_x = tile_w_bytes / cpp - 1;
1413 *mask_y = tile_h - 1;
1414 }
1415
1416 /**
1417 * Compute the offset (in bytes) from the start of the BO to the given x
1418 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1419 * multiples of the tile size.
1420 */
1421 uint32_t
1422 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1423 uint32_t x, uint32_t y)
1424 {
1425 int cpp = mt->cpp;
1426 uint32_t pitch = mt->surf.row_pitch;
1427
1428 switch (mt->surf.tiling) {
1429 default:
1430 unreachable("not reached");
1431 case ISL_TILING_LINEAR:
1432 return y * pitch + x * cpp;
1433 case ISL_TILING_X:
1434 assert((x % (512 / cpp)) == 0);
1435 assert((y % 8) == 0);
1436 return y * pitch + x / (512 / cpp) * 4096;
1437 case ISL_TILING_Y0:
1438 assert((x % (128 / cpp)) == 0);
1439 assert((y % 32) == 0);
1440 return y * pitch + x / (128 / cpp) * 4096;
1441 }
1442 }
1443
1444 /**
1445 * Rendering with tiled buffers requires that the base address of the buffer
1446 * be aligned to a page boundary. For renderbuffers, and sometimes with
1447 * textures, we may want the surface to point at a texture image level that
1448 * isn't at a page boundary.
1449 *
1450 * This function returns an appropriately-aligned base offset
1451 * according to the tiling restrictions, plus any required x/y offset
1452 * from there.
1453 */
1454 uint32_t
1455 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1456 GLuint level, GLuint slice,
1457 uint32_t *tile_x,
1458 uint32_t *tile_y)
1459 {
1460 uint32_t x, y;
1461 uint32_t mask_x, mask_y;
1462
1463 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1464 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1465
1466 *tile_x = x & mask_x;
1467 *tile_y = y & mask_y;
1468
1469 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1470 }
1471
1472 static void
1473 intel_miptree_copy_slice_sw(struct brw_context *brw,
1474 struct intel_mipmap_tree *src_mt,
1475 unsigned src_level, unsigned src_layer,
1476 struct intel_mipmap_tree *dst_mt,
1477 unsigned dst_level, unsigned dst_layer,
1478 unsigned width, unsigned height)
1479 {
1480 void *src, *dst;
1481 ptrdiff_t src_stride, dst_stride;
1482 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1483
1484 intel_miptree_map(brw, src_mt,
1485 src_level, src_layer,
1486 0, 0,
1487 width, height,
1488 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1489 &src, &src_stride);
1490
1491 intel_miptree_map(brw, dst_mt,
1492 dst_level, dst_layer,
1493 0, 0,
1494 width, height,
1495 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1496 BRW_MAP_DIRECT_BIT,
1497 &dst, &dst_stride);
1498
1499 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1500 _mesa_get_format_name(src_mt->format),
1501 src_mt, src, src_stride,
1502 _mesa_get_format_name(dst_mt->format),
1503 dst_mt, dst, dst_stride,
1504 width, height);
1505
1506 int row_size = cpp * width;
1507 if (src_stride == row_size &&
1508 dst_stride == row_size) {
1509 memcpy(dst, src, row_size * height);
1510 } else {
1511 for (int i = 0; i < height; i++) {
1512 memcpy(dst, src, row_size);
1513 dst += dst_stride;
1514 src += src_stride;
1515 }
1516 }
1517
1518 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1519 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1520
1521 /* Don't forget to copy the stencil data over, too. We could have skipped
1522 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1523 * shuffling the two data sources in/out of temporary storage instead of
1524 * the direct mapping we get this way.
1525 */
1526 if (dst_mt->stencil_mt) {
1527 assert(src_mt->stencil_mt);
1528 intel_miptree_copy_slice_sw(brw,
1529 src_mt->stencil_mt, src_level, src_layer,
1530 dst_mt->stencil_mt, dst_level, dst_layer,
1531 width, height);
1532 }
1533 }
1534
1535 void
1536 intel_miptree_copy_slice(struct brw_context *brw,
1537 struct intel_mipmap_tree *src_mt,
1538 unsigned src_level, unsigned src_layer,
1539 struct intel_mipmap_tree *dst_mt,
1540 unsigned dst_level, unsigned dst_layer)
1541
1542 {
1543 mesa_format format = src_mt->format;
1544 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1545 src_level - src_mt->first_level);
1546 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1547 src_level - src_mt->first_level);
1548
1549 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1550 src_level - src_mt->first_level));
1551
1552 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1553 _mesa_get_srgb_format_linear(dst_mt->format));
1554
1555 if (dst_mt->compressed) {
1556 unsigned int i, j;
1557 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1558 height = ALIGN_NPOT(height, j) / j;
1559 width = ALIGN_NPOT(width, i) / i;
1560 }
1561
1562 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1563 * below won't apply since we can't do the depth's Y tiling or the
1564 * stencil's W tiling in the blitter.
1565 */
1566 if (src_mt->stencil_mt) {
1567 intel_miptree_copy_slice_sw(brw,
1568 src_mt, src_level, src_layer,
1569 dst_mt, dst_level, dst_layer,
1570 width, height);
1571 return;
1572 }
1573
1574 uint32_t dst_x, dst_y, src_x, src_y;
1575 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1576 &dst_x, &dst_y);
1577 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1578 &src_x, &src_y);
1579
1580 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1581 _mesa_get_format_name(src_mt->format),
1582 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1583 _mesa_get_format_name(dst_mt->format),
1584 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1585 width, height);
1586
1587 if (!intel_miptree_blit(brw,
1588 src_mt, src_level, src_layer, 0, 0, false,
1589 dst_mt, dst_level, dst_layer, 0, 0, false,
1590 width, height, COLOR_LOGICOP_COPY)) {
1591 perf_debug("miptree validate blit for %s failed\n",
1592 _mesa_get_format_name(format));
1593
1594 intel_miptree_copy_slice_sw(brw,
1595 src_mt, src_level, src_layer,
1596 dst_mt, dst_level, dst_layer,
1597 width, height);
1598 }
1599 }
1600
1601 /**
1602 * Copies the image's current data to the given miptree, and associates that
1603 * miptree with the image.
1604 */
1605 void
1606 intel_miptree_copy_teximage(struct brw_context *brw,
1607 struct intel_texture_image *intelImage,
1608 struct intel_mipmap_tree *dst_mt)
1609 {
1610 struct intel_mipmap_tree *src_mt = intelImage->mt;
1611 struct intel_texture_object *intel_obj =
1612 intel_texture_object(intelImage->base.Base.TexObject);
1613 int level = intelImage->base.Base.Level;
1614 const unsigned face = intelImage->base.Base.Face;
1615 unsigned start_layer, end_layer;
1616
1617 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1618 assert(face == 0);
1619 assert(intelImage->base.Base.Height);
1620 start_layer = 0;
1621 end_layer = intelImage->base.Base.Height - 1;
1622 } else if (face > 0) {
1623 start_layer = face;
1624 end_layer = face;
1625 } else {
1626 assert(intelImage->base.Base.Depth);
1627 start_layer = 0;
1628 end_layer = intelImage->base.Base.Depth - 1;
1629 }
1630
1631 for (unsigned i = start_layer; i <= end_layer; i++) {
1632 intel_miptree_copy_slice(brw,
1633 src_mt, level, i,
1634 dst_mt, level, i);
1635 }
1636
1637 intel_miptree_reference(&intelImage->mt, dst_mt);
1638 intel_obj->needs_validate = true;
1639 }
1640
1641 static void
1642 intel_miptree_init_mcs(struct brw_context *brw,
1643 struct intel_mipmap_tree *mt,
1644 int init_value)
1645 {
1646 assert(mt->mcs_buf != NULL);
1647
1648 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1649 *
1650 * When MCS buffer is enabled and bound to MSRT, it is required that it
1651 * is cleared prior to any rendering.
1652 *
1653 * Since we don't use the MCS buffer for any purpose other than rendering,
1654 * it makes sense to just clear it immediately upon allocation.
1655 *
1656 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1657 */
1658 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE | MAP_RAW);
1659 if (unlikely(map == NULL)) {
1660 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1661 brw_bo_unreference(mt->mcs_buf->bo);
1662 free(mt->mcs_buf);
1663 return;
1664 }
1665 void *data = map;
1666 memset(data, init_value, mt->mcs_buf->size);
1667 brw_bo_unmap(mt->mcs_buf->bo);
1668 }
1669
1670 static struct intel_miptree_aux_buffer *
1671 intel_alloc_aux_buffer(struct brw_context *brw,
1672 const char *name,
1673 const struct isl_surf *aux_surf,
1674 uint32_t alloc_flags,
1675 struct intel_mipmap_tree *mt)
1676 {
1677 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1678 if (!buf)
1679 return false;
1680
1681 buf->size = aux_surf->size;
1682
1683 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1684 if (devinfo->gen >= 10) {
1685 /* On CNL, instead of setting the clear color in the SURFACE_STATE, we
1686 * will set a pointer to a dword somewhere that contains the color. So,
1687 * allocate the space for the clear color value here on the aux buffer.
1688 */
1689 buf->clear_color_offset = buf->size;
1690 buf->size += brw->isl_dev.ss.clear_color_state_size;
1691 }
1692
1693 buf->pitch = aux_surf->row_pitch;
1694 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1695
1696 /* ISL has stricter set of alignment rules then the drm allocator.
1697 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1698 * trying to recalculate based on different format block sizes.
1699 */
1700 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1701 I915_TILING_Y, buf->pitch, alloc_flags);
1702 if (!buf->bo) {
1703 free(buf);
1704 return NULL;
1705 }
1706
1707 if (devinfo->gen >= 10) {
1708 buf->clear_color_bo = buf->bo;
1709 brw_bo_reference(buf->clear_color_bo);
1710 }
1711
1712 buf->surf = *aux_surf;
1713
1714 return buf;
1715 }
1716
1717 static bool
1718 intel_miptree_alloc_mcs(struct brw_context *brw,
1719 struct intel_mipmap_tree *mt,
1720 GLuint num_samples)
1721 {
1722 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1723 assert(mt->mcs_buf == NULL);
1724 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1725
1726 /* Multisampled miptrees are only supported for single level. */
1727 assert(mt->first_level == 0);
1728 enum isl_aux_state **aux_state =
1729 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1730 if (!aux_state)
1731 return false;
1732
1733 struct isl_surf temp_mcs_surf;
1734
1735 MAYBE_UNUSED bool ok =
1736 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1737 assert(ok);
1738
1739 /* Buffer needs to be initialised requiring the buffer to be immediately
1740 * mapped to cpu space for writing. Therefore do not use the gpu access
1741 * flag which can cause an unnecessary delay if the backing pages happened
1742 * to be just used by the GPU.
1743 */
1744 const uint32_t alloc_flags = 0;
1745 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1746 &temp_mcs_surf, alloc_flags, mt);
1747 if (!mt->mcs_buf) {
1748 free(aux_state);
1749 return false;
1750 }
1751
1752 mt->aux_state = aux_state;
1753
1754 intel_miptree_init_mcs(brw, mt, 0xFF);
1755
1756 return true;
1757 }
1758
1759 bool
1760 intel_miptree_alloc_ccs(struct brw_context *brw,
1761 struct intel_mipmap_tree *mt)
1762 {
1763 assert(mt->mcs_buf == NULL);
1764 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1765 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1766
1767 struct isl_surf temp_ccs_surf;
1768
1769 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1770 return false;
1771
1772 assert(temp_ccs_surf.size &&
1773 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1774
1775 enum isl_aux_state **aux_state =
1776 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1777 if (!aux_state)
1778 return false;
1779
1780 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1781 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1782 *
1783 * "If Software wants to enable Color Compression without Fast clear,
1784 * Software needs to initialize MCS with zeros."
1785 *
1786 * A CCS value of 0 indicates that the corresponding block is in the
1787 * pass-through state which is what we want.
1788 *
1789 * For CCS_D, on the other hand, we don't care as we're about to perform a
1790 * fast-clear operation. In that case, being hot in caches more useful.
1791 */
1792 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1793 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1794 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1795 &temp_ccs_surf, alloc_flags, mt);
1796 if (!mt->mcs_buf) {
1797 free(aux_state);
1798 return false;
1799 }
1800
1801 mt->aux_state = aux_state;
1802
1803 return true;
1804 }
1805
1806 /**
1807 * Helper for intel_miptree_alloc_hiz() that sets
1808 * \c mt->level[level].has_hiz. Return true if and only if
1809 * \c has_hiz was set.
1810 */
1811 static bool
1812 intel_miptree_level_enable_hiz(struct brw_context *brw,
1813 struct intel_mipmap_tree *mt,
1814 uint32_t level)
1815 {
1816 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1817
1818 assert(mt->hiz_buf);
1819 assert(mt->surf.size > 0);
1820
1821 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1822 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1823 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1824
1825 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1826 * and the height is 4 aligned. This allows our HiZ support
1827 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1828 * we can grow the width & height to allow the HiZ op to
1829 * force the proper size alignments.
1830 */
1831 if (level > 0 && ((width & 7) || (height & 3))) {
1832 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1833 return false;
1834 }
1835 }
1836
1837 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1838 mt->level[level].has_hiz = true;
1839 return true;
1840 }
1841
1842 bool
1843 intel_miptree_alloc_hiz(struct brw_context *brw,
1844 struct intel_mipmap_tree *mt)
1845 {
1846 assert(mt->hiz_buf == NULL);
1847 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1848
1849 enum isl_aux_state **aux_state =
1850 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1851 if (!aux_state)
1852 return false;
1853
1854 struct isl_surf temp_hiz_surf;
1855
1856 MAYBE_UNUSED bool ok =
1857 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1858 assert(ok);
1859
1860 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1861 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1862 &temp_hiz_surf, alloc_flags, mt);
1863
1864 if (!mt->hiz_buf) {
1865 free(aux_state);
1866 return false;
1867 }
1868
1869 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1870 intel_miptree_level_enable_hiz(brw, mt, level);
1871
1872 mt->aux_state = aux_state;
1873
1874 return true;
1875 }
1876
1877
1878 /**
1879 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1880 *
1881 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1882 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1883 * compress clear color so we wait until an actual fast-clear to allocate it.
1884 */
1885 static bool
1886 intel_miptree_alloc_aux(struct brw_context *brw,
1887 struct intel_mipmap_tree *mt)
1888 {
1889 switch (mt->aux_usage) {
1890 case ISL_AUX_USAGE_NONE:
1891 return true;
1892
1893 case ISL_AUX_USAGE_HIZ:
1894 assert(!_mesa_is_format_color_format(mt->format));
1895 if (!intel_miptree_alloc_hiz(brw, mt))
1896 return false;
1897 return true;
1898
1899 case ISL_AUX_USAGE_MCS:
1900 assert(_mesa_is_format_color_format(mt->format));
1901 assert(mt->surf.samples > 1);
1902 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1903 return false;
1904 return true;
1905
1906 case ISL_AUX_USAGE_CCS_D:
1907 /* Since CCS_D can only compress clear color so we wait until an actual
1908 * fast-clear to allocate it.
1909 */
1910 return true;
1911
1912 case ISL_AUX_USAGE_CCS_E:
1913 assert(_mesa_is_format_color_format(mt->format));
1914 assert(mt->surf.samples == 1);
1915 if (!intel_miptree_alloc_ccs(brw, mt))
1916 return false;
1917 return true;
1918 }
1919
1920 unreachable("Invalid aux usage");
1921 }
1922
1923
1924 /**
1925 * Can the miptree sample using the hiz buffer?
1926 */
1927 bool
1928 intel_miptree_sample_with_hiz(struct brw_context *brw,
1929 struct intel_mipmap_tree *mt)
1930 {
1931 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1932
1933 if (!devinfo->has_sample_with_hiz) {
1934 return false;
1935 }
1936
1937 if (!mt->hiz_buf) {
1938 return false;
1939 }
1940
1941 /* It seems the hardware won't fallback to the depth buffer if some of the
1942 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1943 * of the texture to be HiZ enabled.
1944 */
1945 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1946 if (!intel_miptree_level_has_hiz(mt, level))
1947 return false;
1948 }
1949
1950 /* If compressed multisampling is enabled, then we use it for the auxiliary
1951 * buffer instead.
1952 *
1953 * From the BDW PRM (Volume 2d: Command Reference: Structures
1954 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1955 *
1956 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1957 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1958 *
1959 * There is no such blurb for 1D textures, but there is sufficient evidence
1960 * that this is broken on SKL+.
1961 */
1962 return (mt->surf.samples == 1 &&
1963 mt->target != GL_TEXTURE_3D &&
1964 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1965 }
1966
1967 /**
1968 * Does the miptree slice have hiz enabled?
1969 */
1970 bool
1971 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1972 {
1973 intel_miptree_check_level_layer(mt, level, 0);
1974 return mt->level[level].has_hiz;
1975 }
1976
1977 static inline uint32_t
1978 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1979 uint32_t start_level, uint32_t num_levels)
1980 {
1981 assert(start_level >= mt->first_level);
1982 assert(start_level <= mt->last_level);
1983
1984 if (num_levels == INTEL_REMAINING_LAYERS)
1985 num_levels = mt->last_level - start_level + 1;
1986 /* Check for overflow */
1987 assert(start_level + num_levels >= start_level);
1988 assert(start_level + num_levels <= mt->last_level + 1);
1989
1990 return num_levels;
1991 }
1992
1993 static inline uint32_t
1994 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1995 uint32_t start_layer, uint32_t num_layers)
1996 {
1997 assert(level <= mt->last_level);
1998
1999 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2000 assert(start_layer < total_num_layers);
2001 if (num_layers == INTEL_REMAINING_LAYERS)
2002 num_layers = total_num_layers - start_layer;
2003 /* Check for overflow */
2004 assert(start_layer + num_layers >= start_layer);
2005 assert(start_layer + num_layers <= total_num_layers);
2006
2007 return num_layers;
2008 }
2009
2010 bool
2011 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2012 unsigned start_level, unsigned num_levels,
2013 unsigned start_layer, unsigned num_layers)
2014 {
2015 assert(_mesa_is_format_color_format(mt->format));
2016
2017 if (!mt->mcs_buf)
2018 return false;
2019
2020 /* Clamp the level range to fit the miptree */
2021 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2022
2023 for (uint32_t l = 0; l < num_levels; l++) {
2024 const uint32_t level = start_level + l;
2025 const uint32_t level_layers =
2026 miptree_layer_range_length(mt, level, start_layer, num_layers);
2027 for (unsigned a = 0; a < level_layers; a++) {
2028 enum isl_aux_state aux_state =
2029 intel_miptree_get_aux_state(mt, level, start_layer + a);
2030 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2031 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2032 return true;
2033 }
2034 }
2035
2036 return false;
2037 }
2038
2039 static void
2040 intel_miptree_check_color_resolve(const struct brw_context *brw,
2041 const struct intel_mipmap_tree *mt,
2042 unsigned level, unsigned layer)
2043 {
2044 if (!mt->mcs_buf)
2045 return;
2046
2047 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2048 assert(brw->screen->devinfo.gen >= 8 ||
2049 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2050
2051 /* Compression of arrayed msaa surfaces is supported. */
2052 if (mt->surf.samples > 1)
2053 return;
2054
2055 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2056 assert(brw->screen->devinfo.gen >= 8 ||
2057 (layer == 0 &&
2058 mt->surf.logical_level0_px.depth == 1 &&
2059 mt->surf.logical_level0_px.array_len == 1));
2060
2061 (void)level;
2062 (void)layer;
2063 }
2064
2065 static enum isl_aux_op
2066 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2067 enum isl_aux_usage aux_usage,
2068 bool fast_clear_supported)
2069 {
2070 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2071
2072 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2073
2074 assert(ccs_supported == fast_clear_supported);
2075
2076 switch (aux_state) {
2077 case ISL_AUX_STATE_CLEAR:
2078 case ISL_AUX_STATE_PARTIAL_CLEAR:
2079 if (!ccs_supported)
2080 return ISL_AUX_OP_FULL_RESOLVE;
2081 else
2082 return ISL_AUX_OP_NONE;
2083
2084 case ISL_AUX_STATE_PASS_THROUGH:
2085 return ISL_AUX_OP_NONE;
2086
2087 case ISL_AUX_STATE_RESOLVED:
2088 case ISL_AUX_STATE_AUX_INVALID:
2089 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2090 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2091 break;
2092 }
2093
2094 unreachable("Invalid aux state for CCS_D");
2095 }
2096
2097 static enum isl_aux_op
2098 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2099 enum isl_aux_usage aux_usage,
2100 bool fast_clear_supported)
2101 {
2102 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2103 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2104 aux_usage == ISL_AUX_USAGE_CCS_D ||
2105 aux_usage == ISL_AUX_USAGE_CCS_E);
2106
2107 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2108 assert(fast_clear_supported);
2109
2110 switch (aux_state) {
2111 case ISL_AUX_STATE_CLEAR:
2112 case ISL_AUX_STATE_PARTIAL_CLEAR:
2113 if (fast_clear_supported)
2114 return ISL_AUX_OP_NONE;
2115 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2116 return ISL_AUX_OP_PARTIAL_RESOLVE;
2117 else
2118 return ISL_AUX_OP_FULL_RESOLVE;
2119
2120 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2121 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2122 return ISL_AUX_OP_FULL_RESOLVE;
2123 else if (!fast_clear_supported)
2124 return ISL_AUX_OP_PARTIAL_RESOLVE;
2125 else
2126 return ISL_AUX_OP_NONE;
2127
2128 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2129 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2130 return ISL_AUX_OP_FULL_RESOLVE;
2131 else
2132 return ISL_AUX_OP_NONE;
2133
2134 case ISL_AUX_STATE_PASS_THROUGH:
2135 return ISL_AUX_OP_NONE;
2136
2137 case ISL_AUX_STATE_RESOLVED:
2138 case ISL_AUX_STATE_AUX_INVALID:
2139 break;
2140 }
2141
2142 unreachable("Invalid aux state for CCS_E");
2143 }
2144
2145 static void
2146 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2147 struct intel_mipmap_tree *mt,
2148 uint32_t level, uint32_t layer,
2149 enum isl_aux_usage aux_usage,
2150 bool fast_clear_supported)
2151 {
2152 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2153
2154 enum isl_aux_op resolve_op;
2155 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2156 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2157 fast_clear_supported);
2158 } else {
2159 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2160 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2161 fast_clear_supported);
2162 }
2163
2164 if (resolve_op != ISL_AUX_OP_NONE) {
2165 intel_miptree_check_color_resolve(brw, mt, level, layer);
2166 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2167
2168 switch (resolve_op) {
2169 case ISL_AUX_OP_FULL_RESOLVE:
2170 /* The CCS full resolve operation destroys the CCS and sets it to the
2171 * pass-through state. (You can also think of this as being both a
2172 * resolve and an ambiguate in one operation.)
2173 */
2174 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2175 ISL_AUX_STATE_PASS_THROUGH);
2176 break;
2177
2178 case ISL_AUX_OP_PARTIAL_RESOLVE:
2179 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2180 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2181 break;
2182
2183 default:
2184 unreachable("Invalid resolve op");
2185 }
2186 }
2187 }
2188
2189 static void
2190 intel_miptree_finish_ccs_write(struct brw_context *brw,
2191 struct intel_mipmap_tree *mt,
2192 uint32_t level, uint32_t layer,
2193 enum isl_aux_usage aux_usage)
2194 {
2195 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2196 aux_usage == ISL_AUX_USAGE_CCS_D ||
2197 aux_usage == ISL_AUX_USAGE_CCS_E);
2198
2199 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2200
2201 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2202 switch (aux_state) {
2203 case ISL_AUX_STATE_CLEAR:
2204 case ISL_AUX_STATE_PARTIAL_CLEAR:
2205 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2206 aux_usage == ISL_AUX_USAGE_CCS_D);
2207
2208 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2209 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2210 ISL_AUX_STATE_COMPRESSED_CLEAR);
2211 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2212 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2213 ISL_AUX_STATE_PARTIAL_CLEAR);
2214 }
2215 break;
2216
2217 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2218 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2219 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2220 break; /* Nothing to do */
2221
2222 case ISL_AUX_STATE_PASS_THROUGH:
2223 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2224 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2225 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2226 } else {
2227 /* Nothing to do */
2228 }
2229 break;
2230
2231 case ISL_AUX_STATE_RESOLVED:
2232 case ISL_AUX_STATE_AUX_INVALID:
2233 unreachable("Invalid aux state for CCS_E");
2234 }
2235 } else {
2236 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2237 /* CCS_D is a bit simpler */
2238 switch (aux_state) {
2239 case ISL_AUX_STATE_CLEAR:
2240 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2241 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2242 ISL_AUX_STATE_PARTIAL_CLEAR);
2243 break;
2244
2245 case ISL_AUX_STATE_PARTIAL_CLEAR:
2246 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2247 break; /* Nothing to do */
2248
2249 case ISL_AUX_STATE_PASS_THROUGH:
2250 /* Nothing to do */
2251 break;
2252
2253 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2254 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2255 case ISL_AUX_STATE_RESOLVED:
2256 case ISL_AUX_STATE_AUX_INVALID:
2257 unreachable("Invalid aux state for CCS_D");
2258 }
2259 }
2260 }
2261
2262 static void
2263 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2264 struct intel_mipmap_tree *mt,
2265 uint32_t layer,
2266 enum isl_aux_usage aux_usage,
2267 bool fast_clear_supported)
2268 {
2269 assert(aux_usage == ISL_AUX_USAGE_MCS);
2270
2271 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2272 case ISL_AUX_STATE_CLEAR:
2273 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2274 if (!fast_clear_supported) {
2275 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2276 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2277 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2278 }
2279 break;
2280
2281 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2282 break; /* Nothing to do */
2283
2284 case ISL_AUX_STATE_RESOLVED:
2285 case ISL_AUX_STATE_PASS_THROUGH:
2286 case ISL_AUX_STATE_AUX_INVALID:
2287 case ISL_AUX_STATE_PARTIAL_CLEAR:
2288 unreachable("Invalid aux state for MCS");
2289 }
2290 }
2291
2292 static void
2293 intel_miptree_finish_mcs_write(struct brw_context *brw,
2294 struct intel_mipmap_tree *mt,
2295 uint32_t layer,
2296 enum isl_aux_usage aux_usage)
2297 {
2298 assert(aux_usage == ISL_AUX_USAGE_MCS);
2299
2300 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2301 case ISL_AUX_STATE_CLEAR:
2302 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2303 ISL_AUX_STATE_COMPRESSED_CLEAR);
2304 break;
2305
2306 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2307 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2308 break; /* Nothing to do */
2309
2310 case ISL_AUX_STATE_RESOLVED:
2311 case ISL_AUX_STATE_PASS_THROUGH:
2312 case ISL_AUX_STATE_AUX_INVALID:
2313 case ISL_AUX_STATE_PARTIAL_CLEAR:
2314 unreachable("Invalid aux state for MCS");
2315 }
2316 }
2317
2318 static void
2319 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2320 struct intel_mipmap_tree *mt,
2321 uint32_t level, uint32_t layer,
2322 enum isl_aux_usage aux_usage,
2323 bool fast_clear_supported)
2324 {
2325 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2326
2327 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2328 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2329 case ISL_AUX_STATE_CLEAR:
2330 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2331 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2332 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2333 break;
2334
2335 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2336 if (aux_usage != ISL_AUX_USAGE_HIZ)
2337 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2338 break;
2339
2340 case ISL_AUX_STATE_PASS_THROUGH:
2341 case ISL_AUX_STATE_RESOLVED:
2342 break;
2343
2344 case ISL_AUX_STATE_AUX_INVALID:
2345 if (aux_usage == ISL_AUX_USAGE_HIZ)
2346 hiz_op = ISL_AUX_OP_AMBIGUATE;
2347 break;
2348
2349 case ISL_AUX_STATE_PARTIAL_CLEAR:
2350 unreachable("Invalid HiZ state");
2351 }
2352
2353 if (hiz_op != ISL_AUX_OP_NONE) {
2354 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2355
2356 switch (hiz_op) {
2357 case ISL_AUX_OP_FULL_RESOLVE:
2358 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2359 ISL_AUX_STATE_RESOLVED);
2360 break;
2361
2362 case ISL_AUX_OP_AMBIGUATE:
2363 /* The HiZ resolve operation is actually an ambiguate */
2364 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2365 ISL_AUX_STATE_PASS_THROUGH);
2366 break;
2367
2368 default:
2369 unreachable("Invalid HiZ op");
2370 }
2371 }
2372 }
2373
2374 static void
2375 intel_miptree_finish_hiz_write(struct brw_context *brw,
2376 struct intel_mipmap_tree *mt,
2377 uint32_t level, uint32_t layer,
2378 enum isl_aux_usage aux_usage)
2379 {
2380 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2381
2382 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2383 case ISL_AUX_STATE_CLEAR:
2384 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2385 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2386 ISL_AUX_STATE_COMPRESSED_CLEAR);
2387 break;
2388
2389 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2390 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2391 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2392 break; /* Nothing to do */
2393
2394 case ISL_AUX_STATE_RESOLVED:
2395 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2396 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2397 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2398 } else {
2399 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2400 ISL_AUX_STATE_AUX_INVALID);
2401 }
2402 break;
2403
2404 case ISL_AUX_STATE_PASS_THROUGH:
2405 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2406 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2407 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2408 }
2409 break;
2410
2411 case ISL_AUX_STATE_AUX_INVALID:
2412 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2413 break;
2414
2415 case ISL_AUX_STATE_PARTIAL_CLEAR:
2416 unreachable("Invalid HiZ state");
2417 }
2418 }
2419
2420 void
2421 intel_miptree_prepare_access(struct brw_context *brw,
2422 struct intel_mipmap_tree *mt,
2423 uint32_t start_level, uint32_t num_levels,
2424 uint32_t start_layer, uint32_t num_layers,
2425 enum isl_aux_usage aux_usage,
2426 bool fast_clear_supported)
2427 {
2428 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2429
2430 switch (mt->aux_usage) {
2431 case ISL_AUX_USAGE_NONE:
2432 /* Nothing to do */
2433 break;
2434
2435 case ISL_AUX_USAGE_MCS:
2436 assert(mt->mcs_buf);
2437 assert(start_level == 0 && num_levels == 1);
2438 const uint32_t level_layers =
2439 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2440 for (uint32_t a = 0; a < level_layers; a++) {
2441 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2442 aux_usage, fast_clear_supported);
2443 }
2444 break;
2445
2446 case ISL_AUX_USAGE_CCS_D:
2447 case ISL_AUX_USAGE_CCS_E:
2448 if (!mt->mcs_buf)
2449 return;
2450
2451 for (uint32_t l = 0; l < num_levels; l++) {
2452 const uint32_t level = start_level + l;
2453 const uint32_t level_layers =
2454 miptree_layer_range_length(mt, level, start_layer, num_layers);
2455 for (uint32_t a = 0; a < level_layers; a++) {
2456 intel_miptree_prepare_ccs_access(brw, mt, level,
2457 start_layer + a,
2458 aux_usage, fast_clear_supported);
2459 }
2460 }
2461 break;
2462
2463 case ISL_AUX_USAGE_HIZ:
2464 assert(mt->hiz_buf);
2465 for (uint32_t l = 0; l < num_levels; l++) {
2466 const uint32_t level = start_level + l;
2467 if (!intel_miptree_level_has_hiz(mt, level))
2468 continue;
2469
2470 const uint32_t level_layers =
2471 miptree_layer_range_length(mt, level, start_layer, num_layers);
2472 for (uint32_t a = 0; a < level_layers; a++) {
2473 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2474 aux_usage, fast_clear_supported);
2475 }
2476 }
2477 break;
2478
2479 default:
2480 unreachable("Invalid aux usage");
2481 }
2482 }
2483
2484 void
2485 intel_miptree_finish_write(struct brw_context *brw,
2486 struct intel_mipmap_tree *mt, uint32_t level,
2487 uint32_t start_layer, uint32_t num_layers,
2488 enum isl_aux_usage aux_usage)
2489 {
2490 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2491
2492 switch (mt->aux_usage) {
2493 case ISL_AUX_USAGE_NONE:
2494 /* Nothing to do */
2495 break;
2496
2497 case ISL_AUX_USAGE_MCS:
2498 assert(mt->mcs_buf);
2499 for (uint32_t a = 0; a < num_layers; a++) {
2500 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2501 aux_usage);
2502 }
2503 break;
2504
2505 case ISL_AUX_USAGE_CCS_D:
2506 case ISL_AUX_USAGE_CCS_E:
2507 if (!mt->mcs_buf)
2508 return;
2509
2510 for (uint32_t a = 0; a < num_layers; a++) {
2511 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2512 aux_usage);
2513 }
2514 break;
2515
2516 case ISL_AUX_USAGE_HIZ:
2517 if (!intel_miptree_level_has_hiz(mt, level))
2518 return;
2519
2520 for (uint32_t a = 0; a < num_layers; a++) {
2521 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2522 aux_usage);
2523 }
2524 break;
2525
2526 default:
2527 unreachable("Invavlid aux usage");
2528 }
2529 }
2530
2531 enum isl_aux_state
2532 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2533 uint32_t level, uint32_t layer)
2534 {
2535 intel_miptree_check_level_layer(mt, level, layer);
2536
2537 if (_mesa_is_format_color_format(mt->format)) {
2538 assert(mt->mcs_buf != NULL);
2539 assert(mt->surf.samples == 1 ||
2540 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2541 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2542 unreachable("Cannot get aux state for stencil");
2543 } else {
2544 assert(intel_miptree_level_has_hiz(mt, level));
2545 }
2546
2547 return mt->aux_state[level][layer];
2548 }
2549
2550 void
2551 intel_miptree_set_aux_state(struct brw_context *brw,
2552 struct intel_mipmap_tree *mt, uint32_t level,
2553 uint32_t start_layer, uint32_t num_layers,
2554 enum isl_aux_state aux_state)
2555 {
2556 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2557
2558 if (_mesa_is_format_color_format(mt->format)) {
2559 assert(mt->mcs_buf != NULL);
2560 assert(mt->surf.samples == 1 ||
2561 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2562 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2563 unreachable("Cannot get aux state for stencil");
2564 } else {
2565 assert(intel_miptree_level_has_hiz(mt, level));
2566 }
2567
2568 for (unsigned a = 0; a < num_layers; a++) {
2569 if (mt->aux_state[level][start_layer + a] != aux_state) {
2570 mt->aux_state[level][start_layer + a] = aux_state;
2571 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2572 }
2573 }
2574 }
2575
2576 /* On Gen9 color buffers may be compressed by the hardware (lossless
2577 * compression). There are, however, format restrictions and care needs to be
2578 * taken that the sampler engine is capable for re-interpreting a buffer with
2579 * format different the buffer was originally written with.
2580 *
2581 * For example, SRGB formats are not compressible and the sampler engine isn't
2582 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2583 * color buffer needs to be resolved so that the sampling surface can be
2584 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2585 * set).
2586 */
2587 static bool
2588 can_texture_with_ccs(struct brw_context *brw,
2589 struct intel_mipmap_tree *mt,
2590 enum isl_format view_format)
2591 {
2592 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2593 return false;
2594
2595 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2596 mt, view_format)) {
2597 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2598 isl_format_get_layout(view_format)->name,
2599 _mesa_get_format_name(mt->format));
2600 return false;
2601 }
2602
2603 return true;
2604 }
2605
2606 enum isl_aux_usage
2607 intel_miptree_texture_aux_usage(struct brw_context *brw,
2608 struct intel_mipmap_tree *mt,
2609 enum isl_format view_format)
2610 {
2611 switch (mt->aux_usage) {
2612 case ISL_AUX_USAGE_HIZ:
2613 if (intel_miptree_sample_with_hiz(brw, mt))
2614 return ISL_AUX_USAGE_HIZ;
2615 break;
2616
2617 case ISL_AUX_USAGE_MCS:
2618 return ISL_AUX_USAGE_MCS;
2619
2620 case ISL_AUX_USAGE_CCS_D:
2621 case ISL_AUX_USAGE_CCS_E:
2622 if (!mt->mcs_buf) {
2623 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2624 return ISL_AUX_USAGE_NONE;
2625 }
2626
2627 /* If we don't have any unresolved color, report an aux usage of
2628 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2629 * aux surface and we can save some bandwidth.
2630 */
2631 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2632 0, INTEL_REMAINING_LAYERS))
2633 return ISL_AUX_USAGE_NONE;
2634
2635 if (can_texture_with_ccs(brw, mt, view_format))
2636 return ISL_AUX_USAGE_CCS_E;
2637 break;
2638
2639 default:
2640 break;
2641 }
2642
2643 return ISL_AUX_USAGE_NONE;
2644 }
2645
2646 static bool
2647 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2648 {
2649 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2650 * values so sRGB curve application was a no-op for all fast-clearable
2651 * formats.
2652 *
2653 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2654 * values, the hardware interprets the floats, not as what would be
2655 * returned from the sampler (or written by the shader), but as being
2656 * between format conversion and sRGB curve application. This means that
2657 * we can switch between sRGB and UNORM without having to whack the clear
2658 * color.
2659 */
2660 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2661 }
2662
2663 void
2664 intel_miptree_prepare_texture(struct brw_context *brw,
2665 struct intel_mipmap_tree *mt,
2666 enum isl_format view_format,
2667 uint32_t start_level, uint32_t num_levels,
2668 uint32_t start_layer, uint32_t num_layers)
2669 {
2670 enum isl_aux_usage aux_usage =
2671 intel_miptree_texture_aux_usage(brw, mt, view_format);
2672 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2673
2674 /* Clear color is specified as ints or floats and the conversion is done by
2675 * the sampler. If we have a texture view, we would have to perform the
2676 * clear color conversion manually. Just disable clear color.
2677 */
2678 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2679 clear_supported = false;
2680
2681 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2682 start_layer, num_layers,
2683 aux_usage, clear_supported);
2684 }
2685
2686 void
2687 intel_miptree_prepare_image(struct brw_context *brw,
2688 struct intel_mipmap_tree *mt)
2689 {
2690 /* The data port doesn't understand any compression */
2691 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2692 0, INTEL_REMAINING_LAYERS,
2693 ISL_AUX_USAGE_NONE, false);
2694 }
2695
2696 enum isl_aux_usage
2697 intel_miptree_render_aux_usage(struct brw_context *brw,
2698 struct intel_mipmap_tree *mt,
2699 enum isl_format render_format,
2700 bool blend_enabled,
2701 bool draw_aux_disabled)
2702 {
2703 struct gen_device_info *devinfo = &brw->screen->devinfo;
2704
2705 if (draw_aux_disabled)
2706 return ISL_AUX_USAGE_NONE;
2707
2708 switch (mt->aux_usage) {
2709 case ISL_AUX_USAGE_MCS:
2710 assert(mt->mcs_buf);
2711 return ISL_AUX_USAGE_MCS;
2712
2713 case ISL_AUX_USAGE_CCS_D:
2714 case ISL_AUX_USAGE_CCS_E:
2715 if (!mt->mcs_buf) {
2716 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2717 return ISL_AUX_USAGE_NONE;
2718 }
2719
2720 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2721 * formats. However, there are issues with blending where it doesn't
2722 * properly apply the sRGB curve to the clear color when blending.
2723 */
2724 if (devinfo->gen == 9 && blend_enabled &&
2725 isl_format_is_srgb(render_format) &&
2726 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2727 return ISL_AUX_USAGE_NONE;
2728
2729 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2730 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2731 mt, render_format))
2732 return ISL_AUX_USAGE_CCS_E;
2733
2734 /* Otherwise, we have to fall back to CCS_D */
2735 return ISL_AUX_USAGE_CCS_D;
2736
2737 default:
2738 return ISL_AUX_USAGE_NONE;
2739 }
2740 }
2741
2742 void
2743 intel_miptree_prepare_render(struct brw_context *brw,
2744 struct intel_mipmap_tree *mt, uint32_t level,
2745 uint32_t start_layer, uint32_t layer_count,
2746 enum isl_aux_usage aux_usage)
2747 {
2748 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2749 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2750 }
2751
2752 void
2753 intel_miptree_finish_render(struct brw_context *brw,
2754 struct intel_mipmap_tree *mt, uint32_t level,
2755 uint32_t start_layer, uint32_t layer_count,
2756 enum isl_aux_usage aux_usage)
2757 {
2758 assert(_mesa_is_format_color_format(mt->format));
2759
2760 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2761 aux_usage);
2762 }
2763
2764 void
2765 intel_miptree_prepare_depth(struct brw_context *brw,
2766 struct intel_mipmap_tree *mt, uint32_t level,
2767 uint32_t start_layer, uint32_t layer_count)
2768 {
2769 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2770 mt->aux_usage, mt->hiz_buf != NULL);
2771 }
2772
2773 void
2774 intel_miptree_finish_depth(struct brw_context *brw,
2775 struct intel_mipmap_tree *mt, uint32_t level,
2776 uint32_t start_layer, uint32_t layer_count,
2777 bool depth_written)
2778 {
2779 if (depth_written) {
2780 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2781 mt->hiz_buf != NULL);
2782 }
2783 }
2784
2785 void
2786 intel_miptree_prepare_external(struct brw_context *brw,
2787 struct intel_mipmap_tree *mt)
2788 {
2789 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2790 bool supports_fast_clear = false;
2791
2792 const struct isl_drm_modifier_info *mod_info =
2793 isl_drm_modifier_get_info(mt->drm_modifier);
2794
2795 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2796 /* CCS_E is the only supported aux for external images and it's only
2797 * supported on very simple images.
2798 */
2799 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2800 assert(_mesa_is_format_color_format(mt->format));
2801 assert(mt->first_level == 0 && mt->last_level == 0);
2802 assert(mt->surf.logical_level0_px.depth == 1);
2803 assert(mt->surf.logical_level0_px.array_len == 1);
2804 assert(mt->surf.samples == 1);
2805 assert(mt->mcs_buf != NULL);
2806
2807 aux_usage = mod_info->aux_usage;
2808 supports_fast_clear = mod_info->supports_clear_color;
2809 }
2810
2811 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2812 0, INTEL_REMAINING_LAYERS,
2813 aux_usage, supports_fast_clear);
2814 }
2815
2816 void
2817 intel_miptree_finish_external(struct brw_context *brw,
2818 struct intel_mipmap_tree *mt)
2819 {
2820 if (!mt->mcs_buf)
2821 return;
2822
2823 /* We don't know the actual aux state of the aux surface. The previous
2824 * owner could have given it to us in a number of different states.
2825 * Because we don't know the aux state, we reset the aux state to the
2826 * least common denominator of possible valid states.
2827 */
2828 enum isl_aux_state default_aux_state =
2829 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2830 assert(mt->last_level == mt->first_level);
2831 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2832 default_aux_state);
2833 }
2834
2835 /**
2836 * Make it possible to share the BO backing the given miptree with another
2837 * process or another miptree.
2838 *
2839 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2840 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2841 * ensure that no MCS buffer gets allocated in the future.
2842 *
2843 * HiZ is similarly unsafe with shared buffers.
2844 */
2845 void
2846 intel_miptree_make_shareable(struct brw_context *brw,
2847 struct intel_mipmap_tree *mt)
2848 {
2849 /* MCS buffers are also used for multisample buffers, but we can't resolve
2850 * away a multisample MCS buffer because it's an integral part of how the
2851 * pixel data is stored. Fortunately this code path should never be
2852 * reached for multisample buffers.
2853 */
2854 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2855 mt->surf.samples == 1);
2856
2857 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2858 0, INTEL_REMAINING_LAYERS,
2859 ISL_AUX_USAGE_NONE, false);
2860
2861 if (mt->mcs_buf) {
2862 brw_bo_unreference(mt->mcs_buf->bo);
2863 free(mt->mcs_buf);
2864 mt->mcs_buf = NULL;
2865
2866 /* Any pending MCS/CCS operations are no longer needed. Trying to
2867 * execute any will likely crash due to the missing aux buffer. So let's
2868 * delete all pending ops.
2869 */
2870 free(mt->aux_state);
2871 mt->aux_state = NULL;
2872 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2873 }
2874
2875 if (mt->hiz_buf) {
2876 intel_miptree_aux_buffer_free(mt->hiz_buf);
2877 mt->hiz_buf = NULL;
2878
2879 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2880 mt->level[l].has_hiz = false;
2881 }
2882
2883 /* Any pending HiZ operations are no longer needed. Trying to execute
2884 * any will likely crash due to the missing aux buffer. So let's delete
2885 * all pending ops.
2886 */
2887 free(mt->aux_state);
2888 mt->aux_state = NULL;
2889 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2890 }
2891
2892 mt->aux_usage = ISL_AUX_USAGE_NONE;
2893 mt->supports_fast_clear = false;
2894 }
2895
2896
2897 /**
2898 * \brief Get pointer offset into stencil buffer.
2899 *
2900 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2901 * must decode the tile's layout in software.
2902 *
2903 * See
2904 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2905 * Format.
2906 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2907 *
2908 * Even though the returned offset is always positive, the return type is
2909 * signed due to
2910 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2911 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2912 */
2913 static intptr_t
2914 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2915 {
2916 uint32_t tile_size = 4096;
2917 uint32_t tile_width = 64;
2918 uint32_t tile_height = 64;
2919 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2920
2921 uint32_t tile_x = x / tile_width;
2922 uint32_t tile_y = y / tile_height;
2923
2924 /* The byte's address relative to the tile's base addres. */
2925 uint32_t byte_x = x % tile_width;
2926 uint32_t byte_y = y % tile_height;
2927
2928 uintptr_t u = tile_y * row_size
2929 + tile_x * tile_size
2930 + 512 * (byte_x / 8)
2931 + 64 * (byte_y / 8)
2932 + 32 * ((byte_y / 4) % 2)
2933 + 16 * ((byte_x / 4) % 2)
2934 + 8 * ((byte_y / 2) % 2)
2935 + 4 * ((byte_x / 2) % 2)
2936 + 2 * (byte_y % 2)
2937 + 1 * (byte_x % 2);
2938
2939 if (swizzled) {
2940 /* adjust for bit6 swizzling */
2941 if (((byte_x / 8) % 2) == 1) {
2942 if (((byte_y / 8) % 2) == 0) {
2943 u += 64;
2944 } else {
2945 u -= 64;
2946 }
2947 }
2948 }
2949
2950 return u;
2951 }
2952
2953 void
2954 intel_miptree_updownsample(struct brw_context *brw,
2955 struct intel_mipmap_tree *src,
2956 struct intel_mipmap_tree *dst)
2957 {
2958 unsigned src_w = src->surf.logical_level0_px.width;
2959 unsigned src_h = src->surf.logical_level0_px.height;
2960 unsigned dst_w = dst->surf.logical_level0_px.width;
2961 unsigned dst_h = dst->surf.logical_level0_px.height;
2962
2963 brw_blorp_blit_miptrees(brw,
2964 src, 0 /* level */, 0 /* layer */,
2965 src->format, SWIZZLE_XYZW,
2966 dst, 0 /* level */, 0 /* layer */, dst->format,
2967 0, 0, src_w, src_h,
2968 0, 0, dst_w, dst_h,
2969 GL_NEAREST, false, false /*mirror x, y*/,
2970 false, false);
2971
2972 if (src->stencil_mt) {
2973 src_w = src->stencil_mt->surf.logical_level0_px.width;
2974 src_h = src->stencil_mt->surf.logical_level0_px.height;
2975 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2976 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2977
2978 brw_blorp_blit_miptrees(brw,
2979 src->stencil_mt, 0 /* level */, 0 /* layer */,
2980 src->stencil_mt->format, SWIZZLE_XYZW,
2981 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2982 dst->stencil_mt->format,
2983 0, 0, src_w, src_h,
2984 0, 0, dst_w, dst_h,
2985 GL_NEAREST, false, false /*mirror x, y*/,
2986 false, false /* decode/encode srgb */);
2987 }
2988 }
2989
2990 void
2991 intel_update_r8stencil(struct brw_context *brw,
2992 struct intel_mipmap_tree *mt)
2993 {
2994 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2995
2996 assert(devinfo->gen >= 7);
2997 struct intel_mipmap_tree *src =
2998 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2999 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3000 return;
3001
3002 assert(src->surf.size > 0);
3003
3004 if (!mt->r8stencil_mt) {
3005 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3006 mt->r8stencil_mt = make_surface(
3007 brw,
3008 src->target,
3009 MESA_FORMAT_R_UINT8,
3010 src->first_level, src->last_level,
3011 src->surf.logical_level0_px.width,
3012 src->surf.logical_level0_px.height,
3013 src->surf.dim == ISL_SURF_DIM_3D ?
3014 src->surf.logical_level0_px.depth :
3015 src->surf.logical_level0_px.array_len,
3016 src->surf.samples,
3017 ISL_TILING_Y0_BIT,
3018 ISL_SURF_USAGE_TEXTURE_BIT,
3019 BO_ALLOC_BUSY, 0, NULL);
3020 assert(mt->r8stencil_mt);
3021 }
3022
3023 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3024
3025 for (int level = src->first_level; level <= src->last_level; level++) {
3026 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3027 minify(src->surf.phys_level0_sa.depth, level) :
3028 src->surf.phys_level0_sa.array_len;
3029
3030 for (unsigned layer = 0; layer < depth; layer++) {
3031 brw_blorp_copy_miptrees(brw,
3032 src, level, layer,
3033 dst, level, layer,
3034 0, 0, 0, 0,
3035 minify(src->surf.logical_level0_px.width,
3036 level),
3037 minify(src->surf.logical_level0_px.height,
3038 level));
3039 }
3040 }
3041
3042 brw_cache_flush_for_read(brw, dst->bo);
3043 src->r8stencil_needs_update = false;
3044 }
3045
3046 static void *
3047 intel_miptree_map_raw(struct brw_context *brw,
3048 struct intel_mipmap_tree *mt,
3049 GLbitfield mode)
3050 {
3051 struct brw_bo *bo = mt->bo;
3052
3053 if (brw_batch_references(&brw->batch, bo))
3054 intel_batchbuffer_flush(brw);
3055
3056 return brw_bo_map(brw, bo, mode);
3057 }
3058
3059 static void
3060 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3061 {
3062 brw_bo_unmap(mt->bo);
3063 }
3064
3065 static void
3066 intel_miptree_map_gtt(struct brw_context *brw,
3067 struct intel_mipmap_tree *mt,
3068 struct intel_miptree_map *map,
3069 unsigned int level, unsigned int slice)
3070 {
3071 unsigned int bw, bh;
3072 void *base;
3073 unsigned int image_x, image_y;
3074 intptr_t x = map->x;
3075 intptr_t y = map->y;
3076
3077 /* For compressed formats, the stride is the number of bytes per
3078 * row of blocks. intel_miptree_get_image_offset() already does
3079 * the divide.
3080 */
3081 _mesa_get_format_block_size(mt->format, &bw, &bh);
3082 assert(y % bh == 0);
3083 assert(x % bw == 0);
3084 y /= bh;
3085 x /= bw;
3086
3087 base = intel_miptree_map_raw(brw, mt, map->mode);
3088
3089 if (base == NULL)
3090 map->ptr = NULL;
3091 else {
3092 base += mt->offset;
3093
3094 /* Note that in the case of cube maps, the caller must have passed the
3095 * slice number referencing the face.
3096 */
3097 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3098 x += image_x;
3099 y += image_y;
3100
3101 map->stride = mt->surf.row_pitch;
3102 map->ptr = base + y * map->stride + x * mt->cpp;
3103 }
3104
3105 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3106 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3107 map->x, map->y, map->w, map->h,
3108 mt, _mesa_get_format_name(mt->format),
3109 x, y, map->ptr, map->stride);
3110 }
3111
3112 static void
3113 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3114 {
3115 intel_miptree_unmap_raw(mt);
3116 }
3117
3118 static void
3119 intel_miptree_map_blit(struct brw_context *brw,
3120 struct intel_mipmap_tree *mt,
3121 struct intel_miptree_map *map,
3122 unsigned int level, unsigned int slice)
3123 {
3124 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3125 /* first_level */ 0,
3126 /* last_level */ 0,
3127 map->w, map->h, 1,
3128 /* samples */ 1,
3129 MIPTREE_CREATE_LINEAR);
3130
3131 if (!map->linear_mt) {
3132 fprintf(stderr, "Failed to allocate blit temporary\n");
3133 goto fail;
3134 }
3135 map->stride = map->linear_mt->surf.row_pitch;
3136
3137 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3138 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3139 * invalidate is set, since we'll be writing the whole rectangle from our
3140 * temporary buffer back out.
3141 */
3142 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3143 if (!intel_miptree_copy(brw,
3144 mt, level, slice, map->x, map->y,
3145 map->linear_mt, 0, 0, 0, 0,
3146 map->w, map->h)) {
3147 fprintf(stderr, "Failed to blit\n");
3148 goto fail;
3149 }
3150 }
3151
3152 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3153
3154 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3155 map->x, map->y, map->w, map->h,
3156 mt, _mesa_get_format_name(mt->format),
3157 level, slice, map->ptr, map->stride);
3158
3159 return;
3160
3161 fail:
3162 intel_miptree_release(&map->linear_mt);
3163 map->ptr = NULL;
3164 map->stride = 0;
3165 }
3166
3167 static void
3168 intel_miptree_unmap_blit(struct brw_context *brw,
3169 struct intel_mipmap_tree *mt,
3170 struct intel_miptree_map *map,
3171 unsigned int level,
3172 unsigned int slice)
3173 {
3174 struct gl_context *ctx = &brw->ctx;
3175
3176 intel_miptree_unmap_raw(map->linear_mt);
3177
3178 if (map->mode & GL_MAP_WRITE_BIT) {
3179 bool ok = intel_miptree_copy(brw,
3180 map->linear_mt, 0, 0, 0, 0,
3181 mt, level, slice, map->x, map->y,
3182 map->w, map->h);
3183 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3184 }
3185
3186 intel_miptree_release(&map->linear_mt);
3187 }
3188
3189 /**
3190 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3191 */
3192 #if defined(USE_SSE41)
3193 static void
3194 intel_miptree_map_movntdqa(struct brw_context *brw,
3195 struct intel_mipmap_tree *mt,
3196 struct intel_miptree_map *map,
3197 unsigned int level, unsigned int slice)
3198 {
3199 assert(map->mode & GL_MAP_READ_BIT);
3200 assert(!(map->mode & GL_MAP_WRITE_BIT));
3201
3202 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3203 map->x, map->y, map->w, map->h,
3204 mt, _mesa_get_format_name(mt->format),
3205 level, slice, map->ptr, map->stride);
3206
3207 /* Map the original image */
3208 uint32_t image_x;
3209 uint32_t image_y;
3210 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3211 image_x += map->x;
3212 image_y += map->y;
3213
3214 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3215 if (!src)
3216 return;
3217
3218 src += mt->offset;
3219
3220 src += image_y * mt->surf.row_pitch;
3221 src += image_x * mt->cpp;
3222
3223 /* Due to the pixel offsets for the particular image being mapped, our
3224 * src pointer may not be 16-byte aligned. However, if the pitch is
3225 * divisible by 16, then the amount by which it's misaligned will remain
3226 * consistent from row to row.
3227 */
3228 assert((mt->surf.row_pitch % 16) == 0);
3229 const int misalignment = ((uintptr_t) src) & 15;
3230
3231 /* Create an untiled temporary buffer for the mapping. */
3232 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3233
3234 map->stride = ALIGN(misalignment + width_bytes, 16);
3235
3236 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3237 /* Offset the destination so it has the same misalignment as src. */
3238 map->ptr = map->buffer + misalignment;
3239
3240 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3241
3242 for (uint32_t y = 0; y < map->h; y++) {
3243 void *dst_ptr = map->ptr + y * map->stride;
3244 void *src_ptr = src + y * mt->surf.row_pitch;
3245
3246 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3247 }
3248
3249 intel_miptree_unmap_raw(mt);
3250 }
3251
3252 static void
3253 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3254 struct intel_mipmap_tree *mt,
3255 struct intel_miptree_map *map,
3256 unsigned int level,
3257 unsigned int slice)
3258 {
3259 _mesa_align_free(map->buffer);
3260 map->buffer = NULL;
3261 map->ptr = NULL;
3262 }
3263 #endif
3264
3265 static void
3266 intel_miptree_map_s8(struct brw_context *brw,
3267 struct intel_mipmap_tree *mt,
3268 struct intel_miptree_map *map,
3269 unsigned int level, unsigned int slice)
3270 {
3271 map->stride = map->w;
3272 map->buffer = map->ptr = malloc(map->stride * map->h);
3273 if (!map->buffer)
3274 return;
3275
3276 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3277 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3278 * invalidate is set, since we'll be writing the whole rectangle from our
3279 * temporary buffer back out.
3280 */
3281 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3282 uint8_t *untiled_s8_map = map->ptr;
3283 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3284 unsigned int image_x, image_y;
3285
3286 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3287
3288 for (uint32_t y = 0; y < map->h; y++) {
3289 for (uint32_t x = 0; x < map->w; x++) {
3290 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3291 x + image_x + map->x,
3292 y + image_y + map->y,
3293 brw->has_swizzling);
3294 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3295 }
3296 }
3297
3298 intel_miptree_unmap_raw(mt);
3299
3300 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3301 map->x, map->y, map->w, map->h,
3302 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3303 } else {
3304 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3305 map->x, map->y, map->w, map->h,
3306 mt, map->ptr, map->stride);
3307 }
3308 }
3309
3310 static void
3311 intel_miptree_unmap_s8(struct brw_context *brw,
3312 struct intel_mipmap_tree *mt,
3313 struct intel_miptree_map *map,
3314 unsigned int level,
3315 unsigned int slice)
3316 {
3317 if (map->mode & GL_MAP_WRITE_BIT) {
3318 unsigned int image_x, image_y;
3319 uint8_t *untiled_s8_map = map->ptr;
3320 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3321
3322 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3323
3324 for (uint32_t y = 0; y < map->h; y++) {
3325 for (uint32_t x = 0; x < map->w; x++) {
3326 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3327 image_x + x + map->x,
3328 image_y + y + map->y,
3329 brw->has_swizzling);
3330 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3331 }
3332 }
3333
3334 intel_miptree_unmap_raw(mt);
3335 }
3336
3337 free(map->buffer);
3338 }
3339
3340 static void
3341 intel_miptree_map_etc(struct brw_context *brw,
3342 struct intel_mipmap_tree *mt,
3343 struct intel_miptree_map *map,
3344 unsigned int level,
3345 unsigned int slice)
3346 {
3347 assert(mt->etc_format != MESA_FORMAT_NONE);
3348 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3349 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3350 }
3351
3352 assert(map->mode & GL_MAP_WRITE_BIT);
3353 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3354
3355 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3356 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3357 map->w, map->h, 1));
3358 map->ptr = map->buffer;
3359 }
3360
3361 static void
3362 intel_miptree_unmap_etc(struct brw_context *brw,
3363 struct intel_mipmap_tree *mt,
3364 struct intel_miptree_map *map,
3365 unsigned int level,
3366 unsigned int slice)
3367 {
3368 uint32_t image_x;
3369 uint32_t image_y;
3370 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3371
3372 image_x += map->x;
3373 image_y += map->y;
3374
3375 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3376 + image_y * mt->surf.row_pitch
3377 + image_x * mt->cpp;
3378
3379 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3380 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3381 map->ptr, map->stride,
3382 map->w, map->h);
3383 else
3384 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3385 map->ptr, map->stride,
3386 map->w, map->h, mt->etc_format);
3387
3388 intel_miptree_unmap_raw(mt);
3389 free(map->buffer);
3390 }
3391
3392 /**
3393 * Mapping function for packed depth/stencil miptrees backed by real separate
3394 * miptrees for depth and stencil.
3395 *
3396 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3397 * separate from the depth buffer. Yet at the GL API level, we have to expose
3398 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3399 * be able to map that memory for texture storage and glReadPixels-type
3400 * operations. We give Mesa core that access by mallocing a temporary and
3401 * copying the data between the actual backing store and the temporary.
3402 */
3403 static void
3404 intel_miptree_map_depthstencil(struct brw_context *brw,
3405 struct intel_mipmap_tree *mt,
3406 struct intel_miptree_map *map,
3407 unsigned int level, unsigned int slice)
3408 {
3409 struct intel_mipmap_tree *z_mt = mt;
3410 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3411 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3412 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3413
3414 map->stride = map->w * packed_bpp;
3415 map->buffer = map->ptr = malloc(map->stride * map->h);
3416 if (!map->buffer)
3417 return;
3418
3419 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3420 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3421 * invalidate is set, since we'll be writing the whole rectangle from our
3422 * temporary buffer back out.
3423 */
3424 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3425 uint32_t *packed_map = map->ptr;
3426 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3427 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3428 unsigned int s_image_x, s_image_y;
3429 unsigned int z_image_x, z_image_y;
3430
3431 intel_miptree_get_image_offset(s_mt, level, slice,
3432 &s_image_x, &s_image_y);
3433 intel_miptree_get_image_offset(z_mt, level, slice,
3434 &z_image_x, &z_image_y);
3435
3436 for (uint32_t y = 0; y < map->h; y++) {
3437 for (uint32_t x = 0; x < map->w; x++) {
3438 int map_x = map->x + x, map_y = map->y + y;
3439 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3440 map_x + s_image_x,
3441 map_y + s_image_y,
3442 brw->has_swizzling);
3443 ptrdiff_t z_offset = ((map_y + z_image_y) *
3444 (z_mt->surf.row_pitch / 4) +
3445 (map_x + z_image_x));
3446 uint8_t s = s_map[s_offset];
3447 uint32_t z = z_map[z_offset];
3448
3449 if (map_z32f_x24s8) {
3450 packed_map[(y * map->w + x) * 2 + 0] = z;
3451 packed_map[(y * map->w + x) * 2 + 1] = s;
3452 } else {
3453 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3454 }
3455 }
3456 }
3457
3458 intel_miptree_unmap_raw(s_mt);
3459 intel_miptree_unmap_raw(z_mt);
3460
3461 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3462 __func__,
3463 map->x, map->y, map->w, map->h,
3464 z_mt, map->x + z_image_x, map->y + z_image_y,
3465 s_mt, map->x + s_image_x, map->y + s_image_y,
3466 map->ptr, map->stride);
3467 } else {
3468 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3469 map->x, map->y, map->w, map->h,
3470 mt, map->ptr, map->stride);
3471 }
3472 }
3473
3474 static void
3475 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3476 struct intel_mipmap_tree *mt,
3477 struct intel_miptree_map *map,
3478 unsigned int level,
3479 unsigned int slice)
3480 {
3481 struct intel_mipmap_tree *z_mt = mt;
3482 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3483 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3484
3485 if (map->mode & GL_MAP_WRITE_BIT) {
3486 uint32_t *packed_map = map->ptr;
3487 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3488 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3489 unsigned int s_image_x, s_image_y;
3490 unsigned int z_image_x, z_image_y;
3491
3492 intel_miptree_get_image_offset(s_mt, level, slice,
3493 &s_image_x, &s_image_y);
3494 intel_miptree_get_image_offset(z_mt, level, slice,
3495 &z_image_x, &z_image_y);
3496
3497 for (uint32_t y = 0; y < map->h; y++) {
3498 for (uint32_t x = 0; x < map->w; x++) {
3499 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3500 x + s_image_x + map->x,
3501 y + s_image_y + map->y,
3502 brw->has_swizzling);
3503 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3504 (z_mt->surf.row_pitch / 4) +
3505 (x + z_image_x + map->x));
3506
3507 if (map_z32f_x24s8) {
3508 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3509 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3510 } else {
3511 uint32_t packed = packed_map[y * map->w + x];
3512 s_map[s_offset] = packed >> 24;
3513 z_map[z_offset] = packed;
3514 }
3515 }
3516 }
3517
3518 intel_miptree_unmap_raw(s_mt);
3519 intel_miptree_unmap_raw(z_mt);
3520
3521 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3522 __func__,
3523 map->x, map->y, map->w, map->h,
3524 z_mt, _mesa_get_format_name(z_mt->format),
3525 map->x + z_image_x, map->y + z_image_y,
3526 s_mt, map->x + s_image_x, map->y + s_image_y,
3527 map->ptr, map->stride);
3528 }
3529
3530 free(map->buffer);
3531 }
3532
3533 /**
3534 * Create and attach a map to the miptree at (level, slice). Return the
3535 * attached map.
3536 */
3537 static struct intel_miptree_map*
3538 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3539 unsigned int level,
3540 unsigned int slice,
3541 unsigned int x,
3542 unsigned int y,
3543 unsigned int w,
3544 unsigned int h,
3545 GLbitfield mode)
3546 {
3547 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3548
3549 if (!map)
3550 return NULL;
3551
3552 assert(mt->level[level].slice[slice].map == NULL);
3553 mt->level[level].slice[slice].map = map;
3554
3555 map->mode = mode;
3556 map->x = x;
3557 map->y = y;
3558 map->w = w;
3559 map->h = h;
3560
3561 return map;
3562 }
3563
3564 /**
3565 * Release the map at (level, slice).
3566 */
3567 static void
3568 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3569 unsigned int level,
3570 unsigned int slice)
3571 {
3572 struct intel_miptree_map **map;
3573
3574 map = &mt->level[level].slice[slice].map;
3575 free(*map);
3576 *map = NULL;
3577 }
3578
3579 static bool
3580 can_blit_slice(struct intel_mipmap_tree *mt,
3581 unsigned int level, unsigned int slice)
3582 {
3583 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3584 if (mt->surf.row_pitch >= 32768)
3585 return false;
3586
3587 return true;
3588 }
3589
3590 static bool
3591 use_intel_mipree_map_blit(struct brw_context *brw,
3592 struct intel_mipmap_tree *mt,
3593 GLbitfield mode,
3594 unsigned int level,
3595 unsigned int slice)
3596 {
3597 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3598
3599 if (devinfo->has_llc &&
3600 /* It's probably not worth swapping to the blit ring because of
3601 * all the overhead involved.
3602 */
3603 !(mode & GL_MAP_WRITE_BIT) &&
3604 !mt->compressed &&
3605 (mt->surf.tiling == ISL_TILING_X ||
3606 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3607 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3608 /* Fast copy blit on skl+ supports all tiling formats. */
3609 devinfo->gen >= 9) &&
3610 can_blit_slice(mt, level, slice))
3611 return true;
3612
3613 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3614 mt->bo->size >= brw->max_gtt_map_object_size) {
3615 assert(can_blit_slice(mt, level, slice));
3616 return true;
3617 }
3618
3619 return false;
3620 }
3621
3622 /**
3623 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3624 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3625 * arithmetic overflow.
3626 *
3627 * If you call this function and use \a out_stride, then you're doing pointer
3628 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3629 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3630 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3631 * which usually have type uint32_t or GLuint.
3632 */
3633 void
3634 intel_miptree_map(struct brw_context *brw,
3635 struct intel_mipmap_tree *mt,
3636 unsigned int level,
3637 unsigned int slice,
3638 unsigned int x,
3639 unsigned int y,
3640 unsigned int w,
3641 unsigned int h,
3642 GLbitfield mode,
3643 void **out_ptr,
3644 ptrdiff_t *out_stride)
3645 {
3646 struct intel_miptree_map *map;
3647
3648 assert(mt->surf.samples == 1);
3649
3650 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3651 if (!map){
3652 *out_ptr = NULL;
3653 *out_stride = 0;
3654 return;
3655 }
3656
3657 intel_miptree_access_raw(brw, mt, level, slice,
3658 map->mode & GL_MAP_WRITE_BIT);
3659
3660 if (mt->format == MESA_FORMAT_S_UINT8) {
3661 intel_miptree_map_s8(brw, mt, map, level, slice);
3662 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3663 !(mode & BRW_MAP_DIRECT_BIT)) {
3664 intel_miptree_map_etc(brw, mt, map, level, slice);
3665 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3666 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3667 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3668 intel_miptree_map_blit(brw, mt, map, level, slice);
3669 #if defined(USE_SSE41)
3670 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3671 !mt->compressed && cpu_has_sse4_1 &&
3672 (mt->surf.row_pitch % 16 == 0)) {
3673 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3674 #endif
3675 } else {
3676 intel_miptree_map_gtt(brw, mt, map, level, slice);
3677 }
3678
3679 *out_ptr = map->ptr;
3680 *out_stride = map->stride;
3681
3682 if (map->ptr == NULL)
3683 intel_miptree_release_map(mt, level, slice);
3684 }
3685
3686 void
3687 intel_miptree_unmap(struct brw_context *brw,
3688 struct intel_mipmap_tree *mt,
3689 unsigned int level,
3690 unsigned int slice)
3691 {
3692 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3693
3694 assert(mt->surf.samples == 1);
3695
3696 if (!map)
3697 return;
3698
3699 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3700 mt, _mesa_get_format_name(mt->format), level, slice);
3701
3702 if (mt->format == MESA_FORMAT_S_UINT8) {
3703 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3704 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3705 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3706 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3707 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3708 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3709 } else if (map->linear_mt) {
3710 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3711 #if defined(USE_SSE41)
3712 } else if (map->buffer && cpu_has_sse4_1) {
3713 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3714 #endif
3715 } else {
3716 intel_miptree_unmap_gtt(mt);
3717 }
3718
3719 intel_miptree_release_map(mt, level, slice);
3720 }
3721
3722 enum isl_surf_dim
3723 get_isl_surf_dim(GLenum target)
3724 {
3725 switch (target) {
3726 case GL_TEXTURE_1D:
3727 case GL_TEXTURE_1D_ARRAY:
3728 return ISL_SURF_DIM_1D;
3729
3730 case GL_TEXTURE_2D:
3731 case GL_TEXTURE_2D_ARRAY:
3732 case GL_TEXTURE_RECTANGLE:
3733 case GL_TEXTURE_CUBE_MAP:
3734 case GL_TEXTURE_CUBE_MAP_ARRAY:
3735 case GL_TEXTURE_2D_MULTISAMPLE:
3736 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3737 case GL_TEXTURE_EXTERNAL_OES:
3738 return ISL_SURF_DIM_2D;
3739
3740 case GL_TEXTURE_3D:
3741 return ISL_SURF_DIM_3D;
3742 }
3743
3744 unreachable("Invalid texture target");
3745 }
3746
3747 enum isl_dim_layout
3748 get_isl_dim_layout(const struct gen_device_info *devinfo,
3749 enum isl_tiling tiling, GLenum target)
3750 {
3751 switch (target) {
3752 case GL_TEXTURE_1D:
3753 case GL_TEXTURE_1D_ARRAY:
3754 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3755 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3756
3757 case GL_TEXTURE_2D:
3758 case GL_TEXTURE_2D_ARRAY:
3759 case GL_TEXTURE_RECTANGLE:
3760 case GL_TEXTURE_2D_MULTISAMPLE:
3761 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3762 case GL_TEXTURE_EXTERNAL_OES:
3763 return ISL_DIM_LAYOUT_GEN4_2D;
3764
3765 case GL_TEXTURE_CUBE_MAP:
3766 case GL_TEXTURE_CUBE_MAP_ARRAY:
3767 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3768 ISL_DIM_LAYOUT_GEN4_2D);
3769
3770 case GL_TEXTURE_3D:
3771 return (devinfo->gen >= 9 ?
3772 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3773 }
3774
3775 unreachable("Invalid texture target");
3776 }
3777
3778 enum isl_aux_usage
3779 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3780 const struct intel_mipmap_tree *mt)
3781 {
3782 if (mt->hiz_buf)
3783 return ISL_AUX_USAGE_HIZ;
3784
3785 if (!mt->mcs_buf)
3786 return ISL_AUX_USAGE_NONE;
3787
3788 return mt->aux_usage;
3789 }