i965: do not fallback to linear tiling for stencil surfaces
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 static bool
245 intel_miptree_supports_ccs_e(struct brw_context *brw,
246 const struct intel_mipmap_tree *mt)
247 {
248 const struct gen_device_info *devinfo = &brw->screen->devinfo;
249
250 if (devinfo->gen < 9)
251 return false;
252
253 /* For now compression is only enabled for integer formats even though
254 * there exist supported floating point formats also. This is a heuristic
255 * decision based on current public benchmarks. In none of the cases these
256 * formats provided any improvement but a few cases were seen to regress.
257 * Hence these are left to to be enabled in the future when they are known
258 * to improve things.
259 */
260 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
261 return false;
262
263 if (!intel_miptree_supports_ccs(brw, mt))
264 return false;
265
266 /* Many window system buffers are sRGB even if they are never rendered as
267 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
268 * surface is used as sRGB, we fall back to CCS_D.
269 */
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
273 }
274
275 /**
276 * Determine depth format corresponding to a depth+stencil format,
277 * for separate stencil.
278 */
279 mesa_format
280 intel_depth_format_for_depthstencil_format(mesa_format format) {
281 switch (format) {
282 case MESA_FORMAT_Z24_UNORM_S8_UINT:
283 return MESA_FORMAT_Z24_UNORM_X8_UINT;
284 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
285 return MESA_FORMAT_Z_FLOAT32;
286 default:
287 return format;
288 }
289 }
290
291 static bool
292 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
293 unsigned depth0, struct intel_mipmap_level *table)
294 {
295 for (unsigned level = first_level; level <= last_level; level++) {
296 const unsigned d =
297 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
298
299 table[level].slice = calloc(d, sizeof(*table[0].slice));
300 if (!table[level].slice)
301 goto unwind;
302 }
303
304 return true;
305
306 unwind:
307 for (unsigned level = first_level; level <= last_level; level++)
308 free(table[level].slice);
309
310 return false;
311 }
312
313 static bool
314 needs_separate_stencil(const struct brw_context *brw,
315 struct intel_mipmap_tree *mt,
316 mesa_format format)
317 {
318 const struct gen_device_info *devinfo = &brw->screen->devinfo;
319
320 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
321 return false;
322
323 if (devinfo->must_use_separate_stencil)
324 return true;
325
326 return brw->has_separate_stencil &&
327 intel_miptree_supports_hiz(brw, mt);
328 }
329
330 /**
331 * Choose the aux usage for this miptree. This function must be called fairly
332 * late in the miptree create process after we have a tiling.
333 */
334 static void
335 intel_miptree_choose_aux_usage(struct brw_context *brw,
336 struct intel_mipmap_tree *mt)
337 {
338 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
339
340 if (intel_miptree_supports_mcs(brw, mt)) {
341 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
342 mt->aux_usage = ISL_AUX_USAGE_MCS;
343 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
344 intel_miptree_supports_ccs(brw, mt)) {
345 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
346 intel_miptree_supports_ccs_e(brw, mt)) {
347 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
348 } else {
349 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
350 }
351 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
352 intel_miptree_supports_hiz(brw, mt)) {
353 mt->aux_usage = ISL_AUX_USAGE_HIZ;
354 }
355
356 /* We can do fast-clear on all auxiliary surface types that are
357 * allocated through the normal texture creation paths.
358 */
359 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
360 mt->supports_fast_clear = true;
361 }
362
363
364 /**
365 * Choose an appropriate uncompressed format for a requested
366 * compressed format, if unsupported.
367 */
368 mesa_format
369 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
370 {
371 const struct gen_device_info *devinfo = &brw->screen->devinfo;
372
373 /* No need to lower ETC formats on these platforms,
374 * they are supported natively.
375 */
376 if (devinfo->gen >= 8 || devinfo->is_baytrail)
377 return format;
378
379 switch (format) {
380 case MESA_FORMAT_ETC1_RGB8:
381 return MESA_FORMAT_R8G8B8X8_UNORM;
382 case MESA_FORMAT_ETC2_RGB8:
383 return MESA_FORMAT_R8G8B8X8_UNORM;
384 case MESA_FORMAT_ETC2_SRGB8:
385 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
386 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
387 return MESA_FORMAT_B8G8R8A8_SRGB;
388 case MESA_FORMAT_ETC2_RGBA8_EAC:
389 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
390 return MESA_FORMAT_R8G8B8A8_UNORM;
391 case MESA_FORMAT_ETC2_R11_EAC:
392 return MESA_FORMAT_R_UNORM16;
393 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
394 return MESA_FORMAT_R_SNORM16;
395 case MESA_FORMAT_ETC2_RG11_EAC:
396 return MESA_FORMAT_R16G16_UNORM;
397 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
398 return MESA_FORMAT_R16G16_SNORM;
399 default:
400 /* Non ETC1 / ETC2 format */
401 return format;
402 }
403 }
404
405 unsigned
406 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
407 {
408 if (mt->surf.dim == ISL_SURF_DIM_3D)
409 return minify(mt->surf.logical_level0_px.depth, level);
410 else
411 return mt->surf.logical_level0_px.array_len;
412 }
413
414 UNUSED static unsigned
415 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
416 {
417 /* In case of physical dimensions one needs to consider also the layout.
418 * See isl_calc_phys_level0_extent_sa().
419 */
420 if (surf->dim != ISL_SURF_DIM_3D)
421 return surf->phys_level0_sa.array_len;
422
423 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
424 return minify(surf->phys_level0_sa.array_len, level);
425
426 return minify(surf->phys_level0_sa.depth, level);
427 }
428
429 /** \brief Assert that the level and layer are valid for the miptree. */
430 void
431 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
432 uint32_t level,
433 uint32_t layer)
434 {
435 (void) mt;
436 (void) level;
437 (void) layer;
438
439 assert(level >= mt->first_level);
440 assert(level <= mt->last_level);
441 assert(layer < get_num_phys_layers(&mt->surf, level));
442 }
443
444 static enum isl_aux_state **
445 create_aux_state_map(struct intel_mipmap_tree *mt,
446 enum isl_aux_state initial)
447 {
448 const uint32_t levels = mt->last_level + 1;
449
450 uint32_t total_slices = 0;
451 for (uint32_t level = 0; level < levels; level++)
452 total_slices += brw_get_num_logical_layers(mt, level);
453
454 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
455
456 /* We're going to allocate a single chunk of data for both the per-level
457 * reference array and the arrays of aux_state. This makes cleanup
458 * significantly easier.
459 */
460 const size_t total_size = per_level_array_size +
461 total_slices * sizeof(enum isl_aux_state);
462 void *data = malloc(total_size);
463 if (data == NULL)
464 return NULL;
465
466 enum isl_aux_state **per_level_arr = data;
467 enum isl_aux_state *s = data + per_level_array_size;
468 for (uint32_t level = 0; level < levels; level++) {
469 per_level_arr[level] = s;
470 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
471 for (uint32_t a = 0; a < level_layers; a++)
472 *(s++) = initial;
473 }
474 assert((void *)s == data + total_size);
475
476 return per_level_arr;
477 }
478
479 static void
480 free_aux_state_map(enum isl_aux_state **state)
481 {
482 free(state);
483 }
484
485 static bool
486 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
487 enum isl_tiling tiling, unsigned samples)
488 {
489 if (samples > 1)
490 return false;
491
492 if (tiling == ISL_TILING_LINEAR)
493 return false;
494
495 /* If the width is much smaller than a tile, don't bother tiling. */
496 if (row_pitch < 64)
497 return true;
498
499 if (ALIGN(row_pitch, 512) >= 32768) {
500 perf_debug("row pitch %u too large to blit, falling back to untiled",
501 row_pitch);
502 return true;
503 }
504
505 return false;
506 }
507
508 static bool
509 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
510 enum isl_tiling tiling)
511 {
512 const struct gen_device_info *devinfo = &brw->screen->devinfo;
513
514 /* If the BO is too large to fit in the aperture, we need to use the
515 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
516 * handle Y-tiling, so we need to fall back to X.
517 */
518 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
519 tiling == ISL_TILING_Y0)
520 return true;
521
522 return false;
523 }
524
525 static struct intel_mipmap_tree *
526 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
527 unsigned first_level, unsigned last_level,
528 unsigned width0, unsigned height0, unsigned depth0,
529 unsigned num_samples, isl_tiling_flags_t tiling_flags,
530 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
531 unsigned row_pitch, struct brw_bo *bo)
532 {
533 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
534 if (!mt)
535 return NULL;
536
537 if (!create_mapping_table(target, first_level, last_level, depth0,
538 mt->level)) {
539 free(mt);
540 return NULL;
541 }
542
543 mt->refcount = 1;
544
545 if (target == GL_TEXTURE_CUBE_MAP ||
546 target == GL_TEXTURE_CUBE_MAP_ARRAY)
547 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
548
549 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
550 __func__,
551 _mesa_enum_to_string(target),
552 _mesa_get_format_name(format),
553 num_samples, width0, height0, depth0,
554 first_level, last_level, mt);
555
556 struct isl_surf_init_info init_info = {
557 .dim = get_isl_surf_dim(target),
558 .format = translate_tex_format(brw, format, false),
559 .width = width0,
560 .height = height0,
561 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
562 .levels = last_level - first_level + 1,
563 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
564 .samples = num_samples,
565 .row_pitch = row_pitch,
566 .usage = isl_usage_flags,
567 .tiling_flags = tiling_flags,
568 };
569
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572
573 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
574 * on gen7 platforms we also need to create Y-tiled copies of stencil for
575 * texturing since the hardware can't sample from W-tiled surfaces. For
576 * everything else, check for corner cases needing special treatment.
577 */
578 bool is_depth_stencil =
579 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
580 if (!is_depth_stencil) {
581 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
582 mt->surf.tiling, mt->surf.samples)) {
583 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
584 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
585 goto fail;
586 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
587 init_info.tiling_flags = 1u << ISL_TILING_X;
588 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
589 goto fail;
590 }
591 }
592
593 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
594 * the size may not be multiple of row_pitch.
595 * See isl_apply_surface_padding().
596 */
597 if (mt->surf.tiling != ISL_TILING_LINEAR)
598 assert(mt->surf.size % mt->surf.row_pitch == 0);
599
600 if (!bo) {
601 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
602 mt->surf.size,
603 isl_tiling_to_i915_tiling(
604 mt->surf.tiling),
605 mt->surf.row_pitch, alloc_flags);
606 if (!mt->bo)
607 goto fail;
608 } else {
609 mt->bo = bo;
610 }
611
612 mt->first_level = first_level;
613 mt->last_level = last_level;
614 mt->target = target;
615 mt->format = format;
616 mt->aux_state = NULL;
617 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
618 mt->compressed = _mesa_is_format_compressed(format);
619 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
620
621 return mt;
622
623 fail:
624 intel_miptree_release(&mt);
625 return NULL;
626 }
627
628 static bool
629 make_separate_stencil_surface(struct brw_context *brw,
630 struct intel_mipmap_tree *mt)
631 {
632 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
633 0, mt->surf.levels - 1,
634 mt->surf.logical_level0_px.width,
635 mt->surf.logical_level0_px.height,
636 mt->surf.dim == ISL_SURF_DIM_3D ?
637 mt->surf.logical_level0_px.depth :
638 mt->surf.logical_level0_px.array_len,
639 mt->surf.samples, ISL_TILING_W_BIT,
640 ISL_SURF_USAGE_STENCIL_BIT |
641 ISL_SURF_USAGE_TEXTURE_BIT,
642 BO_ALLOC_BUSY, 0, NULL);
643
644 if (!mt->stencil_mt)
645 return false;
646
647 mt->stencil_mt->r8stencil_needs_update = true;
648
649 return true;
650 }
651
652 static struct intel_mipmap_tree *
653 miptree_create(struct brw_context *brw,
654 GLenum target,
655 mesa_format format,
656 GLuint first_level,
657 GLuint last_level,
658 GLuint width0,
659 GLuint height0,
660 GLuint depth0,
661 GLuint num_samples,
662 enum intel_miptree_create_flags flags)
663 {
664 const struct gen_device_info *devinfo = &brw->screen->devinfo;
665
666 if (format == MESA_FORMAT_S_UINT8)
667 return make_surface(brw, target, format, first_level, last_level,
668 width0, height0, depth0, num_samples,
669 ISL_TILING_W_BIT,
670 ISL_SURF_USAGE_STENCIL_BIT |
671 ISL_SURF_USAGE_TEXTURE_BIT,
672 BO_ALLOC_BUSY,
673 0,
674 NULL);
675
676 const GLenum base_format = _mesa_get_format_base_format(format);
677 if ((base_format == GL_DEPTH_COMPONENT ||
678 base_format == GL_DEPTH_STENCIL) &&
679 !(flags & MIPTREE_CREATE_LINEAR)) {
680 /* Fix up the Z miptree format for how we're splitting out separate
681 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
682 */
683 const mesa_format depth_only_format =
684 intel_depth_format_for_depthstencil_format(format);
685 struct intel_mipmap_tree *mt = make_surface(
686 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
687 first_level, last_level,
688 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
689 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
690 BO_ALLOC_BUSY, 0, NULL);
691
692 if (needs_separate_stencil(brw, mt, format) &&
693 !make_separate_stencil_surface(brw, mt)) {
694 intel_miptree_release(&mt);
695 return NULL;
696 }
697
698 if (!(flags & MIPTREE_CREATE_NO_AUX))
699 intel_miptree_choose_aux_usage(brw, mt);
700
701 return mt;
702 }
703
704 mesa_format tex_format = format;
705 mesa_format etc_format = MESA_FORMAT_NONE;
706 uint32_t alloc_flags = 0;
707
708 format = intel_lower_compressed_format(brw, format);
709
710 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
711
712 if (flags & MIPTREE_CREATE_BUSY)
713 alloc_flags |= BO_ALLOC_BUSY;
714
715 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
716 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
717
718 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
719 if (devinfo->gen < 6)
720 tiling_flags &= ~ISL_TILING_Y0_BIT;
721
722 struct intel_mipmap_tree *mt = make_surface(
723 brw, target, format,
724 first_level, last_level,
725 width0, height0, depth0,
726 num_samples, tiling_flags,
727 ISL_SURF_USAGE_RENDER_TARGET_BIT |
728 ISL_SURF_USAGE_TEXTURE_BIT,
729 alloc_flags, 0, NULL);
730 if (!mt)
731 return NULL;
732
733 mt->etc_format = etc_format;
734
735 if (!(flags & MIPTREE_CREATE_NO_AUX))
736 intel_miptree_choose_aux_usage(brw, mt);
737
738 return mt;
739 }
740
741 struct intel_mipmap_tree *
742 intel_miptree_create(struct brw_context *brw,
743 GLenum target,
744 mesa_format format,
745 GLuint first_level,
746 GLuint last_level,
747 GLuint width0,
748 GLuint height0,
749 GLuint depth0,
750 GLuint num_samples,
751 enum intel_miptree_create_flags flags)
752 {
753 assert(num_samples > 0);
754
755 struct intel_mipmap_tree *mt = miptree_create(
756 brw, target, format,
757 first_level, last_level,
758 width0, height0, depth0, num_samples,
759 flags);
760 if (!mt)
761 return NULL;
762
763 mt->offset = 0;
764
765 if (!intel_miptree_alloc_aux(brw, mt)) {
766 intel_miptree_release(&mt);
767 return NULL;
768 }
769
770 return mt;
771 }
772
773 struct intel_mipmap_tree *
774 intel_miptree_create_for_bo(struct brw_context *brw,
775 struct brw_bo *bo,
776 mesa_format format,
777 uint32_t offset,
778 uint32_t width,
779 uint32_t height,
780 uint32_t depth,
781 int pitch,
782 enum intel_miptree_create_flags flags)
783 {
784 const struct gen_device_info *devinfo = &brw->screen->devinfo;
785 struct intel_mipmap_tree *mt;
786 uint32_t tiling, swizzle;
787 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
788 const GLenum base_format = _mesa_get_format_base_format(format);
789
790 if ((base_format == GL_DEPTH_COMPONENT ||
791 base_format == GL_DEPTH_STENCIL)) {
792 const mesa_format depth_only_format =
793 intel_depth_format_for_depthstencil_format(format);
794 mt = make_surface(brw, target,
795 devinfo->gen >= 6 ? depth_only_format : format,
796 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
797 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
798 BO_ALLOC_BUSY, pitch, bo);
799 if (!mt)
800 return NULL;
801
802 brw_bo_reference(bo);
803
804 if (!(flags & MIPTREE_CREATE_NO_AUX))
805 intel_miptree_choose_aux_usage(brw, mt);
806
807 return mt;
808 } else if (format == MESA_FORMAT_S_UINT8) {
809 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
810 0, 0, width, height, depth, 1,
811 ISL_TILING_W_BIT,
812 ISL_SURF_USAGE_STENCIL_BIT |
813 ISL_SURF_USAGE_TEXTURE_BIT,
814 BO_ALLOC_BUSY, pitch, bo);
815 if (!mt)
816 return NULL;
817
818 assert(bo->size >= mt->surf.size);
819
820 brw_bo_reference(bo);
821 return mt;
822 }
823
824 brw_bo_get_tiling(bo, &tiling, &swizzle);
825
826 /* Nothing will be able to use this miptree with the BO if the offset isn't
827 * aligned.
828 */
829 if (tiling != I915_TILING_NONE)
830 assert(offset % 4096 == 0);
831
832 /* miptrees can't handle negative pitch. If you need flipping of images,
833 * that's outside of the scope of the mt.
834 */
835 assert(pitch >= 0);
836
837 /* The BO already has a tiling format and we shouldn't confuse the lower
838 * layers by making it try to find a tiling format again.
839 */
840 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
841
842 mt = make_surface(brw, target, format,
843 0, 0, width, height, depth, 1,
844 1lu << isl_tiling_from_i915_tiling(tiling),
845 ISL_SURF_USAGE_RENDER_TARGET_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 brw_bo_reference(bo);
852 mt->bo = bo;
853 mt->offset = offset;
854
855 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
856 intel_miptree_choose_aux_usage(brw, mt);
857
858 if (!intel_miptree_alloc_aux(brw, mt)) {
859 intel_miptree_release(&mt);
860 return NULL;
861 }
862 }
863
864 return mt;
865 }
866
867 static struct intel_mipmap_tree *
868 miptree_create_for_planar_image(struct brw_context *brw,
869 __DRIimage *image, GLenum target)
870 {
871 const struct intel_image_format *f = image->planar_format;
872 struct intel_mipmap_tree *planar_mt = NULL;
873
874 for (int i = 0; i < f->nplanes; i++) {
875 const int index = f->planes[i].buffer_index;
876 const uint32_t dri_format = f->planes[i].dri_format;
877 const mesa_format format = driImageFormatToGLFormat(dri_format);
878 const uint32_t width = image->width >> f->planes[i].width_shift;
879 const uint32_t height = image->height >> f->planes[i].height_shift;
880
881 /* Disable creation of the texture's aux buffers because the driver
882 * exposes no EGL API to manage them. That is, there is no API for
883 * resolving the aux buffer's content to the main buffer nor for
884 * invalidating the aux buffer's content.
885 */
886 struct intel_mipmap_tree *mt =
887 intel_miptree_create_for_bo(brw, image->bo, format,
888 image->offsets[index],
889 width, height, 1,
890 image->strides[index],
891 MIPTREE_CREATE_NO_AUX);
892 if (mt == NULL)
893 return NULL;
894
895 mt->target = target;
896
897 if (i == 0)
898 planar_mt = mt;
899 else
900 planar_mt->plane[i - 1] = mt;
901 }
902
903 planar_mt->drm_modifier = image->modifier;
904
905 return planar_mt;
906 }
907
908 static bool
909 create_ccs_buf_for_image(struct brw_context *brw,
910 __DRIimage *image,
911 struct intel_mipmap_tree *mt,
912 enum isl_aux_state initial_state)
913 {
914 struct isl_surf temp_ccs_surf;
915
916 /* CCS is only supported for very simple miptrees */
917 assert(image->aux_offset != 0 && image->aux_pitch != 0);
918 assert(image->tile_x == 0 && image->tile_y == 0);
919 assert(mt->surf.samples == 1);
920 assert(mt->surf.levels == 1);
921 assert(mt->surf.logical_level0_px.depth == 1);
922 assert(mt->surf.logical_level0_px.array_len == 1);
923 assert(mt->first_level == 0);
924 assert(mt->last_level == 0);
925
926 /* We shouldn't already have a CCS */
927 assert(!mt->mcs_buf);
928
929 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
930 image->aux_pitch))
931 return false;
932
933 assert(image->aux_offset < image->bo->size);
934 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
935
936 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
937 if (mt->mcs_buf == NULL)
938 return false;
939
940 mt->aux_state = create_aux_state_map(mt, initial_state);
941 if (!mt->aux_state) {
942 free(mt->mcs_buf);
943 mt->mcs_buf = NULL;
944 return false;
945 }
946
947 mt->mcs_buf->bo = image->bo;
948 brw_bo_reference(image->bo);
949
950 mt->mcs_buf->offset = image->aux_offset;
951 mt->mcs_buf->size = image->bo->size - image->aux_offset;
952 mt->mcs_buf->pitch = image->aux_pitch;
953 mt->mcs_buf->qpitch = 0;
954 mt->mcs_buf->surf = temp_ccs_surf;
955
956 return true;
957 }
958
959 struct intel_mipmap_tree *
960 intel_miptree_create_for_dri_image(struct brw_context *brw,
961 __DRIimage *image, GLenum target,
962 enum isl_colorspace colorspace,
963 bool is_winsys_image)
964 {
965 if (image->planar_format && image->planar_format->nplanes > 1) {
966 assert(colorspace == ISL_COLORSPACE_NONE ||
967 colorspace == ISL_COLORSPACE_YUV);
968 return miptree_create_for_planar_image(brw, image, target);
969 }
970
971 if (image->planar_format)
972 assert(image->planar_format->planes[0].dri_format == image->dri_format);
973
974 mesa_format format = image->format;
975 switch (colorspace) {
976 case ISL_COLORSPACE_NONE:
977 /* Keep the image format unmodified */
978 break;
979
980 case ISL_COLORSPACE_LINEAR:
981 format =_mesa_get_srgb_format_linear(format);
982 break;
983
984 case ISL_COLORSPACE_SRGB:
985 format =_mesa_get_linear_format_srgb(format);
986 break;
987
988 default:
989 unreachable("Inalid colorspace for non-planar image");
990 }
991
992 if (!brw->ctx.TextureFormatSupported[format]) {
993 /* The texture storage paths in core Mesa detect if the driver does not
994 * support the user-requested format, and then searches for a
995 * fallback format. The DRIimage code bypasses core Mesa, though. So we
996 * do the fallbacks here for important formats.
997 *
998 * We must support DRM_FOURCC_XBGR8888 textures because the Android
999 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1000 * the Chrome OS compositor consumes as dma_buf EGLImages.
1001 */
1002 format = _mesa_format_fallback_rgbx_to_rgba(format);
1003 }
1004
1005 if (!brw->ctx.TextureFormatSupported[format])
1006 return NULL;
1007
1008 const struct isl_drm_modifier_info *mod_info =
1009 isl_drm_modifier_get_info(image->modifier);
1010
1011 enum intel_miptree_create_flags mt_create_flags = 0;
1012
1013 /* If this image comes in from a window system, we have different
1014 * requirements than if it comes in via an EGL import operation. Window
1015 * system images can use any form of auxiliary compression we wish because
1016 * they get "flushed" before being handed off to the window system and we
1017 * have the opportunity to do resolves. Non window-system images, on the
1018 * other hand, have no resolve point so we can't have aux without a
1019 * modifier.
1020 */
1021 if (!is_winsys_image)
1022 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1023
1024 /* If we have a modifier which specifies aux, don't create one yet */
1025 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1026 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1027
1028 /* Disable creation of the texture's aux buffers because the driver exposes
1029 * no EGL API to manage them. That is, there is no API for resolving the aux
1030 * buffer's content to the main buffer nor for invalidating the aux buffer's
1031 * content.
1032 */
1033 struct intel_mipmap_tree *mt =
1034 intel_miptree_create_for_bo(brw, image->bo, format,
1035 image->offset, image->width, image->height, 1,
1036 image->pitch, mt_create_flags);
1037 if (mt == NULL)
1038 return NULL;
1039
1040 mt->target = target;
1041 mt->level[0].level_x = image->tile_x;
1042 mt->level[0].level_y = image->tile_y;
1043 mt->drm_modifier = image->modifier;
1044
1045 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1046 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1047 * trouble resolving back to destination image due to alignment issues.
1048 */
1049 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1050 if (!devinfo->has_surface_tile_offset) {
1051 uint32_t draw_x, draw_y;
1052 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1053
1054 if (draw_x != 0 || draw_y != 0) {
1055 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1056 intel_miptree_release(&mt);
1057 return NULL;
1058 }
1059 }
1060
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1062 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1063
1064 mt->aux_usage = mod_info->aux_usage;
1065 /* If we are a window system buffer, then we can support fast-clears
1066 * even if the modifier doesn't support them by doing a partial resolve
1067 * as part of the flush operation.
1068 */
1069 mt->supports_fast_clear =
1070 is_winsys_image || mod_info->supports_clear_color;
1071
1072 /* We don't know the actual state of the surface when we get it but we
1073 * can make a pretty good guess based on the modifier. What we do know
1074 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1075 * a worst case of compression.
1076 */
1077 enum isl_aux_state initial_state =
1078 mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1079 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1080
1081 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1082 intel_miptree_release(&mt);
1083 return NULL;
1084 }
1085 }
1086
1087 /* Don't assume coherency for imported EGLimages. We don't know what
1088 * external clients are going to do with it. They may scan it out.
1089 */
1090 image->bo->cache_coherent = false;
1091
1092 return mt;
1093 }
1094
1095 /**
1096 * For a singlesample renderbuffer, this simply wraps the given BO with a
1097 * miptree.
1098 *
1099 * For a multisample renderbuffer, this wraps the window system's
1100 * (singlesample) BO with a singlesample miptree attached to the
1101 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1102 * that will contain the actual rendering (which is lazily resolved to
1103 * irb->singlesample_mt).
1104 */
1105 bool
1106 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1107 struct intel_renderbuffer *irb,
1108 struct intel_mipmap_tree *singlesample_mt,
1109 uint32_t width, uint32_t height,
1110 uint32_t pitch)
1111 {
1112 struct intel_mipmap_tree *multisample_mt = NULL;
1113 struct gl_renderbuffer *rb = &irb->Base.Base;
1114 mesa_format format = rb->Format;
1115 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1116
1117 /* Only the front and back buffers, which are color buffers, are allocated
1118 * through the image loader.
1119 */
1120 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1121 _mesa_get_format_base_format(format) == GL_RGBA);
1122
1123 assert(singlesample_mt);
1124
1125 if (num_samples == 1) {
1126 intel_miptree_release(&irb->mt);
1127 irb->mt = singlesample_mt;
1128
1129 assert(!irb->singlesample_mt);
1130 } else {
1131 intel_miptree_release(&irb->singlesample_mt);
1132 irb->singlesample_mt = singlesample_mt;
1133
1134 if (!irb->mt ||
1135 irb->mt->surf.logical_level0_px.width != width ||
1136 irb->mt->surf.logical_level0_px.height != height) {
1137 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1138 format,
1139 width,
1140 height,
1141 num_samples);
1142 if (!multisample_mt)
1143 goto fail;
1144
1145 irb->need_downsample = false;
1146 intel_miptree_release(&irb->mt);
1147 irb->mt = multisample_mt;
1148 }
1149 }
1150 return true;
1151
1152 fail:
1153 intel_miptree_release(&irb->mt);
1154 return false;
1155 }
1156
1157 struct intel_mipmap_tree*
1158 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1159 mesa_format format,
1160 uint32_t width,
1161 uint32_t height,
1162 uint32_t num_samples)
1163 {
1164 struct intel_mipmap_tree *mt;
1165 uint32_t depth = 1;
1166 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1167
1168 mt = intel_miptree_create(brw, target, format, 0, 0,
1169 width, height, depth, num_samples,
1170 MIPTREE_CREATE_BUSY);
1171 if (!mt)
1172 goto fail;
1173
1174 return mt;
1175
1176 fail:
1177 intel_miptree_release(&mt);
1178 return NULL;
1179 }
1180
1181 void
1182 intel_miptree_reference(struct intel_mipmap_tree **dst,
1183 struct intel_mipmap_tree *src)
1184 {
1185 if (*dst == src)
1186 return;
1187
1188 intel_miptree_release(dst);
1189
1190 if (src) {
1191 src->refcount++;
1192 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1193 }
1194
1195 *dst = src;
1196 }
1197
1198 static void
1199 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1200 {
1201 if (aux_buf == NULL)
1202 return;
1203
1204 brw_bo_unreference(aux_buf->bo);
1205
1206 free(aux_buf);
1207 }
1208
1209 void
1210 intel_miptree_release(struct intel_mipmap_tree **mt)
1211 {
1212 if (!*mt)
1213 return;
1214
1215 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1216 if (--(*mt)->refcount <= 0) {
1217 GLuint i;
1218
1219 DBG("%s deleting %p\n", __func__, *mt);
1220
1221 brw_bo_unreference((*mt)->bo);
1222 intel_miptree_release(&(*mt)->stencil_mt);
1223 intel_miptree_release(&(*mt)->r8stencil_mt);
1224 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1225 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1226 free_aux_state_map((*mt)->aux_state);
1227
1228 intel_miptree_release(&(*mt)->plane[0]);
1229 intel_miptree_release(&(*mt)->plane[1]);
1230
1231 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1232 free((*mt)->level[i].slice);
1233 }
1234
1235 free(*mt);
1236 }
1237 *mt = NULL;
1238 }
1239
1240
1241 void
1242 intel_get_image_dims(struct gl_texture_image *image,
1243 int *width, int *height, int *depth)
1244 {
1245 switch (image->TexObject->Target) {
1246 case GL_TEXTURE_1D_ARRAY:
1247 /* For a 1D Array texture the OpenGL API will treat the image height as
1248 * the number of array slices. For Intel hardware, we treat the 1D array
1249 * as a 2D Array with a height of 1. So, here we want to swap image
1250 * height and depth.
1251 */
1252 assert(image->Depth == 1);
1253 *width = image->Width;
1254 *height = 1;
1255 *depth = image->Height;
1256 break;
1257 case GL_TEXTURE_CUBE_MAP:
1258 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1259 * though we really have 6 slices.
1260 */
1261 assert(image->Depth == 1);
1262 *width = image->Width;
1263 *height = image->Height;
1264 *depth = 6;
1265 break;
1266 default:
1267 *width = image->Width;
1268 *height = image->Height;
1269 *depth = image->Depth;
1270 break;
1271 }
1272 }
1273
1274 /**
1275 * Can the image be pulled into a unified mipmap tree? This mirrors
1276 * the completeness test in a lot of ways.
1277 *
1278 * Not sure whether I want to pass gl_texture_image here.
1279 */
1280 bool
1281 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1282 struct gl_texture_image *image)
1283 {
1284 struct intel_texture_image *intelImage = intel_texture_image(image);
1285 GLuint level = intelImage->base.Base.Level;
1286 int width, height, depth;
1287
1288 /* glTexImage* choose the texture object based on the target passed in, and
1289 * objects can't change targets over their lifetimes, so this should be
1290 * true.
1291 */
1292 assert(image->TexObject->Target == mt->target);
1293
1294 mesa_format mt_format = mt->format;
1295 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1296 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1297 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1298 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1299 if (mt->etc_format != MESA_FORMAT_NONE)
1300 mt_format = mt->etc_format;
1301
1302 if (image->TexFormat != mt_format)
1303 return false;
1304
1305 intel_get_image_dims(image, &width, &height, &depth);
1306
1307 if (mt->target == GL_TEXTURE_CUBE_MAP)
1308 depth = 6;
1309
1310 if (level >= mt->surf.levels)
1311 return false;
1312
1313 const unsigned level_depth =
1314 mt->surf.dim == ISL_SURF_DIM_3D ?
1315 minify(mt->surf.logical_level0_px.depth, level) :
1316 mt->surf.logical_level0_px.array_len;
1317
1318 return width == minify(mt->surf.logical_level0_px.width, level) &&
1319 height == minify(mt->surf.logical_level0_px.height, level) &&
1320 depth == level_depth &&
1321 MAX2(image->NumSamples, 1) == mt->surf.samples;
1322 }
1323
1324 void
1325 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1326 GLuint level, GLuint slice,
1327 GLuint *x, GLuint *y)
1328 {
1329 if (level == 0 && slice == 0) {
1330 *x = mt->level[0].level_x;
1331 *y = mt->level[0].level_y;
1332 return;
1333 }
1334
1335 uint32_t x_offset_sa, y_offset_sa;
1336
1337 /* Miptree itself can have an offset only if it represents a single
1338 * slice in an imported buffer object.
1339 * See intel_miptree_create_for_dri_image().
1340 */
1341 assert(mt->level[0].level_x == 0);
1342 assert(mt->level[0].level_y == 0);
1343
1344 /* Given level is relative to level zero while the miptree may be
1345 * represent just a subset of all levels starting from 'first_level'.
1346 */
1347 assert(level >= mt->first_level);
1348 level -= mt->first_level;
1349
1350 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1351 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1352 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1353 &x_offset_sa, &y_offset_sa);
1354
1355 *x = x_offset_sa;
1356 *y = y_offset_sa;
1357 }
1358
1359
1360 /**
1361 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1362 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1363 * and tile_h is set to 1.
1364 */
1365 void
1366 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1367 uint32_t *tile_w, uint32_t *tile_h)
1368 {
1369 switch (tiling) {
1370 case ISL_TILING_X:
1371 *tile_w = 512;
1372 *tile_h = 8;
1373 break;
1374 case ISL_TILING_Y0:
1375 *tile_w = 128;
1376 *tile_h = 32;
1377 break;
1378 case ISL_TILING_LINEAR:
1379 *tile_w = cpp;
1380 *tile_h = 1;
1381 break;
1382 default:
1383 unreachable("not reached");
1384 }
1385 }
1386
1387
1388 /**
1389 * This function computes masks that may be used to select the bits of the X
1390 * and Y coordinates that indicate the offset within a tile. If the BO is
1391 * untiled, the masks are set to 0.
1392 */
1393 void
1394 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1395 uint32_t *mask_x, uint32_t *mask_y)
1396 {
1397 uint32_t tile_w_bytes, tile_h;
1398
1399 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1400
1401 *mask_x = tile_w_bytes / cpp - 1;
1402 *mask_y = tile_h - 1;
1403 }
1404
1405 /**
1406 * Compute the offset (in bytes) from the start of the BO to the given x
1407 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1408 * multiples of the tile size.
1409 */
1410 uint32_t
1411 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1412 uint32_t x, uint32_t y)
1413 {
1414 int cpp = mt->cpp;
1415 uint32_t pitch = mt->surf.row_pitch;
1416
1417 switch (mt->surf.tiling) {
1418 default:
1419 unreachable("not reached");
1420 case ISL_TILING_LINEAR:
1421 return y * pitch + x * cpp;
1422 case ISL_TILING_X:
1423 assert((x % (512 / cpp)) == 0);
1424 assert((y % 8) == 0);
1425 return y * pitch + x / (512 / cpp) * 4096;
1426 case ISL_TILING_Y0:
1427 assert((x % (128 / cpp)) == 0);
1428 assert((y % 32) == 0);
1429 return y * pitch + x / (128 / cpp) * 4096;
1430 }
1431 }
1432
1433 /**
1434 * Rendering with tiled buffers requires that the base address of the buffer
1435 * be aligned to a page boundary. For renderbuffers, and sometimes with
1436 * textures, we may want the surface to point at a texture image level that
1437 * isn't at a page boundary.
1438 *
1439 * This function returns an appropriately-aligned base offset
1440 * according to the tiling restrictions, plus any required x/y offset
1441 * from there.
1442 */
1443 uint32_t
1444 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1445 GLuint level, GLuint slice,
1446 uint32_t *tile_x,
1447 uint32_t *tile_y)
1448 {
1449 uint32_t x, y;
1450 uint32_t mask_x, mask_y;
1451
1452 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1453 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1454
1455 *tile_x = x & mask_x;
1456 *tile_y = y & mask_y;
1457
1458 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1459 }
1460
1461 static void
1462 intel_miptree_copy_slice_sw(struct brw_context *brw,
1463 struct intel_mipmap_tree *src_mt,
1464 unsigned src_level, unsigned src_layer,
1465 struct intel_mipmap_tree *dst_mt,
1466 unsigned dst_level, unsigned dst_layer,
1467 unsigned width, unsigned height)
1468 {
1469 void *src, *dst;
1470 ptrdiff_t src_stride, dst_stride;
1471 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1472
1473 intel_miptree_map(brw, src_mt,
1474 src_level, src_layer,
1475 0, 0,
1476 width, height,
1477 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1478 &src, &src_stride);
1479
1480 intel_miptree_map(brw, dst_mt,
1481 dst_level, dst_layer,
1482 0, 0,
1483 width, height,
1484 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1485 BRW_MAP_DIRECT_BIT,
1486 &dst, &dst_stride);
1487
1488 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1489 _mesa_get_format_name(src_mt->format),
1490 src_mt, src, src_stride,
1491 _mesa_get_format_name(dst_mt->format),
1492 dst_mt, dst, dst_stride,
1493 width, height);
1494
1495 int row_size = cpp * width;
1496 if (src_stride == row_size &&
1497 dst_stride == row_size) {
1498 memcpy(dst, src, row_size * height);
1499 } else {
1500 for (int i = 0; i < height; i++) {
1501 memcpy(dst, src, row_size);
1502 dst += dst_stride;
1503 src += src_stride;
1504 }
1505 }
1506
1507 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1508 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1509
1510 /* Don't forget to copy the stencil data over, too. We could have skipped
1511 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1512 * shuffling the two data sources in/out of temporary storage instead of
1513 * the direct mapping we get this way.
1514 */
1515 if (dst_mt->stencil_mt) {
1516 assert(src_mt->stencil_mt);
1517 intel_miptree_copy_slice_sw(brw,
1518 src_mt->stencil_mt, src_level, src_layer,
1519 dst_mt->stencil_mt, dst_level, dst_layer,
1520 width, height);
1521 }
1522 }
1523
1524 void
1525 intel_miptree_copy_slice(struct brw_context *brw,
1526 struct intel_mipmap_tree *src_mt,
1527 unsigned src_level, unsigned src_layer,
1528 struct intel_mipmap_tree *dst_mt,
1529 unsigned dst_level, unsigned dst_layer)
1530
1531 {
1532 mesa_format format = src_mt->format;
1533 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1534 src_level - src_mt->first_level);
1535 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1536 src_level - src_mt->first_level);
1537
1538 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1539 src_level - src_mt->first_level));
1540
1541 assert(src_mt->format == dst_mt->format);
1542
1543 if (dst_mt->compressed) {
1544 unsigned int i, j;
1545 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1546 height = ALIGN_NPOT(height, j) / j;
1547 width = ALIGN_NPOT(width, i) / i;
1548 }
1549
1550 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1551 * below won't apply since we can't do the depth's Y tiling or the
1552 * stencil's W tiling in the blitter.
1553 */
1554 if (src_mt->stencil_mt) {
1555 intel_miptree_copy_slice_sw(brw,
1556 src_mt, src_level, src_layer,
1557 dst_mt, dst_level, dst_layer,
1558 width, height);
1559 return;
1560 }
1561
1562 uint32_t dst_x, dst_y, src_x, src_y;
1563 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1564 &dst_x, &dst_y);
1565 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1566 &src_x, &src_y);
1567
1568 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1569 _mesa_get_format_name(src_mt->format),
1570 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1571 _mesa_get_format_name(dst_mt->format),
1572 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1573 width, height);
1574
1575 if (!intel_miptree_blit(brw,
1576 src_mt, src_level, src_layer, 0, 0, false,
1577 dst_mt, dst_level, dst_layer, 0, 0, false,
1578 width, height, GL_COPY)) {
1579 perf_debug("miptree validate blit for %s failed\n",
1580 _mesa_get_format_name(format));
1581
1582 intel_miptree_copy_slice_sw(brw,
1583 src_mt, src_level, src_layer,
1584 dst_mt, dst_level, dst_layer,
1585 width, height);
1586 }
1587 }
1588
1589 /**
1590 * Copies the image's current data to the given miptree, and associates that
1591 * miptree with the image.
1592 *
1593 * If \c invalidate is true, then the actual image data does not need to be
1594 * copied, but the image still needs to be associated to the new miptree (this
1595 * is set to true if we're about to clear the image).
1596 */
1597 void
1598 intel_miptree_copy_teximage(struct brw_context *brw,
1599 struct intel_texture_image *intelImage,
1600 struct intel_mipmap_tree *dst_mt,
1601 bool invalidate)
1602 {
1603 struct intel_mipmap_tree *src_mt = intelImage->mt;
1604 struct intel_texture_object *intel_obj =
1605 intel_texture_object(intelImage->base.Base.TexObject);
1606 int level = intelImage->base.Base.Level;
1607 const unsigned face = intelImage->base.Base.Face;
1608 unsigned start_layer, end_layer;
1609
1610 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1611 assert(face == 0);
1612 assert(intelImage->base.Base.Height);
1613 start_layer = 0;
1614 end_layer = intelImage->base.Base.Height - 1;
1615 } else if (face > 0) {
1616 start_layer = face;
1617 end_layer = face;
1618 } else {
1619 assert(intelImage->base.Base.Depth);
1620 start_layer = 0;
1621 end_layer = intelImage->base.Base.Depth - 1;
1622 }
1623
1624 if (!invalidate) {
1625 for (unsigned i = start_layer; i <= end_layer; i++) {
1626 intel_miptree_copy_slice(brw,
1627 src_mt, level, i,
1628 dst_mt, level, i);
1629 }
1630 }
1631
1632 intel_miptree_reference(&intelImage->mt, dst_mt);
1633 intel_obj->needs_validate = true;
1634 }
1635
1636 static void
1637 intel_miptree_init_mcs(struct brw_context *brw,
1638 struct intel_mipmap_tree *mt,
1639 int init_value)
1640 {
1641 assert(mt->mcs_buf != NULL);
1642
1643 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1644 *
1645 * When MCS buffer is enabled and bound to MSRT, it is required that it
1646 * is cleared prior to any rendering.
1647 *
1648 * Since we don't use the MCS buffer for any purpose other than rendering,
1649 * it makes sense to just clear it immediately upon allocation.
1650 *
1651 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1652 */
1653 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1654 if (unlikely(map == NULL)) {
1655 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1656 brw_bo_unreference(mt->mcs_buf->bo);
1657 free(mt->mcs_buf);
1658 return;
1659 }
1660 void *data = map;
1661 memset(data, init_value, mt->mcs_buf->size);
1662 brw_bo_unmap(mt->mcs_buf->bo);
1663 }
1664
1665 static struct intel_miptree_aux_buffer *
1666 intel_alloc_aux_buffer(struct brw_context *brw,
1667 const char *name,
1668 const struct isl_surf *aux_surf,
1669 uint32_t alloc_flags,
1670 struct intel_mipmap_tree *mt)
1671 {
1672 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1673 if (!buf)
1674 return false;
1675
1676 buf->size = aux_surf->size;
1677 buf->pitch = aux_surf->row_pitch;
1678 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1679
1680 /* ISL has stricter set of alignment rules then the drm allocator.
1681 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1682 * trying to recalculate based on different format block sizes.
1683 */
1684 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1685 I915_TILING_Y, buf->pitch, alloc_flags);
1686 if (!buf->bo) {
1687 free(buf);
1688 return NULL;
1689 }
1690
1691 buf->surf = *aux_surf;
1692
1693 return buf;
1694 }
1695
1696 static bool
1697 intel_miptree_alloc_mcs(struct brw_context *brw,
1698 struct intel_mipmap_tree *mt,
1699 GLuint num_samples)
1700 {
1701 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1702
1703 assert(devinfo->gen >= 7); /* MCS only used on Gen7+ */
1704 assert(mt->mcs_buf == NULL);
1705 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1706
1707 /* Multisampled miptrees are only supported for single level. */
1708 assert(mt->first_level == 0);
1709 enum isl_aux_state **aux_state =
1710 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1711 if (!aux_state)
1712 return false;
1713
1714 struct isl_surf temp_mcs_surf;
1715
1716 MAYBE_UNUSED bool ok =
1717 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1718 assert(ok);
1719
1720 /* Buffer needs to be initialised requiring the buffer to be immediately
1721 * mapped to cpu space for writing. Therefore do not use the gpu access
1722 * flag which can cause an unnecessary delay if the backing pages happened
1723 * to be just used by the GPU.
1724 */
1725 const uint32_t alloc_flags = 0;
1726 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1727 &temp_mcs_surf, alloc_flags, mt);
1728 if (!mt->mcs_buf) {
1729 free(aux_state);
1730 return false;
1731 }
1732
1733 mt->aux_state = aux_state;
1734
1735 intel_miptree_init_mcs(brw, mt, 0xFF);
1736
1737 return true;
1738 }
1739
1740 bool
1741 intel_miptree_alloc_ccs(struct brw_context *brw,
1742 struct intel_mipmap_tree *mt)
1743 {
1744 assert(mt->mcs_buf == NULL);
1745 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1746 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1747
1748 struct isl_surf temp_ccs_surf;
1749
1750 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1751 return false;
1752
1753 assert(temp_ccs_surf.size &&
1754 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1755
1756 enum isl_aux_state **aux_state =
1757 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1758 if (!aux_state)
1759 return false;
1760
1761 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1762 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1763 *
1764 * "If Software wants to enable Color Compression without Fast clear,
1765 * Software needs to initialize MCS with zeros."
1766 *
1767 * A CCS value of 0 indicates that the corresponding block is in the
1768 * pass-through state which is what we want.
1769 *
1770 * For CCS_D, on the other hand, we don't care as we're about to perform a
1771 * fast-clear operation. In that case, being hot in caches more useful.
1772 */
1773 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1774 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1775 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1776 &temp_ccs_surf, alloc_flags, mt);
1777 if (!mt->mcs_buf) {
1778 free(aux_state);
1779 return false;
1780 }
1781
1782 mt->aux_state = aux_state;
1783
1784 return true;
1785 }
1786
1787 /**
1788 * Helper for intel_miptree_alloc_hiz() that sets
1789 * \c mt->level[level].has_hiz. Return true if and only if
1790 * \c has_hiz was set.
1791 */
1792 static bool
1793 intel_miptree_level_enable_hiz(struct brw_context *brw,
1794 struct intel_mipmap_tree *mt,
1795 uint32_t level)
1796 {
1797 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1798
1799 assert(mt->hiz_buf);
1800 assert(mt->surf.size > 0);
1801
1802 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1803 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1804 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1805
1806 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1807 * and the height is 4 aligned. This allows our HiZ support
1808 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1809 * we can grow the width & height to allow the HiZ op to
1810 * force the proper size alignments.
1811 */
1812 if (level > 0 && ((width & 7) || (height & 3))) {
1813 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1814 return false;
1815 }
1816 }
1817
1818 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1819 mt->level[level].has_hiz = true;
1820 return true;
1821 }
1822
1823 bool
1824 intel_miptree_alloc_hiz(struct brw_context *brw,
1825 struct intel_mipmap_tree *mt)
1826 {
1827 assert(mt->hiz_buf == NULL);
1828 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1829
1830 enum isl_aux_state **aux_state =
1831 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1832 if (!aux_state)
1833 return false;
1834
1835 struct isl_surf temp_hiz_surf;
1836
1837 MAYBE_UNUSED bool ok =
1838 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1839 assert(ok);
1840
1841 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1842 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1843 &temp_hiz_surf, alloc_flags, mt);
1844
1845 if (!mt->hiz_buf) {
1846 free(aux_state);
1847 return false;
1848 }
1849
1850 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1851 intel_miptree_level_enable_hiz(brw, mt, level);
1852
1853 mt->aux_state = aux_state;
1854
1855 return true;
1856 }
1857
1858
1859 /**
1860 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1861 *
1862 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1863 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1864 * compress clear color so we wait until an actual fast-clear to allocate it.
1865 */
1866 static bool
1867 intel_miptree_alloc_aux(struct brw_context *brw,
1868 struct intel_mipmap_tree *mt)
1869 {
1870 switch (mt->aux_usage) {
1871 case ISL_AUX_USAGE_NONE:
1872 return true;
1873
1874 case ISL_AUX_USAGE_HIZ:
1875 assert(!_mesa_is_format_color_format(mt->format));
1876 if (!intel_miptree_alloc_hiz(brw, mt))
1877 return false;
1878 return true;
1879
1880 case ISL_AUX_USAGE_MCS:
1881 assert(_mesa_is_format_color_format(mt->format));
1882 assert(mt->surf.samples > 1);
1883 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1884 return false;
1885 return true;
1886
1887 case ISL_AUX_USAGE_CCS_D:
1888 /* Since CCS_D can only compress clear color so we wait until an actual
1889 * fast-clear to allocate it.
1890 */
1891 return true;
1892
1893 case ISL_AUX_USAGE_CCS_E:
1894 assert(_mesa_is_format_color_format(mt->format));
1895 assert(mt->surf.samples == 1);
1896 if (!intel_miptree_alloc_ccs(brw, mt))
1897 return false;
1898 return true;
1899 }
1900
1901 unreachable("Invalid aux usage");
1902 }
1903
1904
1905 /**
1906 * Can the miptree sample using the hiz buffer?
1907 */
1908 bool
1909 intel_miptree_sample_with_hiz(struct brw_context *brw,
1910 struct intel_mipmap_tree *mt)
1911 {
1912 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1913
1914 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1915 * so keep things conservative for now and never enable it unless we're SKL+.
1916 */
1917 if (devinfo->gen < 9) {
1918 return false;
1919 }
1920
1921 if (!mt->hiz_buf) {
1922 return false;
1923 }
1924
1925 /* It seems the hardware won't fallback to the depth buffer if some of the
1926 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1927 * of the texture to be HiZ enabled.
1928 */
1929 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1930 if (!intel_miptree_level_has_hiz(mt, level))
1931 return false;
1932 }
1933
1934 /* If compressed multisampling is enabled, then we use it for the auxiliary
1935 * buffer instead.
1936 *
1937 * From the BDW PRM (Volume 2d: Command Reference: Structures
1938 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1939 *
1940 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1941 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1942 *
1943 * There is no such blurb for 1D textures, but there is sufficient evidence
1944 * that this is broken on SKL+.
1945 */
1946 return (mt->surf.samples == 1 &&
1947 mt->target != GL_TEXTURE_3D &&
1948 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1949 }
1950
1951 /**
1952 * Does the miptree slice have hiz enabled?
1953 */
1954 bool
1955 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1956 {
1957 intel_miptree_check_level_layer(mt, level, 0);
1958 return mt->level[level].has_hiz;
1959 }
1960
1961 static inline uint32_t
1962 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1963 uint32_t start_level, uint32_t num_levels)
1964 {
1965 assert(start_level >= mt->first_level);
1966 assert(start_level <= mt->last_level);
1967
1968 if (num_levels == INTEL_REMAINING_LAYERS)
1969 num_levels = mt->last_level - start_level + 1;
1970 /* Check for overflow */
1971 assert(start_level + num_levels >= start_level);
1972 assert(start_level + num_levels <= mt->last_level + 1);
1973
1974 return num_levels;
1975 }
1976
1977 static inline uint32_t
1978 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1979 uint32_t start_layer, uint32_t num_layers)
1980 {
1981 assert(level <= mt->last_level);
1982
1983 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1984 assert(start_layer < total_num_layers);
1985 if (num_layers == INTEL_REMAINING_LAYERS)
1986 num_layers = total_num_layers - start_layer;
1987 /* Check for overflow */
1988 assert(start_layer + num_layers >= start_layer);
1989 assert(start_layer + num_layers <= total_num_layers);
1990
1991 return num_layers;
1992 }
1993
1994 bool
1995 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1996 unsigned start_level, unsigned num_levels,
1997 unsigned start_layer, unsigned num_layers)
1998 {
1999 assert(_mesa_is_format_color_format(mt->format));
2000
2001 if (!mt->mcs_buf)
2002 return false;
2003
2004 /* Clamp the level range to fit the miptree */
2005 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2006
2007 for (uint32_t l = 0; l < num_levels; l++) {
2008 const uint32_t level = start_level + l;
2009 const uint32_t level_layers =
2010 miptree_layer_range_length(mt, level, start_layer, num_layers);
2011 for (unsigned a = 0; a < level_layers; a++) {
2012 enum isl_aux_state aux_state =
2013 intel_miptree_get_aux_state(mt, level, start_layer + a);
2014 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2015 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2016 return true;
2017 }
2018 }
2019
2020 return false;
2021 }
2022
2023 static void
2024 intel_miptree_check_color_resolve(const struct brw_context *brw,
2025 const struct intel_mipmap_tree *mt,
2026 unsigned level, unsigned layer)
2027 {
2028 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2029
2030 if (!mt->mcs_buf)
2031 return;
2032
2033 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2034 assert(devinfo->gen >= 8 ||
2035 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2036
2037 /* Compression of arrayed msaa surfaces is supported. */
2038 if (mt->surf.samples > 1)
2039 return;
2040
2041 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2042 assert(devinfo->gen >= 8 ||
2043 (layer == 0 &&
2044 mt->surf.logical_level0_px.depth == 1 &&
2045 mt->surf.logical_level0_px.array_len == 1));
2046
2047 (void)level;
2048 (void)layer;
2049 }
2050
2051 static enum blorp_fast_clear_op
2052 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2053 enum isl_aux_usage aux_usage,
2054 bool fast_clear_supported)
2055 {
2056 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2057
2058 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2059
2060 assert(ccs_supported == fast_clear_supported);
2061
2062 switch (aux_state) {
2063 case ISL_AUX_STATE_CLEAR:
2064 case ISL_AUX_STATE_PARTIAL_CLEAR:
2065 if (!ccs_supported)
2066 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2067 else
2068 return BLORP_FAST_CLEAR_OP_NONE;
2069
2070 case ISL_AUX_STATE_PASS_THROUGH:
2071 return BLORP_FAST_CLEAR_OP_NONE;
2072
2073 case ISL_AUX_STATE_RESOLVED:
2074 case ISL_AUX_STATE_AUX_INVALID:
2075 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2076 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2077 break;
2078 }
2079
2080 unreachable("Invalid aux state for CCS_D");
2081 }
2082
2083 static enum blorp_fast_clear_op
2084 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2085 enum isl_aux_usage aux_usage,
2086 bool fast_clear_supported)
2087 {
2088 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2089 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2090 aux_usage == ISL_AUX_USAGE_CCS_D ||
2091 aux_usage == ISL_AUX_USAGE_CCS_E);
2092
2093 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2094 assert(fast_clear_supported);
2095
2096 switch (aux_state) {
2097 case ISL_AUX_STATE_CLEAR:
2098 case ISL_AUX_STATE_PARTIAL_CLEAR:
2099 if (fast_clear_supported)
2100 return BLORP_FAST_CLEAR_OP_NONE;
2101 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2102 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2103 else
2104 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2105
2106 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2107 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2108 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2109 else if (!fast_clear_supported)
2110 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2111 else
2112 return BLORP_FAST_CLEAR_OP_NONE;
2113
2114 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2115 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2116 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2117 else
2118 return BLORP_FAST_CLEAR_OP_NONE;
2119
2120 case ISL_AUX_STATE_PASS_THROUGH:
2121 return BLORP_FAST_CLEAR_OP_NONE;
2122
2123 case ISL_AUX_STATE_RESOLVED:
2124 case ISL_AUX_STATE_AUX_INVALID:
2125 break;
2126 }
2127
2128 unreachable("Invalid aux state for CCS_E");
2129 }
2130
2131 static void
2132 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2133 struct intel_mipmap_tree *mt,
2134 uint32_t level, uint32_t layer,
2135 enum isl_aux_usage aux_usage,
2136 bool fast_clear_supported)
2137 {
2138 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2139
2140 enum blorp_fast_clear_op resolve_op;
2141 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2142 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2143 fast_clear_supported);
2144 } else {
2145 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2146 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2147 fast_clear_supported);
2148 }
2149
2150 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2151 intel_miptree_check_color_resolve(brw, mt, level, layer);
2152 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2153
2154 switch (resolve_op) {
2155 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2156 /* The CCS full resolve operation destroys the CCS and sets it to the
2157 * pass-through state. (You can also think of this as being both a
2158 * resolve and an ambiguate in one operation.)
2159 */
2160 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2161 ISL_AUX_STATE_PASS_THROUGH);
2162 break;
2163
2164 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2165 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2166 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2167 break;
2168
2169 default:
2170 unreachable("Invalid resolve op");
2171 }
2172 }
2173 }
2174
2175 static void
2176 intel_miptree_finish_ccs_write(struct brw_context *brw,
2177 struct intel_mipmap_tree *mt,
2178 uint32_t level, uint32_t layer,
2179 enum isl_aux_usage aux_usage)
2180 {
2181 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2182 aux_usage == ISL_AUX_USAGE_CCS_D ||
2183 aux_usage == ISL_AUX_USAGE_CCS_E);
2184
2185 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2186
2187 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2188 switch (aux_state) {
2189 case ISL_AUX_STATE_CLEAR:
2190 case ISL_AUX_STATE_PARTIAL_CLEAR:
2191 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2192 aux_usage == ISL_AUX_USAGE_CCS_D);
2193
2194 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2195 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2196 ISL_AUX_STATE_COMPRESSED_CLEAR);
2197 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2198 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2199 ISL_AUX_STATE_PARTIAL_CLEAR);
2200 }
2201 break;
2202
2203 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2204 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2205 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2206 break; /* Nothing to do */
2207
2208 case ISL_AUX_STATE_PASS_THROUGH:
2209 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2210 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2211 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2212 } else {
2213 /* Nothing to do */
2214 }
2215 break;
2216
2217 case ISL_AUX_STATE_RESOLVED:
2218 case ISL_AUX_STATE_AUX_INVALID:
2219 unreachable("Invalid aux state for CCS_E");
2220 }
2221 } else {
2222 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2223 /* CCS_D is a bit simpler */
2224 switch (aux_state) {
2225 case ISL_AUX_STATE_CLEAR:
2226 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2227 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2228 ISL_AUX_STATE_PARTIAL_CLEAR);
2229 break;
2230
2231 case ISL_AUX_STATE_PARTIAL_CLEAR:
2232 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2233 break; /* Nothing to do */
2234
2235 case ISL_AUX_STATE_PASS_THROUGH:
2236 /* Nothing to do */
2237 break;
2238
2239 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2240 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2241 case ISL_AUX_STATE_RESOLVED:
2242 case ISL_AUX_STATE_AUX_INVALID:
2243 unreachable("Invalid aux state for CCS_D");
2244 }
2245 }
2246 }
2247
2248 static void
2249 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2250 struct intel_mipmap_tree *mt,
2251 uint32_t layer,
2252 enum isl_aux_usage aux_usage,
2253 bool fast_clear_supported)
2254 {
2255 assert(aux_usage == ISL_AUX_USAGE_MCS);
2256
2257 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2258 case ISL_AUX_STATE_CLEAR:
2259 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2260 if (!fast_clear_supported) {
2261 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2262 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2263 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2264 }
2265 break;
2266
2267 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2268 break; /* Nothing to do */
2269
2270 case ISL_AUX_STATE_RESOLVED:
2271 case ISL_AUX_STATE_PASS_THROUGH:
2272 case ISL_AUX_STATE_AUX_INVALID:
2273 case ISL_AUX_STATE_PARTIAL_CLEAR:
2274 unreachable("Invalid aux state for MCS");
2275 }
2276 }
2277
2278 static void
2279 intel_miptree_finish_mcs_write(struct brw_context *brw,
2280 struct intel_mipmap_tree *mt,
2281 uint32_t layer,
2282 enum isl_aux_usage aux_usage)
2283 {
2284 assert(aux_usage == ISL_AUX_USAGE_MCS);
2285
2286 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2287 case ISL_AUX_STATE_CLEAR:
2288 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2289 ISL_AUX_STATE_COMPRESSED_CLEAR);
2290 break;
2291
2292 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2293 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2294 break; /* Nothing to do */
2295
2296 case ISL_AUX_STATE_RESOLVED:
2297 case ISL_AUX_STATE_PASS_THROUGH:
2298 case ISL_AUX_STATE_AUX_INVALID:
2299 case ISL_AUX_STATE_PARTIAL_CLEAR:
2300 unreachable("Invalid aux state for MCS");
2301 }
2302 }
2303
2304 static void
2305 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2306 struct intel_mipmap_tree *mt,
2307 uint32_t level, uint32_t layer,
2308 enum isl_aux_usage aux_usage,
2309 bool fast_clear_supported)
2310 {
2311 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2312
2313 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2314 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2315 case ISL_AUX_STATE_CLEAR:
2316 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2317 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2318 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2319 break;
2320
2321 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2322 if (aux_usage != ISL_AUX_USAGE_HIZ)
2323 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2324 break;
2325
2326 case ISL_AUX_STATE_PASS_THROUGH:
2327 case ISL_AUX_STATE_RESOLVED:
2328 break;
2329
2330 case ISL_AUX_STATE_AUX_INVALID:
2331 if (aux_usage == ISL_AUX_USAGE_HIZ)
2332 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2333 break;
2334
2335 case ISL_AUX_STATE_PARTIAL_CLEAR:
2336 unreachable("Invalid HiZ state");
2337 }
2338
2339 if (hiz_op != BLORP_HIZ_OP_NONE) {
2340 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2341
2342 switch (hiz_op) {
2343 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2344 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2345 ISL_AUX_STATE_RESOLVED);
2346 break;
2347
2348 case BLORP_HIZ_OP_HIZ_RESOLVE:
2349 /* The HiZ resolve operation is actually an ambiguate */
2350 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2351 ISL_AUX_STATE_PASS_THROUGH);
2352 break;
2353
2354 default:
2355 unreachable("Invalid HiZ op");
2356 }
2357 }
2358 }
2359
2360 static void
2361 intel_miptree_finish_hiz_write(struct brw_context *brw,
2362 struct intel_mipmap_tree *mt,
2363 uint32_t level, uint32_t layer,
2364 enum isl_aux_usage aux_usage)
2365 {
2366 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2367
2368 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2369 case ISL_AUX_STATE_CLEAR:
2370 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2371 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2372 ISL_AUX_STATE_COMPRESSED_CLEAR);
2373 break;
2374
2375 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2376 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2377 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2378 break; /* Nothing to do */
2379
2380 case ISL_AUX_STATE_RESOLVED:
2381 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2382 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2383 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2384 } else {
2385 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2386 ISL_AUX_STATE_AUX_INVALID);
2387 }
2388 break;
2389
2390 case ISL_AUX_STATE_PASS_THROUGH:
2391 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2392 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2393 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2394 }
2395 break;
2396
2397 case ISL_AUX_STATE_AUX_INVALID:
2398 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2399 break;
2400
2401 case ISL_AUX_STATE_PARTIAL_CLEAR:
2402 unreachable("Invalid HiZ state");
2403 }
2404 }
2405
2406 void
2407 intel_miptree_prepare_access(struct brw_context *brw,
2408 struct intel_mipmap_tree *mt,
2409 uint32_t start_level, uint32_t num_levels,
2410 uint32_t start_layer, uint32_t num_layers,
2411 enum isl_aux_usage aux_usage,
2412 bool fast_clear_supported)
2413 {
2414 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2415
2416 switch (mt->aux_usage) {
2417 case ISL_AUX_USAGE_NONE:
2418 /* Nothing to do */
2419 break;
2420
2421 case ISL_AUX_USAGE_MCS:
2422 assert(mt->mcs_buf);
2423 assert(start_level == 0 && num_levels == 1);
2424 const uint32_t level_layers =
2425 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2426 for (uint32_t a = 0; a < level_layers; a++) {
2427 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2428 aux_usage, fast_clear_supported);
2429 }
2430 break;
2431
2432 case ISL_AUX_USAGE_CCS_D:
2433 case ISL_AUX_USAGE_CCS_E:
2434 if (!mt->mcs_buf)
2435 return;
2436
2437 for (uint32_t l = 0; l < num_levels; l++) {
2438 const uint32_t level = start_level + l;
2439 const uint32_t level_layers =
2440 miptree_layer_range_length(mt, level, start_layer, num_layers);
2441 for (uint32_t a = 0; a < level_layers; a++) {
2442 intel_miptree_prepare_ccs_access(brw, mt, level,
2443 start_layer + a,
2444 aux_usage, fast_clear_supported);
2445 }
2446 }
2447 break;
2448
2449 case ISL_AUX_USAGE_HIZ:
2450 assert(mt->hiz_buf);
2451 for (uint32_t l = 0; l < num_levels; l++) {
2452 const uint32_t level = start_level + l;
2453 if (!intel_miptree_level_has_hiz(mt, level))
2454 continue;
2455
2456 const uint32_t level_layers =
2457 miptree_layer_range_length(mt, level, start_layer, num_layers);
2458 for (uint32_t a = 0; a < level_layers; a++) {
2459 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2460 aux_usage, fast_clear_supported);
2461 }
2462 }
2463 break;
2464
2465 default:
2466 unreachable("Invalid aux usage");
2467 }
2468 }
2469
2470 void
2471 intel_miptree_finish_write(struct brw_context *brw,
2472 struct intel_mipmap_tree *mt, uint32_t level,
2473 uint32_t start_layer, uint32_t num_layers,
2474 enum isl_aux_usage aux_usage)
2475 {
2476 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2477
2478 switch (mt->aux_usage) {
2479 case ISL_AUX_USAGE_NONE:
2480 /* Nothing to do */
2481 break;
2482
2483 case ISL_AUX_USAGE_MCS:
2484 assert(mt->mcs_buf);
2485 for (uint32_t a = 0; a < num_layers; a++) {
2486 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2487 aux_usage);
2488 }
2489 break;
2490
2491 case ISL_AUX_USAGE_CCS_D:
2492 case ISL_AUX_USAGE_CCS_E:
2493 if (!mt->mcs_buf)
2494 return;
2495
2496 for (uint32_t a = 0; a < num_layers; a++) {
2497 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2498 aux_usage);
2499 }
2500 break;
2501
2502 case ISL_AUX_USAGE_HIZ:
2503 if (!intel_miptree_level_has_hiz(mt, level))
2504 return;
2505
2506 for (uint32_t a = 0; a < num_layers; a++) {
2507 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2508 aux_usage);
2509 }
2510 break;
2511
2512 default:
2513 unreachable("Invavlid aux usage");
2514 }
2515 }
2516
2517 enum isl_aux_state
2518 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2519 uint32_t level, uint32_t layer)
2520 {
2521 intel_miptree_check_level_layer(mt, level, layer);
2522
2523 if (_mesa_is_format_color_format(mt->format)) {
2524 assert(mt->mcs_buf != NULL);
2525 assert(mt->surf.samples == 1 ||
2526 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2527 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2528 unreachable("Cannot get aux state for stencil");
2529 } else {
2530 assert(intel_miptree_level_has_hiz(mt, level));
2531 }
2532
2533 return mt->aux_state[level][layer];
2534 }
2535
2536 void
2537 intel_miptree_set_aux_state(struct brw_context *brw,
2538 struct intel_mipmap_tree *mt, uint32_t level,
2539 uint32_t start_layer, uint32_t num_layers,
2540 enum isl_aux_state aux_state)
2541 {
2542 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2543
2544 if (_mesa_is_format_color_format(mt->format)) {
2545 assert(mt->mcs_buf != NULL);
2546 assert(mt->surf.samples == 1 ||
2547 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2548 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2549 unreachable("Cannot get aux state for stencil");
2550 } else {
2551 assert(intel_miptree_level_has_hiz(mt, level));
2552 }
2553
2554 for (unsigned a = 0; a < num_layers; a++)
2555 mt->aux_state[level][start_layer + a] = aux_state;
2556 }
2557
2558 /* On Gen9 color buffers may be compressed by the hardware (lossless
2559 * compression). There are, however, format restrictions and care needs to be
2560 * taken that the sampler engine is capable for re-interpreting a buffer with
2561 * format different the buffer was originally written with.
2562 *
2563 * For example, SRGB formats are not compressible and the sampler engine isn't
2564 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2565 * color buffer needs to be resolved so that the sampling surface can be
2566 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2567 * set).
2568 */
2569 static bool
2570 can_texture_with_ccs(struct brw_context *brw,
2571 struct intel_mipmap_tree *mt,
2572 enum isl_format view_format)
2573 {
2574 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2575 return false;
2576
2577 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2578 mt->surf.format, view_format)) {
2579 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2580 isl_format_get_layout(view_format)->name,
2581 _mesa_get_format_name(mt->format));
2582 return false;
2583 }
2584
2585 return true;
2586 }
2587
2588 enum isl_aux_usage
2589 intel_miptree_texture_aux_usage(struct brw_context *brw,
2590 struct intel_mipmap_tree *mt,
2591 enum isl_format view_format)
2592 {
2593 switch (mt->aux_usage) {
2594 case ISL_AUX_USAGE_HIZ:
2595 if (intel_miptree_sample_with_hiz(brw, mt))
2596 return ISL_AUX_USAGE_HIZ;
2597 break;
2598
2599 case ISL_AUX_USAGE_MCS:
2600 return ISL_AUX_USAGE_MCS;
2601
2602 case ISL_AUX_USAGE_CCS_D:
2603 case ISL_AUX_USAGE_CCS_E:
2604 if (!mt->mcs_buf) {
2605 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2606 return ISL_AUX_USAGE_NONE;
2607 }
2608
2609 /* If we don't have any unresolved color, report an aux usage of
2610 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2611 * aux surface and we can save some bandwidth.
2612 */
2613 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2614 0, INTEL_REMAINING_LAYERS))
2615 return ISL_AUX_USAGE_NONE;
2616
2617 if (can_texture_with_ccs(brw, mt, view_format))
2618 return ISL_AUX_USAGE_CCS_E;
2619 break;
2620
2621 default:
2622 break;
2623 }
2624
2625 return ISL_AUX_USAGE_NONE;
2626 }
2627
2628 static bool
2629 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2630 {
2631 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2632 * values so sRGB curve application was a no-op for all fast-clearable
2633 * formats.
2634 *
2635 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2636 * values, the hardware interprets the floats, not as what would be
2637 * returned from the sampler (or written by the shader), but as being
2638 * between format conversion and sRGB curve application. This means that
2639 * we can switch between sRGB and UNORM without having to whack the clear
2640 * color.
2641 */
2642 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2643 }
2644
2645 static void
2646 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2647 struct intel_mipmap_tree *mt,
2648 enum isl_format view_format,
2649 uint32_t start_level, uint32_t num_levels,
2650 uint32_t start_layer, uint32_t num_layers,
2651 bool *aux_supported_out)
2652 {
2653 enum isl_aux_usage aux_usage =
2654 intel_miptree_texture_aux_usage(brw, mt, view_format);
2655 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2656
2657 /* Clear color is specified as ints or floats and the conversion is done by
2658 * the sampler. If we have a texture view, we would have to perform the
2659 * clear color conversion manually. Just disable clear color.
2660 */
2661 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2662 clear_supported = false;
2663
2664 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2665 start_layer, num_layers,
2666 aux_usage, clear_supported);
2667 if (aux_supported_out)
2668 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2669 }
2670
2671 void
2672 intel_miptree_prepare_texture(struct brw_context *brw,
2673 struct intel_mipmap_tree *mt,
2674 enum isl_format view_format,
2675 bool *aux_supported_out)
2676 {
2677 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2678 0, INTEL_REMAINING_LEVELS,
2679 0, INTEL_REMAINING_LAYERS,
2680 aux_supported_out);
2681 }
2682
2683 void
2684 intel_miptree_prepare_image(struct brw_context *brw,
2685 struct intel_mipmap_tree *mt)
2686 {
2687 /* The data port doesn't understand any compression */
2688 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2689 0, INTEL_REMAINING_LAYERS,
2690 ISL_AUX_USAGE_NONE, false);
2691 }
2692
2693 void
2694 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2695 struct intel_mipmap_tree *mt, uint32_t level,
2696 uint32_t start_layer, uint32_t num_layers)
2697 {
2698 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2699 start_layer, num_layers, NULL);
2700 }
2701
2702 enum isl_aux_usage
2703 intel_miptree_render_aux_usage(struct brw_context *brw,
2704 struct intel_mipmap_tree *mt,
2705 bool srgb_enabled, bool blend_enabled)
2706 {
2707 switch (mt->aux_usage) {
2708 case ISL_AUX_USAGE_MCS:
2709 assert(mt->mcs_buf);
2710 return ISL_AUX_USAGE_MCS;
2711
2712 case ISL_AUX_USAGE_CCS_D:
2713 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2714
2715 case ISL_AUX_USAGE_CCS_E: {
2716 mesa_format mesa_format =
2717 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2718 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2719
2720 /* If the format supports CCS_E, then we can just use it */
2721 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2722 return ISL_AUX_USAGE_CCS_E;
2723
2724 /* Otherwise, we have to fall back to CCS_D */
2725
2726 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2727 * formats. However, there are issues with blending where it doesn't
2728 * properly apply the sRGB curve to the clear color when blending.
2729 */
2730 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2731 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2732 return ISL_AUX_USAGE_NONE;
2733
2734 return ISL_AUX_USAGE_CCS_D;
2735 }
2736
2737 default:
2738 return ISL_AUX_USAGE_NONE;
2739 }
2740 }
2741
2742 void
2743 intel_miptree_prepare_render(struct brw_context *brw,
2744 struct intel_mipmap_tree *mt, uint32_t level,
2745 uint32_t start_layer, uint32_t layer_count,
2746 bool srgb_enabled, bool blend_enabled)
2747 {
2748 enum isl_aux_usage aux_usage =
2749 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2750 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2751 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2752 }
2753
2754 void
2755 intel_miptree_finish_render(struct brw_context *brw,
2756 struct intel_mipmap_tree *mt, uint32_t level,
2757 uint32_t start_layer, uint32_t layer_count,
2758 bool srgb_enabled, bool blend_enabled)
2759 {
2760 assert(_mesa_is_format_color_format(mt->format));
2761
2762 enum isl_aux_usage aux_usage =
2763 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2764 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2765 aux_usage);
2766 }
2767
2768 void
2769 intel_miptree_prepare_depth(struct brw_context *brw,
2770 struct intel_mipmap_tree *mt, uint32_t level,
2771 uint32_t start_layer, uint32_t layer_count)
2772 {
2773 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2774 mt->aux_usage, mt->hiz_buf != NULL);
2775 }
2776
2777 void
2778 intel_miptree_finish_depth(struct brw_context *brw,
2779 struct intel_mipmap_tree *mt, uint32_t level,
2780 uint32_t start_layer, uint32_t layer_count,
2781 bool depth_written)
2782 {
2783 if (depth_written) {
2784 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2785 mt->hiz_buf != NULL);
2786 }
2787 }
2788
2789 void
2790 intel_miptree_prepare_external(struct brw_context *brw,
2791 struct intel_mipmap_tree *mt)
2792 {
2793 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2794 bool supports_fast_clear = false;
2795
2796 const struct isl_drm_modifier_info *mod_info =
2797 isl_drm_modifier_get_info(mt->drm_modifier);
2798
2799 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2800 /* CCS_E is the only supported aux for external images and it's only
2801 * supported on very simple images.
2802 */
2803 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2804 assert(_mesa_is_format_color_format(mt->format));
2805 assert(mt->first_level == 0 && mt->last_level == 0);
2806 assert(mt->surf.logical_level0_px.depth == 1);
2807 assert(mt->surf.logical_level0_px.array_len == 1);
2808 assert(mt->surf.samples == 1);
2809 assert(mt->mcs_buf != NULL);
2810
2811 aux_usage = mod_info->aux_usage;
2812 supports_fast_clear = mod_info->supports_clear_color;
2813 }
2814
2815 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2816 0, INTEL_REMAINING_LAYERS,
2817 aux_usage, supports_fast_clear);
2818 }
2819
2820 /**
2821 * Make it possible to share the BO backing the given miptree with another
2822 * process or another miptree.
2823 *
2824 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2825 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2826 * ensure that no MCS buffer gets allocated in the future.
2827 *
2828 * HiZ is similarly unsafe with shared buffers.
2829 */
2830 void
2831 intel_miptree_make_shareable(struct brw_context *brw,
2832 struct intel_mipmap_tree *mt)
2833 {
2834 /* MCS buffers are also used for multisample buffers, but we can't resolve
2835 * away a multisample MCS buffer because it's an integral part of how the
2836 * pixel data is stored. Fortunately this code path should never be
2837 * reached for multisample buffers.
2838 */
2839 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2840 mt->surf.samples == 1);
2841
2842 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2843 0, INTEL_REMAINING_LAYERS,
2844 ISL_AUX_USAGE_NONE, false);
2845
2846 if (mt->mcs_buf) {
2847 brw_bo_unreference(mt->mcs_buf->bo);
2848 free(mt->mcs_buf);
2849 mt->mcs_buf = NULL;
2850
2851 /* Any pending MCS/CCS operations are no longer needed. Trying to
2852 * execute any will likely crash due to the missing aux buffer. So let's
2853 * delete all pending ops.
2854 */
2855 free(mt->aux_state);
2856 mt->aux_state = NULL;
2857 }
2858
2859 if (mt->hiz_buf) {
2860 intel_miptree_aux_buffer_free(mt->hiz_buf);
2861 mt->hiz_buf = NULL;
2862
2863 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2864 mt->level[l].has_hiz = false;
2865 }
2866
2867 /* Any pending HiZ operations are no longer needed. Trying to execute
2868 * any will likely crash due to the missing aux buffer. So let's delete
2869 * all pending ops.
2870 */
2871 free(mt->aux_state);
2872 mt->aux_state = NULL;
2873 }
2874
2875 mt->aux_usage = ISL_AUX_USAGE_NONE;
2876 mt->supports_fast_clear = false;
2877 }
2878
2879
2880 /**
2881 * \brief Get pointer offset into stencil buffer.
2882 *
2883 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2884 * must decode the tile's layout in software.
2885 *
2886 * See
2887 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2888 * Format.
2889 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2890 *
2891 * Even though the returned offset is always positive, the return type is
2892 * signed due to
2893 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2894 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2895 */
2896 static intptr_t
2897 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2898 {
2899 uint32_t tile_size = 4096;
2900 uint32_t tile_width = 64;
2901 uint32_t tile_height = 64;
2902 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2903
2904 uint32_t tile_x = x / tile_width;
2905 uint32_t tile_y = y / tile_height;
2906
2907 /* The byte's address relative to the tile's base addres. */
2908 uint32_t byte_x = x % tile_width;
2909 uint32_t byte_y = y % tile_height;
2910
2911 uintptr_t u = tile_y * row_size
2912 + tile_x * tile_size
2913 + 512 * (byte_x / 8)
2914 + 64 * (byte_y / 8)
2915 + 32 * ((byte_y / 4) % 2)
2916 + 16 * ((byte_x / 4) % 2)
2917 + 8 * ((byte_y / 2) % 2)
2918 + 4 * ((byte_x / 2) % 2)
2919 + 2 * (byte_y % 2)
2920 + 1 * (byte_x % 2);
2921
2922 if (swizzled) {
2923 /* adjust for bit6 swizzling */
2924 if (((byte_x / 8) % 2) == 1) {
2925 if (((byte_y / 8) % 2) == 0) {
2926 u += 64;
2927 } else {
2928 u -= 64;
2929 }
2930 }
2931 }
2932
2933 return u;
2934 }
2935
2936 void
2937 intel_miptree_updownsample(struct brw_context *brw,
2938 struct intel_mipmap_tree *src,
2939 struct intel_mipmap_tree *dst)
2940 {
2941 unsigned src_w = src->surf.logical_level0_px.width;
2942 unsigned src_h = src->surf.logical_level0_px.height;
2943 unsigned dst_w = dst->surf.logical_level0_px.width;
2944 unsigned dst_h = dst->surf.logical_level0_px.height;
2945
2946 brw_blorp_blit_miptrees(brw,
2947 src, 0 /* level */, 0 /* layer */,
2948 src->format, SWIZZLE_XYZW,
2949 dst, 0 /* level */, 0 /* layer */, dst->format,
2950 0, 0, src_w, src_h,
2951 0, 0, dst_w, dst_h,
2952 GL_NEAREST, false, false /*mirror x, y*/,
2953 false, false);
2954
2955 if (src->stencil_mt) {
2956 src_w = src->stencil_mt->surf.logical_level0_px.width;
2957 src_h = src->stencil_mt->surf.logical_level0_px.height;
2958 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2959 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2960
2961 brw_blorp_blit_miptrees(brw,
2962 src->stencil_mt, 0 /* level */, 0 /* layer */,
2963 src->stencil_mt->format, SWIZZLE_XYZW,
2964 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2965 dst->stencil_mt->format,
2966 0, 0, src_w, src_h,
2967 0, 0, dst_w, dst_h,
2968 GL_NEAREST, false, false /*mirror x, y*/,
2969 false, false /* decode/encode srgb */);
2970 }
2971 }
2972
2973 void
2974 intel_update_r8stencil(struct brw_context *brw,
2975 struct intel_mipmap_tree *mt)
2976 {
2977 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2978
2979 assert(devinfo->gen >= 7);
2980 struct intel_mipmap_tree *src =
2981 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2982 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2983 return;
2984
2985 assert(src->surf.size > 0);
2986
2987 if (!mt->r8stencil_mt) {
2988 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2989 mt->r8stencil_mt = make_surface(
2990 brw,
2991 src->target,
2992 MESA_FORMAT_R_UINT8,
2993 src->first_level, src->last_level,
2994 src->surf.logical_level0_px.width,
2995 src->surf.logical_level0_px.height,
2996 src->surf.dim == ISL_SURF_DIM_3D ?
2997 src->surf.logical_level0_px.depth :
2998 src->surf.logical_level0_px.array_len,
2999 src->surf.samples,
3000 ISL_TILING_Y0_BIT,
3001 ISL_SURF_USAGE_TEXTURE_BIT,
3002 BO_ALLOC_BUSY, 0, NULL);
3003 assert(mt->r8stencil_mt);
3004 }
3005
3006 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3007
3008 for (int level = src->first_level; level <= src->last_level; level++) {
3009 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3010 minify(src->surf.phys_level0_sa.depth, level) :
3011 src->surf.phys_level0_sa.array_len;
3012
3013 for (unsigned layer = 0; layer < depth; layer++) {
3014 brw_blorp_copy_miptrees(brw,
3015 src, level, layer,
3016 dst, level, layer,
3017 0, 0, 0, 0,
3018 minify(src->surf.logical_level0_px.width,
3019 level),
3020 minify(src->surf.logical_level0_px.height,
3021 level));
3022 }
3023 }
3024
3025 brw_render_cache_set_check_flush(brw, dst->bo);
3026 src->r8stencil_needs_update = false;
3027 }
3028
3029 static void *
3030 intel_miptree_map_raw(struct brw_context *brw,
3031 struct intel_mipmap_tree *mt,
3032 GLbitfield mode)
3033 {
3034 struct brw_bo *bo = mt->bo;
3035
3036 if (brw_batch_references(&brw->batch, bo))
3037 intel_batchbuffer_flush(brw);
3038
3039 return brw_bo_map(brw, bo, mode);
3040 }
3041
3042 static void
3043 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3044 {
3045 brw_bo_unmap(mt->bo);
3046 }
3047
3048 static void
3049 intel_miptree_map_gtt(struct brw_context *brw,
3050 struct intel_mipmap_tree *mt,
3051 struct intel_miptree_map *map,
3052 unsigned int level, unsigned int slice)
3053 {
3054 unsigned int bw, bh;
3055 void *base;
3056 unsigned int image_x, image_y;
3057 intptr_t x = map->x;
3058 intptr_t y = map->y;
3059
3060 /* For compressed formats, the stride is the number of bytes per
3061 * row of blocks. intel_miptree_get_image_offset() already does
3062 * the divide.
3063 */
3064 _mesa_get_format_block_size(mt->format, &bw, &bh);
3065 assert(y % bh == 0);
3066 assert(x % bw == 0);
3067 y /= bh;
3068 x /= bw;
3069
3070 base = intel_miptree_map_raw(brw, mt, map->mode);
3071
3072 if (base == NULL)
3073 map->ptr = NULL;
3074 else {
3075 base += mt->offset;
3076
3077 /* Note that in the case of cube maps, the caller must have passed the
3078 * slice number referencing the face.
3079 */
3080 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3081 x += image_x;
3082 y += image_y;
3083
3084 map->stride = mt->surf.row_pitch;
3085 map->ptr = base + y * map->stride + x * mt->cpp;
3086 }
3087
3088 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3089 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3090 map->x, map->y, map->w, map->h,
3091 mt, _mesa_get_format_name(mt->format),
3092 x, y, map->ptr, map->stride);
3093 }
3094
3095 static void
3096 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3097 {
3098 intel_miptree_unmap_raw(mt);
3099 }
3100
3101 static void
3102 intel_miptree_map_blit(struct brw_context *brw,
3103 struct intel_mipmap_tree *mt,
3104 struct intel_miptree_map *map,
3105 unsigned int level, unsigned int slice)
3106 {
3107 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3108 /* first_level */ 0,
3109 /* last_level */ 0,
3110 map->w, map->h, 1,
3111 /* samples */ 1,
3112 MIPTREE_CREATE_LINEAR);
3113
3114 if (!map->linear_mt) {
3115 fprintf(stderr, "Failed to allocate blit temporary\n");
3116 goto fail;
3117 }
3118 map->stride = map->linear_mt->surf.row_pitch;
3119
3120 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3121 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3122 * invalidate is set, since we'll be writing the whole rectangle from our
3123 * temporary buffer back out.
3124 */
3125 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3126 if (!intel_miptree_copy(brw,
3127 mt, level, slice, map->x, map->y,
3128 map->linear_mt, 0, 0, 0, 0,
3129 map->w, map->h)) {
3130 fprintf(stderr, "Failed to blit\n");
3131 goto fail;
3132 }
3133 }
3134
3135 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3136
3137 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3138 map->x, map->y, map->w, map->h,
3139 mt, _mesa_get_format_name(mt->format),
3140 level, slice, map->ptr, map->stride);
3141
3142 return;
3143
3144 fail:
3145 intel_miptree_release(&map->linear_mt);
3146 map->ptr = NULL;
3147 map->stride = 0;
3148 }
3149
3150 static void
3151 intel_miptree_unmap_blit(struct brw_context *brw,
3152 struct intel_mipmap_tree *mt,
3153 struct intel_miptree_map *map,
3154 unsigned int level,
3155 unsigned int slice)
3156 {
3157 struct gl_context *ctx = &brw->ctx;
3158
3159 intel_miptree_unmap_raw(map->linear_mt);
3160
3161 if (map->mode & GL_MAP_WRITE_BIT) {
3162 bool ok = intel_miptree_copy(brw,
3163 map->linear_mt, 0, 0, 0, 0,
3164 mt, level, slice, map->x, map->y,
3165 map->w, map->h);
3166 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3167 }
3168
3169 intel_miptree_release(&map->linear_mt);
3170 }
3171
3172 /**
3173 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3174 */
3175 #if defined(USE_SSE41)
3176 static void
3177 intel_miptree_map_movntdqa(struct brw_context *brw,
3178 struct intel_mipmap_tree *mt,
3179 struct intel_miptree_map *map,
3180 unsigned int level, unsigned int slice)
3181 {
3182 assert(map->mode & GL_MAP_READ_BIT);
3183 assert(!(map->mode & GL_MAP_WRITE_BIT));
3184
3185 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3186 map->x, map->y, map->w, map->h,
3187 mt, _mesa_get_format_name(mt->format),
3188 level, slice, map->ptr, map->stride);
3189
3190 /* Map the original image */
3191 uint32_t image_x;
3192 uint32_t image_y;
3193 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3194 image_x += map->x;
3195 image_y += map->y;
3196
3197 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3198 if (!src)
3199 return;
3200
3201 src += mt->offset;
3202
3203 src += image_y * mt->surf.row_pitch;
3204 src += image_x * mt->cpp;
3205
3206 /* Due to the pixel offsets for the particular image being mapped, our
3207 * src pointer may not be 16-byte aligned. However, if the pitch is
3208 * divisible by 16, then the amount by which it's misaligned will remain
3209 * consistent from row to row.
3210 */
3211 assert((mt->surf.row_pitch % 16) == 0);
3212 const int misalignment = ((uintptr_t) src) & 15;
3213
3214 /* Create an untiled temporary buffer for the mapping. */
3215 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3216
3217 map->stride = ALIGN(misalignment + width_bytes, 16);
3218
3219 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3220 /* Offset the destination so it has the same misalignment as src. */
3221 map->ptr = map->buffer + misalignment;
3222
3223 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3224
3225 for (uint32_t y = 0; y < map->h; y++) {
3226 void *dst_ptr = map->ptr + y * map->stride;
3227 void *src_ptr = src + y * mt->surf.row_pitch;
3228
3229 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3230 }
3231
3232 intel_miptree_unmap_raw(mt);
3233 }
3234
3235 static void
3236 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3237 struct intel_mipmap_tree *mt,
3238 struct intel_miptree_map *map,
3239 unsigned int level,
3240 unsigned int slice)
3241 {
3242 _mesa_align_free(map->buffer);
3243 map->buffer = NULL;
3244 map->ptr = NULL;
3245 }
3246 #endif
3247
3248 static void
3249 intel_miptree_map_s8(struct brw_context *brw,
3250 struct intel_mipmap_tree *mt,
3251 struct intel_miptree_map *map,
3252 unsigned int level, unsigned int slice)
3253 {
3254 map->stride = map->w;
3255 map->buffer = map->ptr = malloc(map->stride * map->h);
3256 if (!map->buffer)
3257 return;
3258
3259 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3260 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3261 * invalidate is set, since we'll be writing the whole rectangle from our
3262 * temporary buffer back out.
3263 */
3264 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3265 uint8_t *untiled_s8_map = map->ptr;
3266 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3267 unsigned int image_x, image_y;
3268
3269 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3270
3271 for (uint32_t y = 0; y < map->h; y++) {
3272 for (uint32_t x = 0; x < map->w; x++) {
3273 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3274 x + image_x + map->x,
3275 y + image_y + map->y,
3276 brw->has_swizzling);
3277 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3278 }
3279 }
3280
3281 intel_miptree_unmap_raw(mt);
3282
3283 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3284 map->x, map->y, map->w, map->h,
3285 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3286 } else {
3287 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3288 map->x, map->y, map->w, map->h,
3289 mt, map->ptr, map->stride);
3290 }
3291 }
3292
3293 static void
3294 intel_miptree_unmap_s8(struct brw_context *brw,
3295 struct intel_mipmap_tree *mt,
3296 struct intel_miptree_map *map,
3297 unsigned int level,
3298 unsigned int slice)
3299 {
3300 if (map->mode & GL_MAP_WRITE_BIT) {
3301 unsigned int image_x, image_y;
3302 uint8_t *untiled_s8_map = map->ptr;
3303 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3304
3305 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3306
3307 for (uint32_t y = 0; y < map->h; y++) {
3308 for (uint32_t x = 0; x < map->w; x++) {
3309 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3310 image_x + x + map->x,
3311 image_y + y + map->y,
3312 brw->has_swizzling);
3313 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3314 }
3315 }
3316
3317 intel_miptree_unmap_raw(mt);
3318 }
3319
3320 free(map->buffer);
3321 }
3322
3323 static void
3324 intel_miptree_map_etc(struct brw_context *brw,
3325 struct intel_mipmap_tree *mt,
3326 struct intel_miptree_map *map,
3327 unsigned int level,
3328 unsigned int slice)
3329 {
3330 assert(mt->etc_format != MESA_FORMAT_NONE);
3331 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3332 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3333 }
3334
3335 assert(map->mode & GL_MAP_WRITE_BIT);
3336 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3337
3338 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3339 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3340 map->w, map->h, 1));
3341 map->ptr = map->buffer;
3342 }
3343
3344 static void
3345 intel_miptree_unmap_etc(struct brw_context *brw,
3346 struct intel_mipmap_tree *mt,
3347 struct intel_miptree_map *map,
3348 unsigned int level,
3349 unsigned int slice)
3350 {
3351 uint32_t image_x;
3352 uint32_t image_y;
3353 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3354
3355 image_x += map->x;
3356 image_y += map->y;
3357
3358 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3359 + image_y * mt->surf.row_pitch
3360 + image_x * mt->cpp;
3361
3362 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3363 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3364 map->ptr, map->stride,
3365 map->w, map->h);
3366 else
3367 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3368 map->ptr, map->stride,
3369 map->w, map->h, mt->etc_format);
3370
3371 intel_miptree_unmap_raw(mt);
3372 free(map->buffer);
3373 }
3374
3375 /**
3376 * Mapping function for packed depth/stencil miptrees backed by real separate
3377 * miptrees for depth and stencil.
3378 *
3379 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3380 * separate from the depth buffer. Yet at the GL API level, we have to expose
3381 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3382 * be able to map that memory for texture storage and glReadPixels-type
3383 * operations. We give Mesa core that access by mallocing a temporary and
3384 * copying the data between the actual backing store and the temporary.
3385 */
3386 static void
3387 intel_miptree_map_depthstencil(struct brw_context *brw,
3388 struct intel_mipmap_tree *mt,
3389 struct intel_miptree_map *map,
3390 unsigned int level, unsigned int slice)
3391 {
3392 struct intel_mipmap_tree *z_mt = mt;
3393 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3394 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3395 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3396
3397 map->stride = map->w * packed_bpp;
3398 map->buffer = map->ptr = malloc(map->stride * map->h);
3399 if (!map->buffer)
3400 return;
3401
3402 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3403 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3404 * invalidate is set, since we'll be writing the whole rectangle from our
3405 * temporary buffer back out.
3406 */
3407 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3408 uint32_t *packed_map = map->ptr;
3409 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3410 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3411 unsigned int s_image_x, s_image_y;
3412 unsigned int z_image_x, z_image_y;
3413
3414 intel_miptree_get_image_offset(s_mt, level, slice,
3415 &s_image_x, &s_image_y);
3416 intel_miptree_get_image_offset(z_mt, level, slice,
3417 &z_image_x, &z_image_y);
3418
3419 for (uint32_t y = 0; y < map->h; y++) {
3420 for (uint32_t x = 0; x < map->w; x++) {
3421 int map_x = map->x + x, map_y = map->y + y;
3422 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3423 map_x + s_image_x,
3424 map_y + s_image_y,
3425 brw->has_swizzling);
3426 ptrdiff_t z_offset = ((map_y + z_image_y) *
3427 (z_mt->surf.row_pitch / 4) +
3428 (map_x + z_image_x));
3429 uint8_t s = s_map[s_offset];
3430 uint32_t z = z_map[z_offset];
3431
3432 if (map_z32f_x24s8) {
3433 packed_map[(y * map->w + x) * 2 + 0] = z;
3434 packed_map[(y * map->w + x) * 2 + 1] = s;
3435 } else {
3436 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3437 }
3438 }
3439 }
3440
3441 intel_miptree_unmap_raw(s_mt);
3442 intel_miptree_unmap_raw(z_mt);
3443
3444 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3445 __func__,
3446 map->x, map->y, map->w, map->h,
3447 z_mt, map->x + z_image_x, map->y + z_image_y,
3448 s_mt, map->x + s_image_x, map->y + s_image_y,
3449 map->ptr, map->stride);
3450 } else {
3451 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3452 map->x, map->y, map->w, map->h,
3453 mt, map->ptr, map->stride);
3454 }
3455 }
3456
3457 static void
3458 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3459 struct intel_mipmap_tree *mt,
3460 struct intel_miptree_map *map,
3461 unsigned int level,
3462 unsigned int slice)
3463 {
3464 struct intel_mipmap_tree *z_mt = mt;
3465 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3466 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3467
3468 if (map->mode & GL_MAP_WRITE_BIT) {
3469 uint32_t *packed_map = map->ptr;
3470 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3471 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3472 unsigned int s_image_x, s_image_y;
3473 unsigned int z_image_x, z_image_y;
3474
3475 intel_miptree_get_image_offset(s_mt, level, slice,
3476 &s_image_x, &s_image_y);
3477 intel_miptree_get_image_offset(z_mt, level, slice,
3478 &z_image_x, &z_image_y);
3479
3480 for (uint32_t y = 0; y < map->h; y++) {
3481 for (uint32_t x = 0; x < map->w; x++) {
3482 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3483 x + s_image_x + map->x,
3484 y + s_image_y + map->y,
3485 brw->has_swizzling);
3486 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3487 (z_mt->surf.row_pitch / 4) +
3488 (x + z_image_x + map->x));
3489
3490 if (map_z32f_x24s8) {
3491 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3492 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3493 } else {
3494 uint32_t packed = packed_map[y * map->w + x];
3495 s_map[s_offset] = packed >> 24;
3496 z_map[z_offset] = packed;
3497 }
3498 }
3499 }
3500
3501 intel_miptree_unmap_raw(s_mt);
3502 intel_miptree_unmap_raw(z_mt);
3503
3504 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3505 __func__,
3506 map->x, map->y, map->w, map->h,
3507 z_mt, _mesa_get_format_name(z_mt->format),
3508 map->x + z_image_x, map->y + z_image_y,
3509 s_mt, map->x + s_image_x, map->y + s_image_y,
3510 map->ptr, map->stride);
3511 }
3512
3513 free(map->buffer);
3514 }
3515
3516 /**
3517 * Create and attach a map to the miptree at (level, slice). Return the
3518 * attached map.
3519 */
3520 static struct intel_miptree_map*
3521 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3522 unsigned int level,
3523 unsigned int slice,
3524 unsigned int x,
3525 unsigned int y,
3526 unsigned int w,
3527 unsigned int h,
3528 GLbitfield mode)
3529 {
3530 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3531
3532 if (!map)
3533 return NULL;
3534
3535 assert(mt->level[level].slice[slice].map == NULL);
3536 mt->level[level].slice[slice].map = map;
3537
3538 map->mode = mode;
3539 map->x = x;
3540 map->y = y;
3541 map->w = w;
3542 map->h = h;
3543
3544 return map;
3545 }
3546
3547 /**
3548 * Release the map at (level, slice).
3549 */
3550 static void
3551 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3552 unsigned int level,
3553 unsigned int slice)
3554 {
3555 struct intel_miptree_map **map;
3556
3557 map = &mt->level[level].slice[slice].map;
3558 free(*map);
3559 *map = NULL;
3560 }
3561
3562 static bool
3563 can_blit_slice(struct intel_mipmap_tree *mt,
3564 unsigned int level, unsigned int slice)
3565 {
3566 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3567 if (mt->surf.row_pitch >= 32768)
3568 return false;
3569
3570 return true;
3571 }
3572
3573 static bool
3574 use_intel_mipree_map_blit(struct brw_context *brw,
3575 struct intel_mipmap_tree *mt,
3576 GLbitfield mode,
3577 unsigned int level,
3578 unsigned int slice)
3579 {
3580 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3581
3582 if (devinfo->has_llc &&
3583 /* It's probably not worth swapping to the blit ring because of
3584 * all the overhead involved.
3585 */
3586 !(mode & GL_MAP_WRITE_BIT) &&
3587 !mt->compressed &&
3588 (mt->surf.tiling == ISL_TILING_X ||
3589 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3590 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3591 /* Fast copy blit on skl+ supports all tiling formats. */
3592 devinfo->gen >= 9) &&
3593 can_blit_slice(mt, level, slice))
3594 return true;
3595
3596 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3597 mt->bo->size >= brw->max_gtt_map_object_size) {
3598 assert(can_blit_slice(mt, level, slice));
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /**
3606 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3607 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3608 * arithmetic overflow.
3609 *
3610 * If you call this function and use \a out_stride, then you're doing pointer
3611 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3612 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3613 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3614 * which usually have type uint32_t or GLuint.
3615 */
3616 void
3617 intel_miptree_map(struct brw_context *brw,
3618 struct intel_mipmap_tree *mt,
3619 unsigned int level,
3620 unsigned int slice,
3621 unsigned int x,
3622 unsigned int y,
3623 unsigned int w,
3624 unsigned int h,
3625 GLbitfield mode,
3626 void **out_ptr,
3627 ptrdiff_t *out_stride)
3628 {
3629 struct intel_miptree_map *map;
3630
3631 assert(mt->surf.samples == 1);
3632
3633 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3634 if (!map){
3635 *out_ptr = NULL;
3636 *out_stride = 0;
3637 return;
3638 }
3639
3640 intel_miptree_access_raw(brw, mt, level, slice,
3641 map->mode & GL_MAP_WRITE_BIT);
3642
3643 if (mt->format == MESA_FORMAT_S_UINT8) {
3644 intel_miptree_map_s8(brw, mt, map, level, slice);
3645 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3646 !(mode & BRW_MAP_DIRECT_BIT)) {
3647 intel_miptree_map_etc(brw, mt, map, level, slice);
3648 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3649 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3650 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3651 intel_miptree_map_blit(brw, mt, map, level, slice);
3652 #if defined(USE_SSE41)
3653 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3654 !mt->compressed && cpu_has_sse4_1 &&
3655 (mt->surf.row_pitch % 16 == 0)) {
3656 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3657 #endif
3658 } else {
3659 intel_miptree_map_gtt(brw, mt, map, level, slice);
3660 }
3661
3662 *out_ptr = map->ptr;
3663 *out_stride = map->stride;
3664
3665 if (map->ptr == NULL)
3666 intel_miptree_release_map(mt, level, slice);
3667 }
3668
3669 void
3670 intel_miptree_unmap(struct brw_context *brw,
3671 struct intel_mipmap_tree *mt,
3672 unsigned int level,
3673 unsigned int slice)
3674 {
3675 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3676
3677 assert(mt->surf.samples == 1);
3678
3679 if (!map)
3680 return;
3681
3682 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3683 mt, _mesa_get_format_name(mt->format), level, slice);
3684
3685 if (mt->format == MESA_FORMAT_S_UINT8) {
3686 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3687 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3688 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3689 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3690 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3691 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3692 } else if (map->linear_mt) {
3693 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3694 #if defined(USE_SSE41)
3695 } else if (map->buffer && cpu_has_sse4_1) {
3696 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3697 #endif
3698 } else {
3699 intel_miptree_unmap_gtt(mt);
3700 }
3701
3702 intel_miptree_release_map(mt, level, slice);
3703 }
3704
3705 enum isl_surf_dim
3706 get_isl_surf_dim(GLenum target)
3707 {
3708 switch (target) {
3709 case GL_TEXTURE_1D:
3710 case GL_TEXTURE_1D_ARRAY:
3711 return ISL_SURF_DIM_1D;
3712
3713 case GL_TEXTURE_2D:
3714 case GL_TEXTURE_2D_ARRAY:
3715 case GL_TEXTURE_RECTANGLE:
3716 case GL_TEXTURE_CUBE_MAP:
3717 case GL_TEXTURE_CUBE_MAP_ARRAY:
3718 case GL_TEXTURE_2D_MULTISAMPLE:
3719 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3720 case GL_TEXTURE_EXTERNAL_OES:
3721 return ISL_SURF_DIM_2D;
3722
3723 case GL_TEXTURE_3D:
3724 return ISL_SURF_DIM_3D;
3725 }
3726
3727 unreachable("Invalid texture target");
3728 }
3729
3730 enum isl_dim_layout
3731 get_isl_dim_layout(const struct gen_device_info *devinfo,
3732 enum isl_tiling tiling, GLenum target)
3733 {
3734 switch (target) {
3735 case GL_TEXTURE_1D:
3736 case GL_TEXTURE_1D_ARRAY:
3737 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3738 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3739
3740 case GL_TEXTURE_2D:
3741 case GL_TEXTURE_2D_ARRAY:
3742 case GL_TEXTURE_RECTANGLE:
3743 case GL_TEXTURE_2D_MULTISAMPLE:
3744 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3745 case GL_TEXTURE_EXTERNAL_OES:
3746 return ISL_DIM_LAYOUT_GEN4_2D;
3747
3748 case GL_TEXTURE_CUBE_MAP:
3749 case GL_TEXTURE_CUBE_MAP_ARRAY:
3750 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3751 ISL_DIM_LAYOUT_GEN4_2D);
3752
3753 case GL_TEXTURE_3D:
3754 return (devinfo->gen >= 9 ?
3755 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3756 }
3757
3758 unreachable("Invalid texture target");
3759 }
3760
3761 enum isl_aux_usage
3762 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3763 const struct intel_mipmap_tree *mt)
3764 {
3765 if (mt->hiz_buf)
3766 return ISL_AUX_USAGE_HIZ;
3767
3768 if (!mt->mcs_buf)
3769 return ISL_AUX_USAGE_NONE;
3770
3771 return mt->aux_usage;
3772 }